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Abstract In this work, we study protocols so that popu-
lations of distributed processes can construct networks. In
order to highlight the basic principles of distributed network
construction, we keep the model minimal in all respects. In
particular, we assume finite-state processes that all begin
from the same initial state and all execute the same proto-
col. Moreover, we assume pairwise interactions between the
processes that are scheduled by a fair adversary. In order
to allow processes to construct networks, we let them acti-
vate and deactivate their pairwise connections. When two
processes interact, the protocol takes as input the states of
the processes and the state of their connection and updates all
of them. Initially all connections are inactive and the goal is
for the processes, after interacting and activating/deactivating
connections for a while, to end up with a desired stable net-
work. We give protocols (optimal in some cases) and lower
bounds for several basic network construction problems such
as spanning line, spanning ring, spanning star, and regular
network. The expected time to convergence of our protocols
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is analyzed under a uniform random scheduler. Finally, we
prove several universality results by presenting generic pro-
tocols that are capable of simulating a Turing Machine (TM)
and exploiting it in order to construct a large class of net-
works. We additionally show how to partition the population
into k supernodes, each being a line of log k nodes, for the
largest such k. This amount of local memory is sufficient
for the supernodes to obtain unique names and exploit their
names and their memory to realize nontrivial constructions.
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1 Introduction

1.1 Motivation

Suppose a set of tiny computational devices (possibly at
the nanoscale) are injected into a human circulatory sys-
tem for the purpose of monitoring or even treating a disease.
The devices are incapable of controlling their mobility. The
mobility of the devices, and consequently the interactions
between them, stems solely from the dynamicity of the envi-
ronment, the blood flow inside the circulatory system in this
case. Additionally, each device alone is incapable of per-
forming any useful computation, as the small scale of the
device highly constrains its computational capabilities. The
goal is for the devices to accomplish their task via coopera-
tion. To this end, the devices are equipped with a mechanism
that allows them to create bonds with other devices (mimick-
ing nature’s ability to do so). So, whenever two devices come
sufficiently close to each other and interact, apart from updat-
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ing their local states, they may also become connected by
establishing a physical connection between them. Moreover,
two connected devices may at some point choose to drop
their connection. In this manner, the devices can organize
themselves into a desired global structure. This network-
constructing self-assembly capability allows the artificial
population of devices to evolve greater complexity, better
storage capacity, and to adapt and optimize its performance
to the needs of the specific task to be accomplished.

1.2 Our approach

In this work, we study the fundamental problem of network
construction by a distributed computing system. The system
consists of a set of processes that are capable of performing
local computation (via pairwise interactions) and of form-
ing and deleting connections between them. Connections
between processes can be either physical or virtual depend-
ing on the application. In the most general case, a connection
between two processes can be in one of a finite number of
possible states. For example, state 0 could mean that the con-
nection does not exist while state i ∈ {1, 2, . . . , k}, for some
finite k, that the connection exists and has strength i . We con-
sider here the simplest case, which we call the on/off case,
in which, at any time, a connection can either exist or not
exist; that is, there are just two states for the connections, 1
and 0, respectively. If a connection exists we also say that
it is active and if it does not exist we say that it is inactive.
Initially all connections are inactive and the goal is for the
processes, after interacting and activating/deactivating con-
nections for a while, to end up with a desired stable network.
In the simplest case, the output-network is the one induced
by the active connections and it is stable when no connection
changes state any more.

Our aim in this work is to initiate this study by proposing
and studying a very simple, yet sufficiently generic, model
for distributed network construction. To this end, we assume
the computationally weakest type of processes. In particular,
the processes are finite automata that all begin from the same
initial state and all execute the same finite program which is
stored in theirmemory (i.e., the system is homogeneous). The
communication model that we consider is also very minimal.
In particular, we consider processes that are inhabitants of an
adversarial environment that has total control over the inter-
process interactions. We model such an environment by an
adversary scheduler that operates in discrete steps, selecting
in every step a pair of processeswhich then interact according
to the common program. This represents verywell systems of
(not necessarily computational) entities that interact in pairs
whenever two of them come sufficiently close to each other.
When two processes interact, the program takes as input the
states of the interacting processes and the state of their con-
nection and outputs a new state for each process and a new

state for the connection. The only restriction that we impose
on the scheduler, in order to study the constructive power
of the model, is that it is fair, by which we mean the weak
requirement that, at every step, it assigns to every reachable
configuration of the system a non-zero probability to occur.
In other words, a fair scheduler cannot forever conceal an
always reachable configuration of the system.Note that under
such a generic scheduler, we cannot bound the running time
of our constructors. Thus, to estimate the efficiency of our
solutions we assume a uniform random scheduler, one of the
simplest fair probabilistic schedulers. The uniform random
scheduler selects in every step independently and uniformly
at random a pair of processes to interact from all such pairs.
What renders this model interesting is its ability to achieve
complex global behavior via a set of notably simple, uni-
form (i.e., with codes that are independent of the size of the
system), homogeneous, and cooperative entities.

We now give a simple illustration of the above. Assume a
set of n very weak processes that can only be in one of two
states, “black” or “red”. Initially, all processes are black. We
can think of the processes as small particles that move ran-
domly in a fair solution. The particles are capable of forming
and deleting physical connections between them, by which
we mean that, whenever two particles interact, they can read
and write the state of their connection. Moreover, for sim-
plicity of the model, we assume that fairness of the solution
is independent of the states of the connections. This is in con-
trast to schedulers that would take into account the geometry
of the active connections and would, for example, forbid two
non-neighboring particles of the same component to interact
with each other.1 In particular, we assume that throughout
the execution every pair of processes may be selected for
interaction.

Consider now the following simple problem. We want to
identically program the initially disorganized particles so
that they become self-organized into a spanning star. In
particular, we want to end up with a unique black particle
connected (via active connections) to n − 1 red particles and
all other connections (between red particles) being inactive.
Conversely, given a (possibly physical) system that tends to
form a spanning star we would like to unveil the code behind
this behavior.

Consider the followingprogram.When twoblackparticles
that are not connected interact, they become connected and
one of them becomes red. When two connected red particles
interact they become disconnected (i.e., reds repel). Finally,
when a black and a red that are not connected interact they
become connected (i.e., blacks and reds attract).

The protocol forms a spanning star as follows. As when-
ever two blacks interact only one survives and the other
becomes red, eventually a unique black will remain and all

1 Such a geometrically restricted variant has been studied in [26].
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other particles will be red (we say “eventually”, meaning “in
finite time”, because we do not know how much time it will
take for all blacks to meet each other but from fairness we
know that this has to occur in a finite number of steps). As
blacks and reds attract while reds repel, it is clear that even-
tually the unique black will be connected to all reds while
every pair of reds will be disconnected. Moreover, no rule
of the program can modify such a configuration, so the con-
structed spanning star is stable (see Fig. 1). It is worth noting
that this very simple protocol is optimal both with respect to

(a)

(b)

(c)

Fig. 1 a Initially all particles are black and no active connections exist.
b After a while, only three black particles have survived each having a
set of red neighbors (red particles appear as gray here). Note that some
red particles are also connected to red particles. The tendency is for the
red particles to repel red particles and attract black particles. cA unique
black has survived, it has attracted all red particles, and all connections
between red particles have been deactivated. The construction is a stable
spanning star

(abbreviated “w.r.t.” throughout) the number of states that it
uses and w.r.t. the time it takes to construct a stable spanning
star under the uniform random scheduler.

Our model for network construction is strongly inspired
by the Population Protocol model [2] and the Mediated Pop-
ulation Protocol model [24]. In the former, connections do
not have states. States on the connections were first intro-
duced in the latter. The main difference to our model is
that in those models the focus was on the computation of
functions of some input values and not on network construc-
tion. Another important difference is that we allow the edges
to choose between only two possible states which was not
the case in [24]. Interestingly, when operating under a uni-
form random scheduler, population protocols are formally
equivalent to chemical reaction networks (CRNs) which
model chemistry in a well-mixed solution [18]. “CRNs are
widely used to describe information processing occurring
in natural cellular regulatory networks, and with upcoming
advances in synthetic biology, CRNs are a promising pro-
gramming language for the design of artificial molecular
control circuitry” [18]. However, CRNs and population pro-
tocols can only capture the dynamics of molecular counts
and not of structure formation. Our model then may be
also viewed as an extension of population protocols and
CRNs aiming to capture the stable structures that may
occur in a well-mixed solution. From this perspective, our
goal is to determine what stable structures can result in
such systems (natural or artificial), how fast, and under
what conditions (e.g., by what underlying codes/reaction-
rules).

Most computability issues in the area of population pro-
tocols have now been resolved. Finite-state processes on a
complete interaction network, i.e., one in which every pair
of processes may interact, (and several variations) compute
the semilinear predicates [3]. Semilinearity persists up to
o(log log n) local space but not more than this [13]. If, addi-
tionally, the connections between processes can hold a state
from a finite domain (note that this is a stronger require-
ment than the on/off that the present work assumes) then the
computational power dramatically increases to the commu-
tative subclass ofNSPACE(n2) [24]. Other important works
include [21] which equipped the nodes of population proto-
colswith unique ids and [8]which introduced a (weak) notion
of speed of the nodes that allowed the design of fast converg-
ing protocols with only weak requirements. For introductory
texts see [6,25].

The paper essentially consists of two parts. In the first part,
we give simple (i.e., small) and efficient (i.e., polynomial-
time) protocols for the construction of several fundamental
networks. In particular, we give protocols for spanning
lines, spanning rings, cycle-covers, partitioning into cliques,
and regular networks and we also provide a protocol that
replicates a given input network (formal definitions of all
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problems considered can be found in Sect. 3.2). We remark
that the spanning line problem is of outstanding importance
because it constitutes a basic ingredient of universal con-
structors. We give two different protocols for this problem,
the second improving on the running time of the first but
using more states to this end. Additionally, we establish an
Ω(n log n) generic lower bound on the expected running
time of all constructors that construct a spanning network
and an Ω(n2) lower bound for the spanning line, where
n throughout this work denotes the number of processes.
Our fastest protocol for the problem runs in O(n3) expected
time and uses 9 states while our simplest uses only 5 states
but pays in an expected time which is between Ω(n4) and
O(n5).

In the second part, we investigate the more generic ques-
tion of what is in principle constructible by our model. We
arrive there at several satisfactory characterizations estab-
lishing some sort of universality of the model. The main
idea is as follows. To construct a decidable graph-language
L we (i) construct on k of the processes (called the waste) a
network G1 capable of simulating a Turing Machine (abbre-
viated “TM” throughout the paper) and of constructing a
random network on the remaining n − k processes (called
the useful space), (ii) use G1 to construct a random network
G2 ∈ Gn−k,1/2 on the remaining n − k processes,2 (iii) exe-
cute on G1 the TM that decides L , with G2 as input. If the
TM accepts, then we output G2 (note that this is not a ter-
minating step—the reason why will become clear in Sect. 6;
the protocol just freezes and its output forever remains G2),
otherwise we go back to (ii) and repeat. Using this core idea
we prove several universality results for our model. Addi-
tionally, we show how to organize the population into a
distributed system with names and logarithmic local memo-
ries.

In Sect. 2, we discuss further related literature. Section 3
brings together all definitions and basic facts that are used
throughout the paper. In particular, in Sect. 3.1 we formally
define the model of network constructors, Sect. 3.2 formally
defines all network construction problems that are considered
in this work, and in Sect. 3.3 we identify and analyze a set of
basic probabilistic processes that are recurrent in the analysis
of the running times of network constructors. In Sect. 4, we
study the spanning line problem. In Sect. 5, we provide direct
constructors for all the other basic network constructionprob-
lems. Section 6 presents our universality results. Finally, in
Sect. 7 we conclude and give further research directions that
are opened by our work.

2 The Gn,p random graph model consists of all graphs with node set
V = {1, 2, . . . , n} in which the edges are chosen independently and
with probability p (for more details, cf. [10] pp. 34–35).

