
Distrib. Comput. (2016) 29:341–359
DOI 10.1007/s00446-016-0265-z

Randomized mutual exclusion on a multiple access channel

Marcin Bienkowski1 · Marek Klonowski2 · Miroslaw Korzeniowski2 ·
Dariusz R. Kowalski3

Received: 14 September 2014 / Accepted: 19 January 2016 / Published online: 15 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper we consider the mutual exclusion
problem on a multiple access channel. Mutual exclusion is
one of the fundamental problems in distributed computing.
In the classic version of this problem, n processes execute a
concurrent program that occasionally triggers some of them
to use shared resources, such as memory, communication
channel, device, etc. The goal is to design a distributed algo-
rithm to control entries and exits to/from the shared resource
(also called a critical section), in such a way that at any
time, there is at most one process accessing it. In our con-
siderations, the shared resource is the shared communication
channel itself (multiple access channel), and the main chal-
lenge arises because the channel is also the only mean of
communication between these processes. We consider both
the classic and a slightly weaker version of mutual exclusion,
called ε-mutual-exclusion,where for each period of a process
staying in the critical section the probability that there is some
other process in the critical section is at most ε. We show that
there are channel settings, where the classicmutual exclusion

Some preliminary results of this paper were published in the
Proceedings of 27th International Symposium on Theoretical Aspects
of Computer Science (STACS), 2010, pp. 83–94. Research Supported
by Polish National Science Centre Grants DEC-2012/07/B/ST6/01534
and DEC-2013/09/B/ST6/01538, and by the Engineering and Physical
Sciences Research Council [Grant Number EP/G023018/1].

B Marek Klonowski
Marek.Klonowski@pwr.wroc.pl;
Marek.Klonowski@pwr.edu.pl

1 Institute of Computer Science, University of Wrocław,
Wrocław, Poland

2 Department of Computer Science, Faculty of Fundamental
Problems of Technology, Wroclaw University of Technology,
Wrocław, Poland

3 Department of Computer Science, University of Liverpool,
Liverpool L69 3BX, UK

is not feasible even for randomized algorithms, while the ε-
mutual-exclusion is. In more relaxed channel settings, we
prove an exponential gap between the makespan complex-
ity of the classic mutual exclusion problem and its weaker
ε-exclusion version. We also show how to guarantee fairness
of mutual exclusion algorithms, i.e., that each process that
wants to enter the critical section will eventually succeed.

Keywords Distributed algorithms · Multiple access
channel · Mutual exclusion

1 Introduction

In this paper, we consider randomized algorithms for mutual
exclusion: one of the fundamental problems in distributed
computing. We assume that there are n different processes,
each labeled by its unique identifier (ID) between 0 and
n − 1, communicating through a multiple access channel
(MAC). The computation and communication proceed in
synchronous slots, also called rounds. In themutual exclusion
problem, each process executes a concurrent program and
occasionally requires exclusive access to shared resources.
The part of the code corresponding to this exclusive access
is called a critical section. The goal is to provide a mech-
anism that controls entering and exiting the critical section
and guarantees exclusive access at any time. The main chal-
lenge is that the designed mechanism must be universal, in
the sense that exclusive access must be guaranteed regardless
of the times of access requests made by other processes.

Multiple Access Channel (MAC). We consider a multi-
ple access channel as both communication medium and the
shared-access device. As a communication medium, MAC
allows each process either to transmit or listen to the channel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-016-0265-z&domain=pdf

342 M. Bienkowski et al.

at a round,1 andmoreover, ifmore than one process transmits,
then a collision (signal interference) takes place.

Depending on the devices used in the system, there are
several additional settings of MAC that need to be consid-
ered. One of them is the ability of a process to distinguish
between background noise when no process transmits (also
called silence) and collision. If such capability is present at
each process, we call the model with collision detection (CD
for short); if no process has such ability, then we call the set-
ting without collision detection (no-CD). Another feature of
the model is an access to the global clock (GC for short) by
all processes or no such access by any of them (no-GC). In
both GC and no-GC the system is synchronized and operates
in rounds and the difference is that in GC processes know
global numbering of rounds and in the no-GC they do not.
That is, in the no-GC model processes set their local clocks
to round 0 in the moment of the start of their own executions.
The third parameter to be considered is the knowledge of the
total number of available processes n (KN for short) or the
lack of it (no-KN). In particular, in the KN model the algo-
rithm executed by any process can explicitly use n. In the
no-KN model the number of processes is always finite but
can be arbitrary large.

Mutual Exclusion Problem. In this problem, each con-
current process executes a protocol partitioned into the
following four sections.

Entry: The part of the protocol executed in preparation
for entering the critical section.

Critical: The part of the protocol to be protected from
concurrent execution.

Exit: The part of the protocol executed on leaving
the critical section.

Remainder: The rest of the protocol.

These sections are executed cyclically in the order:
remainder, entry, critical, and exit. Intuitively, the remain-
der section corresponds to local computations of a process,
and the critical section corresponds to the access to the shared
object (the channel in our case). Sections entry and exit are
the parts that control switching between remainder and crit-
ical sections in a process, in order to ensure some desired
properties of the whole system.

In the traditional mutual exclusion problem [1,2], in the
context of shared-memory model, the adversary controls the
sections remainder and critical. In particular, it controls their
duration in each cycle, subject only to the obvious assump-

1 Most of the previous work on MAC, motivated by Ethernet applica-
tions, assumed that a process can transmit and listen simultaneously.
Instead, our work follows the recent trends of wireless applications
where such simultaneous activities are excluded due to physical con-
straints.

tions that this duration in each cycle is finite or the last
performed section is the remainder one. The mutual exclu-
sion algorithm, on the other hand, provides a protocol for the
entry and exit sections of each process. Hence, the mutual
exclusion problem can be seen as a game between the adver-
sary controlling the lengths of remainder and critical sections
of each process (each such section for each process may have
different length) and the algorithm controlling entry and exit
sections. The goal of the algorithm is to guarantee several
useful properties of the execution (to be defined later), while
the goal of the adversary is to prevent it. Note that the sec-
tions controlled by the adversary and those controlled by
the algorithm are interleaved in the execution. It is typically
assumed that any interference between sections controlled
by the adversary and those of the algorithm is forbidden.
In particular, no variable used by the algorithm, i.e., in the
entry and exit sections, can be modified by the adversary in
the critical and remainder sections, and vice versa.

In the model of communication over MAC, a process in
the entry or the exit section can do the following in a single
round:

– Perform some action on the channel (either transmit a
message or listen).

– Do some local computation.
– Change its section either from entry to critical or from
exit to remainder.

We assume that changing sections occurs momentarily
between consecutive rounds, i.e., in each round a process is
exactly in one section of the protocol.

Since amultiple-access channel is both the only communi-
cation medium and the exclusively shared object, additional
constraints, different from the classic ones regarding, e.g.,
shared memory objects, must be imposed:

– No process in the remainder section is allowed to transmit
on the channel.

– A process in the critical section has to transmit a message
on the channel in each round until it moves to the exit
section, and each such message must be labeled critical;
we call such messages critical messages.

If any of these conditions was violated, the adversary
would have an unlimited power of creating collisions on the
channel. Let us recall that it is assumed that the adversary
controls remainder and critical sections. Thus the adversary
could impose arbitrary transmissions of processes staying in
the remainder section and in effect prevent any communica-
tion. On the other hand, the process in critical section needs
to inform other processes that the channel is busy.

A classic mutual exclusion algorithm should satisfy the
following three properties for any round i of its execution.

123

Randomized mutual exclusion on a multiple access channel 343

Exclusion: at most one process is in the critical sec-
tion in round i .

Unobstructed exit: if a process p is in the exit section in
round i , then process pwill switch to the
remainder section eventually after round i .

No deadlock: if there is a process in the entry section in
round i , then some process will enter the
critical section eventually after round i .

To strengthen the quality of service guaranteed by mutual
exclusion algorithms, the following property—stronger than
no-deadlock—has been considered:

No lockout: if a process p is in the entry section in round
i , then process p itself will enter the critical
section eventually after round i .

To some extent, this property ensures fairness: each
process demanding access to the critical section will eventu-
ally get it.

As we show, in some model settings the exclusion condi-
tion is impossible or very costly to achieve. Therefore, in this
paper we introduce and investigate a slightly weaker condi-
tion:

ε-exclusion: for every process p and for every time interval
in which p is continuously in the critical sec-
tion, the probability that in any round of this
time interval there is another process being in
the critical section is at most ε.

Intuitively, ε-exclusion guarantees mutual exclusion
“locally”, i.e., for every single execution of the critical sec-
tion by a process, with probability at least 1− ε. The version
of the problem satisfying ε-exclusion condition is called ε-
mutual-exclusion.

Complexity Measure.We use the makespanmeasure, as
defined by Czyzowicz et al. [3], in the context of determin-
istic algorithms. The makespan of an execution of a given
deterministic mutual exclusion algorithm is defined as the
maximum length of a time interval in which there is some
process in the entry section and there is no process in the
critical section. Takingmaximum of such values over all pos-
sible executions defines the makespan of the algorithm. In
order to define expected makespan, suitable for randomized
algorithms considered in this work, we need more formal
definitions of an adversarial strategy. Let P be a strategy
of the adversary, defined as a set of n sequences, where
each sequence corresponds to a different process and con-
tains, subsequently interleaved, lengths of remainder and
critical sections of the corresponding process. We assume
that each sequence is either infinite or of even length; the
latter condition means that after the last critical section the

corresponding process runs the remainder section forever.
For a given mutual exclusion algorithm Alg and adversar-
ial strategy P , we define L(Alg,P) as a random variable
equal to the maximum length of a contiguous time interval in
which there is some process in the entry section and there is
no process in the critical section in an execution of Alg run
against fixed strategy P . The expected makespan of algo-
rithm Alg is defined as the maximum of expected values of
L(Alg,P), taken over all adversarial strategies P . Note
that every algorithm with expected makespan bounded for
all executions satisfies the no-deadlock property with prob-
ability 1, but not necessarily no-lockout.

For the ε-mutual-exclusion problem, defining makespan
is a bit more subtle. We call an execution admissible if the
mutual exclusion property is always fulfilled, i.e., no two
processes are in the critical section in the same round. Then,
in the computation of the (expected) makespan, we neglect
non-admissible executions.

