
Distrib. Comput. (2016) 29:435–457
DOI 10.1007/s00446-016-0276-9

Byzantine gathering in networks

Sébastien Bouchard1 · Yoann Dieudonné2 · Bertrand Ducourthial3

Received: 20 July 2015 / Accepted: 13 June 2016 / Published online: 21 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This paper investigates an open problem intro-
duced in Dieudonné et al. (ACM Trans Algorithms 11(1):1,
2014). Two or more mobile agents start from nodes of a net-
work and have to accomplish the task of gathering which
consists in getting all together at the same node at the same
time. An adversary chooses the initial nodes of the agents
and assigns a different positive integer (called label) to each
of them. Initially, each agent knows its label but does not
know the labels of the other agents or their positions rela-
tive to its own. Agents move in synchronous rounds and can
communicate with each other only when located at the same
node. Up to f of the agents are Byzantine. AByzantine agent
can choose an arbitrary port when it moves, can convey arbi-
trary information to other agents and can change its label
in every round, in particular by forging the label of another

A preliminary version of this paper appeared in Proc. 22nd
International Colloquium on Structural Information and
Communication Complexity (SIROCCO 2015), July 2015,
Montserrat, Spain, 179–193. Supported by the European Regional
Development Fund (ERDF) and the Picardy region under Project
TOREDY.

B Yoann Dieudonné
yoann.dieudonne@u-picardie.fr

Sébastien Bouchard
sebastien.bouchard@lip6.fr

Bertrand Ducourthial
bertrand.ducourthial@utc.fr

1 LIP6/Regal, UPMC Sorbonne Universities, INRIA, Paris,
France

2 MIS, Université de Picardie Jules Verne, Amiens, France

3 Heudiasyc, CNRS and Université de Technologie de
Compiègne, Compiègne, France

agent or by creating a completely new one.What is the mini-
mumnumberMof goodagents that guarantees deterministic
gathering of all of them, with termination?We provide exact
answers to this open problem by considering the case when
the agents initially know the size of the network and the case
when they do not. In the former case, we proveM = f + 1
while in the latter, we prove M = f + 2. More precisely,
for networks of known size, we design a deterministic algo-
rithm gathering all good agents in any network provided that
the number of good agents is at least f + 1. For networks
of unknown size, we also design a deterministic algorithm
ensuring the gathering of all good agents in any network but
provided that the number of good agents is at least f + 2.
Both of our algorithms are optimal in terms of required num-
ber of good agents, as each of them perfectly matches the
respective lower bound on M shown in Dieudonné et al.
(2014), which is of f + 1 when the size of the network is
known and of f + 2 when it is unknown. Perhaps surpris-
ingly, our results highlight an interesting feature when put
in perspective with known results concerning a relaxed vari-
ant of this problem in which the Byzantine agents cannot
change their initial labels. Indeed under this variant M = 1
for networks of known size and M = f + 2 for networks
of unknown size. Following this perspective, it turns out that
when the size of the network is known, the ability for the
Byzantine agents to change their labels significantly impacts
the value of M. However, the relevance for M of such an
ability completely disappears in the most general case where
the size of the network is unknown, as M = f + 2 regard-
less of whether Byzantine agents can change their labels or
not.

Keywords Rendezvous · Deterministic algorithm · Mobile
agent · Byzantine fault

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-016-0276-9&domain=pdf

436 S. Bouchard et al.

1 Introduction

1.1 Context

Gathering is one of the most fundamental tasks in the field of
distributed and mobile systems in the sense that, the ability
to gather is in fact a building block to achieve more complex
cooperative works. Loosely speaking, the task of gathering
consists in ensuring that a group of mobile entities ends up
meeting at the same place at the same time. These mobile
entities, hereinafter called agents, can vary considerably in
nature ranging from human beings and robots to animals and
software agents. The environment in which the agents are
supposed to evolve can vary considerably as well: it may be
a terrain, a network modeled as a graph, a three-dimensional
space, etc.We can also consider that the sequences of instruc-
tions followed by the agents in order to ensure their gathering
are either deterministic or randomized.

In this paper, we consider the problem of gathering in a
deterministic way in a network modeled as a graph. Thus,
the agents initially start from nodes of the graph and have to
meet at the same node by applying deterministic rules. We
assume that among the agents, some areByzantine. AByzan-
tine agent is an agent subject to unpredictable and arbitrary
faults. For instance such an agent may choose to never stop
or to never move. It may also convey arbitrary information to
the other agents, etc. The case of Byzantine fault is very inter-
esting because it is the worst fault that can occur to agents.
As a consequence, gathering in such a context is challenging.

1.2 Model and problem

The distributed system considered in this paper consists of a
group of mobile agents that are initially placed by an adver-
sary at arbitrary nodes of a network modeled as a finite,
connected, undirected graph G = (V, E). A node may be
initially occupied by more than one agent. We assume that
|V | = n. In the sequel n is also called the size of the net-
work. Two assumptions are made about the labelling of the
two main components of the graph that are nodes and edges.
The first assumption is that nodes are anonymous i.e., they
do not have any kind of labels or identifiers allowing them to
be distinguished from one another. The second assumption
is that edges incident to a node v are locally ordered with a
fixed port numbering ranging from 0 to deg(v) − 1 where
deg(v) is the degree of v. Therefore, each edge has exactly
two port numbers, one for each of both nodes it links. The
port numbering is not supposed to be consistent: a given edge
(u, v) ∈ E may be the i-th edge of u but the j-th edge of v,
where i �= j . These two assumptions are not fortuitous. The
primary motivation of the first one is that if each node could
be identified by a label, gathering would become quite easy
to solve as it would be tantamount to explore the graph (via

e.g. a breadth-first search) and then meet in the node having
the smallest label. While the first assumption is made so as
to avoid making the problem trivial, the second assumption
is made in order to avoid making the problem impossible to
solve. Indeed, in the absence of a way allowing an agent to
distinguish locally the edges incident to a node, gathering
could be proven as impossible to solve deterministically in
view of the fact that some agents could be precluded from
traversing some edges and visit some parts of the graph.

An adversary chooses the starting nodes of the agents.
Several agents may share the same starting node. At the
beginning, an agent has a little knowledge about its sur-
roundings: it does not know either the graph topology, or
the number of other agents, or the positions of the others rel-
ative to its own. Still regarding knowledge of the agents, we
will study two scenarios: one in which the agents initially
know the parameter n and one in which the agents do not
initially know this parameter or even any upper bound on it.

Time is discretized into an infinite sequence of rounds. In
each round, every agent, which has been previously woken
up (this notion is detailed in the next paragraph), is allowed
to stay in place at its current node or to traverse an edge
according to a deterministic algorithm. The algorithm is the
same for all agents: only the input, whose nature is specified
further in the subsection, varies among agents.

Before being woken up, an agent is said to be dormant.
A dormant agent may be woken up only in two different
ways: either by the adversary that wakes some of the agents at
possibly different rounds, or as soon as a non-dormant agent
is at the starting node of the dormant agent. We assume that
the adversary wakes up at least one agent.

When an agent iswokenup in a round r , it is told the degree
of its starting node. As mentioned above, in each round r ′ ≥
r , the executed algorithm can ask the agent to stay idle or to
traverse an edge. In the latter case, this takes the following
form: the algorithm asks the agent, located at node u, to
traverse the edge having port number i , where 0 ≤ i <

deg(u) − 1. Let us denote by (u, v) ∈ E this traversed edge.
In round r ′ + 1, the agent enters node v: it then learns the
degree deg(v) as well as the local port number j of (u, v) at
node v (recall that in general i �= j). An agent cannot leave
any kind of tokens or markers at the nodes it visits or the
edges it traverses.

In the beginning, the adversary also assigns a different pos-
itive integer (called label) to each agent. Each agent knows
its label but does not know a priori the labels of the other
agents. When several agents are at the same node v in the
same round t , they see, for each agent x at node v, the label
of agent x and all information it wants to share with the oth-
ers in round t . This transmission of information is done in
a “shouting” mode in one round: all the transmitted infor-
mation by all agents at node v in round t becomes common
knowledge for agents that are currently at node v in round t .

123

Byzantine gathering in networks 437

On the other hand when two agents are not at the same node
in the same round they cannot see or talk to each other: in par-
ticular, two agents traversing simultaneously the same edge
but in opposite directions, and thus crossing each other on the
same edge, do not notice this fact. In every round, the input of
the algorithm executed by an agent a is made up of the label
of agent a and the up-to-date memory of what agent a has
seen and learnt since its waking up. Note that in the absence
of a way of distinguishing the agents, the gathering problem
would have no deterministic solution in some graphs. This is
especially the case in a ring in which at each node the edge
going clockwise has port number 0 and the edge going anti-
clockwise has port 1: if all agents are woken up in the same
round and start from different nodes, they will always have
the same input and will always follow the same deterministic
rules leading to a situation where the agents will always be
at distinct nodes no matter what they do. For more details
about gathering agents devoid of distinct identity, we refer
the reader to [15].

Within the team, it is assumed that up to f of the agents are
Byzantine. The parameter f is known to all agents. AByzan-
tine agent has a high capacity of nuisance: it can choose an
arbitrary port when it moves, can convey arbitrary informa-
tion to other agents and can change its label in every round, in
particular by forging the label of another agent or by creating
a completely new one. All the agents that are not Byzantine
are called good. We consider the task of f -Byzantine gath-
ering which is stated as follows. The adversary wakes up at
least one good agent and all good agents must eventually be
in the same node in the same round, simultaneously declare
termination and stop, provided that there are atmost f Byzan-
tine agents. Regarding this task, it is worth mentioning that
we cannot require the Byzantine agents to cooperate as they
may always refuse to be with some agents. Thus, gathering
all good agents with termination is the strongest requirement
we can make in such a context.

What is the minimum number M of good agents that
guarantees f -Byzantine gathering?

At first glance, the question might appear as not being
really interesting since, after all, the good agents might
always be able to gather in some node, regardless of the
number of Byzantine agents evolving in the graph. However,
this is not the case as pointed out by the study that introduced
this question in [16]. More specifically, when the size of the
network is initially known to the agents, the authors of this
study described a deterministic algorithm gathering all good
agents in any network provided that there are at least 2 f + 1
of them, and gave a lower bound of f + 1 onM by showing
that if the number of good agents is not larger than f , then
there are some graphs in which the good agents are not able
to gather deterministically with termination. When the size
of the network is unknown, they did a similar thing but with
different bounds: they gave an algorithm working for a team

including at least 4 f + 2 good agents, and showed a lower
bound of f + 2 on M. However, the question of what the
tight bounds are was left as an open problem.

1.3 Our results

In this paper, we solve this open problem by proving that the
lower bounds of f + 1 and f + 2 on M, shown in [16],
are actually also upper bounds respectively when the size
of the network is known and when it is unknown. More pre-
cisely, we design deterministic algorithms allowing to gather
all good agents provided that the number of good agents is at
least f +1 when the size of the network is initially known to
agents, and at least f +2 when this size is initially unknown.

Perhaps surprisingly, our results highlight an interesting
feature when put in perspective with results concerning a
relaxed variant of this problem (also introduced in [16]) in
which the Byzantine agents cannot change their initial labels.
Indeed under this variantM = 1 for networks of known size
and M = f + 2 for networks of unknown size1. Following
this perspective, it turns out that when the size of the network
is known, the ability for the Byzantine agents to change their
labels significantly impacts the value ofM. However, the rel-
evance forM of such an ability completely disappears in the
most general case where the size of the network is unknown,
as M = f + 2 regardless of whether Byzantine agents can
change their labels or not. Table 1 summarizes previous and
new bounds on the minimum number of good agents guaran-
teeing f -Byzantine gathering whether Byzantine agents can
change their labels or not.

1.4 Related works

Historically, the first mention of the gathering problem
appeared in [29] under the appellation of rendezvous prob-
lem. Rendezvous is the term which is usually used when the
studied task of gathering is restricted to a team of exactly
two agents. From this publication until now, the problem has
been extensively studied so that there is henceforth a huge
literature about this subject. This is mainly due to the fact
that there is a lot of alternatives for the combinations we can
make when approaching the problem, e.g., by playing on the
environment in which the agents are supposed to evolve, the
way of applying the sequences of instructions (i.e., deter-
ministic or randomized) or the ability to leave some traces in
the visited locations, etc. Naturally, in this paper we are more

1 The proof that both of these values are enough, under their respective
assumptions regarding the knowledgeof the network size, relies on algo-
rithms using a mechanism of blacklists that are, informally speaking,
lists of labels corresponding to agents having exhibited an “inconsis-
tent” behavior. Of course, in the context of our paper, we cannot use
such blacklists as the Byzantine agents can change their labels and in
particular steal the identities of good agents.

123

438 S. Bouchard et al.

Table 1 Old and new bounds on the minimum number of good agents guaranteeing f -Byzantine gathering

Reference Byzantine agents that cannot change their labels Byzantine agents that can change their labels

Known size of the graph Unknown size of the graph Known size of the graph Unknown size of the graph

[16] Upper and lower bound: 1 Upper and lower bound: f + 1 Upper bound: 2 f + 1 Upper bound: 4 f + 2

Lower bound: f + 1 Lower bound: f + 2

This paper Upper bound: f + 1 Upper bound: f + 2

interested in the researchworks that are related to determinis-
tic gathering in networks modeled as graphs. This is why we
will mostly dwell on this scenario in the rest of this subsec-
tion. However, for the curious reader wishing to consider the
matter in greater depth, we invite him to consult [1,7,21] that
address the problem in the plane via various scenarios, espe-
cially in a system affected by the occurrence of faults or inac-
curacies for the last two references. Regarding randomized
rendezvous, a good starting point is to go through [2,3,23].