2 Further related work

2.1 Algorithmic self-assembly

There are already several models that try to capture the self-
assembly capability of natural processes with the purpose
of engineering systems and developing algorithms inspired
by such processes. For example, [17] proposes to learn how
to program molecules to manipulate themselves, grow into
machines and at the same time control their own growth.
The research area of “algorithmic self-assembly” belongs to
the field of “molecular computing”. The latter was initiated
by Adleman [4], who designed interacting DNA molecules
to solve an instance of the Hamiltonian path problem. The
model guiding the study in algorithmic self-assembly is the
Abstract Tile Assembly Model (aTAM) [30,35] and varia-
tions (e.g., see [34] for a very recent interesting variation
allowing DNA tiles to actively control their mobility and to
self-replicate).

In contrast to most of the work in algorithmic self-
assembly, that tries to incorporate the exact molecular
mechanisms (like temperature, energy, and bounded degree),
we propose a very abstract combinatorial rule-based model,
free of specific application-driven assumptions, with the aim
of revealing the fundamental laws governing the distrib-
uted (algorithmic) generation of networks. Our model may
serve as a common substructure to more applied models (like
assembly models or models with geometry restrictions) that
may be obtained from our model by imposing restrictions on
the scheduler, the degree, and the number of local states (see
Sect. 7 for several interesting variations of our model).

2.2 Distributed network construction

To the best of our knowledge, classical distributed com-
puting has not considered the problem of constructing an
actual communication network from scratch. From the semi-
nal work of Angluin [5] that initiated the theoretical study of
distributed computing systems up to now, the focus has been
more on assuming a given communication topology and con-
structing a virtual network over it, e.g., a spanning tree for
the purpose of fast dissemination of information. Moreover,
these models usually assume unique identities, unbounded
memories, and message-passing communication. Addition-
ally, a process always communicates with its neighboring
processes (see [23] for all the details).

An exception is the area of geometric pattern formation by
mobile robots (cf. [15,32] and references therein). A great
difference, though, to our model is that in mobile robotics
the computational entities have complete control over their
mobility and thus over their future interactions. That is, the
goal of a protocol is to result in a desired interaction pattern
while in our model the goal of a protocol is to construct a
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network while operating under a totally unpredictable inter-
action pattern.

Very recently, a model inspired by the behavior of ameba
that allows algorithmic research on self-organizing particle
systemswas proposed [14,16]. The goal is for the particles to
self-organize in order to adapt to a desired shape without any
central control, which is quite similar to our objective, but
the two models seem to have little in common. The authors
also observe that, in contrast to the considerable work that
has been performed w.r.t. systems, like in self-reconfigurable
robotic systems3, only very little theoretical work has been
done in this area. This further supports the importance of
introducing a simple yet sufficiently generic model for dis-
tributed network construction, as we do in this work.

2.3 Cellular automata

A cellular automaton (cf., e.g., [31]) consists of a grid of cells
each cell being a finite automaton.A cell updates its own state
by reading the states of its neighboring cells (e.g., 2 in the 1-
dimensional case and 4 in the 2-dimensional case). All cells
may perform the updates in discrete synchronous steps or
updates may occur asynchronously. Cellular automata have
been used asmodels for self-replication, formodeling several
physical systems (e.g., neural activity, bacterial growth, pat-
tern formation in nature), and for understanding emergence,
complexity, and self-organization issues.

Though there are some similarities there are also signif-
icant differences between our model and cellular automata.
One is that in our model the interaction pattern is nonde-
terministic as it depends on the scheduler and a process may
interact with any other process of the system and not just with
some predefined neighbors.Moreover, ourmodel has a direct
capability of forming networks whereas cellular automata
can form networks only indirectly (an edge between two cells
u and v has to be represented as a line of cells beginning at
u, ending at v and all cells on the line being in a special
edge-state). In fact, cellular automata are more suitable for
studying the formation of patterns on e.g., a discrete surface
of static cells while our model is more suitable for studying
how a totally dynamic (e.g., mobile) and initially disordered
collection of entities can self-organize into a network.

2.4 Social networks

There is a great amount of work dealing with networks
formed by a group of interacting individuals. Individuals,
also called players, which may, for example, be people, ani-
mals, or companies, depending on the application, usually

3 See [29] for a very recently reported system that demonstrates pro-
grammable self-assembly of complex two-dimensional shapes with a
thousand-robot swarm.

have incentives and connections between individuals indi-
cate some social relationship, like for example friendship.
The network is formed by allowing the individuals to form or
delete connections, usually selfishly trying to maximize their
ownutility. Theusual goal there is to studyhow thewhole net-
work affects the outcome of a specific interaction, to predict
the network that will be formed by a set of selfish individuals,
and to characterize the quality of the network formed (e.g.,
its efficiency). See, e.g., [9,22]. This is a game-theoretic set-
ting which is very different from the setting considered here
as the latter does not include incentives and utilities.

Another important line of research considers random
social networks in which new links are formed according
to some probability distribution. For example, in [7] it was
shown that growth and preferential attachment that character-
ize a great majority of social networks (like, for example, the
Internet) results in scale-free properties that are not predicted
by the Erdös-Rényi random graph model [10,19]. Though,
in principle, we allow processes to perform a coin tossing
during an interaction, our focus is not on the formation of a
random network but on cooperative (algorithmic) construc-
tion according to a common set of rules. In summary, our
model looks more like a standard dynamic distributed com-
puting system in which the interacting entities are computing
processes that all execute the same program.

2.5 Network formation in nature

Nature has an intrinsic ability to form complex structures
and networks via a process known as self-assembly. By
self-assembly, small components (like molecules) automat-
ically assemble into large, and usually complex structures
(like a crystal). There is an abundance of such examples
in the physical world. Lipid molecules form a cell’s mem-
brane, ribosomal proteins and RNA coalesce into functional
ribosomes, and bacteriophage virus proteins self-assemble a
capsid that allows the virus to invade bacteria [17]. “Mixtures
of RNA fragments that self-assemble into self-replicating
ribozymes spontaneously form cooperative catalytic cycles
and networks”. Such cooperative networks grow faster than
selfish autocatalytic cycles “indicating an intrinsic ability
of RNA populations to evolve greater complexity through
cooperation” [33]. “Through billions of years of prebiotic
molecular selection and evolution, nature has produced a
basic set ofmolecules”.By combining these simple elements,
“natural processes are capable of fashioning an enormously
diverse range of fabrication units, which can further self-
organize into refined structures, materials and molecular
machines that not only have high precision, flexibility and
error-correction capacity, but are also self-sustaining and
evolving”. In fact, “nature shows a strong preference for
bottom-up design” [36].
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Systems and solutions inspired bynature have often turned
out to be extremely practical and efficient. For example, the
bottom-up approach of nature inspires the fabrication of bio-
materials by attempting to “mimic these phenomena with
the aim of creating new and varied structures with novel
utilities well beyond the gifts of nature” [36]. Moreover,
there is already a remarkable amount of work envisioning
our future ability to engineer computing and robotic systems
by manipulating molecules with nanoscale precision. Ambi-
tious long-term applications include molecular computers
[11] andminiature (nano)robots for surgical instrumentation,
diagnosis and drug delivery inmedical applications andmon-
itoring in extreme conditions (e.g., in toxic environments).
Webelieve that the success of this ambitious effort depends to
some extent on our ability to discover the laws governing the
capability of distributed systems to construct networks. The
gain of developing such a theory will be twofold: It will give
some insight to the role (and themechanisms) of network for-
mation in the complexity of natural processes and itwill allow
us to engineer artificial systems that achieve this complexity.

3 Preliminaries

3.1 A model of network constructors

Definition 1 A Network Constructor (NET) is a distributed
protocol defined by a 4-tuple (Q, q0, Qout , δ), where Q is
a finite set of node-states, q0 ∈ Q is the initial node-state,
Qout ⊆ Q is the set of output node-states, and δ : Q × Q ×
{0, 1} → Q × Q × {0, 1} is the transition function.

If δ(a, b, c) = (a′, b′, c′), we call (a, b, c) → (a′, b′, c′)
a transition (or rule) and we define δ1(a, b, c) = a′,
δ2(a, b, c) = b′, and δ3(a, b, c) = c′. A transition
(a, b, c) → (a′, b′, c′) is called effective if x �= x ′ for at
least one x ∈ {a, b, c} and ineffective otherwise. When we
present the transition function of a protocol we only present
the effective transitions. Additionally, we agree that the size
of a protocol is the number of its states, i.e., |Q|.

The system consists of a population VI of n distributed
processes (also called nodeswhen clear from context). In the
generic case, there is an underlying interaction graph GI =
(VI , EI ) specifying the permissible interactions between the
nodes. Interactions in this model are always pairwise. In this
work, GI is a complete undirected interaction graph, i.e.,
EI = {uv : u, v ∈ VI and u �= v}, where uv = {u, v}.
Initially, all nodes in VI are in the initial node-state q0.

A central assumption of the model is that edges have
binary states. An edge in state 0 is said to be inactive while
an edge in state 1 is said to be active. All edges are initially
inactive.

Execution of the protocol proceeds in discrete steps. In
every step, a pair of nodes uv from EI is selected by an

adversary scheduler and these nodes interact and update their
states and the state of the edge joining them according to the
transition function δ. Due to the fact that the interactions are
undirected, we restrict δ to be a partial function which, for
all edge-states c ∈ {0, 1}: (i) is defined at (a, a, c), for all
node-states a ∈ Q and (ii) is defined at either (a, b, c) or
(b, a, c), for all distinct node-states a, b ∈ Q.4 So, if a, b,
and c are the states of nodes u, v, and edge uv, respectively,
then the unique rule corresponding to these states, let it be
(a, b, c) → (a′, b′, c′), is applied, the edge that was in state
c updates its state to c′ and if a �= b, then u updates its state
to a′ and v updates its state to b′, if a = b and a′ = b′, then
both nodes update their states to a′, and if a = b and a′ �= b′,
then the node that gets a′ is drawn equiprobably from the
two interacting nodes and the other node gets b′. The latter
is the only case in which the protocol has no other means of
breaking the symmetry apart from making a random choice,
because in this case the two interacting nodes are in the same
state, the edge between them has no direction but the new
states are not the same, so the protocol has no means of
knowing where to assign each of the new states. In all other
cases, the protocol can make the distinction because either
symmetry is broken by the fact that the interacting nodes are
in different states or the new states are the same so there is
no choice to be made.

A configuration is a mapping C : VI ∪ EI → Q ∪
{0, 1} specifying the state of each node and each edge
of the interaction graph. Let C and C ′ be configura-
tions, and let u, υ be distinct nodes. We say that C goes

to C ′ via encounter e = uυ, denoted C
e→ C ′, if

(C ′(u),C ′(v),C ′(e)) = δ(C(u),C(v),C(e)) or
(C ′(v),C ′(u),C ′(e)) = δ(C(v),C(u),C(e)) and
C ′(z) = C(z), for all z ∈ (VI \{u, v}) ∪ (EI \{e}).
We say that C ′ is reachable in one step from C, denoted
C → C ′, if C e→ C ′ for some encounter e ∈ EI . We say
that C ′ is reachable from C and write C � C ′, if there is a
sequence of configurations C = C0,C1, . . . ,Ct = C ′, such
that Ci → Ci+1 for all i , 0 ≤ i < t .

An execution is a finite or infinite sequence of configura-
tionsC0,C1,C2, . . ., whereC0 is an initial configuration and
Ci → Ci+1, for all i ≥ 0. A fairness condition is imposed
on the adversary to ensure the protocol makes progress. An
infinite execution is fair if for every pair of configurations C
and C ′ such that C → C ′, if C occurs infinitely often in the
execution then so does C ′. In what follows, every execution
of a NET will by definition considered to be fair.