1.1 Previous and related work

The multiple access channel is a well-studied model of com-
munication. In many problems considered in this setting,
one of the most important issues is to ensure that success-
ful transmissions occur in the computation. These problems
are often called selection problems. They differ from the
mutual exclusion problem by the fact that they focus on suc-
cessful transmissions within a bounded length period, while
mutual exclusion provides control mechanism for dynamic
and possibly unbounded executions. In particular, it includes
recovering from long periods of cumulative requests for the
critical section as well as from long periods containing no
request. Additionally, selection problems were considered
typically in the context of theEthernet or combinatorial group
testing, and as such they allowed a process to transmit and
to listen simultaneously, which is not the case in our model
motivated by wireless applications. Selection problems can
be further split into two categories. In the static selection
problems, it is assumed that a subset of processes become
active at the same time and a subset of them must eventually
transmit successfully. Several scenarios and model settings,
including parameters considered in thiswork, such asCD/no-
CD, GC/no-GC, KN/no-KN, randomization/determinism,
were considered in this context [4–13]. In the wake-up prob-
lem, processes are awaken in (possibly) different rounds and
the goal is to ensure that there will be a round with successful
transmission (“awakening” the whole channel) shortly after
the first process is awaken [14–17].

More dynamic kinds of problems, such as transmission
of dynamically arriving packets, were also considered in the
context of MAC. In the (dynamic) packet transmission prob-
lem, the aim is to obtain bounded throughput and bounded
latency. Two models of packet arrival were considered: sto-

123

344 M. Bienkowski et al.

chastic [18] and adversarial queuing [19,20]. There are two
substantial differences between these settings and our work.
First, the adversaries imposing dynamic packet arrival are
different from the adversary simulating execution of concur-
rent protocol. Second, as already mentioned in the context of
selection problems, these papers were inspired by the Ether-
net applications where it is typically allowed to transmit and
listen simultaneously.

In the context of deterministic algorithms for MAC under
the CD/GC/KN setting, that when none of these three char-
acteristics is available, mutual exclusion is infeasible [3].
Moreover, the authors of [3] presented an optimal—in terms
of the makespan measure—O(log n) rounds algorithm for
the model with CD. They also developed algorithms achiev-
ing makespan O(n log2 n) in the models with GC or KN
only, which, in view of the lower bound Ω(n) on determin-
istic solutions proved for any model with no-CD, is close to
optimal.

1.2 Our results

We consider the mutual exclusion problem in the multiple
access channel, and—for the sake of efficiency—we intro-
duce its weaker version: the ε-mutual-exclusion problem.

We extend the results of [3] (which guaranteed only the
no-deadlock property) to focus on fairness, ensuring the no-
lockout property. Additionally, in contrast to the previous
work on mutual exclusion on MAC, we also study random-
ized solutions. In the case of the mutual exclusion problem,
we allow randomized algorithms to have variable execution
time but they have to be always correct. On the other hand,
a randomized solution for the ε-mutual-exclusion problem
is allowed to err with some small probability ε. Thus, for
the former problem, we require a Las Vegas type of solution,
whereas for the latterwe admitMonteCarlo algorithms.Note
that a very small (e.g., comparable with probability of hard-
ware failure) risk of failure (i.e., situation wherein two or
more processes are in the critical section at the same round)
is negligible from a practioner’s point of view. Below, we
describe our results when only the no-deadlock property is
required (they are summarized in Table 1); later we show
how to extend them to achieve the no-lockout property.

We show that for the most severe channel setting, i.e., no-
CD, no-GC and no-KN,mutual exclusion is not feasible even
for randomized algorithms (cf. Sect. 2), thus extending the
analogous result of [3], holding for deterministic algorithms.
On the other hand, we show that the ε-mutual-exclusion
problem in this setting can be solved quite efficiently, by
constructing an IFS+ algorithm with expected makespan
O(log n · log(1/ε)) (cf. Sect. 3.1). Our algorithm derives its
name and some core ideas from the Increase From Square
(IFS) algorithm [16] for the wake-up problem.

In a more relaxed setting, we prove an exponential gap
between the complexity of the mutual exclusion problem
and the ε-mutual-exclusion problem. Specifically, we show
that the expectedmakespan of (randomized) solutions for the
mutual exclusion problem in the no-CD setting isΩ(n), even
if the algorithm knows n and has access to the global clock
(cf. Sect. 2). On the other hand, algorithm IFS+ clearly also
works in this setting

Another exponential gap occurs when collision detection
is available. Although we show that the makespan of any
randomized mutual exclusion algorithm is at least Ω(log n)

(cf. Sect. 2), we construct an algorithm for the ε-mutual-
exclusion problem with expected makespan O(log log n +
log(1/ε)) (cf. Sect. 3.2). Note that the algorithm neither
uses the knowledge of n nor the global clock, whereas the
lower bound holds even in presence of these channel capa-
bilities.

Finally, we present a generic deterministic method that
takes a mutual exclusion algorithm with the no-deadlock
property and turns it into one satisfying the stronger, no-
lockout condition (cf. Sect. 4). Our scheme requires either
collision detection capability or the knowledge of n, and
increases the makespan of the original algorithm by an
additive term of O(log n). This method applied to the deter-
ministic algorithms from [3] produces efficient deterministic
solutions satisfying the no-lockout property and applied to
our randomized algorithms allows us to guarantee the no-
lockout property for all our algorithms, inmost cases without
increasing their asymptotic complexity.

Note that consecutive entry and exit sections of a process
can be potentially related. In particular, a process can execute
a different code each time it enters its entry (or exit) section.
While we allow such behaviour in general (for instance our

Table 1 Summary of our and previous results for the no-deadlock variant of the problem

Mutual exclusion Mutual exclusion ε-mutual-exclusion
(deterministic) (randomized) (randomized)

No-CD, no-GC, no-KN Infeasible [3] Infeasible (Theorem 1) O(log n · log(1/ε)) (Theorem 4)

No-CD, only GC or KN O(n log2 n), Ω(n) [3] Ω(n) (Theorem 3)

CD Θ(log n) [3] Ω(log n) (Theorem 2) O(log log n + log(1/ε)) (Theorem 5)

The complexity measure is the (expected) makespan

123

Randomized mutual exclusion on a multiple access channel 345

lower bounds hold for such general case), we use it in a very
limited way in our algorithms. In particular, our algorithms
that guarantee no deadlock (cf. Sect. 3) use the same code in
every execution of entry section, while our algorithms that
additionally guarantee the no-lockout property (cf. Sect. 4)
use only counters that are preserved between consecutive exit
sections.

Relating our setting and results to the previously considered
ones. There are many similar problems in distributed com-
puting that employ choosing exactly one entity (out of many)
while the communication is strictly restricted. The closest
examples are the problems of choosing a leader, clock syn-
chronization and wake-up on a single hop radio network.
Although in construction of our algorithms we use some
techniques developed in the context of these problems, they
needed to be significantlymodified. For example, in Sect. 3.2,
we simulate the Willard’s algorithm [13], but we need to
introduce modifications to overcome problems caused by the
more demanding nature of our setting. In particular, in our
scenario, we have to cope with the dynamic nature of the
mutual exclusion problem, where new processes can be acti-
vated on the fly and the lack of mechanism acknowledging
the right to enter the critical section.

Since our model is more constrained and complex than
the previously considered models of the collision channel,
one may be tempted to use lower bounds proved for related
settings in order to obtain interesting limitations in our set-
tings. This approach could be however insufficient, due to a
more demanding nature of themutual exclusion problem. For
example, for the mutual exclusion problem with n processes
andCDweneedΩ(log n) rounds as proved inTheorem2.On
the other hand, the leader election problem in single hop radio
networks with CD has a lower bound of only Ω(log log n)

(that can be matched by an algorithm). That is, solving the
mutual exclusion problem in our setting is substantiallymore
difficult then choosing a leader in a single hop radio network.
Another example is an impossibility result for the weakest
model of the channel presented in this work—to the best
of our knowledge, there are no prior results of this type so
far.

Amore relaxedversionof themutual exclusionproblem—
the ε-mutual-exclusion problem, introduced in this paper—is
closer to the previously considered problems on the collision
channel. One may suspect that some existing lower bounds
for the leader election or wake-up problems can be somehow
transferred to the new model. In this work, we do not discuss
the lower bounds for ε-mutual-exclusion problem, focusing
rather on the issue how this relaxation of themutual exclusion
problem improves the complexity. We leave an investigation
of potential relations between this and other similar problems
as a future work.

2 Lower bounds for the mutual exclusion problem

In our lower bounds, we use the concept of transmis-
sion schedules to capture transmission/listening activity of
processes in the entry or the exit section. Transmission sched-
ule of a process p can be regarded as a binary sequence
πp describing the subsequent communication actions of the
process, up to the point when it enters the critical section.
The sequence can be finite or infinite. For non-negative inte-
ger i , πp(i) = 1 means that process p transmits in round i
after starting its current section, while πp(i) = 0 means that
the process listens in round i . We assume that round 0 is the
round in which the process starts its current run of the entry
or the exit section.

The following results extend the lower bounds and impos-
sibility results for deterministic mutual exclusion proved in
[3] to randomized solutions. All the presented lower bounds
apply even if we do not require no-lockout, but the weaker
no-deadlock property.

Theorem 1 There is no randomized mutual exclusion algo-
rithm with no-deadlock property holding with a positive
probability in the setting without collision detection, with-
out global clock and without knowledge of the number n of
processes.

Proof Suppose, for contradiction, that there exists a mutual
exclusion algorithmR in the considered setting that accom-
plishes no-deadlock with a positive probability for each
adversarial schedule. Our goal is to show that, under this
assumption, there exists an execution violating the mutual
exclusion.

Since algorithm R does not have the parameter n in
its input, the adversary may consider any finite subset of
processes with IDs being non-negative integers, and decide
on n being the maximum of used IDs. For a process p, let
Fp be the set of all executions that occur with positive prob-
ability of the first entry section of algorithm R by a process
p, under the scenario where only process p is in this sec-
tion and all other processes are in the remainder section
(i.e., this is the first entry section in the global execution
and no other process tries to enter). Note that during each
execution in Fp, process p hears only background noise
from the channel whenever it listens and, by non-deadlock
property, it eventually enters the critical section (in a finite
time). Let Ep ∈ Fp be the execution where p enters the
critical section, and let πp be the transmission schedule of
process p during Ep. Let |πp| be the length of execution
Ep.

Consider a family of transmission sequences πp over
all processes p. (Recall that we consider all possible non-
negative integer ids of processors at this point of the proof.)
Note that transmission sequencesmay have different lengths,
but all of them are bounded. We call a transmission sequence

123

346 M. Bienkowski et al.

proper if there is at least one occurrence of 1 in it. It is
easy to see that all sequences πp, except at most one, are
proper. Otherwise, the adversary could choose two non-
proper sequences πp, πq and build the following execution
contradicting the mutual exclusion property. It starts the first
entry sections of p and q in rounds |πq | + 1 and |πp| + 1,
respectively. By inductive argument on the number of rounds,
we can extend transmission sequences of p, q in such a
way that there is no transmission. This is because the previ-
ously built prefixes of these sequences and the feedback from
the channel make the execution undistinguishable from the
previously defined executions Ep,Eq at process p, q, respec-
tively; therefore, as inEp,Eq , there is away that the algorithm
chooses not to transmit in both p and q. This may be contin-
ued inductively up to round |πp| + |πq |, where, again by the
fact that the built execution is the same in p, q as in execu-
tions Ep,Eq , respectively, and because the built transmission
sequences are exactly πp, πq . Hence, at most one sequence
is not proper.