Concerning the context of this paper, the closest work to
ours is obviously [16]. Nonetheless, in similar settings but
without Byzantine agents, there are some papers that should
be cited here. This is in particular the case of [14] in which
the author presented a deterministic protocol for solving the
rendezvous problem, which guarantees a meeting of the two
involved agents after a number of rounds that is polynomial
in the size n of the graph, the length l of the shorter of the two
labels and the time interval τ between their wake-up times.
As an open problem, the authors ask whether it is possible
to obtain a polynomial solution to this problem which would
be independent of τ . A positive answer to this question was
given, independently of each other, in [22] and [30]. While
these algorithms ensure rendezvous in polynomial time (i.e.,
a polynomial number of rounds), they also ensure it at poly-
nomial cost since the cost of a rendezvous protocol is the
number of edge traversals that are made by the agents until
meeting and since each agent can make at most one edge
traversal per round. However, it should be noted that despite
the fact a polynomial time implies a polynomial cost, the
reciprocal is not always true as the agents can have very long
waiting periods sometimes interrupted by a movement. Thus
these parameters of cost and time are not always linked to
each other. This was highlighted in [26] where the authors
studied the tradeoffs between cost and time for the determin-
istic rendezvous problem. More recently, some efforts have
been dedicated to analyse the impact on time complexity
of rendezvous when in every round the agents are brought
with some pieces of information by making a query to some
device or some oracle, see, e.g., [11,25]. Along with the
works aiming at optimizing the parameters of time and/or
cost of rendezvous, some other works have examined the
amount of memory that is required to achieve deterministic
rendezvous e.g., in [18,19] for tree networks and in [9] for
general networks.

All the aforementioned studies that are related to gath-
ering in graphs take place in a synchronous scenario i.e., a
scenario in which the agents traverse the edges in synchro-
nous rounds. Some efforts have been also dedicated to the
scenario inwhich the agentsmove asynchronously: the speed
of agents may then vary and is controlled by the adversary.
For more details about rendezvous under such a context, the
reader is referred to [10,13,17,20] for rendezvous in finite
graphs and [4,8] for rendezvous in infinite grids.

Aside from the gathering problem, our work is also in
conjunction with the field of fault tolerance via the assump-
tion of Byzantine faults to which some agents are subjected.
First introduced in [27], a Byzantine fault is an arbitrary fault
occurring in an unpredictable way during the execution of a
protocol. Due to its arbitrary nature, such a fault is considered
as the worst fault that can occur. Byzantine faults have been
extensively studied for “classical” networks i.e., in which
the entities are fixed nodes of the graph (cf., e.g., the book
[24] or the survey [5]). To a lesser extend, the occurrence
of Byzantine faults has been also studied in the context of
mobile entities evolving in the plane, cf. [1,12]. Prior to our
work, gathering in arbitrary graphs in presence of Byzantine
agents was considered only in [16]. As mentioned in the pre-
vious section, it is proven in [16] that the minimum number
M of good agents that guarantees f -Byzantine gathering is
precisely 1 for networks of known size and f + 2 for net-
works of unknown size, provided that the Byzantine agents
cannot lie about their labels. The proof that both of these
values are enough, under their respective assumptions regard-
ing the knowledge of the network size, relies on algorithms
using a mechanism of blacklists that are, informally speak-
ing, lists of labels corresponding to agents having exhibited
an “inconsistent” behavior. Of course, in the context of our
paper, we cannot use such blacklists as the Byzantine agents
can change their labels and in particular steal the identities
of good agents.

2 Preliminaries

Throughout the paper, the number of nodes of a graph
is called its size. We say that a sequence of even length
(p1, q1, p2, q2, p3, q3, . . . , pi , qi) is a path from a node u
in a network G iff its length is 0 or there exists an edge e

123

Byzantine gathering in networks 439

between node u and a node v of G such that the port number
of edge e at node u (resp. at node v) is p1 (resp. q1) and
(p2, q2, p3, q3, . . . , pi , qi) is a path from node v in G.

In the rest of this section, we present two procedures, that
will be used as building blocks in our algorithms. The aim
of both of them is graph exploration, i.e., visiting all nodes
of the graph by a single agent. The first procedure, based on
universal exploration sequences (UXS), is a corollary of the
result of Reingold [28]. Given any positive integer N , this
procedure allows the agent to traverse all nodes of any graph
of size at most N , starting from any node of this graph, using
P(N) edge traversals, where P is some polynomial. After
entering a node of degree d by some port p, the agent can
compute the port q by which it has to exit; more precisely
q = (p+ xi) mod d, where xi is the corresponding term of
the UXS of length P(N).

The second procedure [6] needs no assumption on the
size of the network but it is performed by an agent using a
fixed token placed at a node of the graph. It works in time
polynomial in the size of the graph. (It is well known that
a terminating exploration even of all anonymous rings of
unknown size by a single agent without a token is impos-
sible.) In our applications the roles of the token and of the
exploring agent will be played by agents or by groups of
agents. At the end of this second procedure, the agent has
visited all nodes and determined a BFS tree of the underly-
ing graph.

We call the first procedure EX PLO(N) and the second
procedure EST , for exploration with a stationary token. We
denote by T (EX PLO(n)) the execution time of procedure
EX PLO with parameter n (note that T (EX PLO(n)) =
P(n)+1). We denote by T (EST (N)) the maximum time of
execution of the procedure EST in a graph of size at most
N .

3 Known graph size

This section aims at proving the following theorem

Theorem 1 Deterministic f -Byzantine gathering of k good
agents is possible in any graph of known size if, and only if
k ≥ f + 1.

As mentioned in Sect. 1.2, we know from [16] that:

Theorem 2 ([16]) Deterministic f -Byzantine gathering of
k good agents is not possible in some graph of known size if
k ≤ f .

Thus, to prove Theorem 1, it is enough to show the fol-
lowing theorem.

Theorem 3 Deterministic f -Byzantine gathering of k good
agents is possible in any graph of known size if k ≥ f + 1.

Hence, the rest of this section is devoted to proving The-
orem 3. To do so, we show a deterministic algorithm that
gathers all good agents in an arbitrary network of known
size, provided there are at least f + 1 of them.

Before presenting the algorithm, we first give the high
level idea which is behind it. Let us assume an ideal situation
in which each agent would have as input, besides its label and
the network size n, a parameter ρ = (G∗, L∗) corresponding
to the initial configuration of the agents in the graph such
that:

– G∗ represents the n-node graph with all port numbers,
in which each node is assigned an identifier belonging
to {1, . . . , n}. The node identifiers are pairwise distinct.
Note that the representation G∗ contains more informa-
tion than there is in the actual graph G as it also includes
node identifiers which do not exist in G.

– L∗ = {(v1, l1), (v2, l2), . . . , (vk, lk)}where (vi , li) ∈ L∗
iff there is a good agent having label li which is initially
placed inG at the node having identifier vi inG∗. Remark
that k ≥ f + 1.

Let us also assume that all the agents in the graph are
woken up at the same time by the adversary. In such ideal
situation, gathering all good agents can be easily achieved
by ensuring that each agent moves towards the node v where
the agent having the smallest label is located. Each agent can
indeed do that by using the knowledge of ρ = (G∗, L∗) and
its own label. Of course, all the good agents do not neces-
sarily reach node v at the same time. However, each agent
can compute the remaining time which is required to wait at
node v in order to be sure that all good agents are at node v:
again this time can be computed using ρ = (G∗, L∗) and the
fact that all agents are woken up in the same round. Unfortu-
nately, the agents are not in such ideal situation. First, every
agent is not necessarily woken up by the adversary, and for
those that are woken by the adversary, this is not necessarily
in the same round. Second, the agents do not have configu-
ration ρ as input of the algorithm. In our algorithm we cope
with the first constraint by requiring the first action to be a
traversal of the entire graph (using procedure EX PLO(n))
which allows to wake up all encountered agents that are still
dormant. In this way, the agents are “almost synchronized”
as the delay between the starting times of any two agents
is at most T (EX PLO(n)): the waiting time periods can be
adjusted regarding this maximum delay. The second con-
straint i.e., the non-knowledge of ρ, is more complicated to
deal with. To handle the lack of information about ρ, we use
a strategy which is an extension of the idea introduced in [10]
for the case of two agents evolving in a fault-free environ-
ment. Agents make successive assumptions about it that are
“tested” one by one. More precisely, let P be the recursively
enumerable set of all the configurations ρi = (G∗

i , L
∗
i) such

123

440 S. Bouchard et al.

that G∗
i is a connected n-node graph and |L∗

i | ≥ f + 1. Let
Θ = (ρ1, ρ2, ρ3, . . .) be a fixed enumeration of P (all good
agents agree on this enumeration). Each agent proceeds in
phases numbered 1, 2, 3, In each phase i , an agent sup-
poses that ρ = ρi and, similarly as in the ideal situation, tries
to go to the node which is supposed to correspond to node
v, where v is the node where the agent having the smallest
label is initially located (according to ρi). For some reasons
detailed in the algorithm (refer to the description of state
setup), when ρi �= ρ some agents may be unable to make
such a motion. As a consequence, these agents will consider
that, rightly, ρi �= ρ. On the other hand, whether ρi �= ρ

or not, some other good agents may reach a node for which
they had no reason to think it is not v (and thus ρi �= ρ). The
danger here is that when reaching the supposed node v these
successful agents could see all the |L∗

i | labels of ρi (with the
possible “help” of some Byzantine agents). At this point, it
may be tempting to consider that gathering is over but this
could bewrong especially in the casewhereρi �= ρ and some
good agents did not reach a supposed node v in phase i . To
circumvent this problem, the idea is to get the good agents
thinking that ρi = ρ to fetch the (possible) others for which
ρi �= ρ via a traversal of the entire graph using procedure
EX PLO(n) (refer to the description of state tower). To
allow this, an agent for which ρi �= ρ will wait a prescribed
amount of rounds in order to leave enough time for possi-
ble good agents to fetch it (refer to the description of state
wait-for-a-tower). For our purposes, it is important
to prevent the agents from being haphazardly fetched by any
group, especially those containing only Byzantine agents.
Hence our algorithm is designed in such a way that within
each phase at most one group, called a tower and made up
of at least f + 1 agents, will be unambiguously recognized
as such and be allowed to fetch the other agents via an entire
traversal of the graph (this guarantee principally results from
the rules that are prescribed in the description of statetower
builder). When a tower has finished the execution of pro-
cedure EXPLO(n) in some phase i , our algorithm guarantees
that all good agents are together and declare gathering is over
at the same time (whether the assumed configuration ρi cor-
responds to the real initial configuration or not). On the other
hand, in every phase i , if a tower is not created or “van-
ishes” (because there are not at least f + 1 agents inside of
it anymore) before the completion of its traversal, no good
agent will declare that gathering is over in phase i . In the
worst case, the good agents will have to wait until assuming
a good hypothesis about the real initial configuration, in order
to witness the creation of a tower which will proceed to an
entire traversal of the network (and thus declare gathering is
over).

We now give a detailed description of the algorithm.
Algorithm Byz-Known-Size with parameter n (know

size of the graph)

The algorithm is made up of two parts. The first part aims
at ensuring that all agents are woken up before proceeding to
the second part which is actually the heart of the algorithm.

Part 1 As soon as an agent is woken up by the adversary
or another agent, it starts proceeding to a traversal of the
entire graph andwakes up all encountered agents that are still
dormant. This is done using procedure EX PLO(n) where
n is the size of the network which is initially known to all
agents. Once the execution of EX PLO(n) is accomplished,
the agent backtracks to its starting node by traversing all
edges traversed in EX PLO(n) in the reverse order and the
reverse direction.

Part 2 In this part, the agent works in phases numbered
1, 2, 3, During the execution of each phase, the agent
can be in one of the following five states: setup, tower
builder, tower, wait-for-a-tower, failure.
Below we describe the actions of an agent A in each of the
states as well as the transitions between these states within
phase i . We assume that in every round agent A tells the oth-
ers (sharing the same node as agent A) in which state it is.
In some states, the agent will be required to tell more than
just its current state: we will mention it in the description of
these states. Moreover, in the description of every state X,
when we say “agent A transits to state Y”, we exactly mean
agent A remains in state X until the end of the current round
and is in state Y in the following round. Thus, in each round
of this part, agent A is always exactly in one state.

At the beginning of phase i , agent A enters state setup.
State setup.

Let ρi be the i-th configuration of enumerationΘ (refer to
above). If the label l of agent A is not in ρi , then it transits to
state wait-for-a-tower. Otherwise, let X be the set of
the shortest paths in ρi leading from the node containing the
agent having label l, to the node containing the smallest label
of the supposed configuration. Each path belonging to X is
represented as the corresponding sequence of port numbers.
Let π be the lexicographically smallest path in X (the lexi-
cographic order can be defined using the total order on the
port numbers). Agent A follows path π in the real network.
If, following path π , agent A has to leave by a port number
that does not exist in the node where it currently resides, then
it transits to state wait-for-a-tower. In the same way,
it also transits to state wait-for-a-tower if, following
path π , agent A enters at some point a node by a port number
which is not the same as that of path π . Hence, it transits to
state wait-for-a-tower as early as it notices that π is
not a path (refer to the definition we gave in Sect. 2) from
its current node in the real network. Once path π is entirely
followed by agent A, it transits to state tower builder.
State tower builder.

When in state tower builder, agent A can be in one
of the following three substates: yellow, orange, red.

123

Byzantine gathering in networks 441

In all of these substates the agent does not make any move:
it stays at the same node denoted by v. At the beginning,
agent A enters substate yellow. By misuse of language, in
the rest of this paper we will sometimes say that an agent
“is yellow” instead of “is in substate yellow”. We will
also use the same kind of shortcut for the two other colors.
In addition to its state, we also assume that in every round
agent A tells the others in which substate it is.