We define the output of a configuration C as the graph
G(C) = (V, E) where V = {u ∈ VI : C(u) ∈ Qout } and

4 An equivalent way is to assume that it is defined at both (a, b, c)
and (b, a, c) but require that it satisfies symmetry w.r.t. node-states, i.e.,
δ1(a, b, c) = δ2(b, a, c) and δ2(a, b, c) = δ1(b, a, c), and equality
w.r.t. edge-states, i.e., δ3(a, b, c) = δ3(b, a, c).
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E = {uv : u, v ∈ V, u �= v, and C(uv) = 1}. In words, the
output-graph of a configuration consists of those nodes that
are in output states and those edges between them that are
active, i.e., the active subgraph induced by the nodes that are
in output states. The output of an executionC0,C1, . . . is said
to stabilize (or converge) to a graphG if there exists some step
t ≥ 0 such that (abbreviated “s.t.” in several places)G(Ci ) =
G for all i ≥ t , i.e., from step t and onwards the output-
graph remains unchanged. Every such configuration Ci , for
i ≥ t , is called output-stable. The running time (or time
to convergence) of an execution is defined as the minimum
such t (or ∞ if no such t exists). Throughout the paper,
whenever we study the running time of a NET, we assume
that interactions are chosen by a uniform random scheduler
which, in every step, selects independently and uniformly at
random one of the |EI | = n(n−1)/2 possible interactions.5

In this case, the running time becomes a random variable
(abbreviated “r.v.” throughout) X and our goal is to obtain
bounds on the expectation E[X ] of X . Note that the uniform
random scheduler is fair with probability 1.

Definition 2 We say that an execution of a NET on n
processes constructs a graph (or network) G, if its output
stabilizes to a graph isomorphic to G.

Definition 3 We say that a NET A constructs a graph lan-
guage L with useful space g(n) ≤ n, if g(n) is the greatest
function for which: (i) for all n, every execution of A on n
processes constructs aG ∈ L of order at least g(n) (provided
that such aG exists) and, additionally, (ii) for allG ∈ L there
is an execution of A on n processes, for some n satisfying
|V (G)| ≥ g(n), that constructs G. Equivalently, we say that
A constructs L with waste n − g(n).

Definition 4 Define REL(g(n)) to be the class of all graph
languages that are constructible with useful space g(n) by a
NET. We call REL(·) the relation or on/off class.

Also define PREL(g(n)) in precisely the same way as
REL(g(n)) but in the extension of the above model in which
every pair of processes is capable of tossing an unbiased
coin during an interaction between them. In particular, in
the weakest probabilistic version of the model, we allow
transitions that with probability 1/2 give one outcome and
with probability 1/2 another. Additionally, we require that
all graphs have the same probability to be constructed by the
protocol.

5 We should emphasize, in order to avoid confusion, that in this work
“time” is sequential, as a time-step consists of a single interaction
selected by the scheduler. Such a sequential estimate can then be easily
translated to some estimate of parallel time. For example, assuming that
Θ(n) interactions occur in parallel in every step, one could obtain an
estimation of parallel time by dividing sequential time by n. In contrast,
there are some papers, like [12], that perform their analysis directly in
terms of parallel time.

We denote by DGS( f (l)) (for “Deterministic Graph
Space”) the class of all graph languages that are decidable
by a TM of (binary) space f (l), where l is the length of the
adjacency matrix encoding of the input graph.

3.2 Problem definitions

We here provide formal definitions of all the network con-
struction problems that are considered in this work. Protocols
and bounds for these problems are presented in Sects. 4 and 5.

Global line The goal is for the n distributed processes to
construct a spanning line, i.e., a connected graph in which 2
nodes have degree 1 and n − 2 nodes have degree 2.

Cycle cover Every process in VI must eventually have degree
2. The result is a collection of node-disjoint cycles spanning
VI .

Global star The processes must construct a spanning star,
i.e., a connected graph in which 1 node, called the center,
has degree n − 1 and n − 1 nodes, called the peripheral
nodes, have degree 1.

Global ring The processes must construct a spanning ring,
i.e., a connected graph in which every node has degree 2.

k-regular connected The generalization of global ring in
which every node has degree k ≥ 2 (note that k is a con-
stant and a protocol for the problem must run correctly on
any number n of processes).

c-cliquesThe processesmust partition themselves into �n/c�
cliques of order c each (again c is a constant).

Replication The protocol is given an input graph G1 =
(V1, E1) on a subset V1 of the processes. The input graph
is provided as follows. All processes in V1 are initially in
state q0 and all other processes, in V2 = VI \V1, are initially
in state r0. Every edge of E1 is initially active and all other
edges, in EI \E1, are initially inactive (that is, the only active
edges, initially, are the edges of E1). The goal is to create
a replica of G1 on V2, provided that |V2| ≥ |V1|. Formally,
we want, in every execution, the output induced by the active
edges between the nodes of V2 to stabilize to a graph isomor-
phic to G1.

Keep in mind that the above definitions (apart from the
replication problem) assume no waste. In case of a waste x
the definitions must be updated in such a way that the target-
construction refers to the useful space. For example, a cycle
cover with waste x is a cycle cover on at least n − x of the
nodes.

3.3 Basic probabilistic processes

We now present a set of very fundamental probabilistic
processes that are recurrent in the analysis of the running
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times of network constructors. All these processes assume a
uniform random scheduler and are applications of the stan-
dard coupon collector problem. In most of these processes,
we ignore the states of the edges and focus only on the
dynamics of the node-states, that is, we consider rules of
the form δ : Q × Q → Q × Q. Throughout this section,
we call a step a success if an effective rule applies on the
interacting nodes and we denote by X the r.v. of the run-
ning time of the processes. We should mention that many of
these processes have been used before in the relevant litera-
ture, usually implicitly in the running-time analysis of other
more complicated protocols. We believe that the reader and
the further growth of the subject may benefit from a clear
identification and analysis of these processes, since they are
recurrent in the analyses of protocols’ running times.

One-way epidemic Consider the protocol in which the only
effective transition is (a, b) → (a, a). Initially, there is a
single a and n − 1 bs and we want to estimate the expected
number of steps until all nodes become as.

Proposition 1 The expected time to convergence of a one-
way epidemic (under the uniform random scheduler) is
Θ(n log n).

Proof Let the r.v. X be the number of steps until all n nodes
are in state a. Call a step a success if an effective rule applies
and a new a appears on some node. Divide the steps of the
protocol into epochs, where epoch i begins with the step
following the (i−1)st success and endswith the step atwhich
the i th success occurs. Let also the r.v. Xi , 1 ≤ i ≤ n− 1, be
the number of steps in the i th epoch. Let pi be the probability
of success at any step during the i th epoch. We have pi =
i(n−i)

m = 2i(n−i)
n(n−1) , where m = |EI | = n(n− 1)/2 denotes the

total number of possible interactions and E[Xi ] = 1/pi =
n(n−1)
2i(n−i) . By linearity of expectation we have

E[X ] = E

[
n−1∑
i=1

Xi

]
=

n−1∑
i=1

E[Xi ] =
n−1∑
i=1

n(n − 1)

2i(n − i)

= n(n − 1)

2

n−1∑
i=1

1

i(n − i)

= n(n − 1)

2

n−1∑
i=1

1

n

(
1

i
+ 1

n − i

)

= (n − 1)

2

[
n−1∑
i=1

1

i
+

n−1∑
i=1

1

n − i

]

= (n − 1)

2
2Hn−1 = (n − 1)[ln(n − 1) + Θ(1)]

= Θ(n log n),

where Hn denotes the nth Harmonic number. �

One-to-one eliminationAll nodes are initially in state a. The
only effective transition of the protocol is (a, a) → (a, b).
We are now interested in the expected time until a single a
remains. We call the process one-to-one elimination because
as are only eliminated with themselves. A straightforward
application is in protocols that elect a unique leader by begin-
ningwith all nodes in the leader state and eliminating a leader
whenever two leaders interact.

Proposition 2 The expected time to convergence of a one-
to-one elimination is Θ(n2).

Proof Epoch i begins with the step following the i th success
and ends with the step at which the (i + 1)st success occurs.
The probability of success during the i th epoch, for 0 ≤
i ≤ n − 2, is pi = [(n − i)(n − i − 1)/2]/[n(n − 1)/2] =
[(n − i)(n − i − 1)]/[n(n − 1)] and

E[X ] = n(n − 1)
n−2∑
i=0

1

(n − i)(n − i − 1)

= n(n − 1)
n∑

i=2

1

i(i − 1)

< n(n − 1)
n∑

i=2

1

(i − 1)2

= n(n − 1)
n−1∑
i=1

1

i2
< 2n(n − 1) < 2n2.

The above uses the fact that
∑n−1

i=1 1/ i2 is less than 2.
This holds because

∑n−1
i=1 1/ i2 < 1 + ∫ n

s=1(1/s
2)ds =

1 + [−s−1
]n
s=1 = 2 − 1/n < 2.

Now, for the lower bound, observe that the last two as
need on average n(n − 1)/2 steps to meet each other. As
n(n − 1)/2 ≤ E[X ] < n2, we conclude that E[X ] = Θ(n2).

�
Maximum matching A slight variation of the one-to-one
elimination protocol constructs a maximum matching, i.e.,
a matching of cardinality �n/2� (which is a perfect matching
in case n is even). The variation is (a, a, 0) → (b, b, 1) and
its running time is again Θ(n2), which we now prove.

Proposition 3 The expected time to convergence of a maxi-
mum matching is Θ(n2).

Proof For the upper bound, we shall prove that the run-
ning time of a one-to-one elimination, i.e., Θ(n2), is an
upper bound on the maximum matching variation. Note first
that this cannot be proved by executing the two processes
side-by-side on the same schedule, because there are rare
schedules for which one-to-one elimination stabilizes much
faster than maximum matching. An extreme such example
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is the schedule of length n − 1 in which a particular a elim-
inates one after the other all other as (here, we have also
included in the schedule the random choice of the winner
of an elimination). At the end of this schedule, one-to-
one elimination has stabilized, having eliminated n − 1 as,
while maximum matching has only managed to eliminate 2
as.

A way to establish the upper bounding relation is the fol-
lowing. Both protocols begin from n as and they stabilize
when at least n − 1 as have been eliminated. Both eliminate
as by an (a, a) interaction: maximum matching eliminates
both as while one-to-one elimination eliminates only one of
them. Take now the sequence Cn−2i , for 0 ≤ i ≤ �n/2�, of
distinct node-configurations from which maximum match-
ing passes (here, the index of configuration C represents the
number of as in C) and observe that one-to-one elimina-
tion cannot skip any of these configurations. Finally, observe
that for any C j in the sequence, both protocols have the
same probability of making progress under C j . When max-
imum matching makes progress it moves to C j−2. On the
other hand, when one-to-one elimination makes progress
it moves to a C j−1 not in the sequence and needs one or
more additional steps to reach C j−2 and catch up the other
process.

For the lower bound, notice that when only two (or three)
as remain the expected number of steps for a success is
n(n − 1)/2 (n(n − 1)/6, respectively), that is, the running
time is also Ω(n2). We conclude that the protocol con-
structs amaximummatching in an expected number ofΘ(n2)
steps. �

One-to-all elimination All nodes are initially in state a.
The effective rules of the protocol are (a, a) → (b, a) and
(a, b) → (b, b). We are now interested in the expected time
until no a remains. The process is called one-to-all elimina-
tion because as are eliminated not only when they interact
with as but also when they interact with bs. At a first sight,
it seems to run faster than a one-way epidemic as bs still
propagate towards as as in a one-way epidemic but now bs
are also created when two as interact. We show that this is
not the case.

Proposition 4 The expected time to convergence of a one-
to-all elimination is Θ(n log n).

Proof The probability of success during the i th epoch, for
0 ≤ i ≤ n − 1, is pi = 1 − [i(i − 1)/2]/[n(n − 1)/2] =
[n(n − 1) − i(i − 1)]/[n(n − 1)] and

E[X ] = n(n − 1)
n−1∑
i=0

1

n(n − 1) − i(i − 1)
.