Consider the following adversarial strategy. Let q denote
the ID of a non-proper transmission sequence, if it exists,
or 0 otherwise. For every process p, where p > q + 1, we
define �p to be the position of the first 1 in sequence πp. Let
a = max{|πq |, |πq+1|} and let b = max{�p : q + 1 < p ≤
q+2a+1}. For a process p, where q+1 < p ≤ q+2a+1,
the adversary sets the length of the first remainder section to
b− �p + �(p − q − 1)/2�, and processes q, q + 1 are set to
start their first remainder sections in rounds b+a−|πq | and
b + a − |πq+1|, respectively. Note that all these lengths are
non-negative integers, and the starting points of processes
q, q + 1 are after round b.

We show by induction on round 0 ≤ i ≤ b + a that there
is an execution where no message is heard in all rounds from
1 to i . More precisely, we will be showing that there is an
execution E where, under the defined adversarial schedule,
all considered processes p follow their transmission sched-
ules πp up to round i of the execution and in all these rounds
nomessage is heard on the channel. (This global round i may
correspond to different positions in the transmission sched-
ules.) Note that we assumed no collision detection, therefore
the invariant implies that the same noise is heard during all
these rounds. The invariant for i = 0 is true since no process
has started its entry section yet, and no one has transmitted
yet. Suppose that the invariant holds for some 0 ≤ i < b+a,
we show it for round i + 1.

First, consider the case i + 1 ≤ b. By the invariant for i ,
we get that from the point of view of a single process p, the
execution E by the end of round i is the same as the corre-
sponding prefix of execution Ep (in which only process p is
in the entry section), and in both executions the transmission
schedule of p is the same prefix of πp. Note that this prefix
can be extended by one more position according to the trans-
mission schedule πp when considered in execution Ep, since

the length of πp is at least �p while the currently built prefix
of πp has length

i −
(
b − �p +

⌈
p − q − 1

2

⌉)

< b −
(
b − �p +

⌈
p − q − 1

2

⌉)
≤ �p . (1)

It follows that in both executions E ,Ep the transmission
sequences of process p up to round i + 1 can be made the
same, and they are a prefix of schedule πp. It remains to
show that in round i + 1 the noise is heard on the channel.
This follows again from relation (1), which guarantees that
the first transmission of any process p > q + 1, following
its transmission sequence πp, occurs after round b of the
execution, and processes q, q + 1 start their entry sections
after round b.

Next, consider the case b < i + 1 ≤ b + a. The same
argument as in the previous case justifies that, because of the
noise on the channel heard in all previous rounds and the
similarity to the executions Ep, all prefixes of the transmis-
sion sequences πp built by round i in execution E can be
extended by one more position according to πp. To ensure
that the noise is heard also in round i +1, consider processes
with IDs p = q+2 ·(i+1−b) and r = q+2 ·(i+1−b)+1.
Note that both IDs are bigger than q+1 and smaller or equal
to q + 2|πq | + 1. Moreover, since they start their entry sec-
tions just after rounds b−�p+�(p − q − 1)/2� = i+1−�p
and b−�r +�(r − q − 1)/2� = i+1−�r , respectively, they
both have the first value 1 in their schedules while being in
round i + 1 (being prefixes of πp, πr , resp., of length �p, �r ,
resp.), and thus both transmit in this round. Hence the noise
(collision) is heard. Recall that this noise is not distinguish-
able form the one caused by silence (no transmission), as
there is no collision detection capability.

By the invariant for round b+a, the constructed execution
E is not distinguishable from execution Eq from the point of
view of process q, and similarlyE is not distinguishable from
Eq+1 at process q + 1. Moreover, the first of them has length
(b+a)−(b+a−|πq |) = |πq | and the second one has length
(b+ a) − (b+ a − |πq+1|) = |πq+1|. Therefore, each of the
processes q, q +1 chooses to enter the critical section at this
point, as it could do in Eq ,Eq+1, respectively. This violates
mutual exclusion in the execution E . ��
Theorem 2 The expected makespan of any randomized
mutual exclusion algorithm is at least log n, even in the
setting with collision detection, with global clock and with
knowledge of the number n of processes.

Proof Suppose, for the sake of contradiction, that there is
a mutual exclusion algorithm R whose expected makespan
is smaller than log n. Our goal is to show that, under this

123

Randomized mutual exclusion on a multiple access channel 347

assumption, there exists an execution violatingmutual exclu-
sion.

For a process p, let Fp be the set of all possible executions
of the first entry section of algorithm R by process p under
the assumption that it starts its first entry section in global
round 1 and there is no other process starting within the first
log n rounds. Note that during each execution inFp process p
hears only background noise (i.e., silence) from the channel
when listening. Therefore, by the probabilistic method, there
is an execution Ep in the set Fp where process p enters the
critical section within the first log n − 1 rounds. Let πp be
the transmission schedule of process p during Ep.

Consider sequences πp of all processes 0 ≤ p < n. There
are less than n different 0-1 sequences of length at most
log n − 1, hence some two processes p, q have the same
sequencesπp = πq .We construct an execution E contradict-
ing the mutual exclusion property as follows. The adversary
starts the first entry sections for these two processes p, q in
the very first round, while delaying other (they remain in the
remainder section) till round log n. Before round 1 of the exe-
cution, process p cannot distinguish it from Ep, therefore it
may decide to do the same as in Ep, i.e., to set its first position
of transmission schedule to πp(1). The analogous argument
holds for process q, with respect to executions E ,Eq and
the transmission schedule πq . If this happens, either both
processes transmit or both listen, which results in either no
feedback (nobody listens) or silence heard (nobody trans-
mits). This is caused by πp = πq and the fact that a process
cannot transmit and listen simultaneously in a round. This
construction and output of the first round can be inductively
extended up to round |πp| = |πq |, since from the point of
view of process p (or q) the previously constructed prefix
of E is not distinguishable from the corresponding prefix of
execution Ep (or Eq , respectively); indeed, the transmission
schedules are the same and the feedback from the channel
is silence whenever the process listens. Finally, by the very
same reason, at the endof round |πp|both p andq are allowed
to do the same as in Ep and Eq , respectively, that is, to enter
the critical section. This violates the mutual exclusion prop-
erty that should hold for E . ��
Theorem 3 The expected makespan of any randomized
mutual exclusion algorithm is at least n/2 in the absence of
collision detection capability, even in the setting with global
clock and with knowledge of the number n of processes.

Proof To arrive at a contradiction, let R be a randomized
mutual exclusion algorithm, whose expected makespan is
c, where c < n/2. We show that there exists an execution
violating the mutual exclusion property.

For a process p, let Fp be the set of all possible execu-
tions of the first entry section of algorithm R by process p
under the assumption that it starts its first entry section in the
global round 1 and there is no other process starting within

the first n/2 rounds. Note that during each execution in Fp

process p hears only noise (i.e., silence or collision,which are
indistinguishable due to the lack of collision detection) from
the channel when listening. Therefore, by the probabilistic
method, there is an execution Ep ∈ Fp, where process p
enters the critical section within the first n/2− 1 rounds. Let
πp be the transmission schedule of process p during Ep.

Consider sequences πp of all processes 0 ≤ p < n. We
construct an execution E contradicting the mutual exclusion
property as follows. First, we select a set P∗ of processes
that start their first entry sections in round 1, while the others
stay in the remainder section till at least round n/2. To this
end, we create a sequence {Pj } j starting from a set P0 =
{0, . . . , n − 1}, and we define two operations on set Pj of
processors.

– Remove shortest: fromset Pj remove the (unique) proces-
sor p with the shortest transmission schedule, i.e., such
that ∃i∈[1,n/2−1]

(|πp| = i & ∀q∈Pj ,q �=p |πq | > i
)
.

– Remove transmitting: from set Pj remove a processor p,
for which there exists a round, where only p transmits,
i.e., such that∃i∈[1,n/2−1]

(
πp(i) = 1 & ∀q∈Pj ,q �=p πq(i)

= 0).

Now, we proceed inductively: Pj+1 is created from Pj by
applying any of these operations. If at some round neither
of these operations can be applied, then we call the result-
ing set P∗. Observe that each of the operations above can
be applied at most n/2 − 1 times (i.e., at most once per
each i ∈ [1, n/2 − 1]), which results in removing of at most
2 · (n/2− 1) = n− 2 processes from set P; hence |P∗| ≥ 2.
Having subset P∗ of processes, the adversary starts first entry
sections for all processes in P∗ in the very first round, while
it delays others (they remain in the remainder section) until
round n/2. Note that before round 1 of the constructed exe-
cution E , a process p ∈ P∗ cannot distinguish E from Ep,
therefore it may decide to do the same as in Ep, i.e., to set its
first position of transmission schedule toπp(1). This happens
for all processes in P∗. Since there is no single transmit-
ter in round 1 (otherwise the operation remove transmitting
could have been applied), all listening processes hear the
noise (recall that silence is not distinguishable from collision
in the considered setting).

This construction and the output of the first round can be
inductively extended up to round |πp|, where p ∈ P∗ is a
processwith the shortest scheduleπp amongprocesses in P∗.
This is because from the point of view of a process q ∈ P∗
the previously constructed prefix of E is not distinguishable
from the corresponding prefix of execution Eq ; indeed, the
transmission schedules are the same and the feedback from
the channel is silence whenever the process listens. Finally,
observe that there exists (at least one) processor q, such that
|πq | = |πp| (otherwise the operation remove shortest could

123

348 M. Bienkowski et al.

have been applied). At the end of round |πp|, both p and q
are allowed to do in E the same action as in Eq , that is, to
enter the critical section. This violates the exclusion property
that should hold for the constructed execution E . ��

3 Algorithms for the ε-mutual-exclusion problem

In this section, we present two randomized algorithms solv-
ing the ε-mutual-exclusion problem for various channel
capabilities. Namely, we present an algorithm for the no-CD
variant and an algorithm for the CD variant of the problem.
No algorithm requires other channel capabilities, such as the
knowledge of n or the global clock. These algorithms work
solely in entry sections, i.e., their exit sections are empty,
and they guarantee only the no-deadlock property. Later, in
Sect. 4, we show how to add exit section subroutines to all
our algorithms in order to guarantee the no-lockout property
while keeping the makespan bounded. In our algorithms, we
extend some techniques developed in the context of other
related problems, such as the wake-up problem [16] and the
leader election problem [13].