Substate yellow
Let ki be the number of labels in configuration ρi . Agent

A waits T (EX PLO(n)) + n rounds. If during this waiting
period, there are at some point at least ki orange agents at
node v then agent A transits to substate red. Otherwise, if
at the end of this waiting period there are at least ki agents
residing at node v such that each of them is either yellow
or orange, then agent A transits to substate orange, else
it transits to state wait-for-a-tower.

Substate orange
Agent A waits at most T (EX PLO(n)) + n rounds to

see the occurrence of one of the following two events. The
first event is that there are not at least ki agents residing at
node v such that each of them is either yellow or orange.
The second event is that there are at least ki orange agents
residing at node v. Note that the two events cannot occur
in the same round. If during this waiting period, the first
(resp. second) event occurs, then agent A transits to state
wait-for-a-tower (resp. substate red). If at the end of
the waiting period, none of these events has occurred, then
agent A transits to state wait-for-a-tower.

Substate red
Agent A waits T (EX PLO(n)) + n rounds. If at each

round of this waiting period there are at least ki red agents
at node v, then at the end of the waiting period, agent A
transits to statetower. Otherwise, there is a round during the
waiting period in which there are not at least ki red agents at
node v: agent A then transits to statewait-for-a-tower
as soon as it notices this fact.
State tower.

Agent A can enter state tower either from state tower
builder or state wait-for-a-tower. While in this
state, agent Awill execute all or part of procedureEXPLO(n).
In both cases we assume that, in every round, agent A tells
the others the edge traversal number of EXPLO(n) it has just
made (in addition to its state). We call this number the index
of the agent. Below, we distinguish and detail the two cases.

When agent A enters state tower from state tower
builder, it starts executing procedure EX PLO(n). In the
first round, its index is 0. Just after making the j-th edge
traversal of EX PLO(n), its index is j . Agent A carries out
the execution of EX PLO(n) until its term, except if at some
round of the execution the following condition is not satis-
fied, in which case agent A transits to state failure. Here
is the condition: the node where agent A is currently located

contains a group S of at least f + 1 agents in state tower
having the same index as agent A. S includes agent A but
every agent that is in the same node as agent A is not neces-
sarily in S. If at some point this condition is satisfied and the
index of agent A is equal to P(n), which is the total num-
ber of edge traversals in EX PLO(n) (refer to Sect. 2), then
agent A declares that gathering is over.

Whenagent A enters statetower fromstatewait-for-
a-tower, it has just made the s-th edge traversal of
EX PLO(n) for some s (cf. state wait-for-a-tower)
and thus, its index is s. Agent A executes the next edge tra-
versals i.e., the s + 1-th, s + 2-th, . . ., and then its index
is successively s + 1, s + 2, etc. Agent A carries out this
execution until the end of procedure EX PLO(n), except if
the same condition as above is not fulfilled at some round of
the execution of the procedure, in which case agent A also
transits to state failure. As in the first case, if at some
point the node where agent A is currently located contains a
group S of at least f + 1 agents in state tower having an
index equal to P(n), then agent A declares that gathering is
over.
State wait-for-a-tower.

Agent A waits at most 5T (EX PLO(n)) + 4n rounds to
see the occurrence of the following event: the nodewhere it is
currently located contains a group of at least f + 1 agents in
state tower having the same index t . If during this waiting
period, agent A sees such an event, we distinguish two cases.
If t < P(n), then it makes the t + 1-th edge traversal of
procedure EX PLO(n) and transits to state tower. If t =
P(n), then it declares that gathering is over.

Otherwise, at the end of the waiting period, agent A has
not seen such an event, and thus it transits to state failure.
State failure.

Agent A backtracks to the node where it was located at
the beginning of phase i . To do this, agent A traverses in
the reverse order and the reverse direction all edges it has
traversed in phase i before entering state failure. Once at
its starting node, agent A waits 10T (EX PLO(n))+9n− p
rounds where p is the number of elapsed rounds between the
beginning of phase i and the end of the backtrack it has just
made. At the end of the waiting period, phase i is over. In the
next round, agent A will start phase i + 1.

3.1 Proof of correctness

The proof of correctness is made up of seven lemmas and
two propositions. The validity of Algorithm Byz-Known-
Size (and by extension Theorem 3) follows from Lemmas 6
and 7. However to prove both these lemmas, we first need
to establish the following two propositions and to prove the
following five lemmas.

Part 1 of Algorithm Byz-Known-Size consists in execut-
ing procedure EX PLO(n) and then traversing all edges

123

442 S. Bouchard et al.

traversed in EX PLO(n) in the reverse order and the reverse
direction. In view of the fact that procedure EX PLO(n)

allows an agent to visit all nodes of the graph, we know
that the delay between the starting rounds of any two good
agents is at most T (EX PLO(n)). Hence we get the follow-
ing proposition.

Proposition 1 Let A and B be two good agents. The delay
between the starting rounds of agents A and B is at most
T (EX PLO(n)).

According to Part 1 of Algorithm Byz-Known-Size and
the rules of state failure, we have the following proposi-
tion.

Proposition 2 At the beginning of every phase it executes, a
good agent is at the node where it was woken up.

Lemma 1 Let Q(n) = 10T (EX PLO(n)) + 9n. For every
good agent A and every positive integer i , if at some point
agent A starts executing the i-th phase of Algorithm Byz-
Known-Size, then either it will spend exactly Q(n) rounds
executing the i-th phase or it will declare that gathering is
over after having spent at most Q(n) rounds in the i-th phase.

Proof Let A be an agent that starts executing the i-th phase
of Algorithm Byz-Known-Size in round r and assume that
agent A does not declare that gathering is over by round
r +Q(n)−1. To prove the lemma, it is then enough to prove
that agent A starts executing the i + 1-th phase of Algorithm
Byz-Known-Size in round r + Q(n).

Let us first assume by contradiction that agent A declares
gathering is over when executing the i-th phase of Algo-
rithm Byz-Known-Size. In view of the fact that agent A
does not declare that gathering is over by round r +
Q(n) − 1, we know that this declaration occurs in round
r + Q(n) at the earliest. Simply by adding all the max-
imum durations an agent can spend in each state (state
failure excluded), we obtain 9T (EX PLO(n)) + 8n
rounds, which is an upper bound on the maximum number
of rounds an agent can spend in phase i without enter-
ing state failure. More precisely, we add up n rounds
spent in state setup, 3T (EX PLO(n)) + 3n rounds spent
in state tower builder, 5T (EX PLO(n)) + 4n rounds
spent in state wait-for-a-tower, and T (EX PLO(n))

rounds spent in state tower. Hence agent A enters state
failure of phase i before round r + Q(n). But according
to the description of state failure, once agent A is in state
failure of phase i , it cannot reach the states tower and
wait-for-a-tower of phase i , which are the only two
states wherein an agent can declare that gathering is over.We
then get a contradiction with the fact that agent A declares
gathering is over when executing the i-th phase of Algorithm
Byz-Known-Size.

As a consequence, we know that agent A does not declare
gathering is over when executing the i-th phase of Algorithm
Byz-Known-Size. It then ends up entering state failure
of phase i after a finite number x of rounds which is upper
bounded by 9T (EX PLO(n)) + 8n as mentioned above.
When entering state failure, agent A starts backtracking
to node v where it was located at the beginning of phase
i . Since before switching to state failure of phase i ,
agent A follows a path made up of at most n − 1 edges
and can proceed to at most one (possibly truncated) execu-
tion of procedure EX PLO(n), backtracking to v, in state
failure of phase i , takes y ≤ T (EX PLO(n)) + n
rounds. When the backtrack is done, agent A has spent
p = x + y ≤ 10T (EX PLO(n)) + 9n rounds in phase i
and starts waiting 10T (EX PLO(n)) + 9n − p rounds. The
end of the waiting period is reached in some round r ′ when
agent A has spent exactly 10T (EX PLO(n)) + 9n rounds
in phase i : according to the description of state failure,
agent A starts executing phase i + 1 in round r ′ + 1, which
proves the lemma. �	

Before continuing, we need to introduce some slight addi-
tional notions in order to facilitate the presentation of other
lemmas. For any positive integer i , we say that a good agent
A tests configuration ρi when it executes the i-th phase of
AlgorithmByz-Known-Size.We also say that there is a tower
T j at node v in round t if, and only if, there are at least f + 1
agents, at node v in round t , which are in state tower and
have index j . The members that make up T j at node v in
round t are then all the agents, which are at node v in round
t , being in state tower and having index j .

Remark 1 Since there are at least f +1 agents in every tower,
there is at least one good agent in every tower as there are at
most f Byzantine agents in the network.

Lemma 2 Let Tj be a tower located at node v in round t.
There is at least one good agent in Tj which has been in state
tower since round t − j .

Proof Assume by contradiction that there is no good agent in
tower Tj which has been in statetower since round t− j . By
definition of a tower, every good agent, which is in tower Tj ,
is in state tower and has index j in round t . Let A be a good
agent in Tj . Note that agent A exists in view ofRemark 1. The
last time agent A decided to transit to state tower before
round t was necessarily from state wait-for-a-tower.
Indeed, if that was not the case, that would imply that the last
round r < t when agent A decided to transit to state tower
was from state tower builder. However, according to
the description of state tower, agent A would have entered
this state with index 0 in round r + 1 and would have stayed
in state tower until round t in which it has index j . Hence,
r + 1 = t − j and agent A would have been in state tower

123

Byzantine gathering in networks 443

since round t − j , which would be a contradiction with our
starting assumption.

Denote by s ≤ t the last round when agent A enters
state tower from state wait-for-a-tower. Without
loss of generality, let us assume, for each good agent in
Tj , the last time s′ ≤ t it enters state tower is such
that s ≤ s′ ≤ t . According to the description of states
wait-for-a-tower and tower, agent A is in state
tower and has index j − (t − s) in round s. More-
over, in round s − 1 agent A decides to transit from state
wait-for-a-tower to state tower because it is at a
node in which there are at least f + 1 agents in state tower
having index j−(t−s)−1: among them there is necessarily
a good agent B as there are at most f Byzantine agents. Still
according to the description of state tower, agents A and B
make together the j−(t−s)-th edge traversal of EX PLO(n)

and are in state tower with index j − (t − s) at the same
node v in round s. In round s, there are at least f +1 agents in
state tower having index j − (t − s), otherwise that would
imply either there is no tower located at node v in round t
if t = s, or agent A is in state failure in round s + 1 if
s < t : in the former case we would get a contradiction with
the existence of tower Tj , and in the latter case we would
get a contradiction with the definition of round s. Thus, if
s < t then we know that agents A and B make together the
j−(t−s)+1-th edge traversal of EX PLO(n) and are in state
towerwith index j−(t−s)+1 at the same node u in round
s + 1. Following a similar reasoning to that used above, we
can prove that there are at least f + 1 agents in state tower
having index j − (t − s) + 1 in round s + 1 at node u. So, if
s + 1 < t , then we know that agents A and B make together
the j − (t − s) + 2-th edge traversal of EX PLO(n) and are
in state towerwith index j − (t−s)+2 at the same nodew

in round s+2. By induction, we can then prove that agents A
and B are together in round t and that agent B belongs to Tj .
However, in round t we know that agent B has been in state
towerwithout interruption since at least round s−1, which
contradicts the fact that for each good agent in Tj the last time
s′ ≤ t it enters state tower is such that s ≤ s′ ≤ t . Hence
the last time agent A transited to state tower before round
t was neither from state wait-for-a-tower nor from
state tower builder. Since an agent can transit to state
tower only from states wait-for-a-tower or tower
builder, we get a contradiction with the existence of A,
and thus the lemma holds. �	
Lemma 3 Let A be a good agent that is either orange, or
red or in statetower in round r. Let ρi be the configuration
tested by agent A in round r. All good agents, which do not
declare gathering is over before round r, test ρi in round r.

Proof Assume by contradiction there exists some round x
(playing the role of round r in the statement of the lemma)
such that the lemma does not hold.Without loss of generality,

let us assume that x is the first round for which this lemma
is false.

Let B be a good agent that does not declare gathering is
over before round x .

Since agent A is either orange, or red or in state
tower, in round x it has already finished part 1 of Algorithm
Byz-Known-Size which consists in executing procedure
EX PLO(n) and then traversing all edges traversed in
EX PLO(n) in the reverse order and the reverse direction. In
view of the fact that procedure EX PLO(n) allows an agent
to visit all nodes of the graph, we know that agent B is not
dormant in round x .

Since agent B is not dormant in round x , to prove the
lemma it is then enough to show that in round x it cannot be in
part 1 of Algorithm Byz-Known-Size or test a configuration
ρ j such that j < i or j > i .

First assume by contradiction that agent B tests a config-
uration ρ j in round x such that j < i . Let us consider the
case when agent A is orange in round x . Since agents A
and B do not declare that gathering is over before round x ,
Lemma 1 implies that in round x agent B has spent at most
2T (EX PLO(n)) + j ∗ Q(n) ≤ 2T (EX PLO(n)) + (i −
1)Q(n) rounds since its wake-up. In view of Lemma 1 and
the period of T (EX PLO(n))+n rounds which is necessary
to wait in substate yellow to enter substate orange, when
in round x agent A has spent at least 2T (EX PLO(n)) +
(i − 1) ∗ Q(n) + T (EX PLO(n)) + n rounds since its wake
up. This implies that the delay between the starting rounds
of agents A and B is greater than T (EX PLO(n)), which
contradicts Proposition 1.