For the upper bound, we have

E[X ] = n(n − 1)
n−1∑
i=0

1

n(n − 1) − i(i − 1)

< n(n − 1)

[
n−2∑
i=0

1

(n − 1)2 − i2

]
+ n

2

= n

2

(
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1
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+
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1

n + i − 1
+ 1

)

= n

2

(
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i=1

1

i
+

2n−3∑
i=1

1

i
−

n−2∑
i=1

1

i
+ 1

)

= n

2

(
1

n − 1
+

2n−3∑
i=1

1

i
+ 1

)

= n

2
H2n−3 + n

2
+ n

2(n − 1)

< n(H2n + 1) = n[ln 2n + Θ(1)].

For the lower bound, we have

E[X ] = n(n − 1)
n−1∑
i=0

1

n(n − 1) − i(i − 1)

> n(n − 1)
n−1∑
i=0

1

n2 − (i − 1)2

= n − 1

2
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1

n + i − 1

)

= n − 1

2
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1
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+
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i=1

1

i
−
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1
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− 1
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= n − 1
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(
2n−2∑
i=1

1

i
+ 1

n − 1
+ 1

n
+ 1

n + 1
− 1

)

>
n − 1

2
(H2n−2 − 1)

= n − 1

2
[ln(2n − 2) + Θ(1)].

We conclude that E[X ] = Θ(n log n). �
Meet everybody A single node u is initially in state a and
all other nodes are in state b. The only effective transition is
(a, b) → (a, c). We study the time until all bs become cs
which is equal to the time needed for u to interact with every
other node.

Proposition 5 The expected time to convergence of a meet
everybody is Θ(n2 log n).

Proof Assume that in every step u participates in an interac-
tion. Then u must collect the n − 1 coupons which are n − 1
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different nodes that it must interact with. Clearly, in every
step, every node has the same probability to interact with
u, i.e., 1/(n − 1), and this is the classical coupon collector
problem that takes average time Θ(n log n). But on average
u needs Θ(n) steps to participate in an interaction, thus the
total time is Θ(n2 log n). �
Node cover All nodes are initially in state a. The only effec-
tive transitions are (a, a) → (b, b), (a, b) → (b, b). We are
interested in the number of steps until all nodes become bs,
i.e., the time needed for every node to interact at least once.

Proposition 6 The expected time to convergence of a node
cover is Θ(n log n).

Proof For the upper bound, simply observe that the running
time of a one-to-all elimination, i.e., Θ(n log n), is an upper
boundon the running timeof a node cover. The reason is that a
node cover is a one-to-all elimination in which in some cases
we may get two new bs by one effective transition (namely
(a, a) → (b, b)) while in one-to-all elimination all effective
transitions result in at most one new b.

For the lower bound, if i is the number of bs then the
probability of success is pi = 1 − [i(i − 1)]/[n(n − 1)].
Observe now that a node cover process is slower than the
artificial variation in which whenever rule (a, b) → (b, b)
applies we pick another a and make it a b. This is because,
given i bs, this artificial process has the same probability of
success as a node cover but additionally in every success the
artificial process is guaranteed to produce two new bs while
a node cover may in some cases produce only one new b.
Define k = �n/2� + 1. Then, taking into account what we
already proved in the lower bound of one-to-all elimination
(see Proposition 4), we have

E[X ] ≥ n(n − 1)
�n/2�∑
i=0

1

n(n − 1) − 2i(2i − 1)

= n(n − 1)

4

k−1∑
i=0

1
n(n−1)

4 − 2i(2i−1)
4

= n(n − 1)

4

k−1∑
i=0

1
n
2 ( n2 − 1

2 ) − i(i − 1
2 )

>
n(n − 1)

4

k−1∑
i=0

1

k(k − 1) − i(i − 1)

>
n(n − 1)

8k
(H2k−2 − 1) >

n − 1

8
(Hn − 1)

= n − 1

8
[ln n + Θ(1)].

We conclude that E[X ] = Θ(n log n). �
Edge cover All nodes are in state a throughout the execution
of the protocol. The only effective transition is (a, a, 0) →

Table 1 Our results for the expected time to convergence of several
fundamental probabilistic processes

Protocol Expected time

One-way epidemic Θ(n log n)

One-to-one elimination Θ(n2)

Maximum matching Θ(n2)

One-to-all elimination Θ(n log n)

Meet everybody Θ(n2 log n)

Node cover Θ(n log n)

Edge cover Θ(n2 log n)

(a, a, 1) (we now focus on edge-state updates), i.e.,whenever
an edge is found inactive it is activated (recall that initially
all edges are inactive). We study the number of steps until
all edges in EI become activated, which is equal to the time
needed for all possible interactions to occur.

Proposition 7 The expected time to convergence of an edge
cover is Θ(n2 log n).

Proof Given thatm = n(n−1)/2 and given that j successes
(i.e., j distinct interactions) have occurred the correspond-
ing probability for the coupon collector argument is p j =
(m − j)/m and the expected number of steps is E[X ] =∑m−1

i=0 m/(m − i) = m
∑m−1

i=0 1/(m − i) = m
∑m

i=1 1/ i =
m(lnm + Θ(1)) = Θ(n2 log n). Another way to see this is
to observe that it is a classical coupon collector problemwith
m coupons each selected in every step with probability 1/m,
thus E[X ] = m lnm + O(m) = Θ(n2 log n). �

Table 1 summarizes the expected time to convergence of
each of the above fundamental probabilistic processes.

4 Constructing a global line

In this section, we study probably the most fundamental
network-construction problem, which is the problem of con-
structing a spanning line. Its importance lies in the fact that
a spanning line provides an ordering on the processes which
can then be exploited (as shown in Sect. 6) to simulate a TM
and thus to establish universality of our model. We give two
different protocols for the spanning line problem, a simple
(w.r.t. the number of states) and a fast one.

We begin with a generic lower bound holding for all pro-
tocols that construct a spanning network.

Theorem 1 (Generic Lower Bound) The expected time to
convergence of any protocol that constructs a spanning net-
work, i.e., one in which every node has at least one active
edge incident to it, is Ω(n log n). Moreover, this is the best
lower bound for general spanning networks that we can hope
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for, as there is a protocol that constructs a spanning network
in Θ(n log n) expected time.

Proof Consider the time at which the last edge is activated.
Clearly, by that time, all nodes must have some active edge
incident to them which implies that every node must have
interacted at least once. Thus the running time is lower
bounded by a node cover, which by Proposition 6 takes an
expected number of Θ(n log n) steps.

Now consider the variation of node cover which in every
transition that is effective w.r.t. node-states additionally acti-
vates the corresponding edge. In particular, the protocol
consists of the rules (a, a, 0) → (b, b, 1) and (a, b, 0) →
(b, b, 1). Clearly, when every node has interacted at least
once, or equivalently when all as have become bs, every
node has an active edge incident to it, and thus the resulting
stable network is spanning. The reason is that all nodes are as
in the beginning, every node at some point is converted to b,
and every such conversion results in an activation of the cor-
responding edge. As a node-cover completes in Θ(n log n)

steps, the above protocol takes Θ(n log n) steps to construct
a spanning network. �

We now give an improved lower bound for the particular
case of constructing a spanning line.

Theorem 2 (Line Lower Bound) The expected time to con-
vergence of any protocol that constructs a spanning line is
Ω(n2).

Proof Take any protocol A that constructs a spanning line
and any execution of A on n nodes. It suffices to show that
any execution necessarily passes through a “bottleneck” tran-
sition6, by which we mean a transition that requires Ω(n2)
expected number of steps to occur. The idea is that in any
execution the set of active edges eventually stabilizes (in
this case, to a spanning line), which implies that there is
always a last activation/deactivation of an edge. We shall
show that either this last operation is a bottleneck transition or
an immediately previous operation is a bottleneck transition.
In both cases, any execution passes through a bottleneck tran-
sition, thus paying at that point anΩ(n2) expected number of
steps.

Consider the step t at which A performed the last
modification of an edge. Observe that the construction
after step t must be a spanning line. We distinguish two
cases.

(i) The last modification was an activation. In this case, the
construction just before step t was either a line on n − 1

6 To the best of our knowledge, the term “bottleneck” to characterize
such types of slow transitions in the context of population protocols,
was first used in [12].

nodes and an isolated node or two disjoint lines span-
ning all nodes. To see this, observe that these are the
only constructions that can be turned into a line by a
single additional activation. In the first case, the prob-
ability of obtaining an interaction between the isolated
node and one of the endpoints of the line is 4/[n(n − 1)]
and in the second the probability of obtaining an interac-
tion between an endpoint of one line and an endpoint of
the other line is 8/[n(n−1)]. In both cases, the expected
number of steps until the last edge becomes activated is
Ω(n2).

(ii) The last modification was a deactivation. This implies
that the construction just before step t was a spanning
line with an additional active edge between two nodes, u
and v, that are not neighbors on the line. If one of these
nodes, say u, is an internal node, then u has degree 3
and we can only obtain a line by deactivating one of the
edges incident to u. Clearly, the probability of getting
one of these edges is 6/[n(n − 1)] and it is even smaller
if both nodes are internal. Thus, if at least one of u and
v is internal, the expected number of steps is Ω(n2). It
remains to consider the case inwhich the construction just
before step t was a spanning ring, i.e., the case in which
u and v are the endpoints of the spanning line. In this
case, consider the step t ′ < t of the last modification of
an edge that resulted in the ring. To this end notice that all
nodes of a ring have degree 2. If t ′ was an activation then
exactly twonodes haddegree 1 and if t ′ was a deactivation
then two nodes had degree 3. In both cases, there is a
single interaction that results in a ring, the probability
of success is 2/[n(n − 1)] and the expectation is again
Ω(n2). �

We proceed by presenting protocols for the spanning line
problem.

4.1 1st protocol

We present now our simplest protocol (Protocol 1) for the
spanning line problem.

Protocol 1 Simple-Global-Line

Q = {q0, q1, q2, l, w}
δ:

(q0, q0, 0) → (q1, l, 1)

(l, q0, 0) → (q2, l, 1)

(l, l, 0) → (q2, w, 1)

(w, q2, 1) → (q2, w, 1)

(w, q1, 1) → (q2, l, 1)

// All transitions that do not appear have no effect
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Theorem 3 Protocol Simple-Global-Line constructs a span-
ning line. It uses 5 states and its expected running time is
Ω(n4) and O(n5).

Proof Webegin by proving that, for any number of processes
n ≥ 2, the protocol correctly constructs a spanning line under
any fair scheduler. Then we study the running time of the
protocol under the uniform random scheduler.

Correctness. In the initial configuration C0, all nodes are
in state q0 and all edges are inactive, i.e in state 0. Every
configuration C that is reachable from C0 consists of a col-
lection of lines and isolated nodes. Additionally, every line
has a unique leader which either occupies an endpoint and is
in state l or occupies an internal node, is in statew, andmoves
along the line. Whenever the leader lies on an endpoint of its
line, its state is l and whenever it lies on an internal node,
its state is w. Lines can expand towards isolated nodes and
two lines can connect their endpoints to get merged into a
single line (with total length equal to the sum of the lengths
of the merged lines plus one). Both of these operations only
take place when the corresponding endpoint of every line
that takes part in the operation is in state l. Figure 2 gives an
illustration of a typical configuration of the protocol.

We have to prove two things: (i) there is a set S of output-
stable configurationswhose active network is a spanning line,
(ii) for every reachable configuration C (i.e., C0 � C) it
holds that C � Cs for some Cs ∈ S. For (i), consider
a spanning line, in which the non-leader endpoints are in
state q1, the non-leader internal nodes in q2, and there is a
unique leader either in state l if it occupies an endpoint or
in state w if it occupies an internal node. For (ii), note that
any reachable configuration C is a collection of lines with
unique leaders and isolated nodes in state q0. We present a

q1

q2

q2

l

q1 w q2 q2 q1

q1
l

l q1
l

q1

w q1
q1

q0 q0 q0

q0

q0

q0

q0

q0

q0

Fig. 2 This is a typical configuration of Protocol Simple-Global-Line
(after some time has passed). Lines with a w internal-leader only wait
until the random walk of w reaches one endpoint and becomes an l
leader. Lines with an l leader can expand towards isolated nodes in
state q0 or merge to other such lines. An example of the latter is the
interaction over the dotted edge. The result will be the activation of the
edge (merging the two lines into a longer one) and the replacement of
the l leaders by a q2 and a w internal-leader that will perform a random
walk until it reaches one of the two endpoints of the new line

(finite) sequence of transitions that converts C to a Cs ∈ S.
If there are isolated nodes, take any line and if its leader is
internal make it reach one of the endpoints by selecting the
appropriate interactions. Then successively apply the rule
(l, q0, 0) → (q2, l, 1) to expand the line towards all isolated
nodes. Thus we may now without loss of generality (abbre-
viated “w.l.o.g.” throughout) consider a collection of lines
without isolated nodes. By successively applying the rule
(l, l, 0) → (q2, w, 1) to pairs of lines while always moving
the internal leaders that appear towards an endpoint it is not
hard to see that the process results in an output-stable config-
uration from S, i.e., one whose active network is a spanning
line.