Throughout this section, we use the following notation
and assumptions. We assume that processes listen in these
rounds in which they do not transmit. We say that there is a
successful transmission in a given round if in this round one
process transmits and others listen. By saying that a process
resigns (or alternatively changes state to resigned), we mean
that it will not try to enter the critical section and will not
attempt to transmit anything until another process starts the
exit section. (Recall that a process in a critical section trans-
mits a critical message in each round.) Our algorithms are
memoryless in the following sense: a resigned process will
restart its protocol from scratch after the first round when it
does not hear a critical message.

3.1 Collision detection not available

In the first variant, we do not assume any channel capabilities,
i.e., we consider no-CD, no-KN, and no-GC version. In our
construction, we build on the ideas from algorithm Increase
From Square (IFS) [16], which efficiently solves thewake-up
problem for the considered variant of channel capabilities. In
thewake-up problem, each process is activated in an arbitrary
round by the adversary and the goal is to have a round with
a successful transmission as quickly as possible.

A rough idea behind IFS [16] is that process i starts with
probability qi = Θ(1/ i2) and operates in phases of length
k = Θ(log(1/ε)). In any round of each phase, process i
transmits a message with probability qi and at the end of the
phase, qi is doubled until it exceeds 1/2. In the original proof,
it is argued that for any pattern of adversarial activations, after
O(log n)phases, therewill be k consecutive roundswhere the

sum of probabilities of all active processes is between 1/2
and 3/2. This ensures a successful transmission occurring
with probability 1 − ε in one of these rounds.

3.1.1 Problems with transforming wake-up into mutual
exclusion

The solution for the wake-up problem might seem to be a
perfect candidate for an entry section algorithm: whenever
a process enters its entry section, it starts to execute algo-
rithm IFS and the single process that transmits successfully
enters the critical section. Unfortunately, such an approach is
far from being correct. One of the main problems is that the
process that succeeded may not be aware of it being success-
ful. (Recall that we assume that the process cannot transmit
and listen simultaneously.) We could alleviate this problem
by employing the following “killing rule”: any process that
hears a successful transmission from process j resigns and
process j enters the critical section upon ending its IFS rou-
tine. In this informal description, we call such j a temporary
leader. Note, however, that the period between a successful
transmission of process j and the end of its IFS execution
can be quite long. (This happens for example when there
are many processes with small transmission probabilities:
one of themmay transmit successfully although its transmis-
sion probability is very low.) In such period, other processes
with smaller IDs (and hence larger transmission probabili-
ties) may have a better chance to start their entry sections. It
is therefore quite likely that they could force j to resign and
one of them would become a temporary leader. As changing
the temporary leader this way can occur many times, it is not
clear how to bound the makespan of such algorithm.

In order to be able to benefit from using such a “killing”
process, we have to introduce an additional acknowledge-
ment scheme. Namely, all processes try to send an announc-
ing message first. We may expect the first successful trans-
mission (say, by process j) when the sum of transmission
probabilities is constant. Afterwards, all other processes that
heard such announcingmessage try to transmit acknowledge-
ment for j .

As soon as j hears such an acknowledgement, it enters the
critical section. Such acknowledging schemeworkswell pro-
vided the sumof transmissionprobabilities of acknowledging
processes is also appropriately large. In the problematic case,
the sum of transmission probabilities of the acknowledging
processes is small and they might not succeed in sending an
acknowledgement. However, this implies that the transmis-
sion probability of process j is quite large. In such case we
apply another “killing rule”: if the transmission probability
of a process is quite high, instead of sending an announcing
message, it sends a killingmessage, which forces all remain-
ing processes to resign. Note that this time process j does

123

Randomized mutual exclusion on a multiple access channel 349

not need an acknowledgement, as the end of its IFS routine
will occur soon.

To sumup, in our entry sections, we use amodified version
of the IFS routine, combining the aforementioned acknowl-
edging scheme and a “killing rule”; its precise description is
given in the next section. While keeping the general frame-
work of phases and the paradigm of increasing transmission
probabilities, we introduce several substantial changes, such
as a silence period at the beginning, three types of non-
critical messages: announcing, killing, and acknowledging,
and some minor adjustments of constants.

3.1.2 The IFS+ routine

The IFS+ routine executed by each process in its entry sec-
tion is defined as follows. Let k = 4·�log(8/ε)/ log(56/55)�,
y = π2/6, and fi = �log(y · (i + 1)2)� + 3. Note that act-
ing of each process depends on its ID, however we do not
use the knowledge of the upper bound on the number of IDs
(parameter n). Routine IFS+ for process i consists of fi + 3
phases numbered from 0, each consisting of k rounds. In
the first three phases (called silent), process i sets its trans-
mission probability qi to 0. In the h-th phase (for h ≥ 3),
process i sets transmission probability to qi = 2h−3− fi . In
other words, neglecting the three silent phases, the transmis-
sion probability is 1/2 fi in the first non-silent phase, doubles
between two consecutive phases, and is 1/2 in the last phase.
We write qi (t) if we want to emphasize that we use the value
of qi from a particular round t . Note that the runtime of the
uninterrupted IFS+ routine of process i is fixed and equals
to k · (fi + 3) = O(log n · log(1/ε)). In our analysis, we do
not aim at minimizing the constants, but rather at the proof
simplicity.

The processes behave in the following way. A process
in the entry section can be in any of the following four
states: announcing, acknowledging(j), killing, or resigned,
where the second one is parameterized with a number j
being an ID of another process. We use the phrase resigns
as a synonym for changes state to resigned. All state tran-
sitions occur instantly between rounds, i.e., in any round a
process is exactly in one state. That said, when we write that
a process resigns in round t , we mean that it changes its state
to resigned between round t and t + 1. In our pseudocode,
we additionally use the critical-ready state: a process that
is assigned this state, enters the critical section in the next
round.

Each process starts its entry section in the announcing state
and starts its IFS+ routine. Recall that each phase of the IFS+
routine consists of k rounds. These rounds are partitioned
into, interleaved, k/2 odd-numbered and k/2 even-numbered
ones.A process that is in its entry section and has not resigned
yet is called active; sometimes we use the term becomes

active in place of starts its entry section. An active process
j transmits its current state in each odd round with transmis-
sion probability q j . (The transmission events for particular
processes are independent in each odd round.) In an even
round, process j does not transmit anything independently
of qi . The necessity of these silent even-numbered rounds
will become clear later. Note that this odd-even distinc-
tion applies only to entry sections: in the critical section,
a process consistently transmits a critical message in each
round.

An active process changes its state between rounds t and
t + 1 based on received message (if any) and local time.
First, it can change its state because there was a successful
transmission in round t , namely:

(R1) A process hearing a critical or killing message resigns;
(R2) A killing process hearing an announcing message does

nothing;
(R3) A non-killing process hearing an announcing message

from j changes state to acknowledging(j);
(R4) A process j hearing an acknowledging(j) message

enters the critical section (i.e., its critical section starts
in round t + 1);

(R5) A process j hearing an acknowledging(�) message,
where � �= j , resigns.

Between rounds t and t + 1, after rules (R1)–(R5) are
applied, a process which is still active and not going to enter
the critical section in the next round may still change its state
if any of the following two time-related rules is triggered:

(T1) An announcing process which—in round t + 1—starts
its last phase of the IFS+ routine changes its state to
killing;

(T2) An active process that finished its IFS+ routine enters
the critical section.

Note that if a process ends its IFS+ routine (i.e., executes
rule (T2)), then it has to be either in killing or in acknowledg-
ing state. In particular, an announcing process cannot finish
its IFS+ routine, as this would mean that it was announc-
ing at the end of the second-to-last phase and thus it would
have changed its state to the killing state in the beginning of
the last phase. (Here we implicitly used the fact that, based
on the transition rules (R1)–(R5) and (T1)–(T2), there is no
return to the announcing state once changing it to any other
state.) The complete pseudocode for entry section is given in
Algorithm 1.

As mentioned already, a resigned process just waits for
a critical section to occur, and then it changes its state to
announcing and restarts IFS+ routine as soon as it learns that
the critical section has finished.

123

350 M. Bienkowski et al.

Algorithm 1 Entry section for process i
Initialization:
k ← 4 · �log(8/ε)/ log(56/55)�
y ← π2/6
fi ← �log(y · (i + 1)2)� + 3
State ← announcing

Actions: for round τ ∈ {1, . . . ,k} of phase h ∈ {0, . . . , fi + 2}
if h < 3 then qi ← 0 else qi ← 2h−3− fi

if k is odd and State �= resigned then
transmit State with probability qi

if State �= resigned and process received a message then
j ← ID of transmitting process
Recv ← received message (state of j)
if Recv = critical or Recv = killing then � (R1)

State ← resigned
if Recv = announcing then � (R2),(R3)

if State �= killing then
State ← acknowledging(j)

if Recv = acknowledging(�) then � (R4),(R5)
if � = i then

State ← critical-ready
else

State ← resigned
if State = announcing and τ = k and h = fi + 1 then � (T1)

State ← killing
if State �= resigned and τ = k and h = fi + 2 then � (T2)

State ← critical-ready
if State = critical-ready then

enter critical section in the next round

3.1.3 Structural properties of IFS+

We analyze our election mechanism, i.e., algorithm IFS+,
for a single critical section. In particular, in the analysis, we
consider only rounds after the previous critical section (if
any), as all IFS+ routines (if any) are restarted right after the
critical section. By τstart we denote the first round after the
previous critical section, in which there is a process starting
its IFS+ routine.Hence,without loss of generality,we assume
that processes start their IFS+ routines in round τstart or later
and the starting points are chosen by the adversary in an
arbitrary manner. For any process i , we denote its starting
round by ti (ti can be also infinite if the process does not
become active after round τstart). We call all rounds starting
from τstart and ending at the last round before some process
enters the critical section election rounds.

We observe that any process j that enters the critical sec-
tion transmits a critical message, and all processes listening
in this round resign by rule (R1). Thus, for our algorithm, the
necessary and sufficient condition for the mutual exclusion
is that at a round when j enters the critical section, no other
process enters the critical section and no other process trans-
mits anything. For short, in such case, we say that j starts the
critical section with mutex.

The first lemma states that processes in acknowledg-
ing states always certify the existence of some single alive
process.

Lemma 1 At any election round, the following two proper-
ties hold.

1. There is at least one process in the announcing or killing
state.

2. If there are some acknowledging processes, then they are
all in the same state acknowledging(j), where process j
is announcing or killing.

Proof We show the lemma by a simple induction. The state-
ment holds at τstart as there is at least one announcing process
in that round (the process that starts its IFS+ routine) and there
are no processes in acknowledging states.

Assume now that both properties hold in round t and we
show them for round t+1.Wemay neglect the processes that
start their entry sections (and IFS+ routines) in round t + 1,
as they start in announcing states and this may only help in
preserving the properties.We divide the change of processes’
states into two parts: in the first one we check the effect of
applying rules (R1)–(R5) and in the second one—the rules
(T1)–(T2).