Let us consider the case when agent A is in state tower
in round x . If agent A is red or in state tower in round
x −1, then according to the description of those states it also
tests configuration ρi in round x−1. However, since agent B
tests ρ j in round x , given that an agent can only start testing
a configuration in part 1, or when testing the previous one,
it is either in part 1 of the algorithm, or also in phase j , or
in phase j − 1 (only if j > 1). Hence if agent A is red
or in state tower in round x − 1, then the lemma does not
hold in round x − 1 and we get a contradiction with the fact
that x is the first round for which this lemma is false. So,
assume that agent A is neither red nor in state tower in
round x − 1. According to the possible transitions allowing
to enter state tower, it is in state wait-for-a-tower in
round x−1. The reason for which it decides to transit to state
tower in round x − 1 is due to the fact that there is a tower
Ts in round x − 1 for some index s. As for round x , agent
A also tests configuration ρi in round x − 1 in view of the
description of state wait-for-a-tower. By assumption,
the lemma holds in round x − 1, and thus there is at least a
good agent in state tower belonging to Ts in round x − 1
which tests configuration ρi . However, as mentioned above
agent B cannot test configuration ρi in round x − 1. As a

123

444 S. Bouchard et al.

consequence, the lemma does not hold in round x − 1 and
we get a contradiction with fact that x is the first round for
which this lemma is false.

Let us nowconsider the casewhen agent A isred in round
x . According to the description of state tower builder
it also tests configuration ρi in round x−1 and there is a good
agent C (not necessarily different from A) that is orange
or red. Since the lemma holds in round x − 1, agent C also
tests ρi in round x − 1. From this point, using as above the
fact that agent B does not test configuration ρi in round x−1,
we know that the lemma does not hold in round x − 1 and
we obtain the same contradiction.

Hence agent B does not test a configuration ρ j in round x
such that j < i . In a similar way, we can prove that agent B
cannot be in part 1 of Algorithm Byz-Known-Size in round
x . So, it remains to prove that agent B does not test a config-
uration ρ j in round x such that j > i .

Assume by contradiction agent B tests a configuration
ρ j in round x such that j > i . According to Proposi-
tion 2 and the descriptions of states setup and tower
builder, if agent A is orange (resp. red) in round x , we
know that it has spent at most 2T (EX PLO(n)) + 3n (resp.
3T (EX PLO(n)) + 4n) rounds in phase i when in round
x . Thus, in round x , whether agent A is orange or red,
it has spent at most 2T (EX PLO(n)) + (i − 1) ∗ Q(n) +
3T (EX PLO(n)) + 4n rounds since its wake up in view
of Lemma 1. However according to Lemma 1, in round x
agent B has spent at least 2T (EX PLO(n)) + i ∗ Q(n) =
2T (EX PLO(n))+ (i −1)∗ Q(n)+ (10T (EX PLO(n))+
9n) rounds since its wake up. Hence, the delay between
the starting rounds of agents A and B is greater than
T (EX PLO(n)), which contradicts Proposition 1. Thus
agent A is necessarily in state tower of phase i in round
x . Given the possible transitions to state tower, this implies
that, in round x − 1, agent A tests configuration ρi and that
it is red in round x − 1 or there is a tower T j in round x − 1
for some j ≤ T (EX PLO(n)) − 1. In the first case, we can
show as above that the delay between the starting rounds of
agents A and B is greater than T (EX PLO(n)) in round x−1
which is a contradiction with Proposition 1. So let us focus
on the second case in which there is a tower T j in round x−1.
Since the lemma holds in round x − 1, we then know that all
good agents of tower T j also test configuration ρi in round
x − 1: among them there is at least one good agent C that
enters state tower of phase i from substate red of phase i in
some round x ′ ≤ x − 1 in view of Lemma 2. Hence in round
x−1 agentC has spent at most 2T (EX PLO(n))+ (i −1)∗
Q(n) + 3T (EX PLO(n)) + 4n + j ≤ 2T (EX PLO(n)) +
(i − 1) ∗ Q(n) + 4T (EX PLO(n)) + 4n rounds since its
wake up in view of Lemma 1, while agent B has spent at least
2T (EX PLO(n))+ (i −1)∗ Q(n)+ (10T (EX PLO(n))+
9n)−1. As before, we get a contradiction with Proposition 1.

Thus, agent B does not test a configurationρ j in round x such
that j > i .

We then get a contradiction in all cases, which proves the
lemma. �	
Lemma 4 Let A be a good agent entering state tower from
state tower builder in round r at node v. Let B be
a good agent that does not declare that gathering is over
before round r and that does not enter state tower from
state tower builder in round r at node v. Agent B is in
state wait-for-a-tower in round r.

Proof Assume by contradiction that there exists some round
x (playing the role of round r in the statement of the lemma)
such that the lemma does not hold.Without loss of generality,
let us assume that x is the first round for which this lemma
is false. Let ρi be the configuration that is tested by agent A
in round x . Let ki be the number of labels in configuration
ρi (recall that all the labels in configuration ρi are distinct as
they are meant to represent only the labels of good agents).
According to Lemma 3, we know that agent B also tests
configuration ρi in round x . To get a contradiction, we will
prove that agent B cannot be in any state of phase i in round
x except state wait-for-a-tower.

Agent B cannot be in state setup of phase i in round x .
Indeed, since agents A and B do not declare that gathering is
over before round x , in view of Lemma 1 and Proposition 1,
we know that the delay between the two rounds in which
they start testing configuration ρi is at most T (EX PLO(n)).
However by Proposition 2, agent B cannot spend more than
n rounds in state setup of phase i , while agent A needs
to spend at least T (EX PLO(n)) + n + 2 rounds in phase
i before entering state tower of phase i . Hence agent B
cannot be in state setup in round x , otherwise we would
get a contradiction with the fact that the delay between the
two rounds in which they start testing configuration ρi is at
most T (EX PLO(n)).

In round x agent B cannot be in state tower of phase i .
To show this, we first prove that in round x agent B cannot be
in state tower of phase i with index 0 (we will then prove
it cannot be in this state even with any positive index). If in
round x agent B is in state tower of phase i with index 0,
then according to Algorithm Byz-Known-Size agents A and
B are red in round x − 1 and enter state tower in round
x . In round x − 1, agents A and B are not at the same node,
otherwise according to Algorithm Byz-Known-Size they are
still together in round x and we then get a contradiction with
the assumption that agent B does not enter state tower from
state tower builder in the same round and at the same
node as agent A. Hence in round x−1 agents A and B arered
at distinct nodes and decide to transit to statetower: accord-
ing to Lemma 3, they do so by testing the same configuration
ρi . According to the rules to enter state tower from state

123

Byzantine gathering in networks 445

tower builder, there are then at least 2ki red agents in
round x−1: a group of at least ki at the nodewhere agent A is
located, and another group of at least ki at the node of agent
B. Since ki ≥ f + 1, there are at least ki + 1 good agents
that are red in round x − 1. Thus, according to Lemma 3,
there are at least ki + 1 good agents that are red in round
x − 1 which test the same configuration ρi . However, this
implies that each of these good red agents has its label in
configuration ρi (otherwise it would have been impossible
for at least one of them to transit to state tower builder
of phase i according to the rules of state setup): there are
then at least ki + 1 distinct labels in ρi which contradicts the
definition of ki . Let us now prove that in round x agent B
cannot be in state tower and have an index j > 0. If agent
B is in state tower of phase i and has index j > 0 in round
x , then, in view of Lemma 2, there is a good agent C in state
tower having index j − 1 in round x − 1 which has been in
state tower since round x − j . Hence, in round x − j agent
C would be in state tower with index 0, which means that
agent C enters state tower from state tower builder
in round x − j according to the description of state tower.
Since index j cannot be greater than T (EX PLO(n)), we
know that agent A is red in round x − j as it necessarily
spent T (EX PLO(n)) + n rounds as a red agents before
entering state tower in round x . Hence in round x − j ,
there is an agent C that enters state tower while agent A is
red in state tower builder: the lemma does not hold
in round x − j , which contradicts the fact that x is the first
round when the lemma is false.

Now that the cases setup and tower have been
excluded, it remains to prove that in phase i , agent B cannot
be either in state tower builder or in state failure.

Let us first prove that agent B cannot be in state tower
builder of phase i in round x . To prove this, it is enough to
show that it cannot be either yellow, or orange, or red.

If in round x agent B is yellow and tests configuration
ρi , in view of the maximum number of rounds an agent can
spend in substateyellow it cannot beyellow and test con-
figuration ρi in round x − T (EX PLO(n)) − n − 1. Hence
when in round x−T (EX PLO(n))−n−1, agent B has spent
at most 2T (EX PLO(n))+ (i − 1) ∗ Q(n)+ n rounds since
its wake up according to Proposition 2 and Lemma 1. How-
ever, as an agent can only enter substate red from substates
yellow and orange of the same phase by seeing at least
ki orange agents and has to spend T (EX PLO(n)) + n in
substate red, when in round x − T (EX PLO(n)) − n − 1,
agent A is yellow or orange, tests configuration ρi and
sees at least ki orange agents at its current node. From
Lemma 3 and the fact that ki ≥ f + 1, there is a good
agent C that is orange and tests configuration ρi in round
x − T (EX PLO(n)) − n − 1. When in this round, by
Lemma 1 and Proposition 2, agent C has spent at least
3T (EX PLO(n)) + (i − 1) ∗ Q(n) + n + 1 rounds since

its wake up (i.e. at least T (EX PLO(n)) + 1 rounds more
than agent B), which contradicts Proposition 1.

In round x agent B cannot be orange. Indeed, if agent B
is orange in round x , then according to the description of
statetower builder andLemma3wehave the following
fact: there are at least ki agents such that each of them is
either yellow or orange in round x − 1 which test the
same configuration ρi , and there are at least ki red agents
in round x − 1 which test the same configuration ρi . Since
ki ≥ f + 1, there are at least ki + 1 good agents that are in
state tower builder in round x − 1 which test the same
configuration ρi . However, this implies that each of these
good agents has its label in configuration ρi (otherwise it is
impossible to transit to state tower builder of phase i
according to the rules of state setup): there are then at least
ki + 1 distinct labels in ρi which contradicts the definition
of ki . In round x , agent B cannot be red. Indeed, if agent B
is red in round x that means there is a round x − p (p ≤
T (EX PLO(n)) + n) in which it is in a group of at least ki
agents having a color belonging to {yellow, orange} while
agent A is in a groupof at least ki red agents. From this point,
using similar arguments to those used just above to prove
agent B is not orange in round x , we get a contradiction
with the definition of ki .

To end the proof, it remains to show that agent B is not
in state failure of phase i in round x . Assume by con-
tradiction, it is in state failure of phase i in round x .
Let x ′ < x be the last time agent B decided to transit to
state failure (recall that when an agent decides to tran-
sit from some state X to some state Y in some round t , the
agent remains in state X in round t and is in state Y in round
t +1). In round x ′, agent B is either in state tower of phase
i or in state wait-for-a-tower of phase i . If agent B
is in state wait-for-a-tower of phase i and decides
to transit to state failure in round x ′, then by Lemma 1
and Proposition 2 and in view of the 5T (EX PLO(n)) + 4n
rounds an agent has to wait in state wait-for-a-tower
before entering state failure, when in round x agent
B has spent at least 2T (EX PLO(n)) + (i − 1)Q(n) +
5T (EX PLO(n))+4n rounds since its wake up. However in
view of Lemma 1, Proposition 2 and the maximum number
of rounds an agent can spend in states setup and tower
builder, when in round x agent A has spent at most
2T (EX PLO(n))+(i−1)Q(n)+3T (EX PLO(n))+4n+1
rounds since its wake up, which contradicts Proposition 1. If
agent B is in state tower of phase i with some index j ≥ 0
in round x ′, then in view of Lemmas 2 and 3 as well as the
rules of state tower, we know there is a good agent C (not
necessarily different from agent B) that enters state tower
of phase i from state tower builder of phase i in round
x ′ − j . Hence in view of Lemma 3 and the fact the lemma
holds in all rounds prior to round x , in round x ′ − j agent A
either also enters state tower of phase i from state tower

123

446 S. Bouchard et al.

builder of phase i , or is in state wait-for-a-tower of phase
i . However in both these cases, as it is impossible to enter
state tower twice while testing the same configuration, it is
then impossible for agent A to enter state tower of phase i
from state tower builder of phase i in round x , which
is a contradiction.

Thus, it follows that agent B can be only in state
wait-for-a-tower of phase i in round x , which proves
the lemma. �	
Lemma 5 In any round there is at most one tower.

Proof Assume by contradiction there exists some round r
when there are two distinct towersD j and T j ′ . The members
of D j (resp. T j ′) are in state tower and all have index j
(resp. index j ′). Note that in the case whereD j and T j ′ are at
the same node, indexes j and j ′ are different from each other,
otherwise we would have D j = T j ′ according to the defini-
tion of a tower. In the other case, index j is not necessarily
different to index j ′. Without loss of generality, we assume
in the rest of this proof that j ≥ j ′. By Lemma 2, there is a
good agent A ∈ D j (resp. B ∈ T j ′) which has been in state
tower since round r − j (resp. round r − j ′). Let ρi be
the configuration tested by agent A in round r . By Lemma 3
agent B also tests configuration ρi in round r . Hence, in view
of the fact that agent A (resp. agent B) is in state tower of
phase i with index j (resp. index j ′) in round r , agent A
(resp. agent B) enters state tower of phase i in round r − j
(resp. round r − j ′) from state tower builder of phase
i . Denote by u the node occupied by agent A in round r − j .
By Lemmas 3 and 4, in round r − j agent B is either in state
wait-for-a-towerof phase i or also enters statetower
of phase i from state tower builder at node u. The first
case implies that agent B cannot enter state tower of phase
i from state tower builder of phase i in round r − j ′,
which is a contradiction. The second case implies that agents
A and B enter together state tower of phase i from state
state tower builder in the same round r − j = r − j ′
and at the same node, and thus belong to the same tower in
round r according to the rules of state tower, which is also
a contradiction and thus proves the lemma. �	

We are now ready to prove Lemmas 6 and 7.