Running time upper bound. For the running time upper
bound, we have an expected number of O(n2) steps until
progress ismade (i.e., for anothermerging to occur given that
at least two l-leaders exist) and O(n4) steps for the resulting
random walk (walk of state w until it reaches one endpoint
of the line) to finish and to have the system again ready for
progress. The O(n4) bound holds because we have a random
walk on a line with two absorbing barriers (see, e.g., [20]
pp. 348–349) delayed on average by a factor of O(n2). The
delay is O(n2) because there is a unique walking state on
one of the n nodes, so it is selected on average every n steps.
But, additionally, the state actually walks only if it interacts
with one of its (at most) two neighbors on the line. As only
2 interactions over the Θ(n2) possible interactions allow the
state to walk, the walk is delayed by a factor of O(n2). As
progress must be made n − 2 times, we conclude that the
expected running time of the protocol is bounded from above
by (n − 2)[O(n2) + O(n4)] = O(n5).

We next prove that we cannot hope to improve the upper
bound on the expected running time by a better analysis by
more than a factor of n. For this, we first prove that the proto-
col with high probability (abbreviated “w.h.p.” throughout)
constructs Θ(n) disjoint lines of length 1 during its course.
A set of k disjoint lines implies that k − 1 distinct merging
processes have to be executed in order to merge them all into
a common line and each single merging results in the execu-
tion of another random walk. Based on these, we prove the
desired Ω(n4) lower bound.

Recall that initially all nodes are in q0. Every interaction
between two q0-nodes constructs another line of length 1.
Call the random interaction of step i a success if both partic-
ipants are in q0. Let the r.v. R be the number of nodes in state
q0; i.e., initially R = n. Note that, at every step, R decreases
by at most 2, which happens only in a success (it may also
remain unchanged, or decrease by 1 if a leader expands
towards a q0). Let the r.v. Xi be the number of successes up
to step i and X be the total number of successes throughout
the course of the protocol, that is, until at least n−1 q0s have
been converted to something else. Our goal is to calculate the
expectation of X as this is equal to the number of distinct lines
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of length 1 that the protocol is expected to form throughout
its execution (note that these lines do not necessarily have to
coexist). Given R, the probability of success at the current
step is pR = [R(R−1)]/[n(n−1)] ≥ (R−1)2/n2. As long
as R ≥ (n/2) + 1 = z it holds that pR ≥ (n2/4)/n2 = 1/4.
Moreover, as R decreases by at most 2 in every step, there are
at least (n−z)/2 = [(n/2)−1]/2 = (n/4)−1/2 steps until R
becomes less than or equal to z. Thus, our process dominates
a Bernoulli process Y with (n/4)−1/2 trials and probability
of success p′ = 1/4 in each trial. For this process we have
E[Y ] = [(n/4) − 1/2](1/4) = (n/16) − 1/8 = Θ(n).

We now exploit the following Chernoff bound (cf. [27],
page 70) establishing that w.h.p. Y does not deviate much
below its mean μ = E[Y ]:

Chernoff Bound. Let Y1,Y2, . . . ,Yt be independent Pois-
son trials such that, for 1 ≤ i ≤ t , P[Yi = 1] = pi , where
0 < pi < 1. Then, for Y = ∑t

i=1 Yi , μ = E[Y ] = ∑t
i=1 pi ,

and 0 < δ < 1,

P[Y < (1 − δ)μ] < exp(−μδ2/2).

Additionally, it holds that exp(−μδ2/2) = ε ⇔
δ =

√
2 ln 1/ε

μ
. Thus exp(−μδ2/2) = n−c implies δ2 =

2c ln n
μ

= 2c ln n
(1/8)(n/2−1) = 16c ln n

n/2−1 ⇒ δ =
√

16c ln n
n/2−1 ⇒

(1 − δ)μ = 1

8

(
1 −

√
16c ln n

n/2 − 1

) (n
2

− 1
)

>
1

16

(
n − 2

√
cn ln n − 2

)
= Θ(n).

So, for all c = O(1),

P

[
Y <

1

16

(
n − 2

√
cn ln n − 2

)]
< n−c ⇒

P

[
Y ≥ 1

16

(
n − 2

√
cn ln n − 2

)]
> 1 − n−c

and as X dominates Y , we have P[X ≥ (1/16)(n −
2
√
cn ln n − 2)] > 1 − n−c. In words, w.h.p. we expect

at least k = (1/16)(n − 2
√
cn ln n − 2) = Θ(n) disjoint

lines of length 1 to be constructed by the protocol.
Now, let us focus on those executions, on a population of

size n, that satisfy X ≥ k. Given such an execution, consider
the first time tmin at which (after a merging or an expansion)
there is a line L of length at least k/4. If we denote by h the
length of L at tmin , it must also hold that h ≤ k/2−1, because
the maximum growth before time tmin is via a merging of
two lines both of length k/4 − 1, which (by also taking into
account the new edge between them) gives length k/2 − 1.
Thus, we have k/4 ≤ h ≤ k/2 − 1.

The total length due to lines of length 1 (ever to appear) is
at least k and, at tmin , L can have already obtained atmost h of
this length. Therefore, at tmin there is still a remaining length
of at least k − h ≥ k − (k/2− 1) = k/2+ 1 to get merged to
L via j ≥ 1 distinct mergings. These mergings, and thus also
the resulting random walks, cannot occur in parallel as all of
them share L as a common participant (and a line can only
participate in one merging at a time). Let di denote the length
of the i th line merged to L , for 1 ≤ i ≤ j . If L has length
d(L) just before the i th merging, then the expected duration
of the resulting random walk is n2 · d(L) · di and the new
L resulting from merging will have length d(L) + di . Let Y
denote the duration of all random walks, and Yi , 1 ≤ i ≤ j ,
the duration of the i th random walk. In total, the expected
duration of all random walks resulting from the j mergings
of L is

E[Y ] = E

⎡
⎣ j∑

i=1

Yi

⎤
⎦ =

j∑
i=1

E[Yi ]

=
j∑

i=1

n2 (h + d1 + . . . + di−1) di

≥ n2
j∑

i=1

hdi = n2h
j∑

i=1

di

≥ n2 · k
4

·
(
k

2
+ 1

)
= n2 · Θ(n) · Θ(n)

= Θ(n4).

The second inequality follows from the fact that
∑ j

i=1 di =
k−h ≥ k

2 +1.We conclude that, in case X ≥ k, the expected
running time of the protocol is Ω(n4).

Finally, for calculating the total expected running time of
the protocol, we take into account all possible executions and
not only those that satisfy X ≥ k. If we define the r.v. W to
be the total running time of the protocol (until convergence),
by the law of total probability and for every constant c ≥ 1,
we have that:

E[W ] = E[W | X ≥ k] · P[X ≥ k]+
E[W | X < k] · P[X < k]

≥ E[W | X ≥ k] · P[X ≥ k]
>

(
n2 · k

4
· (
k

2
+ 1)

)
(1 − n−c)

= n2 · Θ(n) · Θ(n) · (1 − n−c)

= Θ(n4).

Thus, the expected running time of the protocol is
Ω(n4). �
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4.2 2nd protocol

We now give our fastest protocol (Protocol 2) for the global
line construction. The main difference between this and the
previous protocol is that we now totally avoid mergings as
they seem to consume much time. In fact, merging two lines
of total length Θ(n) requires Θ(n3) time as every step takes
an average of Θ(n2) time and if, for example, Θ(n) such
mergings have to be performed to obtain a spanning line, then
the time-complexity becomes Ω(n4), which is quite big.

We first give the intuition behind Protocol 2. As in Pro-
tocol 1, when the leaders of two lines interact, one of them
becomes eliminated and the edge is activated. But in contrast
in Protocol 1, the leader that has survived does not initiate
a merging process. Instead, it steals a node from the elimi-
nated leader’s line and disconnects the two new lines: its own
line, which has increased by one and is called awake, and the
eliminated leader’s line, which has decreased by one and is
called sleeping.

In more detail, when two lines L1 and L2 interact via their
l-leader endpoints, one of the leaders, say w.l.o.g. that of
L2, becomes l ′ and the other becomes q ′

2. We can interpret
this operation as expanding L1 on the endpoint of L2 and
obtaining two new lines (still attached to each other): L ′

1
which is awake and L ′

2 which is sleeping. Now, the l
′-leader

of L ′
1 waits to interact with its neighbor from L ′

2 (which is
either a q2 or a q1) to deactivate the edge between them and
disconnect L ′

1 from L ′
2. This operation leaves L ′

1 with an
l ′′-leader and L ′

2 with a sleeping leader f1 (it can also be the
case that L ′

2 is just a single isolated f0, in case L2 consisted
only of 2 nodes). Then l ′′ waits to meet its q ′

2 neighbor to
convert it to q2 and update itself to l. This completes the
operation of a line growing one step towards another line and
making the other line sleep. A sleeping line cannot increase
any more and only loses nodes to lines that are still awake
by a similar operation as the one just described. A single
leader is guaranteed to always win and this occurs quite fast.
Then the unique leader does not need much time to collect
all nodes from the sleeping lines to its own line and make the
latter spanning.

Theorem 4 Protocol Fast-Global-Line constructs a span-
ning line. It uses 9 states and its expected running time under
the uniform random scheduler is O(n3).

Proof Correctness is straightforward. The configuration is
always a collection of awake (with a unique l, l ′, or l ′′ leader)
and sleeping (with a unique f1 leader) lines and isolated
nodes (either awake in q0 or sleeping in f0). As long as
there are at least two awake lines, eventually another line
becomes sleeping, so eventually a single awake line will
remain with all other nodes being sleeping (either part of
a sleeping line or isolated). The protocol ensures that an
awake line can always grow towards sleeping nodes (either

Protocol 2 Fast-Global-Line

Q = {q0, q1, q2, q ′
2, l, l

′, l ′′, f0, f1}
δ:

(q0, q0, 0) → (q1, l, 1)

(l, q0, 0) → (q2, l, 1)

(l, l, 0) → (q ′
2, l

′, 1)
(l ′, q2, 1) → (l ′′, f1, 0)

(l ′, q1, 1) → (l ′′, f0, 0)

(l ′′, q ′
2, 1) → (l, q2, 1)

(l, f0, 0) → (q2, l, 1)

(l, f1, 0) → (q ′
2, l

′, 1)

by stealing them from sleeping lines or by expanding towards
isolated nodes), so eventually the unique awake line will
become spanning.

For the time analysis, observe first that in O(n2) steps
all q0s become something else. To see this let the r.v. X
be the total number of steps until all q0s disappear and let
the r.v. Xi be the number of steps between the i th and the
(i + 1)st interaction between two nodes in state q0 (assume
no other interactions can change the state of a q0). Let
pi = [(n − 2i)(n − 2i − 1)]/[n(n − 1)] be the probabil-
ity that such an interaction occurs. Then E[Xi ] = 1/pi =
Θ(n2/(n − i)2) and E[X ] � n2

∑n/2
i=1 1/(n − i)2 = Θ(n2).