For the rules (R1)–(R5) to apply, there has to be a success-
ful transmission in round t . Let i be the transmitting process.
We consider several cases.

– Process i was announcing. By rule (R3), all other
processes in announcing or acknowledging states change
their state to acknowledging(i). By rule (R2), all killing
processes remain intact.

– Process i was killing. By rule (R1), all other processes
resign.

– Process i was in state acknowledging(j). Then by the
inductive assumption, j was announcing or killing in
round t , and therefore, by rule (R4), j would enter the
critical section at time t + 1. In this case lemma holds
emptily as t + 1 is not an election round.

We showed that the first two cases preserve the properties
of the lemma and the third one cannot occur. Independently
of the successful transmission in round t , rules (T1)–(T2)
might be triggered for some processes. However, rule (T1)
does not change the validity of the conditions of the lemma
and rule (T2) would make round t + 1 a non-election round.
This concludes the inductive proof of the lemma. ��

By the rules of the algorithm IFS+, there are two possi-
bilities that a process enters the critical section: either this
is triggered by rule (R4) (a successful transmission of an
acknowledging message) or the process ends its IFS+ rou-
tine and enters the critical section by rule (T2). In the lemma
below, we focus on the former case.

123

Randomized mutual exclusion on a multiple access channel 351

Lemma 2 If a process enters the critical section before the
end of its IFS+ routine, then the mutual exclusion property
is satisfied.

Proof The second part of the lemma statement is straight-
forward: the only chance for a process i that has not yet
finished its IFS+ routine to enter the critical section in round
t is that it hears the acknowledging(i) message in round t−1
from a process j (cf. rule (R4)). The same message is heard
by all the processes except j , and thus they resign. By the
algorithm definition, each process may transmit only every
second round, and hence j will be silent in round t , and hears
the criticalmessage fromprocess i . Note that if a new process
starts its IFS+ routine in any round of the critical section it
first listens (because of its silent phases), hears a critical mes-
sage and resigns immediately. Hence, the mutual exclusion
property is satisfied. ��

The lemma above implies that if there is a successful
transmission of an acknowledging message, then the criti-
cal section starts right after this transmission and the mutual
exclusion property holds. A similar situation occurs after a
successful transmission of a killing message as stated by the
following lemma.

Lemma 3 If a process successfully transmits a killing mes-
sage, then it enters the critical sectionwithin the next k rounds
and the mutual exclusion property holds.

Proof After a successful transmission of a killing message
by process j in round t , all remaining processes (if any)
resign by rule (R1). Process j is in the last phase of its IFS+
routine and therefore enters the critical section in round t +k
at the latest. Note that any process activated after round t
is still silent in the first round of the critical section, hears
a critical message then and resigns immediately. Thus, the
mutual exclusion property holds. ��

Note that the cases of Lemma 2 and Lemma 3 do not
cover all the possibilities of entering the critical section as
the processes might start their critical section by rule (T2).

3.1.4 Bounding the makespan

In this section, we show that the makespan of the algo-
rithm IFS+ is O(log n · log(1/ε)). We note that this bound
holds even in the worst-case, i.e., not only in expectation.
The mutual exclusion property is not necessarily guaranteed;
however, in the subsequent sections, we show that it holds
with probability at least 1 − ε.

Lemma 4 The makespan of the IFS+ algorithm is O(log n ·
log(1/ε)).

Proof Consider any process j that is active in round τstart.
Recall that the duration of its IFS+ routine is O(k · log n).

Let tend = τstart + O(k · log n) denote the last round of its
IFS+ routine.

There are two possible cases. If j does not resign before
tend, then it enters the critical section by round tend + 1 at the
latest. Otherwise, it resigns in round t ≤ tend either because
of rule (R5) (it hears an announcing message) or because of
rule (R1) (it hears a killing message). In the former case, the
critical section starts in round t by Lemma 2; in the latter
case the critical section starts in round t + k at the latest by
Lemma 3. Hence, in either case themakespan is O(k ·log n+
k) = O(log n · log(1/ε)). ��

3.1.5 The crucial round

The central result of this section is to show that for any start-
ing rounds there exists a round τc, called crucial round, such
that the total transmission probability (defined as the sum
of transmission probabilities of all processes) in this round
has just exceeded 1/4. This guarantees that all the processes
active at τc will not resign because of the end of their IFS+
routines for the next 2k rounds. In the next subsection, we
show that this allows us to isolate a set of processes which
are active in round τc and focus our analysis only on them.
In particular, we show that with probability at least 1 − ε

one of them enters the critical section (preserving the mutual
exclusion property) before round τc + 3k.

To this end, we first show that the pace of the changes in
the sum of transmission probabilities of active processes is
restricted. For a subset of active processes B, let PB(t) =∑

i∈B qi (t). If we omit subscript B and write P(t), then the
sum above ranges over all active processes; we call P(t)
the total transmission probability. By the definition of the
IFS+ routine, P(τstart) = 0 and P decreases only when some
process resigns.

Lemma 5 For any two election rounds t ≤ t ′, such that
t ′ ≤ t + k, it holds that P(t ′) < 2 · P(t) + 1/8.

Proof Let A be the set of processes that are active at time t .
Note that any process that starts its IFS+ routine in a round
from [t + 1, t ′] will have the transmission probability equal
to 0 within this whole interval, so without loss of generality
we may assume that there are no such processes.

Consider a single process i ∈ A. If i is not active in round
t ′, then it does not contribute to P(t ′). Otherwise, it remains
active throughout the whole interval [t, t ′] and, by the defin-
ition of IFS+, its transmission probability does not decrease
there. If qi (t) > 0, then qi (t ′) ≤ 2 · qi (t). If qi (t) = 0,
then at time t ′ process i is either still in the silent phase,
or it is in its first non-silent phase with transmission prob-
ability qi (t ′) = 1/2 fi . Therefore, summing over all active
processes, we obtain

123

352 M. Bienkowski et al.

P(t ′) ≤ 2 · P(t) +
n−1∑
i=0

1

2 fi
,

where the latter summand can be bounded by

n−1∑
i=0

1

2 fi
<

∞∑
i=0

1

2 fi
=

∞∑
i=0

1

2�log(2y·(i+1)2)�+3

≤
∞∑
i=1

1

y
· 1

(i + 1)2
· 1
8

<
1

8
.

Hence, P(t ′) < 2 · P(t) + 1/8. ��
Lemma 6 (Crucial round) For any adversarial choice of
starting rounds ti , there exists a round τc (being a determin-
istic function of values of ti), such that for any execution of
the IFS+ algorithm:

1. Either there is a process that enters the critical section
(with mutex) in a round t ∈ [τstart + 1, τc],

2. Or τc is an election round, P(τc−1) < 1/4, and P(τc) ≥
1/4.

Proof First, we assume that no process ever transmits a mes-
sage, and—under this assumption—we compute the value of
τc. To this end, we take a closer look at how P(t) changes
as a function of time. Recall that P(τstart) = 0. Moreover, as
we assumed no transmission, P can decrease only because
some process ends its IFS+ routine. Let τc be the first round
in which the total transmission probability reaches 1/4, i.e.,
P(τc − 1) < 1/4 and P(τc) ≥ 1/4. Note also that τc − 1
occurs before any process starts the last phase of its IFS+ rou-
tine. (The transmission probability of such process would be
1/2 then, which would contradict the choice of τc.)

Now, we take any execution of the IFS+ algorithm, and
show that such choice of τc satisfies the conditions of the
lemma. Note that in the actual execution some processesmay
resign before round τc. We consider two cases.

1. There is a successful acknowledging transmission in
round t ∈ [τstart, τc−1]. ByLemma2, in round t+1 ≤ τc
the critical section starts (with mutex).

2. There is no successful acknowledging transmission in
rounds [τstart, τc − 1]. Recall that no process can be in
the last phase of its IFS+ routine in this interval, and hence
there was no killing message in these rounds, either.
Therefore, the only successful messages in these rounds
were announcing ones, which implies that no process
resigned. Thus—in terms of probability transmissions—
this case is identical to the no-transmission setting we
considered while defining τc. In particular, τc is an elec-
tion round and it holds that P(τc − 1) < 1/4 and
P(τc) ≥ 1/4.

Note that the two cases considered above correspond to the
first and the second part of the lemma statement, respectively.

��

3.1.6 Successful transmissions

In the next section, we will need to ensure that within given
k rounds there is a high probability of a successful transmis-
sion. Specifically, we will show the following lemma.

Lemma 7 Fix any election round τ and assume that P(τ −
1) ≤ 5/8, P(τ) ≥ 1/4 and qi (τ − 1) < 1/2 for any active
process i . Then, the probability that there is no successful
transmission in the interval [τ, τ + k − 1] is at most ε/2.

Sometimes we will need a more general bound, i.e., we
will require that the successful transmission is performed by
a process from B, where B is some fixed subset of active
processes. In this case, however, we have to clarify what
happens if there is a successful transmission of a process
outside of B, as such transmission may potentially terminate
the entry section. In the lemma below, we assume that the
effects of such transmission are ignored (e.g., the processes
ignore the reception of a killing message from a process out-
side of B). Note that Lemma 8 immediately implies Lemma 7
when we take B as the set of all processes active in round τ .
(The processes outside B are processes that become active
in the interval [τ + 1, τ + k − 1]; those processes are silent
in this interval by the definition of IFS+).

Lemma 8 Fix any election round τ and assume that P(τ −
1) ≤ 5/8 and qi (τ −1) < 1/2 for any process i . Fix any sub-
set B of processes active in round τ , such that PB(τ) ≥ 1/4.
Assume that processes from B ignore the successful transmis-
sion performed by processes not in B. Then, the probability
that there is no successful transmission performed by a
process from B in the interval [τ, τ + k − 1] is at most ε/2.
Proof Divide all rounds from the interval [τ, τ + k − 1] into
odd-numbered and even-numbered ones, interleaved. Note
that any process transmits either only in even or only in odd
rounds: this partitions set B into two parts: B ′ transmitting
in odd rounds and B ′′ transmitting in even rounds. Without
loss of generality, we may assume that PB′(τ) ≥ 1/8.

As qi (τ − 1) < 1/2, no process ends its IFS+ routine
before round τ+k−1.We focus on any odd round t ∈ [τ, τ+
k − 1] and assume that there was no successful transmission
by a process from B until round t−1.What happens in round
t? Any process j ∈ B ′ transmits with probability q j (t) and
an alive process j /∈ B either transmits with probability q j (t)
or does not transmit at all (because by the definition of IFS+
any process may transmit only every second round). Let C
be the set of the processes not in B that may transmit in
round t . Then, the probability of a successful transmission
by a process from B in round t is equal to

123

Randomized mutual exclusion on a multiple access channel 353

pt =
∑
j∈B′

q j (t)
∏

i∈B′∪C and i �= j

(1 − qi (t)).