Lemma 6 If a good agent declares gathering is over at node
v in round r, then all good agents are at node v in round r
and declare that gathering is over in round r.

Proof Assume by contradiction there is a good agent A that
declares gathering is over at node v in round r but there is
a good agent B that does not make such a declaration at the
same node and in the same round. Without loss of generality,
we assume round r is the first round when an agent declares
gathering is over. Thus, agent B does not declare gathering
is over before round r .

Given the conditions which have to be verified for a good
agent to declare gathering is over, there is a tower TP(n)

in round r at node v: all agents belonging to TP(n) are in
state tower and have index P(n) (which corresponds to the
number of edge traversals of procedure EX PLO(n)). By
Lemma 2, there is a good agent C that proceeded to an entire
execution of EX PLO(n) from round r − P(n) to round r .
None of agents in TP(n) could be agent B because all good
agents belonging to TP(n) in round r declare gathering is over
according to the rules of state tower. In particular agent C
cannot be agent B. When agent C enters state tower in
round r − P(n), agent B is in state wait-for-a-tower,
otherwise in view of Lemma 4 and the rules of state tower,
agentsC and B both belong toTP(n), which is a contradiction.

If agent B does not enter state failure in some round
of {r − P(n)+1, . . . , r}, then either agent B remains in state
wait-for-a-tower from round r − P(n) to round r , or
agent B enters state tower in some round x ∈ {r − P(n) +
1, . . . , r}. In the former case, that means agent B is at node v

in round r . Indeed, otherwise agent B shares with agentC the
same node (because C makes an entire traversal as an agent
in state tower) in some round x ∈ {r − P(n), . . . , r − 1},
and then transits to state tower in round x+1 ≤ r (because
agentC is always in a tower during its entire traversal), which
is a contradiction. However due to the presence of a tower in
round r at node v, agent B declares gathering is over in the
same round and at the same node according to the rules of
statewait-for-a-tower, which is again a contradiction.
In the latter case, agent B enters state tower in some round
x ∈ {r − P(n) + 1, . . . , r}. By Lemma 5 and the fact that
agent C is always in state tower from round r − P(n) to r ,
agent B belongs to the same tower as agent C from rounds
x to r . Thus agent B is included in tower TP(n) in round r ,
which is a contradiction.

Hence agent B enters state failure in some round
x ∈ {r − P(n) + 1, . . . , r}. By Lemma 3, agents A, B and
C test the same configuration ρi in round r for some positive
integer i . Since agentC stays in state tower of phase i from
round r − P(n) to round r (as an agent cannot start testing
a new configuration while in state tower), we know agent
C also tests configuration ρi in round x . Since agent C is in
state tower in round x , agent B also tests configuration ρi
in round x , according to Lemma 3. Hence in view of the fact
that agent B enters state failure by testing configuration
ρi in round x and the fact that it still tests configuration ρi
in round r , we know that agent B is in state failure of
phase i in round r . However in view of Lemma 1, Proposi-
tion 2 as well as the maximum number of rounds an agent
can spend in states setup, tower builder and tower
and the minimum number of rounds which is necessary to
spend in state wait-for-a-tower before entering state
failure, when in round r , agent B has spent at least
2T (EX PLO(n))+(i−1)∗Q(n)+5T (EX PLO(n))+4n+

123

Byzantine gathering in networks 447

1 rounds since its wake up, while agent C has spent at most
2T (EX PLO(n))+ (i −1)∗Q(n)+4T (EX PLO(n))+4n
rounds:we thus get a contradictionwith Proposition 1.Hence
agent B does not exist and the lemma holds. �	
Lemma 7 There is at least one good agent that ends up
declaring that gathering is over.

Proof Assume by contradiction no agent ends up declar-
ing gathering is over. Let ρi ∈ Θ be a good configuration,
i.e., a configuration which corresponds to the correct ini-
tial configuration of all good agents in the graph. Let ki
be the number of labels in configuration ρi : ki ≥ f + 1
because every tested configuration contains at least f + 1
labels. Since configuration ρi is good, in view of Proposi-
tion 1, Lemma 1 and the fact that at least one good agent is
woken up by the adversary, every good agent reaches state
tower builder of phase i possibly in different rounds
but at the same node v corresponding to the node where the
agent having the smallest label is initially located. Denote by
A the first agent to enter state tower builder of phase
i in some round r . Agent A is thus yellow in round r
at node v. By Propositions 1 and 2, Lemma 1 and the fact
that configuration ρi is good, we know that each good agent
enters substate yellow of phase i at node v in some round
x ∈ {r, . . . , r + T (EX PLO(n)) + n − 1}. Note that if a
good agent, which is in substate yellow of phase i in round
x ′ ∈ {r, . . . , r + T (EX PLO(n)) + n − 2} at node v, is no
longer in substate yellow of phase i in round x ′ +1 at node
v, this implies that the good agent sees at least ki orange
agents at node v in round x ′. Among this group of at least ki
orange agents, at least one agent, call it C , is good as ki ≥
f + 1. By Lemma 3, agent C also tests configuration ρi in
round x ′, and thus agent C entered state tower builder
of phase i in round x ′ − T (EX PLO(n)) − n − 1 < r at
the latest, which contradicts the definition of agent A. Hence,
each good agent enters substate yellow of phase i at node
v in some round x ∈ {r, . . . , r + T (EX PLO(n)) + n − 1}
and remains in substate yellow of phase i at node v at least
until round r + T (EX PLO(n)) + n − 1 included. We have
therefore the following claim.
Claim 1. All good agents are yellow at node v and test
configuration ρi in round r + T (EX PLO(n)) + n − 1.

From Claim 1 and the description of substate yellow,
agent A becomes orange in round r + T (EX PLO(n)) + n.
The presence of ki agents such that each of them is either
yellow or orange that is required for the other good
agents to enter substateorange, and to keep beingorange
is verified in each round ∈ {r + T (EX PLO(n)) + n −
1, . . . , r + 2T (EX PLO(n)) + 2n − 1} as long as no
good agent has become red. Whether in substate yellow
or orange, the condition for an agent to become red
is the same: ki agents must be orange in node v. As
ki ≥ f + 1, a good agent cannot become red before

a good agent has become orange. During phase i , A is
the first good agent becoming orange, this happens in
round r + T (EX PLO(n)) + n. From Claim 1, in this
round every good agent is either yellow or orange
which implies that in each round ∈ {r + T (EX PLO(n)) +
n, . . . , r + 2T (EX PLO(n)) + 2n − 1} if a good agent
becomes red then every good agent enters the same sub-
state in the same round. In the worst case, every good agent
has becomeorange T (EX PLO(n))+n rounds after round
r + T (EX PLO(n)) + n − 1 (in which they were yellow
from Claim 1) that is to say in round r +2T (EX PLO(n))+
2n − 1. Hence, the ki good agents become red together
before round r + 2T (EX PLO(n)) + 2n. From this point,
we know the ki good agents will then enter state tower of
phase i in the same round at node v and make together an
entire execution of procedure EX PLO(n): according to the
rules of state tower, agent A declares gathering is over at
the end of this execution. So, we get a contradiction, and the
lemma holds. �	

From Lemmas 6 and 7, we know that Algorithm Byz-
Known-Size and Theorem 3 are valid.

4 Unknown graph size

In this section, we consider the same problem, except we
assume that the agents are not initially given the size of the
graph. Under this harder scenario, we aim at proving the
following theorem.

Theorem 4 Deterministic f -Byzantine gathering of k good
agents is possible in any graph of unknown size if, and only
if k ≥ f + 2.

As mentioned in Sect. 1.2, we know from [16] that:

Theorem 5 ([16])Deterministic f -Byzantine gathering of k
good agents is not possible in some graphs of unknown size
if k ≤ f + 1.

In view of Theorem 5, it is then enough to show the fol-
lowing theorem in order to prove Theorem 4.

Theorem 6 Deterministic f -Byzantine gathering of k good
agents is possible in any graph of unknown size if k ≥ f +2.

Hence, similarly as in Sect. 3, the rest of this section is
devoted to showing a deterministic algorithm that gathers all
good agents, but this time in an arbitrary network of unknown
size and provided there are at least f + 2 good agents.

Before giving the algorithm,whichwe callAlgorithmByz-
Unknown-Size, let us provide some intuitive ingredients on
which our solution is based.

The algorithm of this section displays a number of simi-
larities with the algorithm of the previous section, but there

123

448 S. Bouchard et al.

are also a number of changes to tackle the non-knowledge
of the network size. Among the most notable changes, there
is firstly the way of enumerating the configurations. Previ-
ously, the agents were considering the enumeration Θ =
(ρ1, ρ2, ρ3, . . .) of P where P is the set of every configura-
tion corresponding to a n-node graph in which there are at
least f +1 robots with pairwise distinct labels. Now, instead
of considering Θ , the agents will consider the enumeration
Ω = (φ1, φ2, φ3, . . .) ofQwhereQ is the set of all configu-
rations corresponding to a graph of any size (instead of size
n only) in which there are at least f + 2 agents (instead of
at least f + 1) with pairwise distinct labels. Note that, as for
set P , set Q is also recursively enumerable.

Another change stems from the function performed by a
tower, which we also find here. In Algorithm Byz-Known-
Size, the role of a tower was to fetch all awaiting good agents
(which know that the tested configuration is not good) via
procedure EX PLO(n): in the new algorithm, we keep the
exact same strategy. However, to be able to use procedure
EX PLO with a parameter corresponding to the size of the
network, it is necessary, for the good agents that aremembers
of a tower, to know this size. Hence, in our solution, before
being considered as a tower and then authorized to make a
traversal of the graph, a group of agents will have to learn
the size of the graph. To do this, at least each good agent of
the group will be required to make a simulation of proce-
dure EST by playing the role of an explorer and using the
others as its token. To carry out these simulations, it is also
required for the group of agents to contain initially at least
f + 2 members (explorer + token), even if subsequently it
is required for a group of agents forming a tower to contain
at least f + 1 members. Our algorithm is designed in such
a way that if during the simulation of procedure EST by an
agent playing the role of an explorer, we have the guarantee
there are always at least f + 1 agents playing the role of
its token, then the explorer will be able to recognize its own
token without any ambiguity (and thus will act as if it per-
formed procedure EST with a “genuine” token). Of course,
the agents will not always have such a guarantee (especially
due to the possible bad behavior of Byzantine agents when
testing awrong configuration) andwill not be able to detect in
advance whether they will have it or not. Besides, some other
problems can arise including, for example, some Byzantine
explorer which takes too much time to explore the graph (or
worse still, “never finishes” the exploration). However we
will show that in all cases, the good agents can never learn
an erroneous size of the graph (even with the duplicity of
Byzantine agents when testing a wrong configuration). We
also show that good agents are assured of learning the size of
the network when testing a good configuration at the latest
(as the creation of a group of at least f + 2 agents and the
aforementioned guarantee are ensured when testing a good
configuration). As for Algorithm Byz-Known-Size, in the

worst case the good agents will have to wait until assuming a
good hypothesis about the real initial configuration, in order
to declare gathering is over.

Despite the fact Algorithm Byz-Unknown-Size has also a
number of technical changes compared with Algorithm Byz-
Known-Size (e.g., the duration of waiting periods that are
adjusted according to the new context), it should be noted that
some parts of Algorithm Byz-Unknown-Size are inevitably
almost identical to some of those of Algorithm Byz-Known-
Size (this is particularly the case for the description of state
tower). However for easy readability, we made the choice
of writing completely these parts instead of explaining this
or that part “is the same as in Algorithm Byz-Known-Size
except that…”.

We now give a detailed description of the algorithm.
Algorithm Byz-Unknown-Size
The agent works in phases numbered 1, 2, 3, During

the execution of each phase, the agent can be in one of the
following seven states:setup,tower builder,token,
explorer, tower, wait-for-a-tower, failure.
Below we describe the actions of an agent A having label
lA in each of the states as well as the transitions between
these states within phase i . As in Algorithm Byz-Known-
Size, we assume that in every round agent A tells the others
(sharing the same node as agent A) in which state it is. At
the beginning of phase i , agent A enters state setup. We
denote by Q the time spent by agent A executing Algorithm
Byz-Unknown-Size before starting phase i .
State setup.

Let φi be the i-th configuration of enumeration Ω =
(φ1, φ2, φ3, . . .) (refer to its description given above in
Sect. 4). Let ni be the number of nodes in configuration φi .
Agent A starts executing procedure EX PLO(ni). Once the
execution of EX PLO(ni) is accomplished, the agent back-
tracks to its starting node by traversing all edges traversed in
EX PLO(ni) in the reverse order and the reverse direction.
When the backtrack is done, the agent continues with this
state via the following rules. If lA is not in φi , then it transits
to state wait-for-a-tower. Otherwise, let X be the set
of the shortest paths in φi leading from the node containing
the agent having label lA, to the node containing the smallest
label of the supposed configuration. Each of paths belonging
to X is represented as the corresponding sequence of port
numbers. Let π be the lexicographically smallest path in X
(the lexicographic order can be defined using the total order
on the port numbers). Agent A follows path π in the real
network. If, following path π , agent A has to leave by a port
number that does not exist in the node where it currently
resides, then it transits to state wait-for-a-tower. In
the same way, it also transits to state wait-for-a-tower
if, following path π , agent A enters at some point a node
by a port number which is not the same as that of path π .
Hence, it transits to state wait-for-a-tower as early as

123

Byzantine gathering in networks 449

it notices that π is not a path (refer to the definition we gave
in Sect. 2) from its current node in the real network. Once
path π is entirely followed by agent A, it transits to state
tower builder.
State tower builder.