The last equation follows from the fact that
∑n/2

i=1 1/(n −
i)2 ≤ ∑n2

i=1 1/ i − ∑(n/2)2

i=1 1/ i � 2 ln n + Θ(1) − 2 ln n +
2 ln 2 − Θ(1) = O(1), i.e., it is bounded. Finally, observe
that q0s that become leaders can also turn other q0s to
something else thus the actual expectation is in fact O(n2)
(i.e., what we have ignored can only help the process end
faster).

Now notice that after this O(n2) time we have a set of
at most O(n) leaders and no new leader can ever appear.
Moreover, in every interaction between two leaders only one
survives and the other becomes a follower. Clearly, a sin-
gle leader must win all the pairwise games in which it will
participate. Consider that leader and observe that it takes
it an average of n2 steps to participate to another game in
the worst case and another n2 steps to win it. As it may
have to eliminate up to O(n) other leaders, in O(n3) steps
on average there is a unique leader and every other node
is either isolated in state f0 or part of a line that has a
unique follower f1. Every interaction of a leader with a fol-
lower increases the length of the leader’s line by 1 in O(n2)
steps. Thus an increment occurs every O(n2) steps as the
leader needs O(n2) steps to meet a follower and then O(n2)
steps to increase by 1 towards that follower. As the leader
needs to make at most O(n) increments to make its own line
global, we conclude that the expected time for this to occur is
O(n) · O(n2) = O(n3). �
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5 Other basic constructors

In this section, we present direct constructors and some lower
bounds for several other basic network construction problems
(defined in Sect. 3.2). We have analyzed the running times
of most of our protocols. Those missing are left as open
problems.

5.1 Cycle cover

Protocol 3 Cycle-Cover

Q = {q0, q1, q2}
δ:

(q0, q0, 0) → (q1, q1, 1)

(q1, q0, 0) → (q2, q1, 1)

(q1, q1, 0) → (q2, q2, 1)

Theorem 5 Protocol Cycle-Cover constructs a cycle cover
with waste 2 (i.e., a cycle cover on a subset of VI of n − 2
nodes). It uses 3 states, its expected running time under the
uniform random scheduler is Θ(n2), and it is optimal w.r.t.
time.

Proof The protocol preserves the following invariant: the
degree of a node in state qi , 0 ≤ i ≤ 2, is i . More-
over, all interactions (qi , q j , 0) with i, j ∈ {0, 1} result in
(qi+1, q j+1, 1), that is, in an activation and a corresponding
increase in the recorded degrees. As a result, as long as there
are at least two disconnected nodes with degrees smaller than
two, these two nodes can become connected. It follows that
any component with at least three nodes eventually becomes
a cycle and in the final stable configuration there can be at
most one component that is not a cycle: either an isolated
node, or two nodes connected by an active edge. So, the
waste is indeed 2.

Note that the protocol stabilizes when at least n −
2 nodes have become q2 (the rest is the waste which
consists of at most 2 nodes). In O(n2) time (by dom-
inating a maximum matching) all q0s have become q1
and in another O(n2) steps all q1s have become q2s.
We now give a lower bound that holds for any proto-
col that constructs a cycle cover, so we have to also
take into account the possibility that the protocol deacti-
vates some edges (even though our protocol never does
this). To this end, consider the last edge modification
that ever occurs. Due to the symmetry of cycle cover,
both if it was an activation or a deactivation only a
single edge satisfies the fact that after its activation or
deactivation we get a cycle cover, which requires Θ(n2)
rounds. �

5.2 Global star

Theorem 6 (Star Lower Bound) Any protocol that con-
structs a spanning star has at least 2 states and its expected
time to convergence is Ω(n2 log n).

Proof Clearly, with a single state we cannot make the nec-
essary distinction of a center and a peripheral node. More
formally, if there is a single state q0 then (q0, q0, 0) must
necessarily activate the edge (otherwise no edges will be
ever activated) which implies that eventually all edges will
become activated, i.e., instead of a star we will end up with a
global clique. So every protocol that constructs a global star
must have at least 2 states.

For the lower bound on the expected running time we
argue as follows. Take any execution of a protocol that con-
structs a global star. Consider the node u that will become
the center in that execution. When the execution stabilizes, u
must be connected to every other node by an active edge. This
implies that u must have interacted with every other node.
Clearly, the time it takes for the eventually unique center, u
in this case, to meet every other node is a lower bound on the
total running time. This is a meet everybody that, as proved
in Proposition 5, takes Θ(n2 log n) time. �

Protocol 4 Global-Star

Q = {c, p}, q0 = c
δ:

(c, c, 0) → (c, p, 1)

(p, p, 1) → (p, p, 0)

(c, p, 0) → (c, p, 1)

Theorem 7 Protocol Global-Star constructs a spanning
star. It uses 2 states and its expected running time under the
uniform random scheduler is O(n2 log n), which is optimal
both w.r.t. size and time.

Proof
Correctness. At any given time during the execution of

the protocol, a node may be playing one of the following
two roles: a center (state c) or a peripheral (state p). The
unique output-stable configurationC f whose active network
is a spanning star, has one center and n−1 peripheral nodes,
and a uv edge is active iff one of u, v is the center. Initially
all nodes are centers. When two centers interact one of them
remains a center and the other becomes a peripheral. No
other interactions eliminate a center, which implies that not
all centers can be eliminated, and once a center becomes a
peripheral it can never become a center again.Due to fairness,
eventually all pairs of centerswill interact and, as no new cen-
ters appear, eventually a single center will remain. Thus from
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some point on there is a single center and n − 1 peripheral
nodes. The idea from now on is that c-p attract while p-p
repel. In particular, rule (c, p, 0) → (c, p, 1) guarantees that
any inactive edges joining the center to the peripherals will
become activated and rule (p, p, 1) → (p, p, 0) guarantees
that any active edges joining two peripherals will become
deactivated. At the same time active edges between the center
and the peripherals remain active and inactive edges between
two peripherals remain inactive. This clearly leads to the con-
struction of a spanning star.

Running Time. Forget for a while the edge updates and
consider the rule (c, c) → (c, p), which is the only effective
interaction of the protocol w.r.t. the states of the nodes. We
are interested in the time needed for a single c to remain. This
is clearly an original application of one-to-one elimination
and as proved in Proposition 2 it takes Θ(n2) time.

Notice now that once the states of the nodes have sta-
bilized, the constructed network will for sure stabilize to a
global star after all p-nodes have interacted with each other
in order to deactivate any active edges between themand after
the c has interacted with all ps in order to activate any inac-
tive edges, i.e., after all pairs of interactions have occurred.
This is an edge cover that, as proved in Proposition 7, takes
Θ(n2 log n) time. Thus the total expected running time is at
most Θ(n2) + Θ(n2 log n) = Θ(n2 log n). �

5.3 Global ring

Theorem 8 (Ring Lower Bound) The expected time to con-
vergence of any protocol that constructs a spanning ring is
Ω(n2).

Proof Take any protocol A that constructs a spanning ring
and any execution of A on n nodes. Consider the step t at
whichA performed the last modification of an edge. Observe
that the construction after step t must be a spanning ring. We
distinguish two cases.

(i) The last modification was an activation. It follows that
the previous active network should be a spanning line
u1, u2, . . . , un . But the only activation that can convert
this spanning line into a spanning ring is u1un which
occurs with probability 2/[n(n−1)], i.e., in an expected
number of Θ(n2) steps.

(ii) The last modification was a deactivation. It follows
that the previous active network should be a spanning
ring u1, u2, . . . , un, u1 with an additional active edge
uiu j for 1 ≤ i < j ≤ n and j �= i + 1 (i.e., a
chord). Clearly, the only interaction that can convert
such an active network into a spanning ring is uiu j

which takes an expected number of Θ(n2) steps to
occur. �

Protocol 5 Global-Ring

Q = {q0, q1, q2, l, w, l ′, l ′′, q ′
2, q

′′
2 , l̄}

δ:

// normal behavior begins only after a line has length

// 2 (edges)

(q0, q0, 0) → (q1, l̄, 1)

(x, q0, 0) → (q2, l, 1), for x ∈ {l, l̄}
// merging: random walk of a w-leader begins

(x, y, 0) → (q2, w, 1), for x, y ∈ {l, l̄}
(w, q2, 1) → (q2, w, 1)

(w, q1, 1) → (q2, l, 1)

// l connecting to a q1 endpoint, possibly turning its

// own line to a cycle

(l, q1, 0) → (l ′, q ′
2, 1)

// another component detected: a closed cycle must open

(x ′, y, 0) → (x ′′, y, 0), for x ∈ {l, q2}, y ∈ {l, l̄, w, q1, q0}
(x ′, y′, 0) → (x ′′, y′′, 0), for x ∈ {l, q2}, y ∈ {l, q2}
// opening closed cycles

(l ′′, q ′
2, 1) → (l, q1, 0)

(l ′, q ′′
2 , 1) → (l, q1, 0)

(l ′′, q ′′
2 , 1) → (l, q1, 0)

Theorem 9 Protocol Global-Ring (see Protocol 5) con-
structs a spanning ring.7

Proof The protocol is essentially the same as the Simple-
Global-Line protocol (Protocol 1) but additionally we allow
the endpoints of a line to become connected. This occurs
whenever one endpoint is in state l and the other is in state q1
and the two endpoints interact. In this case, rule (l, q1, 0) →
(l ′, q ′

2, 1) applies and the two endpoints become blocked. If
anyof the twoendpoints detects the existence of another com-
ponent, then, in the next interaction between them, the two
endpoints backtrack, by which we mean that they deactivate
the connection between them and both become unblocked
again by returning to their original states. The existence of
another component can be eventually detected due to the fact
that every component is either an isolated node in state q0 or
has at least one leader.

Now take an arbitrary reachable configuration C with at
least 2 components. We may w.l.o.g. assume that C has no
blocked nodes, as if it has there is a sequence of interactions
that unblocks them all. Thus, as in the Simple-Global-Line
protocolwe have a collection of lines and isolated nodes. This
may very well lead to the formation of a spanning line with a

7 We should remark that the corresponding protocol in [28] contained
a small error (making it fail to construct a ring in a small fraction of
its executions) that was detected via experimentation and fixed in this
journal version.
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single leader. It is now clear that at some point the leader will
occupy one endpoint of the line, will interact with the other
endpoint, the spanning line will close to form a spanning ring
and the previous endpointswill become blocked. As there is a
single component in the network, these twonodeswill remain
blocked forever and therefore the constructed ring is stable.

Finally, observe that we have not allowed a line to partic-
ipate to the normal operation of the protocol until its length
becomes 2 (edges). In particular, we have not allowed the
existence of lines consisting of a single edge with endpoints
q1 and l. The reason is that such lines could connect to each
other, forming chains of the form q ′

2, l
′, q ′

2, l
′, q ′

2, l
′, . . .. In

such a chain, all q ′
2s will eventually become q ′′

2 and all l ′s
will become l ′′. So, it is possible for an l ′′ to disconnect from
the q ′′

2 of its original line (as it cannot distinguish between its
two q ′′

2 neighbors) and this may result in isolated l-leaders
and blocked lines consisting of a single edge with endpoints
l ′′ and q1. In such a case, the protocol would not manage to
form a spanning ring. Actually, this was the bug of [28] that
has now been fixed. �

5.4 Global ring: a generic approach

We now follow an alternative approach (Protocol 6) for the
global ring problem,mainly because it can be generalized to a
protocol for the k-regular connected problem.We present the
generalization for the latter problem in the sequel (Protocol
7).

Theorem 10 Protocol 2RC (see Protocol 6) constructs a
connected spanning2-regular network (i.e., a spanning ring).

Proof Sketch The setS of output-stable configurations whose
active network is a spanning ring consists of those configu-
rations that have one node in state l2 and all other nodes in
state q2. The index of a state indicates the number of active
neighbors of a node. A first goal is for all nodes to have
degree 2 which implies a cycle cover, i.e., a partitioning of
the nodes into disjoint cycles. The protocol achieves this by
allowing every node with degree smaller than 2 to increase
its degree. The final goal is to end up with a unique spanning
ring. To achieve this, the protocol allows nodes with degree
2 to drop an existing neighbor and pick a new one provided
that there are at least 2 components in the network. Clearly,
this implies that any closed cycle coexisting with other com-
ponents, which are cycles, lines, or isolated nodes, may open
to form a line. As any collection of lines and isolated nodes
can always be merged to a global line and any global line can
close to form a global ring, the theorem follows. �

5.5 Generalizing to k-regular connected

Using almost the same ideas as in the proof of Theorem 10,
one can prove the following.