We first bound the product occurring in this equation. Let
A be the set of all processes active in round t . As for any
process i it holds that qi (t) ≤ 1/2, we have 1 − qi (t) ≥
(1/4)qi (t). Hence,

∏
i∈B′∪C and i �= j

(1 − qi (t)) ≥
∏
i∈A

(1 − qi (t)) ≥
∏
i∈A

(1/4)qi (t)

= (1/4)
∑

i∈A qi (t) = (1/4)P(t).

Moreover, by Lemma 5, it holds that P(t) < 2 · P(τ −
1) + 1/8 ≤ 11/8. As there was no successful transmissions
by a process from B in rounds [τ, t − 1] and the successful
transmissions by processes not in B were ignored, no process
from B resigned. Therefore, PB′(t) ≥ PB′(τ), and hence

pt ≥
∑
j∈B′

q j (t) ·
(
1

4

)11/8

>
1

8
· 1
7

= 1

56
.

Therefore, the probability of no successful transmission
(by a process from B) in odd rounds is at most (55/56)k/2 ≤
ε/2. The probability of no successful transmission (by a
process from B) within whole interval [τ, τ + k − 1] is at
most that, which implies the lemma. ��

3.1.7 Bounding the failure probability

We consider the crucial round τc, whose existence is guar-
anteed by Lemma 6. We call the interval [τc + 1, τc + 3k]
crucial interval, and we show that with probability at least
1 − ε some process enters the critical section in the crucial
interval. In this section, we make two assumptions in all our
lemmas and their proofs:

1. τc is an election round;
2. No process starting its entry section during the crucial

interval ever transmits in that interval.

Indeed, Lemma 6 states that if the former assumption is
not true, then some process already entered the critical sec-
tion (with mutex) before or in round τc. To justify the latter
assumption, observe that even if a process becomes active in
a round t > τc, it will be silent until round t+3k−1 ≥ τc+3k
(inclusively). Hence, when a process in the critical section
transmits its first critical message, all these silent processes
resign.

Aprocess j is called the leader if it is announcingor killing
and all other processes (if any) are acknowledging(j).

Lemma 9 With probability at least 1 − ε/2:

1. Either some process enters the critical section (with
mutex) until round τc + k (inclusively);

2. Or τc+k is an election round, there exists a leader in this
round, and no process resigned in rounds from [τc, τc +
k − 1].

Proof Let A be the set of processes active in round τc. By
Lemma 6, P(τc − 1) < 1/4 and P(τc) ≥ 1/4, and thus
for any process i it holds that qi (τc − 1) ≤ 1/8. Hence,
IFS+ routine of any process from A lasts at least until round
τc+2k−1 and no active process is killing in rounds [τc, τc+
k − 1]. By Lemma 7, with probability at least 1− ε/2, there
is a successful transmission within these rounds (performed
by an announcing or acknowledging process). It remains to
show that the existence of a successful transmission implies
the lemma statement. We consider two cases.

1. If there is any successful transmission of an acknowledg-
ing message in rounds [τc, τc +k−1], then by Lemma 2,
the critical section starts (with mutex) at the subsequent
round.

2. Otherwise, there is no transmission of an acknowledging
message. In this case, there are only transmissions of
announcingmessages in rounds from [τc, τc+k−1], and
hence no process resigns in these rounds (as no process
is killing). Let t ∈ [τc, τc+k−1] be the last round with a
successful transmission. Then in round t+1, all processes
except j are in state acknowledging(j) and process j
becomes the leader.As there are no subsequent successful
transmissions until round τc + k − 1 (inclusively) and
no new process that becomes active until round τc + k
(inclusively) transmits, the situation remains unchanged
until round τc + k. ��

Lemma 10 Assume that: no process resigned in rounds
[τc, τc+k−1], τc+k is an election round, and there is a leader
j in this round. Then, with probability at least 1− ε/2, some
process enters the critical section (with mutex) in a round
from [τc + k + 1, τc + 3k − 1].

Proof By the lemma assumptions, in round τc+k there exists
one process j in announcing or killing state and all other
processes (if any) are acknowledging(j). As P(τc−1) < 1/4
(cf. Lemma 6), Lemma 5 implies that P(τc + k − 1) <

2 ·1/4+1/8 = 5/8. As P(τc) ≥ 1/4 and no process resigns
in rounds from [τc, τc+k−1], it holds that P(τc+k) ≥ 1/2.

We now take a closer look at what may happen in the
interval [τc + k, τc + 2k − 1]. As qi (τc − 1) ≤ 1/8, the
IFS+ routine of j lasts at least until round τc + 2k − 1 and
j is either in the killing state in all rounds from the interval
[τc + k, τc + 2k − 1] or it is in the announcing state in round
τc+k and potentially switches to the killing state later. There

123

354 M. Bienkowski et al.

can be three types of successful transmissions in the interval
[τc + k, τc + 2k − 1].

1. If process j transmits successfully while in the announc-
ing state, then this transmission has no effect at all (as all
other processes are already acknowledging(j)).

2. If process j transmits successfully while in the killing
state, the critical section (with mutex) starts within the
next k rounds (i.e., in round τc + 3k − 1 at the latest) by
Lemma 3.

3. If there is a successful transmission of an acknowledging
(j) message, then the critical section (with mutex) starts
in the next round by Lemma 2.

Now, we show that there will be a successful transmission
of the second or third type with probability at least 1 − ε/2.
To this end, we consider two cases.

1. q j (τc + k) > 1/4. Since transmission probabilities are
powers of 1/2, it actually holds that q j (τc + k) = 1/2,
i.e., process j is killing already in round τc + k. In this
case, one successful transmission is sufficient, and the
claim follows immediately by Lemma 7.

2. q j (τc + k) ≤ 1/4. As the total transmission probability
in round τc + k is at least 1/2, the total probability of
processes acknowledging(j) is at least 1/4.
Consider any real execution of the protocol in rounds
[τc + k, τc + 2k − 1] and the corresponding virtual exe-
cution obtained by replacing any killing messages of
process j by announcing messages. In the virtual exe-
cution, all transmissions of process j can be ignored (as
other processes are in acknowledging(j) state already),
and hence, by Lemma 8, there is a successful transmis-
sion of the message acknowledging(j) in this interval,
with probability at least 1−ε/2. In such case, the mutual
exclusion condition holds for the considered virtual exe-
cution (in rounds [τc +k, τc +2k−1]). Note that it holds
then also in the corresponding real execution: if the first
killing message occurs before the first acknowledging
message in the real execution, the mutual exclusion is
guaranteed by Lemma 3, otherwise the real execution is
the same as the virtual one (in which, as we just showed,
the mutual exclusion condition holds as well). ��

Theorem 4 Thealgorithm IFS+guarantees ε-mutual-exclu-
sion with makespan O(log n · log(1/ε)).
Proof By Lemma 4, the makespan of the algorithm IFS+ is
O(log n · log(1/ε)). It remains to show that the the mutual
exclusion property holds with probability at least 1 − ε.

To this end, we fix any adversarial choice of start-
ing rounds ti ; this defines starting round τstart. Let τc =
τstart + O(k · log n) be the crucial round guaranteed by

Lemma 6, in the following sense: either the critical section
starts already (with mutex) in the interval [τstart + 1, τc] or
τc is an election round. In the latter case, Lemma 9 guaran-
tees either start of the critical section (with mutex) in rounds
[τc +1, τc + k] or the precondition for Lemma 10, with error
probability at most ε/2. On the other hand, Lemma 10 guar-
antees the start of the critical section (with mutex) in rounds
[τc + k + 1, τc + 3k − 1], with error probability at most ε/2.
Thus, the total probability that the mutual exclusion property
does not hold is at most ε. ��

3.2 Collision detection available

In this section, we show two algorithms working in a sce-
nario with collision detection. First, we show algorithm
StaticQSEB- Emulation that solves the static case of
the ε-mutual-exclusion problem, i.e., the case where there
is a subset of processes which start their entry sections
in round 1 and no process is activated later. Then, we
show algorithm DynamicQSEB- Emulation which solves
ε-mutual-exclusion problem in (asymptotically) the same
makespan. In what follows, we assume that whenever a
process does not transmit, it listens.

3.2.1 Solving the static case

Protocol StaticQSEB- Emulation starts with EnterIfS-
ingle subroutine to detect (with probability at least 1 − ε)
if there is only one active process. In such case, this process
enters the critical section. Otherwise, Willard’s QSEB algo-
rithm [13] is simulated in order to choose the only process
for entering the critical section.

The subroutine EnterIfSingle assumes that there is a
set of processes that start this procedure simultaneously, and
thus that rounds are numbered, starting from 1. It consists of
2 · log(1/ε) rounds. In each odd round, each active process
tosses a symmetric coin (i.e., with probability 1/2 of suc-
cess) to choose whether it transmits in the current round and
listens in the next round, or vice versa. If the process never
hears anything, it enters the critical section at the end of the
procedure.

Lemma 11 Assume � processes execute the procedure
EnterIfSingle. If � = 1, then the only process enters the
critical section. If � ≥ 2, then with probability 1 − ε, no
process enters the critical section.

Proof The first claim holds trivially. For showing the sec-
ond one, we fix an odd-even pair of rounds. Let E denote
the event that there is a process that hears neither signal
nor collision in this pair of rounds. For this to happen all

123

Randomized mutual exclusion on a multiple access channel 355

processes running CheckIfSingle have to transmit in the
odd round or all have to transmit in the even round. Thus,
Pr[E] = 2 · 1/2� = 1/2�−1 ≤ 1/2. Since the transmissions
in different pairs of rounds are independent, the probability
that there exists a process that does not hear anything during
the whole algorithm, and thus enters the critical section, is at
most (1/2)log(1/ε) = ε. ��

If no process enters the critical section at the end of
EnterIfSingle,we simulateWillard’s algorithmQSEB[13].

Although it can be treated as a black box, we give a brief
overview below. This algorithm is a selection protocol that
runs on a multiple access channel in settings with collision
detection and unknown number of processes (even more:
without any upper bound on n). The aim is to select a sin-
gle process broadcasting in a single round. It is assumed
that each process can broadcast and listen in the same round
(which is not the case in our model). The expected time of
this algorithm is log log n+o(log log n) and can be regarded
as an extension of superexponential binary search (SEBS)
(also in [13]). In both protocols, the first phase is devoted to
finding (with high probability) c, such that c ≤ � ≤ 2c and
the actual number of processes is n = 2�. The first phase
takes at most log log n rounds. In each round, each process
broadcasts independently with fixed probability. Collision is
an evidence that the probability is too high. Similarly, silence
suggests that the probability is too low. Using these observa-
tions one can estimate � in log � rounds. The second phase
is based on consecutive broadcasting, with probability 2−c

or 2−2c, until a single process is broadcasting. This proce-
dure leads to selecting a single station in O(1) rounds (in
expectation) provided that c was properly found. To avoid
the necessity of using a bound on n, QSEB uses an algorithm
for unbounded searching from [21].