When in state tower builder, agent A can be in one
of the following three substates: yellow, orange, red. In
all of these substates the agent does not make any move: it
stays at the same node denoted by v. At the beginning, agent
A enters substate yellow. As for Algorithm Byz-Known-
Size, we will sometimes use a slight misuse of language
by saying an agent “is yellow” instead of “is in substate
yellow”. We will also use the same kind of shortcut for the
two other colors. In addition to its state, we also assume that
in every round agent A tells the others in which substate it is.

Substate yellow
Let ki be the number of labels in configurationφi . Agent A

waitsT (EX PLO(ni))+ni+Q rounds. If during thiswaiting
period, there are at some point at least ki orange agents at
node v then agent A transits to substate red. Otherwise, if
at the end of this waiting period there are at least ki agents
residing at node v such that each of them is either yellow
or orange, then agent A transits to substate orange, else
it transits to state wait-for-a-tower.

Substate orange
Agent A waits at most T (EX PLO(ni))+ni + Q rounds

to see the occurrence of one of the following two events. The
first event is that there are not at least ki agents residing at
node v such that each of them is either yellow or orange.
The second event is that there are at least ki orange agents
residing at node v. Note that the two events cannot occur
in the same round. If during this waiting period, the first
(resp. second) event occurs then agent A transits to state
wait-for-a-tower (resp. substate red). If at the end of
the waiting period, none of these events has occurred, then
agent A transits to substate wait-for-a-tower.

Substate red
Agent Awaits T (EX PLO(ni))+ni +T (EST (ni))+Q

rounds, and in every round of this waiting period it tells the
others its phase number i (in addition to its state). If there
is a round during the waiting period in which there are not
at least ki red agents in phase i at node v: agent A then
transits to state wait-for-a-tower as soon as it notices
this fact. Otherwise, at the end of the waiting period agent A
transits either to state explorer, or to state token, or to
state failure according to the following rule. LetH be the
set of pairwise distinct labels such that l ∈ H iff there is at
least one red agent in phase i having label l at node v in the
last round of the waiting period. Let |H| be the cardinality of
H. If |H| > ki + f then agent A transits to state failure.
Otherwise |H| ≤ ki + f and agent A applies the following
instruction: if lA is the smallest label in H then agent A
transits to state explorer, else it transits to state token.

State explorer.
We first briefly describe the procedure EST based on [6]

that will be subsequently adapted to our needs. In this proce-
dure, the agent constructs a BFS tree rooted at node r marked
by the stationary token. In this tree it marks port numbers at
all nodes. During the BFS traversal, some nodes are added to
the BFS tree. In the beginning, the agent adds the root r and
then it makes the process of r . The process of a node w con-
sists in checking all the neighbors of w in order to determine
whether some of them have to be added to the tree or not.
When an agent starts the process of a node w, it goes to the
neighbor reachable via port 0 and then checks the neighbor.

When a neighbor x of w gets checked, the agent verifies
if x is equal to some node previously added to the tree. To do
this, for each node u belonging to the current BFS tree, the
agent travels from x using the reversal q of the shortest path
q from r to u in the BFS tree (the path q is a sequence of port
numbers) verifying whether q really is a path (refer to the
definition we gave in Sect. 2) from x to r in the real network.
If q is not a path from x to r in the real network, then x �= u.
If at the end of this backtrack it meets the token, then x = u:
in this case x is not added to the tree as a neighbor of w and
is called w-rejected. If not, then x �= u. Whether node x is
rejected or not, the agent then comes back to x using the path
q. If x is different from all the nodes of the BFS tree, then it
is added to the tree.

Once node x is added to the tree or rejected, the agent
makes an edge traversal in order to be located at w and then
goes to a non-checked neighbor of w, if any. The order, in
which the neighbors ofw are checked, follows the increasing
order of the port numbers of w.

When all the neighbors of w are checked, the agent pro-
ceeds as follows. Let X be the set of the shortest paths in
the BFS tree leading from the root r to a node y having
non-checked neighbors. If X is empty then procedure EST
is completed. Otherwise, the agent goes to the root r , using
the shortest path from w to r in the BFS tree, and then goes
to a node y having non-checked neighbors, using the lexi-
cographically smallest path from X . From there, the agent
starts the process of y.

We are now ready to give the description of state
explorer.

When entering this state, agent A executes the procedure
EST ′ which corresponds to a simulation of procedure EST
with the following three changes. The first change concerns
meetings with the token. Consider a verification if a node x ,
which is getting checked, is equal to some previously added
node u. This verification consists in traveling from x using
the reverse path q , where q is the path from the root r to u
in the BFS tree and checking the presence of the token. If at
the end of the simulation of path q in EST ′, agent A is at
a node containing at least f + 1 agents in state token of
phase i , then it acts as if it saw the token in EST ; otherwise it

123

450 S. Bouchard et al.

acts as if it did not see the token in EST . The second change
occurs during the construction of the BFS tree: if at some
point agent A has added more than ni nodes in the BFS tree
or has spent more than T (EST (ni)) rounds executing the
current simulation, then it drops the simulation and transits
to state failure. The third and final change occurs at the
end of the simulation: if agent A has added less than ni nodes
in the BFS tree, then it transits to state failure.

Once the execution of procedure EST ′ is done, agent A
backtracks to the node where it was located when entering
stateexplorer. To do this, the agent traverses all edges tra-
versed during the execution of procedure EST ′ in the reverse
order and the reverse direction. When the backtrack is done,
agent A has spent exactly 2T (EST (ni)) − t rounds in state
explorer of phase i , for some integer t ≥ 0. From this point,
agent A waits t rounds. At the end of the waiting period, if
agent A does not share its current node with at least f + 1
agents in state token of phase i , then it transits to state
failure. Otherwise agent A does share its current node
with at least f + 1 agents in state token of phase i : in this
case, if lA is the largest label in setH (this set was determined
when agent A was red in this phase) then agent A transits
to state tower, else it transits to state token.
State token.

While in this state, agent A remains at the samenode v, and
in every round it tells the others its phasenumber i (in addition
to its state). Agent A can transit to state token either from
state tower builder or from state explorer. Below,
we distinguish both these cases. Let j be the number of labels
of H that are smaller than lA.

– Case 1: the last time agent A transited to state token
was from state tower builder. In this case agent A
waits 2 j×T (EST (ni)) rounds. If there is a round during
the waiting period in which there are not at least f + 1
agents in state token of phase i at node v: agent A
then transits to state failure as soon as it notices this
fact. Otherwise, at the end of the waiting period agent A
transits to state explorer.

– Case 2: the last time agent A transited to state token
was from state explorer. In this case agent A waits
2(|H| − j − 1)T (EST (ni)) rounds. If there is a round
during the waiting period in which there are not at least
f +1 agents in state token of phase i at node v: agent A
then transits to state failure as soon as it notices this
fact. Otherwise, at the end of the waiting period agent A
transits to state tower.

State tower.
Agent A can enter state tower either from state token,

or state explorer or state wait-for-a-tower. While
in this state, agent A will execute all or part of proce-
dure EX PLO(ni). In all cases we assume that, in every

round, agent A tells the others the edge traversal number of
EX PLO(ni) it has just made (in addition to its state). We
call this number the index of the agent. Below, we distinguish
and detail the case when agent A enters state tower from
state token or explorer, and the case when it enters state
tower from state wait-for-a-tower.

When agent A enters state tower from state token or
explorer, it starts executing procedure EX PLO(ni). In
the first round, its index is 0. Just after making the j-th edge
traversal of EX PLO(ni), its index is j . Agent A carries
out the execution of EX PLO(ni) until its term, except if at
some round of the execution the following condition is not
satisfied, in which case agent A transits to state failure.
Here is the condition: the node where agent A is currently
located contains a group S of at least f + 1 agents in state
tower having the same index as agent A. S includes agent
A but every agent that is in the same node as agent A is not
necessarily in S. If at some point this condition is satisfied
and the index of agent A is equal to P(ni), which is the total
number of edge traversals in EX PLO(ni) (refer to Sect. 2),
then agent A declares that gathering is over.

Whenagent A enters statetower fromstatewait-for-
a-tower, it has just made the s-th edge traversal of
EX PLO(ni) for some s (cf. state wait-for-a-tower)
and thus, its index is s. Agent A executes the next edge tra-
versals i.e., the s + 1-th, s + 2-th, . . ., and then its index
is successively s + 1, s + 2, etc. Agent A carries out this
execution until the end of procedure EX PLO(ni), except if
the same condition as above is not fulfilled at some round of
the execution of the procedure, in which case agent A also
transits to state failure. As in the first case, if at some
point the node where agent A is currently located contains a
group S of at least f + 1 agents in state tower having an
index equal to P(ni), then agent A declares that gathering is
over.
State wait-for-a-tower.

Agent Awaits at most 7T (EX PLO(ni))+4ni + (2(ki +
f) + 1)T (EST (ni)) + 4Q rounds to see the occurrence of
the following event: the node where it is currently located
contains a groupof at least f +1agents in statetowerhaving
the same index t . If during this waiting period, agent A sees
such an event, we distinguish two cases. If t < P(ni), then it
makes the t +1-th edge traversal of procedure EX PLO(ni)
and transits to state tower. If t = P(ni), then it declares
that gathering is over.

Otherwise, at the end of the waiting period, agent A has
not seen such an event, and thus it transits to state failure.
State failure.

Agent A backtracks to the node where it was located at
the beginning of phase i . To do this, agent A traverses in
the reverse order and the reverse direction all edges it has
traversed in phase i before entering state failure. Once at
its starting node, agent A waits 16T (EX PLO(ni)) + 9ni +

123

Byzantine gathering in networks 451

2(ki + f + 1)T (EST (ni)) + 7Q − p rounds where p is the
number of elapsed rounds between the beginning of phase i
and the end of the backtrack it has just made. At the end of
the waiting period, phase i is over. In the next round, agent
A will start phase i + 1.

4.1 Proof of correctness

The purpose of this section is to prove that Algorithm Byz-
Unknown-Size is correct and that by extension Theorem 6
holds.

For any positive integer i , we say that a good agent A tests
configuration φi when it executes the i-th phase of Algorithm
Byz-Unknown-Size. We denote by ni the size of the graph
in configuration φi and by n the (unknown) size of the net-
work where the agents currently evolve. We assume that the
smallest integer i such that ni ≥ n is α.

According to state failure, we have the following
proposition.

Proposition 3 At the beginning of every phase it executes, a
good agent is at the node where it was woken up.

Lemma 8 Let A be a good agent which starts executing the
i-th phase of Algorithm Byz-Unknown-Size in some round
r. Let Z(i) = 16T (EX PLO(ni)) + 9ni + 2(ki + f +
1)T (EST (ni))+7Q where Q is the number of rounds spent
by agent A executing the algorithm before round r. The fol-
lowing two properties hold.

– Property 1. Agent A either spends exactly Z(i) rounds
executing the i-th phase or it will declare that gathering
is over after having spent at most Z(i) rounds in the i-th
phase.

– Property 2. Let B be a good agent different from agent
A which starts executing the i-th phase of Algorithm
Byz-Unknown-Size in some round r ′ (round r ′ is not nec-
essarily different from round r). Agent B has also spent
exactly Q rounds executing Algorithm Byz-Unknown-
Size before starting phase i .

Proof Using similar arguments to those used in the proof of
Lemma 1, we can prove that the first property holds. Con-
cerning the second property, in view of Property 1 it follows
by induction on i . �	

In view of Lemma 8, we know that for every integer i ,
the good agents that do not declare gathering is over before
entering phase i , all spend the exact same time execut-
ing Algorithm Byz-Unknown-Size before entering phase i
(whether they enter it in the same round or not). In the rest
of this section, we denote by Q j the number of rounds spent
before entering phase j by any agent that does not declare

gathering is over before starting the j-th phase of Algorithm
Byz-Unknown-Size.

Proposition 4 Let A and B be two good agents such that
agent A is woken up by the time agent B is woken up. If
agent A does not declare gathering is over before starting
phase α, then the delay between the starting rounds of agents
A and B is at most Qα + T (EX PLO(nα)).

Proof If agent A is woken up in some round, it ends up start-
ing phase α after having spent exactly Qα rounds. When
entering phase α, agent A is in state setup and, accord-
ing to the description of this state, first executes procedure
EX PLO(nα). Since, by definition, nα ≥ n, the proposition
holds. �	

Even if Algorithm Byz-Unknown-Size has several
changes compared with Algorithm Byz-Known-Size (in par-
ticular the two extra states explorer and token to take
into account here), we can prove Lemmas 9, 10 and 11 by
using similar arguments to those used in the proofs of Lem-
mas 2, 3 and 4.

Lemma 9 Let Tj be a tower located at node v in round t.
There is at least one good agent in Tj which has been in state
tower since round t − j .

Lemma 10 Let A be a good agent that is either orange, or
red or in a state ∈ {tower, token, explorer} in round
r. Let φi be the configuration tested by agent A in round r. If
i ≥ α, then all good agents, which do not declare gathering
is over before round r, test φi in round r.

Lemma 11 Let A be a goodagent entering stateexplorer
or token from state tower builder in round r at node
v by testing a configuration φi such that i ≥ α. Let B be a
good agent that does not declare that gathering is over before
round r and that does not enter state explorer or token
from state tower builder in round r at node v. Agent B
is in state wait-for-a-tower in round r.

Lemma 12 Let A be a good agent that tests configuration φi

in round r. If agent A enters state tower from state token
or explorer in round r then ni = n.

Proof Let us first consider the case where agent A enters
state tower from state explorer in round r . According
to Algorithm Byz-Unknown-Size agent A computed a BFS
tree T while in state explorer (just before transiting to
state tower of phase i). Before going any further, we need
to prove the following claim.
Claim 1. The size m of T is such that m = n.