Protocol 6 2RC

Q = {q0, q1, q2, l1, l2, l3}
δ:

(q0, q0, 0) → (q1, l1, 1)

(q1, q0, 0) → (q2, q1, 1)

(q1, q1, 0) → (q2, q2, 1)

(l1, l1, 0) → (l2, q2, 1)

(l1, qi , 0) → (q2, li+1, 1), for i ∈ {0, 1}
// swapping: leaders keep moving inside components

(li , q j , 1) → (qi , l j , 1), for i, j ∈ {1, 2}
// leader elimination: eventually a single leader will

// remain in every component

(li , l j , 1) → (qi , l j , 1), for i, j ∈ {1, 2}
// opening cycles in the presence of other components

(l2, q0, 0) → (l3, q1, 1)

(l2, l1, 0) → (l3, q2, 1)

(l2, l2, 0) → (l3, l3, 1)

(l3, q1, 1) → (l2, q0, 0)

(l3, q2, 1) → (l2, l1, 0)

(l3, l1, 1) → (l2, q0, 0)

(l3, l2, 1) → (l2, l1, 0)

(l3, l3, 1) → (l2, l2, 0)

Protocol 7 kRC

Q = {q0, q1, . . . , qk , l1, l2, . . . , lk+1}, i.e., |Q| = 2(k + 1)
δ:

(q0, q0, 0) → (q1, l1, 1)

(qi , q j , 0) → (qi+1, q j+1, 1), for 1 ≤ i < k and j < k

(li , l j , 0) → (li+1, q j+1, 1), for 1 ≤ i, j < k

(li , q j , 0) → (qi+1, l j+1, 1), for 1 ≤ i < k and j < k

// swapping: leaders keep moving inside components

(li , q j , 1) → (qi , l j , 1), for 1 ≤ i, j ≤ k

// leader elimination: eventually a single leader will

// remain in every component

(li , l j , 1) → (qi , l j , 1), for 1 ≤ i, j ≤ k

// opening k-regular components in the presence of

// other components

(lk , q0, 0) → (lk+1, q1, 1)

(lk , li , 0) → (lk+1, qi+1, 1), for 1 ≤ i < k

(lk , lk , 0) → (lk+1, lk+1, 1)

(lk+1, q1, 1) → (lk , q0, 0)

(lk+1, qi , 1) → (lk , li−1, 0), for 2 ≤ i ≤ k

(lk+1, li , 1) → (lk , li−1, 0), for 1 ≤ i ≤ k

(lk+1, lk+1, 1) → (lk , lk , 0)

Theorem 11 For every fixed integer k ≥ 2 and population
of size n ≥ k + 1, Protocol kRC (see Protocol 7) constructs
a connected spanning network in which at least n − k + 1
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nodes have degree k and each of the remaining l ≤ k − 1
nodes has degree at least l − 1 and at most k − 1.

It is interesting to point out that the number of states can be
substantially reduced in some cases by relying on the com-
putability of the target-degree k. For an example, we show
that we can make a node u obtain 2d neighbors by using only
2(d + 2) states, for all fixed integers d. Node u is initially
in state q0 and all other nodes are in state a0. The proto-
col is (q0, a0, 0) → (q ′

0, a1, 1), (q ′
0, a0, 0) → (q, a1, 1),

(q, ai , 1) → (qi+1, ai+1, 1), (q j , a0, 0) → (q, a j , 1) for all
1 ≤ i ≤ d − 1, 2 ≤ j ≤ d. Note that u initially collects 2
neighbors (by activating edges) which go to state a1. Then
for every a1 neighbor that it encounters it makes it an a2 and
collects another neighbor which goes to state a2. Eventually
both a1 neighbors will become a2 and there will be another 2
neighbors in state a2, so in total 4 a2 neighbors. This process
is repeated d times (the 4 a2s will become 8 a3s, and so on),
each time doubling the number of neighbors, thus eventually
u will have obtained 2d neighbors. The protocol uses only
2(d + 1) states for the indices of the qi s and the ai s and
another 2 states, namely q and q ′

0. Clearly, it follows that the
target-degree of the nodes is not a lower bound on the size
of the protocol.

5.6 Many small components

We show here how to partition the population into small
cliques. This construction is of special value as such a parti-
tioning may serve as a means of maintaining non-interfering
clusters. In particular, given such a partitioning, we can eas-
ily have a node u perform effective interactions only with
nodes belonging to the same component as u. This can be
easily determined by the state of the connection between the
interacting nodes.

Theorem 12 For every fixed positive integer c, Protocol c-
Cliques constructs �n/c� cliques of order c each.
Proof Sketch The protocol tries to construct �n/c� compo-
nents of order c, each having a unique leader (states li , for
i ≥ 1, l̄ j , l, and l ′j ) directly connected to c−1 followers (states
f , i ∈ {1, 2, . . . , c− 1}, and f j ). This is done via c− 2 suc-
cessive applications of rule (li , l0, 0) → (li+1, f, 1) and then
a single application of rule (lc−2, l0, 0) → (l̄1, 1, 1). The role
of state l̄i is to convert its c − 2 remaining state- f follow-
ers to state-1 followers, via c − 3 successive applications of
rule (l̄i , f, 1) → (l̄i+1, 1, 1) and then a single application of
rule (l̄c−2, f, 1) → (l, 1, 1). Then each state-i follower, for
1 ≤ i < c−1, tries to become connected to the other c−1 fol-
lowers of the component via rule (i, j, 0) → (i+1, j+1, 1).
As it cannot distinguish the followers of its component from
the followers of other components, several of these connec-
tions may be wrong.

Protocol 8 c-Cliques

Q = {l0, l1, . . . , lc−2, f1, . . . , fc−2, f, l̄0, . . . , l̄c−2, l,
1, 2, . . . , c − 1, l ′1, . . . , l ′c−1, r}, q0 = l0

δ:

// for i = 0, a new component initiated; for i ≥ 1, a

// leader tries to increase the size of its component to

// c by attracting isolated nodes to its neighborhood

(li , l0, 0) → (li+1, f, 1), if 0 ≤ i < c − 2

→ (l̄1, 1, 1), if i = c − 2

// nondeterministic elimination of incomplete components

// to avoid deadlock of all components having size < c

(li , l j , 0) → (li+1, f j , 1), if j ≤ i < c − 2

→ (l̄0, f j , 1), if i = c − 2

( fi , f, 1) → ( fi−1, l0, 0), if i > 1

→ ( f, l0, 0), if i = 1

// the leader of a component with c nodes begins to

// inform its followers to connect to other followers

(l̄i , f, 1) → (l̄i+1, 1, 1), if i < c − 2

→ (l, 1, 1), if i = c − 2

// followers keep track of their number of connections

(i, j, 0) → (i + 1, j + 1, 1), if i < c − 1 and j < c − 1

// a leader temporarily takes the place of a follower

// in order to check for wrong connections

(l, i, 1) → (r, l ′i , 1)
// two leaders deactivating a wrong connection joining

// distinct components

(l ′i , l ′j , 1) → (l ′i−1, l
′
j−1, 0)

// the leader returns to its original position nonde-

// terministically, after performing 0 or more checks

(l ′i , r, 1) → (i, l, 1)

It suffices to prove that the protocol recognizeswrong con-
nections and deactivates them. Then, as followers always try
to make their degree c − 1 when it is still less than c − 1
and as wrong connections between different components are
always corrected, it follows (by fairness) that eventually each
component will become a clique (having only correct con-
nections). At that time, no new connections may be created
and no existing connection can be deactivated (as they are all
correct), and the correctness of the protocol follows.

To recognize erroneous connections, the leader of a com-
ponent constantly visits the followers of its component, via
rule (l, i, 1) → (r, l ′i , 1), and checks any active connections
that it may encounter during its stay. The duration of its stay
is nondeterministic, as it depends on the chosen interactions.
In particular, the leader returns to its original position non-
deterministically via rule (l ′i , r, 1) → (i, l, 1), in order to
avoid waiting forever in case there are no connections to be
fixed. If, instead, during its stay it encounters another leader
over an active connection, then this is clearly a connection
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between different components and the leaders deactivate that
connection and decrease the counters of the corresponding
followers. This is done via rule (l ′i , l ′j , 1) → (l ′i−1, l

′
j−1, 0).

Clearly, by fairness, every wrong connection will eventually
be selected for interaction while having a leader in each of
its endpoints. Finally, note that correct connections (between
nodes of the same component) are never deactivated as at
any time at most one of their endpoints may be occupied by
a leader. �

5.7 Replication

Wenow study the related problem of replicating a given input
graph G1 = (V1, E1). Let V2 = VI \V1 be the set of the
remaining nodes. A protocol must construct on V2 a replica
G2 ofG1, thus it must hold that |V2| ≥ |V1|. In what follows,
we assume that nodes in V1 are in different initial states than
nodes in V2. In particular, we use q0 and r0 as the initial
states of nodes in V1 and V2, respectively. Additionally, E1 is
defined by the active edges between nodes in V1. We assume
that G1 is connected.

We present a very simple protocol (Protocol 9) which,
by exploiting the election of a unique leader, successfully
copies G1 on any V2 satisfying |V2| ≥ |V1|. The protocol
never introduces waste in V2. Actually, it always modifies
the state of precisely |V1| nodes from V2 always leaving the
remaining |V2|− |V1| nodes of V2 to their initial states. Note
that, unlike all other protocols in this section, this one is a
randomized protocol.

Initially, all nodes of V1 are in q0 and all nodes of V2 are in
r0. The protocol matches every node of V1 to a distinct node
of V2 (that is, creates a maximum matching between the two
sets) and in parallel it starts pairwise eliminations between
leaders, that is, when two leaders (nodes in state l) interact
one of them survives (i.e., remains l) and the other becomes
a follower (state f ). Eventually the protocol ends up with a
unique leader and |V1|−1 followers.Moreover,when a leader
and a follower meet they swap their states with probability
1/2. With the remaining 1/2 probability they become either
la, fa or ld , fd depending on whether the edge joining them
was active or inactive, respectively. In both cases they mark
their matched nodes from V2 to either activate or deactivate
the edge between them in V2 accordingly. Once there is a
unique leader, the leader moves nondeterministically over
the nodes of V1 and again nondeterministically applies this
copying process on the edges of E1. Thus it will eventually
apply this copying process to all edges of E1 and as there
are no conflicts with other activations/deactivations (as no
other leaders exist)G2 eventually becomes isomorphic toG1.
Finally, note that the active edges of the matching between
V1 and V2 are never deactivated but this is not a problem,
provided that Qout = {r, ra, rd}, as every such edge uv has an

Protocol 9 Graph-Replication

Q = {q0, r0, l, la, ld , f, fa, fd , r, ra, rd , r ′}
δ:

// matching every u ∈ V1 to a distinct v ∈ V2

(q0, r0, 0) → (l, r, 1)

// leader election in V1

(l, l, x) → (l, f, x)

// a non-edge (inactive) of G1 detected: with prob.