In our settings, a simulation of the originalWillard’s algo-
rithm is required, as the original algorithm of [13] assumed
that each process can simultaneously transmit and listen in
each round. The QSEB algorithm is simulated in the follow-
ing way.

As we consider a static setting, it is possible to distin-
guish odd and even rounds. In odd rounds processes run the
simulated protocol. Non-transmitting processes listen on the
channel. If in an odd round 2k + 1 a process hears a success-
ful transmission, it transmits a message in the subsequent
even round 2k + 2. Each process that transmitted in round
2k + 1, listens in round 2k + 2. If a process transmitted in
round 2k + 1 and hears a transmission or collision in round
2k + 2, it enters the critical section in round 2k + 3.

First, we show what happens in two rounds of algorithm
StaticQSEB- Emulation when simulating one round of
Willard’s algorithm QSEB.

Lemma 12 In the static case, if there are at least two active
processes, algorithm StaticQSEB- Emulation simulates

one round taken in the model in which a process may simul-
taneously transmit and listen by two rounds in the model in
which a process is allowed to either transmit or listen, pro-
vided that collision detection is available.

Proof Since there are at least 2 processes, if exactly one
process transmits successfully in round 2k + 1 (and thus all
other stations hear it), then this process hears a signal or a
collision in round 2k + 2. If this process was not the only
transmitter in round 2k + 1, then it hears silence in round
2k + 2. This allows any process transmitting in round 2k + 1
to recognize (in round 2k + 2) whether it was a single (and
thus) successful transmitter in that round or not (i.e., there
was a collision). All other processes recognize it, and receive
a successful transmission if there is one, in round 2k + 1. ��
Theorem 5 In the scenario with collision detection, algo-
rithm StaticQSEB- Emulation solves the static ε-mutual-
exclusion problem with expected makespan O(log log n +
log(1/ε)).

Proof If there is only one process starting its entry section, it
enters the critical section at the end ofEnterIfSingle, which
takes O(log(1/ε)) rounds. If there are at least two processes,
with probability 1−ε, none of them enters the critical section
at the end of this procedure and they all simultaneously start
the simulation of Willard’s algorithm QSEB. By the prop-
erty of Willard’s algorithm QSEB [13] and by Lemma 12, in
expectation there is a successful transmission in O(log log n)

rounds. ��
Note that this result matches logarithmic lower bound

expressed in Theorem 2 as well as Theorem 2 from [3] for
ε = 1/nc.

3.2.2 The algorithm for the dynamic case

It remains to show that we can use algorithm StaticQSEB-
Emulation to solve the general (i.e., dynamic) version of
the ε-mutual-exclusion problem. The idea behind algorithm
DynamicQSEB- Emulation is to synchronize processes at
the beginning, and then to transmit a “busy” signal in every
second round. New processes starting their entry section note
this signal within their first two rounds and will not be com-
peting for the critical section, until an exit section releases
the shared channel.

Algorithm DynamicQSEB- Emulation for a particular
process p is constructed as follows. Upon starting the entry
section, process p listens for two rounds. If it hears a trans-
mission or a collision in either of these rounds, it resigns.
Otherwise, it starts counting in the following rounds. In odd
rounds (starting from round 3) it always transmits a message.
In even rounds, starting from round 4, it emulates consecutive
rounds of the entry section of algorithm StaticQSEB-
Emulation. If at some point of the emulation, algorithm

123

356 M. Bienkowski et al.

StaticQSEB- Emulation decides that process pmust enter
the critical section, then it does so in the main execution of
algorithm DynamicQSEB- Emulation.

Theorem 6 Assume the model with collision detection.
AlgorithmDynamicQSEB- Emulation solves the (dynamic)
ε-mutual-exclusion problem with expected makespan O(log
log n + log(1/ε)).

Proof Let t be a round in the execution in which there is at
least one process in the entry section, no process is in the
exit or critical section, and such that there was no process in
the entry section in the previous round t − 1. Let P denote
the set of processes that are in the entry section in round t .
In rounds t and t + 1 they all listen and hear silence. Every
second round, starting from round t + 2, all processes from
P transmit. We call these rounds signal rounds. If a process
is activated in round t + 1 or later, one of its initial two
rounds is a signal round. Hence, it hears a transmission or a
collision and resigns. Consequently, in rounds t+3, t+5, t+
7, . . . only processes from P emulate their entry sections
from algorithm StaticQSEB- Emulation, and they all start
execution of algorithm StaticQSEB- Emulation in round
t+3.ByTheorem5,with probability at least 1−ε, exactly one
process enters the critical section by round t+1+2T , where
T is the random variable denoting themakespan of algorithm
StaticQSEB- Emulation. Hence the expected makespan
of DynamicQSEB- Emulation is 2+ 2T = O(log log n+
log(1/ε)). ��

4 Fairness

The algorithms shown in [3] and in Sect. 3 do not consider the
no-lockout property, i.e., it may happen that a process never
gets out of its entry section, as other processes exchange
access to the critical section among themselves. We show
how to modify algorithms satisfying the no-deadlock prop-
erty (in particular, the algorithms from [3] and those of
Sect. 3), so that the no-lockout property is fulfilled. More-
over, our transformation allows to express the (expected)
makespanof obtained fair protocols in termsof the (expected)
makespan of the original weaker protocols.

The rough idea of the transformation is as follows: Each
process maintains an additional local counter of losses,
denoting how many times it competed for the critical sec-
tion with other processes and lost. When a process enters
its exit section, it becomes a guard: it helps processes cur-
rently being in the entry section to choose one of them with
the highest loss counter. This ensures that each process that
initiated entry section eventually gains access to the critical
section, i.e., the no-lockout property.

We start by constructing two routines that, given a distin-
guished guarding process and some set of active processes,

choose an active process with the highest counter. We
assume that each active process i keeps a loss counter
ki ∈ {0, . . . , n − 1} (we later justify the assumption ki < n).
The first routine assumes the KN scenario, the second one—
the CD scenario; they are called ChooseHighest- KN and
ChooseHighest- CD, respectively. Later,we showageneric
algorithm that uses either of these routines as a black box
and guarantees the no-lockout property. Except executing
the black box, the algorithm will not require any capabilities
of the channel (such as KN, CD or GC).

4.1 Choosing the highest counter in KN scenario

We start with a description ofChooseHighest- KN routine.
Recall, that in the KN scenario, the number of processes, n,
is known to each process. Let � = �log n�, i.e., the number
of bits needed to encode any ID. Let Bi be the binary rep-
resentation of ki · 2� + i padded with leading zeros so that
its length is 2�. That is, Bi is the concatenation of the bit
representation of ki and the process ID.

ChooseHighest- KN takes 4� rounds numbered from 1
to 4�. The distinguished guarding process transmits a hello
message in each odd round. In each even round but the last
one, it transmits message guarding_in_progress and in the
last even round 4�, it transmits a message guarding_end. The
remaining processes may be either active at the beginning
of ChooseHighest- KN or inactive; in the latter case they
remain silent for the whole routine. Each active process i
listens in even rounds, while in an odd round 2s−1 its action
depends on the s-th highest bit from Bi . If this bit is 1, process
i transmits a message. Otherwise this bit is 0, and process i
listens on the channel. If it does not hear a successful hello
message (which means that there was some other process
transmitting at that round), it becomes inactive till the end of
the routine.

Lemma 13 ChooseHighest- KN takes O(log n) rounds.
In all even rounds guarding types of messages are suc-
cessfully transmitted. If the subset of processes active at
the beginning of ChooseHighest- KN is nonempty, then at
the end of routine ChooseHighest- KN exactly one active
process remains and it has maximal ki among all processes
that were active at the beginning of the routine.

Proof The first two properties follow trivially. For showing
the third one, let i be the process whose Bi is lexicograph-
ically last among other Bj strings. Clearly, ki ≥ k j for any
other process j . Choose any other process j . By the choice
of i , there is a (possibly empty) prefix of Bj that is equal to
the prefix of Bi , and then they differ on some bit whose value
is 1 in Bi and 0 in Bj . Hence, at the odd round correspond-
ing to this bit, process i transmits, while process j listens
and becomes inactive. For the same reason, process i never
becomes inactive during ChooseHighest- KN. ��

123

Randomized mutual exclusion on a multiple access channel 357

4.2 Choosing the highest counter in CD scenario

Note that in the routine ChooseHighest- KN, it is not nec-
essary that the processes know the exact value of n. They
only have to know a common integer value � that is large
enough, so that � bits are sufficient to encode any ID of an
active process and the value of its counter.

This suggest the following approach for the CD scenario:
first run a ComputeL routine (described below), at the end
of which all active processes and the guarding process share
the common value of � satisfying the property above and exe-
cute ChooseHighest- KN immediately afterwards, using
this value of �. The concatenation of these routines is denoted
ChooseHighest- CD.
RoutineComputeL:Non-active processes are silent through-
out the whole ComputeL routine. An active process i picks
�i = max{�log i�, �log ki�}. Again, rounds are divided into
odd and even ones. An active process i transmits a hellomes-
sage in the first �i odd rounds, i.e., in rounds 1, 3, . . . , 2�i−1,
it is silent in the remaining odd rounds and listens in all
even rounds. The guarding process listens in all odd rounds.
If it hears a hello message or a collision (i.e., at least
one active process tranmits), then in the subsequent even
round it transmits a guarding_counting_in_progress mes-
sage. Otherwise (no active process transmits) it transmits
guarding_counting_ends message, which is heard by all
other processes andComputeL routine terminates. All active
processes choose � to be the total number of odd rounds that
elapsed in this part of the routine minus 1, that is, � is the
maximum of �i values among all active processes.

As the number of rounds ComputeL requires is even and
bounded by O(log n), we immediately obtain a counterpart
of Lemma 14 for the CD scenario.

Lemma 14 ChooseHighest- CD takes O(log n) rounds.
In all even rounds guarding types of messages are suc-
cessfully transmitted. If the subset of processes active at
the beginning of ChooseHighest- CD is nonempty, then at
the end of routine ChooseHighest- CD exactly one active
process remains and it has maximal ki among all processes
that were active at the beginning of the routine.

4.3 Ensuring the no-lockout property

Now, we describe a transformation of a mutual exclusion
algorithm A with empty exit sections into an algorithm A′
that additionally satisfies the no-lockout property. Our trans-
formation will use ChooseHighest- KN routine for KN
scenario and ChooseHighest- CD routine for CD scenario.
From now on, we denote this routine simply by Choose-
Highest. We describe how to modify particular sections of
process i . Each process i will maintain a counter ki that is
initially set to zero.

– Critical section. If the critical section of a process is
empty in algorithm A, it now lasts one round, i.e., in
A′ process i sends at least one critical message.