If ni = n then the claim is true because according to
the description of state explorer agent A can transit from
state explorer to state tower in round r only if m = ni .

123

452 S. Bouchard et al.

So let us focus on the case where ni �= n. Denote by u the
node of the graph corresponding to the root of T . Denote by
T ′ the BFS tree rooted at a node corresponding to node u
and that would result from the execution of procedure EST
by an explorer having its own token at node u which cannot
disappear and which cannot be confused with another token.
The size of T ′ is therefore equal to n. If T is identical to T ′,
thenm = n. However note that sinceni �= n, we havem �= ni
and thus agent A cannot transit from stateexplorer to state
tower in round r still according to the description of state
explorerwhich is a contradiction with the definition of r .

Therefore T is necessarily different from T ′. There are
only two possible incidents that can lead to such a situation,
according to the definition of T . The first one is that at some
point during the exploration of agent A, its token vanished
i.e, there is a round during the exploration when there are not
f + 1 agents at node u that claim being in state token of
phase i . The other one is that at some point agent A confused
its token with another token i.e., it encountered during its
exploration a group of at least f + 1 agents at a node v �= u
that claimed being in state token of phase i . However note
that any execution of procedure EST ′ consists of alternating
periods of two different types. The first type corresponds to
periods when the agent processes a node and the second type
corresponds to those when the agent moves to the next node
to process it. During the periods of the second type, an agent
does not use any token to move: it follows the same path
regardless of whether it meets some token or not on its path.
Hence, each of the two possible incidents described above
can only have an impact on the BFS tree if they occur during
a period of the first type when verifying whether a node has
to be rejected or not. So denote by t the first round in the
construction of T via procedure EST ′ when agent A adds
a node to its BFS tree T under construction that has to be
rejected, or when agent A rejects a node that has to be added
to its BFS tree T under construction. This round necessarily
exists as otherwise T ′ could not be different from T according
to the above explanations. We consider the only two possible
cases (each of them leading to a contradiction). Let ki be the
number of labels in configuration ρi .

– Case 1: in round t agent A rejects a node x that has to
be added to its BFS tree T under construction. This can
occur only if agent A encounters by round t during its
exploration a group of at least f + 1 agents at a node
v �= u that claim being in statetoken of phase i . Among
these agents there is necessarily at least one good agent
B. Denote by t ′ the last round before round t such that
agent A is not in state explorer. Since according to
the description of state explorer, executing procedure
EST ′ cannot take more than T (EST (ni)) rounds, we
have t ′ ≥ t−T (EST (ni))−1, and thus, as an agent must
spend T (EX PLO(ni)) + ni + T (EST (ni)) + Qi >

T (EST (ni)) rounds in substate red of phase i before
entering state explorer or state token, in round t ′
agent B is either in substate red of phase i (at node
v), or in state token of phase i (at node v), or in state
explorer of phase i . Now denote by t ′′ the last round
such that t ′′ ≤ t ′ and such that agent A or B is in substate
red of phase i . Let us first assume that agent B is in
substate red of phase i in round t ′′: in this round agent
A is then either red (at node u) or in state token (at
node u), and tests configuration φi . Indeed, from states
wait-for-a-tower, tower or failure of phase
i , it cannot enter state explorer of phase i . Moreover,
if in round t ′′, agent A is in state setup or in substates
yellow or orange of phase i then there exists a round
t ′ ≥ x > t ′′ in which A is red, which contradicts the
definition of round t ′′. So according to the rules allowing
to enter or stay in substatered and statetoken, there are
at least ki red agents that claim testing configuration φi

at node v in round t ′′, while there are at least f +1 agents
(which are red or in state token) that claim testing
configuration φi at node u in the same round t ′′. Hence
there are at least ki + 1 good agents which test the same
configuration φi in round t ′′ and such that each of them is
either red or in state token. However, this implies that
each of these good agents has its label in configuration
φi (otherwise it would have been impossible for at least
one of them to be in substate red of phase i or in state
token of phase i in round t ′′ according to the rules
of state setup): there are then at least ki + 1 distinct
labels in φi which contradicts the definition of ki . Hence
agent B cannot be in substate red of phase i in round
t ′′. Let us now consider that agent A is in substate red
of phase i in round t ′′: in this round agent B is then
either red (at node v) or in state token (at node v) or
in state explorer in round t ′′, and tests configuration
φi . If agent B tests configuration φi and is either red
or in state token in round t ′′, then similarly as above
we can get a contradiction with the definition of k. If
agent B tests configuration φi and is in state explorer
in round t ′′, then it is either red or in state token at
node v in round t ′′ − T (EST (ni)) − 1, while agent A
is necessarily red at node u in the same round in view
of the definition of t ′′ and the T (EX PLO(ni)) + ni +
T (EST (ni)) + Qi > T (EST (ni)) rounds an agent has
to spend in substate red of phase i before entering state
explorer or token. Therefore similarly as above we
can prove there are at least ki + 1 good agents which test
the same configuration φi in round t ′′ −T (EST (ni))−1
and such that each of them is eitherredor in statetoken
leading again to a contradiction with the definition of ki .
Hence Case 1 is impossible.

– Case 2: in round t agent A adds a node to its BFS tree T
under construction that has to be rejected. This can occur

123

Byzantine gathering in networks 453

only if at some point during the exploration of agent A,
there are not at least f + 1 agents at node u that claim
being in state token of phase i . Since agent A adds a
node x to its BFS tree, we know that the execution of
procedure EST ′ by agent A does not terminate in round
t as it remains to make at least the process of node x .
From round t on, if agent A does not meet any group of
at least f + 1 agents that claim being in state token
of phase i during the current execution of EST ′, then at
some point it has spent more than T (EST (ni)) rounds
executing EST ′ in phase i and transits to state failure
of phase i : we get a contradiction with that fact that agent
A enters state tower of phase i from state explorer
of phase i . So there is a round after round t , during its
execution of EST ′ in phase i , where agent A meets a
group of at least f + 1 agents that claim being in state
token of phase i . This group is located either on a node
different from node u or on node u (in which case a “new
token” appears on node u after the disappearance of the
first one): by using similar arguments to those used above,
we can also get a contradiction with the definition of k in
both these situations.

So, ni cannot be different from n, and thus the claim fol-
lows.

Now we can conclude the proof for the case where agent
A enters state tower from state explorer in round r .
Indeed, according to Claim 1, the BFS tree T computed by
agent A before transiting to state token in round r is of
size n. However, according to the description of those states
agent A can transit from state explorer of phase i to state
token of phase i only if the size of T is equal to ni . Hence
we necessarily have n = ni in this case.

To end the proof of this lemma, it remains to consider the
case where agent A enters state tower from state token in
round r . According to Algorithm Byz-Unknown-Size, agent
A can make such a transition only if it previously transited
from state explorer of phase i to state token of phase i .
Hence, still according to the description of state explorer,
agent A computed a BFS tree D having size ni , while in state
explorer of phase i . However in view of the claim below,
the size of D is necessarily equal to n. Hence n = ni , which
proves the lemma also holds in the case where agent A enters
state tower from state token in round r .
Claim 2. The size of D is n.

If ni = n then the claim is true because agent A can transit
from state explorer to state token in round r only if
m = ni . Concerning the case where ni �= n, similarly to
what is done for this case in the proof of Claim 1, we can get
the same contradictions, which proves the claim. �	

Lemma 13 In any round there is at most one tower.

Proof Assume by contradiction there exists some round r
when there are two distinct towersD j and T j ′ . The members
of D j (resp. T j ′) are in state tower and all have index j
(resp. index j ′). Note that in the case whereD j and T j ′ are at
the same node, indexes j and j ′ are different from each other,
otherwise we would have D j = T j ′ according to the defini-
tion of a tower. In the other case, index j is not necessarily
different to index j ′.

ByLemma 9, there is a good agent A ∈ D j (resp. B ∈ T j ′)
which has been in statetower since round r− j (resp. round
r − j ′). Since agent A (resp. agent B) is in state towerwith
index j (resp. index j ′) in round r , agent A (resp. agent
B) enters state tower in round r − j (resp. round r − j ′)
from state explorer or token. Let φi be the configura-
tion tested by agent A in round r . In round r − j , agent A
enters state tower of phase i from state explorer of phase
i or state token of phase i . So, by Lemma 12 we have
ni = n, and then we know that i ≥ α. Hence according to
Lemma 10 agent B also tests configuration φi in round r ,
and it enters state tower of phase i from state explorer
or token of phase i in round r − j ′. Let t be the last round
before round r such that agent A or B is red in phase i .
Without loss of generality, assume that in round t agent A
is red and tests configuration φi . Since t is the last round
when agent A is in substate red of phase i and since an
agent cannot reach (directly or indirectly) state explorer
or token of phase i from state tower builder of phase
i in another way than at the end of the waiting period in
substate red, agent A enters state explorer or token
of phase i from state tower builder in round t + 1 at
some node u. By Lemmas 10 and 11, in round t + 1 agent
B is either in state wait-for-a-tower of phase i or
also enters state explorer or token of phase i from state
tower builder at node u. Let us first consider the first
case in which agent B is in state wait-for-a-tower
of phase i in round t + 1. In this case, we cannot have
r− j ′ < t+1 as it is impossible to transit directly or indirectly
from state tower of phase i to statewait-for-a-tower
of phase i . So, we necessarily have r − j ′ ≥ t + 1. How-
ever this implies that agent B cannot enter state tower of
phase i from state explorer or token of phase i in round
r − j ′ because it is impossible to reach (directly or indi-
rectly) state explorer or token of phase i from state
wait-for-a-tower of phase i . The first case is there-
fore impossible. Concerning the second case, it implies that
agents A and B computed the same set H in round t at the
same node u (i.e., during the last round of their waiting period
asred agents of phase i). Hence, as neither A nor B can enter
state failure of phase i before entering state tower of
phase i , they both spend 2(|H | − 1)T (EST (n)) rounds in
state token of phase i and 2T (EST (n)) rounds in state
explorer before entering together state tower of phase i

123

454 S. Bouchard et al.

in round t+2|H |T (EST (n))+1 = r − j = r − j ′, and thus
belong to the same tower in round r , which is a contradiction.

�	
Lemma 14 If a good agent declares gathering is over at
node v in round r, then all good agents are at node v in
round r and declare that gathering is over in round r.

Proof Assume by contradiction there is a good agent A that
declares gathering is over at node v in round r but there is
a good agent B that does not make such a declaration at the
same node and in the same round. Without loss of generality,
we assume round r is the first round when an agent declares
gathering is over. Thus, agent B does not declare gathering
is over before round r . Let φi be the configuration tested
by agent A in round r . Let ki be the number of labels in
configuration φi .

Given the conditions which have to be satisfied for a good
agent to declare gathering is over, there is a tower TP(ni)

in round r at node v: all agents belonging to TP(ni) are in
state tower and have index P(ni) (which corresponds to
the number of edge traversal of procedure EX PLO(ni)).
By Lemma 9, there is a good agent C inside of tower TP(ni)

which has been in state tower since round r − P(ni). Thus
agent C is in state tower and has index 0 in round r −
P(ni). This implies that agent C enters state tower from
state explorer or token in round r − P(ni).

Let φ j be the configuration tested by agent C in round
r − P(ni). By Lemma 12, we have n j = n, and thus j ≥ α.
Moreover, since an agent cannot start testing another config-
urationwhile in statetower, agentC still tests configuration
φ j in round r . Since agent A tests configuration φi in round
r and j ≥ α, by Lemma 10 we know i = j . Hence all
good agents in TP(ni) in round r test configuration φi , which
implies all good agents of TP(ni) declare that gathering is
over in round r according to the description of state tower.
Agent B also tests configuration φi in round r but it is not
in state tower of phase i , as otherwise it would belong to
TP(ni) by Lemma 13 and thus it would also declare that gath-
ering is over in round r , which contradicts the definition of
agent B.

As mentioned above we have j ≥ α, i = j and n = n j .
Hence i ≥ α and ni = n.

According to Lemmas 10 and 11, when agent C enters
state explorer of phase i or state token of phase i from
state tower builder of phase i in round r − P(n) −
2|H | ∗ T (EST (n)) at some node u (for the definition of H ,
refer to the description of substate red in Algorithm Byz-
Unknown-Size), then in the same round agent B either also
enters state explorer of phase i or state token of phase
i from state tower builder of phase i at node u, or is in
state wait-for-a-tower of phase i .

Let us first consider the first situation. In this situation,
agent B determined the same set H as agent C in the last

round as a red agent in phase i . According to the descrip-
tion of states explorer and token, agent B also enters
state tower of phase i at the same node and in the same
round as agent C , or agent B enters state failure of phase
i by round r − P(n). In the former case, agent B and C then
belong to tower TP(ni) in round r and agent B declares that
gathering is over in round r , which is a contradiction. The lat-
ter case in which agent B is in state failure of phase i by
round r − P(n) requires a deeper analysis. According to the
description of states explorer and token, for each round
of {r−P(n)−2|H |∗T (EST (n)), . . . , r−P(n)−1} agentC
is either in state token of phase i or in state explorer of
phase i . If agent B andC are in state token of phase i when
agent B decides to transit to state failure of phase i , then
agent C does the same thing according to the rules of state
token and we get a contradiction with the fact that agent
C declares gathering is over in round r as an agent in state
tower of phase i (as it is impossible to reach state tower
of phase i once in state failure of phase i). If agent B is
explorer while agent C is token when agent B decides to
transit to state failure then that implies agent B computes
a BFS tree of a size smaller than ni = n. (Indeed agent B
can compute a BFS tree of a size larger than ni only if at
some point its token disappears, but that implies that agent
C enters state failure of phase i and as above we get a
contradiction with the definition of C . For the same reasons,
agent B cannot spendmore than T (EST (ni)) rounds to com-
pute the BFS tree or decide to transit to state failure after
having backtracked to its token i.e., after having traversed all
edges traversed during the execution of procedure EST ′ in
the reverse order and the reverse direction). The only reason
is that at some point agent B rejects a node x that has to
be added to its BFS tree under construction: similarly as in
the proof of Claim 1 in the proof of Lemma 12 we can get
a contradiction with the definition of ki . If agents B and C
are in state explorer of phase i in the same round we get
a contradiction with the fact that they computed the same
set H before leaving state tower builder of phase i .
It remains to analyse the case in which agent B is token
while agentC is explorerwhen agent B decides to transit
to state failure of phase i in some round t < r − P(ni).
According to the rules of state token, every good agent that
is in state token of phase i at node u in round t transits to
state failure of phase i . Since a token consists of at least
f + 1 agents in state token of the same phase, the token of
agent C disappears in round t . Moreover similarly as in the
proof of Claim 1 in the proof of Lemma 12, we can argue
that from round t on, agent C cannot meet a group of at least
f + 1 agents that claim being in state token of phase i .
Hence when agent C verifies in round r − P(ni) − 1 if it
is with a group of at least f + 1 agents that claim being in
state token of phase i (just before entering state tower in
round r − P(ni)), the condition cannot be fulfilled and thus

123

Byzantine gathering in networks 455

agentC cannot enter state tower in round r − P(ni), which
is a contradiction. Since we get a contradiction in all cases,
the first situation cannot occur.

Let us now consider the second situation in which agent
B is in state wait-for-a-tower of phase i in round r −
P(n)−2|H |∗T (EST (n)), whileC enters state explorer
of phase i or state token of phase i from state tower
builder of phase i in the same round. By using similar
arguments to those used in the latter two paragraphs of the
proof of Lemma 6, we can distinguish the case in which
agent B enters state failure of phase i in some round of
{r − P(n)−2|H | ∗T (EST (n))+1, . . . , r} from the case in
which it does not, and argue that we obtain a contradiction
in both cases. Hence agent B does not exist and the lemma
holds. �	
Lemma 15 There is at least one good agent that ends up
declaring that gathering is over.

Proof Assume by contradiction no agent ends up declaring
gathering is over. Let φi ∈ Ω a good configuration which
corresponds to the initial configuration of all good agents in
the graph. We then have ni = n. Let ki be the number of
labels in configuration φi : by definition ki ≥ f + 2, and
ki = k the number of good agents in the graph. Since con-
figuration φi is good and i ≥ α, in view of Proposition 4 and
Lemma 8 and the fact that at least one good agent is woken
up by the adversary, every good agent reaches state tower
builder of phase i possibly in different rounds but at the
same node v corresponding to the node where the agent hav-
ing the smallest label is initially located. Similarly as in proof
of Lemma 7 we can prove the following claim (by adjusting
the waiting period accordingly and by using Propositions 3
and 4 as well as Lemmas 8 and 10 instead of respectively
Propositions 2 and 1 as well as Lemmas 1 and 3). Round r is
the first round when a good agent becomes yellow in phase
i .
Claim 1. All good agents are yellow at node v and test
configuration φi in round r +T (EX PLO(n))+n+Qi −1.

Similarly as in proof of Lemma 7, from Claim 1 and the
description of state tower builder, the k good agents
become red together before round r + 2T (EX PLO(n)) +
2n+2Qi and decide in the same round to leave state tower
builder (to enter state token or explorer) after hav-
ing waited exactly T (EX PLO(n))+n+ T (EST (n))+ Qi

rounds as red agents of phase i . During the last round of
this waiting period, all good agents compute the same set H
which includes each of their labels (and possibly at most f
forged labels of Byzantine agents). Note that |H | cannot be
larger than ki + f = k + f as otherwise that would imply
that the number of labels in H is greater than the number of
agents in the graph. Hence each of the k good agents enters
state explorer or token in the same round, call it s, at
node v. Since set H is the same for all good agents and no

two of them have the same labels, in round s there is exactly
at most one good agent A1 that enters state explorer of
phase i , while the other good agents enter state token of
phase i . In fact if the smallest label in H corresponds to a
label of a good agent there is exactly one good agent A1

that enters state explorer of phase i , otherwise A1 does
not exist and all the good agents enter state token of phase
i . According to the rules of state token, in each round of
{s, s + 1, . . . , s + 2T (EST (n)) − 1} there are at least f + 1
agents in state token of phase i at node v as there are at
least k − 1 ≥ f + 1 good agents in state token of phase
i . As a result, during the execution of procedure EST ′ by
agent A1 as an explorer (if it exists), its “token never
disappears” and it cannot see another token (i.e., a group of
at least f + 1 agents in state token of phase i) at a node
u �= v because there are at most f Byzantine agents and
all the good agents different from explorer A1 are at node
v. Hence agent A1 computes a BFS tree of size n within
T (EST (n)) rounds, and then enters state token in round
s+2T (EST (n)) after having backtracked to node v. Regard-
less of whether there was a good agent A1 or not, in view
of H and the rules of states explorer and token, there
is at most one good agent A2 (which had not entered state
explorer of phase i yet) that enters state explorer of
phase i from state token in round s + 2T (EST (n)). More
precisely, if the second smallest label in H corresponds to a
label of a good agent there is exactly one good agent A2 that
enters stateexplorer of phase i in round s+2T (EST (n)),
otherwise A2 does not exist and all good agents are in state
token of phase i in round s + 2T (EST (n)). Moreover,
in each round of {s + 2T (EST (n)), s + 2T (EST (n)) +
1, . . . , s + 4T (EST (n)) − 1} there are at least f + 1 agents
in state token of phase i at node v as there are at least
k − 1 ≥ f + 1 good agents in state token of phase i
(recall that if there was a good agent A1, it is now in state
token). Thus, similarly as before, we know that if agent A2

exists, it computes a BFS tree of size n within T (EST (n))

rounds, and is at node v with the other good agents in state
token in round s + 4T (EST (n)) − 1 at the latest. From
this point, regardless of whether there was a good agent A2

or not, if H = 2 (by definition H ≥ 2) then all the good
agents enter state tower of phase i (including A2 if any) in
round s+4T (EST (n)) according to the description of states
explorer and token. Otherwise, in view of H and the
rules of states explorer and token, there is at most one
good agent A3 (which had not entered state explorer of
phase i yet) that enters stateexplorer of phase i from state
token in round s + 4T (EST (n)), while agent A2 (if any)
enters the state in which the other good agents are i.e., state
token of phase i . Again via similar arguments, we know
that if H = 3 then all the good agents enter state tower
(including A3 if any) in round s + 6T (EST (n)) according
to the description of states explorer and token. Oth-

123

456 S. Bouchard et al.

erwise, by induction on the number of labels in H we can
prove that all good agents enter state tower at node v in
round s + 2|H |T (EST (n)). Hence, we know the k good
agents will make together an entire execution of procedure
EX PLO(n): according to the rules of state tower, agent
A declares gathering is over at the end of this execution. So,
we get a contradiction, and the lemma holds. �	

From Lemmas 14 and 15, we know that Algorithm Byz-
Unknown-Size and Theorem 6 are valid.

5 Conclusion

We provided a deterministic f -Byzantine gathering algo-
rithm for arbitrary connected graphs of known size (resp.
unknown size) provided that the number of good agents is
at least f + 1 (resp. f + 2). By providing these algorithms,
we closed the open question of what minimum number of
good agents M is required to solve the problem, as each
of our algorithms perfectly matches the corresponding lower
bound onM stated in [16], which is of f +1when the size of
the network is known and of f + 2 when it is unknown. Our
work also highlighted the fact that the ability for the Byzan-
tine agents to change their labels has no impact in terms of
feasibility when the size of the network is initially unknown,
since it was proven in [16] that M is also equal to f + 2
when the Byzantine agents do not have this ability.

While we gave algorithms that are optimal in terms of
required number of good agents, we did not try to optimize
their time complexity. Actually, the time complexity of both
our solutions depends on the enumerations of the initial con-
figurations, which clearly makes them exponential in n and
the labels of the good agents in the worst case. Hence, the
question of whether there is a way to obtain algorithms that
are polynomial in n and in the labels of the good agents (with
the same bounds on M) remains an open problem.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for
autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Alpern, S.: Rendezvous search: a personal perspective. Oper. Res.
50(5), 772–795 (2002)

3. Alpern, S.: The theory of search games and rendezvous. In: Hillier,
F.S. (ed.) International Series in Operations Research andManage-
ment Science. Kluwer Academic Publishers, Dordrecht (2003)

4. Bampas, E., Czyzowicz, J., Gasieniec, L., Ilcinkas, D., Labourel,
A.: Almost optimal asynchronous rendezvous in infinite multidi-
mensional grids. In: Proceedings 2010 24th International Sympo-
siumDistributedComputing, DISC 2010, pp. 297–311. Cambridge
(13–15 Sept 2010)

5. Barborak, M., Malek, M.: The consensus problem in fault-tolerant
computing. ACM Comput. Surv. 25(2), 171–220 (1993)

6. Chalopin, J., Das, S., Kosowski, A.: Constructing a map of
an anonymous graph: applications of universal sequences. In:
Proceedings 2010 14th International Conference Principles of Dis-
tributed Systems, OPODIS 2010, pp. 119–134, Tozeur (14–17 Dec
2010)

7. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed
computing by mobile robots: gathering. SIAM J. Comput. 41(4),
829–879 (2012)

8. Collins, A., Czyzowicz, J., Gasieniec, L., Labourel, A.: Tell me
where I am so I can meet you sooner. In: 37th International
Colloquium 2010 Proceedings, Part II Automata, Languages and
Programming, ICALP 2010, pp. 502–514, Bordeaux (6–10 July
2010)

9. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you
forget: log-space rendezvous in arbitrary graphs. Distrib. Comput.
25(2), 165–178 (2012)

10. Czyzowicz, J., Pelc, A., Labourel, A.: How tomeet asynchronously
(almost) everywhere. ACM Trans. Algorithms 8(4), 37 (2012)

11. Das, S., Dereniowski, D., Kosowski, A., Uznanski, P.: Rendezvous
of distance-aware mobile agents in unknown graphs. In: 21st
International ColloquiumProceedings 2014 Structural Information
and Communication Complexity, SIROCCO 2014, pp. 295–310,
Takayama (23–25 July 2014)

12. Défago, X., Gradinariu, M., Messika, S., Raipin Parvédy, P.:
Fault-tolerant and self-stabilizing mobile robots gathering. In: Pro-
ceedings 20th International Symposium Distributed Computing,
DISC 2006, Stockholm, pp. 46–60 (18–20 Sept 2006)

13. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A.,
Vaccaro, U.: Asynchronous deterministic rendezvous in graphs.
Theor. Comput. Sci. 355(3), 315–326 (2006)

14. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Determin-
istic rendezvous in graphs. Algorithmica 46(1), 69–96 (2006)

15. Dieudonné, Y., Pelc, A.: Anonymous meeting in networks. Algo-
rithmica 74(2), 908–946 (2016)

16. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief.
ACM Trans. Algorithms 11(1), 1 (2014)

17. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously
at polynomial cost. SIAM J. Comput. 44(3), 844–867 (2015)

18. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with
little memory. In: 2008. Proceedings 22nd International Sympo-
sium Distributed Computing, DISC 2008, Arcachon, pp. 242–256
(22–24 Sept 2008)

19. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap
for rendezvous in trees. ACM Trans. Algorithms 9(2), 17 (2013)

20. Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents
with local vision in regular bipartite graphs. Theor. Comput. Sci.
509, 86–96 (2013)

21. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, Xavier,
Wada, Koichi, Yamashita, Masafumi: The gathering problem for
two oblivious robots with unreliable compasses. SIAM J. Comput.
41(1), 26–46 (2012)

22. Kowalski, D.R., Malinowski, A.: How to meet in anonymous net-
work. Theor. Comput. Sci. 399(1–2), 141–156 (2008)

23. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent ren-
dezvous: a survey. In: 2006, Proceedings 13th International Col-
loquium Structural Information and Communication Complexity,
SIROCCO 2006, Chester, pp. 1–9 (2–5 July 2006)

24. Lynch, N.A.: DistributedAlgorithms.MorganKaufmann, Burling-
ton (1996)

25. Miller, A., Pelc, A.: Fast rendezvous with advice. In: 10th Inter-
national Symposium on Algorithms and Experiments for Sensor
Systems,Wireless Networks and Distributed Robotics, Algorithms
for Sensor Systems ALGOSENSORS 2014, Wroclaw, pp. 75–87,
Revised Selected Papers (12 Sept 2014)

26. Miller, A., Pelc, A.: Time versus cost tradeoffs for deterministic
rendezvous in networks. In: ACM Symposium on Principles of

123

Byzantine gathering in networks 457

DistributedComputing, PODC ’14, Paris, pp. 282–290 (15–18 July
2014)

27. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in
the presence of faults. J. ACM 27(2), 228–234 (1980)

28. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4),
17 (2008)

29. Schelling, T.: The Strategy of Conflict. Oxford University Press,
Oxford (1960)

30. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts,
and strongly universal exploration sequences. ACM Trans. Algo-
rithms 10(3), 12 (2014)

123

	Byzantine gathering in networks
	Abstract
	1 Introduction
	1.1 Context
	1.2 Model and problem
	1.3 Our results
	1.4 Related works

	2 Preliminaries
	3 Known graph size
	3.1 Proof of correctness

	4 Unknown graph size
	4.1 Proof of correctness

	5 Conclusion
	References