– Exit section. The exit section of process i consists of
O(log n) rounds. In the first round, it transmits guard-
ing_start message and later it executes the Choose-
Highest routine acting as guarding process. Note that
this routine always ends with the guarding_endmessage.

– Entry section. We denote the original entry section rou-
tine from algorithm A by Ei . Process i first listens for 2
rounds. If it does not hear any guarding type of message
(guarding_start, guarding_in_progress, guarding_end,
guarding_counting_in_progress or guarding_counting_
ends) in any of these two rounds, it executes Ei . Oth-
erwise, it waits till it hears message guarding_end and
it starts Ei in the subsequent round. The routine Ei is
however stopped when another process enters its criti-
cal section. This can be trivially achieved by listening
on each round when process i is not transmitting: as A
guarantees the mutual exclusion property, the process is
then required to listen whenever other processes send
critical messages. After Ei is stopped, process i sets
ki = 0 and repeats the following scheme until it enters
the critical section: It waits until the process currently
in its critical section initiates its exit section (by trans-
mitting the guarding_start message). In the following
round, process i initiates ChooseHighest routine as an
active process. If at the end of ChooseHighest routine
it is still active, it enters the critical section, otherwise it
increments ki and repeats the scheme.

Lemma 15 Assume that the number of processes is knownor
the collision detection is available, andanalgorithm A solves
the mutual exclusion problem (or the ε-mutual exclusion
problem) with (expected) makespan T . Moreover, assume
that the exit section of A is empty. Then the transformation
described above yields an algorithm A′ that also guaran-
tees the no-lockout property and has (expected) makespan
T + O(log n).

Proof First, observe that messages of guarding type are
always successfully transmitted and heard by all active
processes. Thus, in the following, for the purpose of analy-
sis only, we may remove all initial waiting periods from the
execution. This means that (i) the entry section of process j
starts already with E j , (ii) it never starts during an exit sec-
tion of another process (it may start right after the exit section
ends, though), and (iii) the actual execution of an entry sec-
tion might be longer at most by the length of the exit section,
i.e., by O(log n) rounds.

We define non-CE phase as the maximum sequence of
contiguous rounds during which no process is in its critical

123

358 M. Bienkowski et al.

or exit section. We now show that A′ satisfies the mutual
exclusion property and the following invariants hold:

1. A critical section of the executed process j is followed
by an exit section of j .

2. During exit section of some process j , the only transmit-
ting processes are those participating inChooseHighest
routine (denote their set by S), with j acting as guarding
process. If S is nonempty, then the exit section of j is
followed immediately by a critical section. Otherwise it
is followed by a non-CE phase.

3. If a process j is in its entry section within a non-CE
phase, it is executing E j routine.

The proof follows by a simple induction. The algorithm
starts in a non-CE phase. Within any non-CE phase, the
processes in their entry sections execute their Ei routines,
and finally one of them, say j , enters the critical section with
themutual exclusion property (ε-mutual-exclusion property)
guaranteed by algorithm A. In the critical section of j , all
other processes that are in their entry sections are simply
waiting for the guarding_start message, and clearly such a
section is followed by an exit section of j . Let S be the set
of processes that are in their entry sections during exit sec-
tion of j . By our assumption, their entry sections must have
started before the exit section of j , and hence they are now
executing ChooseHighest routine. Thus, if S is nonempty,
then after the exit section of j , exactly one process from S
(one with the maximal counter ki) starts its critical section.
If S is empty, then the exit section is followed by the non-CE
phase.

For bounding the makespan, we observe that if a critical
section started after an exit section, then the makespan is at
most the length of this exit section, i.e., O(log n). Otherwise
(a critical section starts after a non-CE phase), the processes
execute their E j routines, and hence the time between any
of them started its entry section and the critical section is
at most T by the property of algorithm A. Recall that we
are considering a modified execution (without initial waiting
periods), and thus the actual makespan is T + O(log n). (In
the actual execution, the processes may have started their
entry sections already during the exit section preceding the
non-CE phase in question.)

For showing the no-lockout property, observe that if a non-
CEphase starts, then in the exit section preceding this non-CE
phase, there was already no process in its entry section. Thus,
we only have to show that the no-lockout property is satisfied
in a sequence of interleaved critical and exit sections. Note
that a process may lose the competition in ChooseHighest
routine at most n − 1 times before it is guaranteed to have
the highest ki counter among the processes in their entry
sections. Even if other processes execute new entry sections
after they finish their critical sections, they do so with their

counters reset to 0. Thus, each process eventually enters the
critical section. ��

By combining Lemma 15 with the results from Section 3
and with the existing no-deadlock deterministic algorithms
of [3], we obtain the following two results.

Corollary 1 There exists a randomized algorithm with the
no-lockout property with expected makespan O(log n +
log(1/ε)) solving the ε-mutual-exclusion problem in the
model in which collision detection is available, and a ran-
domized algorithm with the no-lockout property with make-
span O(log n · log(1/ε)) in the model with known number of
processes.

Corollary 2 There exists a deterministic algorithm with the
no-lockout property with makespan O(log n) solving the
mutual exclusion problem in a model in which collision
detection is available and a deterministic algorithm with the
no-lockout property with makespan O(n log2 n) in a model
with known number of processes.

5 Conclusions and open problems

In this paper,wepresented several results aboutmutual exclu-
sion problem on a multiple access channel. In particular, we
relaxed the classical notion of the mutual exclusion prob-
lem to the ε-mutual-exclusion problem and showed that the
relaxed condition can be guaranteed with at least exponential
speed-up. Finally, we showed how to achieve an additional
property of no-lockout within an additional logarithmic cost.

Finding relationship between contention resolution prob-
lem and the mutual exclusion problem with the no-lockout
property seems to be an interesting but challenging task. It
would be also interesting to investigate if it possible to trans-
fer the lower bounds proved for relatedmodels and problems,
such as wake-up or leader election on a single-hop radio net-
work, to the ε-mutual-exclusion problem.

In this work, we did not study energy consumption and
fault-tolerance of mutual exclusion protocols, which are
potentially interesting and important openproblems.Another
perspective aspect is to study the problem of k-set-mutual
exclusion, in which there are k available channels.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Randomized mutual exclusion on a multiple access channel 359

References

1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Sim-
ulations and Advanced Topics. Wiley, New York (2004)

2. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publish-
ers Inc, Burlington (1996)

3. Czyzowicz, J., Gasieniec, L., Kowalski, D.R., Pelc, A.: Consensus
and mutual exclusion in a multiple access channel. IEEE Trans.
Parallel Distrib. Syst. 22(7), 1092–1104 (2011)

4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of
broadcast inmulti-hop radio networks: an exponential gap between
determinism and randomization. J. Comput. Syst. Sci. 45(1), 104–
126 (1992)

5. Capetanakis, J.: Tree algorithms for packet broadcast channels.
IEEE Trans. Inf. Theory 25(5), 505–515 (1979)

6. Clementi, A.E.F.,Monti, A., Silvestri, R.: Selective families, super-
imposed codes, and broadcasting on unknown radio networks.
In: Proceedings of the 12th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 709-718 (2001)

7. Greenberg, A.G., Winograd, S.: A lower bound on the time needed
in the worst case to resolve conflicts deterministically in multiple
access channels. J. ACM 32(3), 589–596 (1985)

8. Jurdzinski, T., Kutylowski, M., Zatopianski, J.: Efficient algo-
rithms for leader election in radio networks. In: Proceedings of
the 21st ACM Symposium on Principles of Distributed Computing
(PODC), pp. 51-57 (2002)

9. Kowalski, D.R.: On selection problem in radio networks. In: Pro-
ceedings of the 24th ACMSymposium on Principles of Distributed
Computing (PODC), pp. 158-166 (2005)

10. Kushilevitz, E., Mansour, Y.: An omega(D log (N/D)) lower bound
for broadcast in radio networks. SIAM J. Comput. 27(3), 702–712
(1998)

11. Nakano, K., Olariu, S.: Uniform leader election protocols for radio
networks. IEEETrans. ParallelDistrib. Syst. 13(5), 516–526 (2002)

12. Tsybakov, B.S., Mikhailov, V.A.: Free synchronous packet access
in a broadcast channel with feedback. Problemy Peredachi Infor-
matsii 14(4), 32–59 (1978)

13. Willard, D.E.: Log-logarithmic selection resolution protocols in a
multiple access channel. SIAM J. Comput. 15(2), 468–477 (1986)

14. Chlebus, B.S., Gasieniec, L., Kowalski, D.R., Radzik, T.: On the
wake-up problem in radio networks. In: Proceedings of the 32nd
International Colloquium on Automata, Languages and Program-
ming (ICALP), pp. 347-359 (2005)

15. Gasieniec, L., Pelc, A., Peleg, D.: The wakeup problem in synchro-
nous broadcast systems. SIAM J. Discrete Math. 14(2), 207–222
(2001)

16. Jurdzinski, T., Stachowiak, G.: Probabilistic algorithms for the
wakeup problem in single-hop radio networks. In: Proceedings of
the 13th International Symposium onAlgorithms andComputation
(ISAAC), pp. 535-549 (2002)

17. Jurdzinski, T., Stachowiak, G.: The cost of synchronizingmultiple-
access channels. In: Proceedings of the 34th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 421-430 (2015)

18. Goldberg, L.A., Jerrum, M., Kannan, S., Paterson, M.: A bound
on the capacity of backoff and acknowledgment-based protocols.
SIAM J. Comput. 33(2), 313–331 (2004)

19. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiser-
son, C.E.: Adversarial contention resolution for simple channels.
In: Proceedings of the 16th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 325-332 (2005)

20. Chlebus,B.S.,Kowalski,D.R.,Rokicki,M.A.:Adversarial queuing
on the multiple access channel. ACM Trans. Algorithms 8(1), 5
(2012)

21. Bentley, J.L., Yao, A.C.: An almost optimal algorithm for
unbounded searching. Inf. Process. Lett. 5(3), 82–87 (1976)

123

	Randomized mutual exclusion on a multiple access channel
	Abstract
	1 Introduction
	1.1 Previous and related work
	1.2 Our results

	2 Lower bounds for the mutual exclusion problem
	3 Algorithms for the ε-mutual-exclusion problem
	3.1 Collision detection not available
	3.1.1 Problems with transforming wake-up into mutual exclusion
	3.1.2 The IFS+ routine
	3.1.3 Structural properties of IFS+
	3.1.4 Bounding the makespan
	3.1.5 The crucial round
	3.1.6 Successful transmissions
	3.1.7 Bounding the failure probability

	3.2 Collision detection available
	3.2.1 Solving the static case
	3.2.2 The algorithm for the dynamic case

	4 Fairness
	4.1 Choosing the highest counter in KN scenario
	4.2 Choosing the highest counter in CD scenario
	4.3 Ensuring the no-lockout property

	5 Conclusions and open problems
	References