// 1/2 copying to G2 initiated and with prob. 1/2

// the leader l continues its random walk in V1

(l, f, 0)
1/2→ (ld , fd , 0)

1/2→ ( f, l, 0)

// an edge (active) of G1 detected: with prob. 1/2

// copying to G2 initiated and with prob. 1/2 the

// leader l continues its random walk in V1

(l, f, 1)
1/2→ (la, fa, 1)

1/2→ ( f, l, 1)

// informing the matched nodes from V2 to apply copying

(xi , r, 1) → (xi , ri , 1), for x ∈ {l, f } and i ∈ {a, d}
// an activation copying applied in G2

(ra, ra, ·) → (r ′, r ′, 1)
// a deactivation copying applied in G2

(rd , rd , ·) → (r ′, r ′, 0)
// informing the matched nodes from V1 that the

// requested copying has been performed; as long as

// there are more than one leaders, copying may have

// been performed on a wrong pair of nodes of V2
(r ′, xi , 1) → (r, x, 1), for x ∈ {l, f } and i ∈ {a, d}
// leader election applies also to las and lds in

// order to prevent blocking

(li , l, x) → (li , f, x), for i ∈ {a, d}
(li , l j , x) → (li , f j , x), for i, j ∈ {a, d}

endpoint u ∈ V1 in a state from Q\Qout and is not considered
as part of the output.

Theorem 13 Protocol Graph-Replication constructs a copy
of any connected input graph G1 = (V1, E1) with no waste.
It uses 12 states and its expected running time under the
uniform random scheduler is Θ(n4 log n).

Proof First observe that the maximummatching between V1
and V2 is eventually constructed. The reason is that any node
can only be matched once, because when a q0 is matched
to an r0 both change states to l and r , respectively (so they
cannot be matched any more). Moreover, as long as a q0
or an r0 has not been matched, it does not change state so
it remains forever a candidate for matching. Then |V2| ≥
|V1| and fairness imply that eventually thematching becomes
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maximum, i.e., each u ∈ V1 is matched to a distinct v ∈ V2.
Note also that there are always |V2| − |V1| ≥ 0 nodes of V2
that will never participate in the protocol, because all v ∈ V2
are initially in r0, an r0 can only participate if it encounters
a q0, but any such encounter decreases the number of q0s
by one (and no new q0s are never created). Clearly, after
the first |V1| such encounters there are no q0s left, therefore
|V2|−|V1| nodes of V2 cannot participate in the protocol any
more. So, we can w.l.o.g. restrict our analysis to the special
case of populations in which |V1| = |V2|. For this protocol,
correct copying for |V2| = |V1| implies correct copying for
all |V2| ≥ |V1| and also implies that the waste (from V2) is
indeed zero, as every graph can be copied in the absence of
auxiliary nodes. Inwhat follows, we assume that |V1| = |V2|.
Note that, in this case, the constructed matching between V1
and V2 is actually a perfect matching.

Assume now that there is a unique leader in V1 in state
l, all other nodes in V1 are in state f , all nodes in V2 are
in state r , and there is an arbitrary active graph on V2. We
prove that the graph of V2 eventually becomes isomorphic
to G1. Take any edge u′v′, where u′, v′ ∈ V2 and let u, v

be their corresponding matched nodes from V1. The unique
leader l performs a random walk on the nodes of V1 and
fairness guarantees that the following must eventually occur:
l reaches one of u, v, say u, its next interaction is with v

(which is in state f ), and it is a non-swapping interaction.
The result of the interaction is then that u goes to li and v to
fi where i ∈ {a, d} represents the state of uv. From that point
on the following “deterministic” operations occur: u′ and v′
will eventually interact with their matched nodes and will
both go to state ri , and then they will eventually interact with
each other and will activate or deactivate u′v′ depending on
i . In both cases, u′v′ copies the state of uv. This proves that
any u′v′ will eventually copy the value of its corresponding
edge uv. The claim follows by observing that, given that V1
has a unique leader, once a u′v′ has the same state as uv it
cannot change state any more.

Next observe that indeed eventually a unique leader leader
remains in V1. After it has been matched (which eventu-
ally occurs), a node of V1 can only be in one of the states
l, li , f, fi . As long as there are at least two leaders, there
is always an interaction that eliminates one of them. So, it
remains to show that the system will eventually reach a con-
figuration, as described above, in which all other nodes in
V1 are in state f and all nodes in V2 are in state r . Clearly,
any remaining fi has a corresponding ri (if, instead, it has
an r ′ then there is an eventual interaction between them that
will convert them to f and r , respectively, so we need not
consider this case). If the fi , ri pairs are even, then each ri
will eventually meet another ri , which will make them both
r ′, and their corresponding fi s will become converted to f s
(this holds regardless of the additional ri s introduced by the
unique leader, since they always come in pairs). So, the only

case remaining to consider is the one in which there is an odd
number of ri s. In this case, however, there must also be an
odd number of fi s that have not yet informed their matched
nodes, due to the following invariant: the number of ri s plus
the number of rs with an xi matched node is always even.
So, again, eventually every ri will have another ri to interact
with.

Now, for the running time we consider three phases: the
matching formation, the leader election, and the unique-
leader replication.

The matching formation phase begins from step 1 and
ends when the last q0 becomes l, i.e., when all nodes in
V1 have been matched to the nodes of V2. It is not hard
to see that the probability of the i th edge of the match-
ing to be established (given (i − 1) established matches) is
pi = [2(n/2− i)2]/[n(n−1)] and the corresponding expec-
tation is E[Xi ] = 1/pi = Θ(n2/(n − i)2). Then similarly
to the coupon collector’s application in the running time of
Protocol Fast-Global-Line in Theorem 4 we have that the
expected running time of this phase is E[X ] = Θ(n2).

An almost identical analysis yields that the expected run-
ning time of the leader election phase is also Θ(n2).

Thus, it remains to estimate the time it takes for the unique
leader to copy every edge of E1. Given that the leader has
marked the endpoints of a particular edge of E1 then copying
and restoring the state of the leader takes on average Θ(n2)
time (as a constant number of particular interactions must
occur and each one occurs with probability 1/n2). Now we
consider the time for copying as constant and try to estimate
the time it takes for the leader to “collect” (i.e., visit andmark)
all edges of E1. Assume also that the leader is selected in
every step to interactwith one of its neighbors (the truth is that
it is selected every Θ(n) steps on average). If pe is the prob-
ability that a specific edge e is selected after two subsequent
interactions then pe � (1/n)(1/2)(1/n)(1/2) = Θ(1/n2),
where (1/n)(1/2) is the probability that the leader inter-
acts with and decides to move on one endpoint of e and
(1/n)(1/2) the probability that it then interacts with and
decides to mark the other endpoint of e. Let the r.v. Yi be
the number of steps between the (i − 1)th and i th edge
collected and pi be the probability of a success in two con-
secutive steps of the i th epoch. Clearly, pi � (n2 − i)/n2,

E[Yi ] = 1/pi = n2/(n2 − i), and E[Y ] = E[∑n2−1
i=0 Yi ] =

n2
∑n2−1

i=0 1/(n2 − i) = n2
∑n2

i=1 1/ i = Θ(n2 log n). Thus,
provided that the leader always interacts and that every copy-
ing that it performs takes constant time, the expected time
until the unique-leader replication phase ends isΘ(n2 log n).
Now, notice that on average it takes Θ(n) steps for the
leader to interact and that in half of its interactions the
leader performs a copying that takes Θ(n2) steps to com-
plete. That is, each of the above Θ(n2 log n) steps is charged
on average by n and half of them are charged by n2, i.e.,
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Table 2 All upper and lower
bounds established in Sects. 4
and 5

Protocol # states Expected time Lower bound

Simple-Global-Line 5 Ω(n4) and O(n5) Ω(n2)

Fast-Global-Line 9 O(n3) Ω(n2)

Cycle-Cover 3 Θ(n2) (optimal) Ω(n2)

Global-Star 2 (optimal) Θ(n2 log n) (optimal) Ω(n2 log n)

Global-Ring 9 Ω(n2)

2RC 6 Ω(n log n)

kRC 2(k + 1) Ω(n log n)

c-Cliques 5c − 3 Ω(n log n)

Graph-Replication 12 Θ(n4 log n)

Graph-Replication is a randomized protocol thus it concerns class PREL, while all other protocols do not
rely on randomization thus they concern REL

half of the steps are charged by Θ(n) and the other half
are charged by n2 + n = Θ(n2). We conclude that the
expected running time of the unique-leader replication phase
is Θ(n3 log n) + Θ(n4 log n) = Θ(n4 log n). This is clearly
the dominating factor of the total running time of the proto-
col. �

Table 2 summarizes all upper and lower bounds that we
established in Sects. 4 and 5.

6 Generic constructors

In this section, we ask whether there is a generic construc-
tor capable of constructing a large class of networks. We
answer this in the affirmative by presenting (i) constructors
that simulate a Turing Machine (TM) and (ii) a constructor
that simulates a distributed system with names and logarith-
mic local memories. Let us denote by l the binary length of
the input of a TM and by n the size of a population. All of
our protocols construct a random graph G on Θ(n) nodes
and use the remaining nodes (and in one case also the edges
between them) to simulate a TM on input G. Thus, due to
the fact that G is provided to the TM in adjacency matrix
encoding, in what follows it always holds that the input of
the TM has size Θ(n2), i.e., it happens that l = Θ(n2). This
allows us to use in all of our theoremsΘ(n2) in place of l and
avoid any confusion that could result by presenting them in
terms of two parameters, l and n. Moreover, it is also useful
to keep in mind that the TM can use space at most O(n2),
as this is the total distributed memory available (including
nodes and edges).

We now briefly describe the main idea behind all of our
generic constructors that simulate a TM (see also Fig. 3).
Assume that we are given a decidable graph-language L and
we are asked to provide a NET that constructs L . The NET
that we give works as follows:

To construct a decidable graph-language L.

The TM ACCEPTS

The TM
REJECTS

Output G2

Construct on k of the nodes a net-
work G1 capable of simulating a TM
and of constructing a random net-
work on the remaining n − k nodes.

Use G1 to construct a random net-
work G2 ∈ Gn−k,1/2 on the remain-
ing n − k nodes.

Execute on G1 the TM that decides
L with G2 as input.

Fig. 3 The main mechanism used by all generic constructors in this
section. The loop repeats until the TM accepts for the first time. When
this occurs, the random graph G2 constructed belongs to L and thus
the protocol may output G2. Note that this is not a terminating step.
The protocol just does not repeat the loop and thus its output forever
remains G2

1. It constructs on k of the nodes a network G1 capable of
simulating a TM and of constructing a random network
on the remaining n − k nodes. Let V1 ⊆ V be the set
of the k nodes and V2 = V \V2 the set of the remaining
n − k nodes. G1 is usually a sufficiently long line or a
bounded degree network as these networks can be oper-
ated as TMs. A line also serves as a measure of order as
we can match a line of length k with k other nodes and
by exploiting the ordering of the line we may achieve an
ordering of the other nodes.
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2. The NET exploits G1 to construct a random network on
V2. The idea is to exploit the structure of G1 so that it
can perform a random coin tossing on each edge between
nodes of V2 exactly once. In this manner, it constructs a
random networkG2 fromGn−k,1/2 on the nodes of V2 (if
required, recall the definition of the Gn,p random graph
model from a footnote of Sect. 1). It is worth noting that
all networks of Gn−k,1/2 have an equal probability to
occur and this results in an equiprobable constructor (the
only exception to this is the constructor of Theorem 17,
which doesn’t produce all networks with the same prob-
ability).

3. The NET simulates onG1 the TM that decides L withG2

as its input. The only constraint is that the space used by
the TM should be at most the space that the constructor
can allocate in G1. If the TM rejects, then the protocol
goes back to 2, that is, it draws another random network
and starts a new simulation. Otherwise, its output stabi-
lizes to G2.

6.1 Linear waste

Theorem 14 (Linear Waste-Half)
DGS(O(n)) ⊆ PREL(�n/2�). In words, for every graph
language L that is decidable by an O(n)-space TM, there is
a protocol that constructs L equiprobably with useful space
�n/2�.
Proof We give a high-level description of the protocol, call it
A. Let us begin by briefly presenting the main idea. Given a
population of size n, A partitions the population (apart from
one node when n is odd) into two equal sets U and D such
that all nodes in U are in state qu , all nodes in D are in
state qd and each u ∈ U is matched via an active edge to a
v ∈ D, i.e., there is a perfect matching between U and D
(see Fig. 4). By using the Simple-Global-Line protocol (see
Protocol 1 in Sect. 4.1) on the nodes of set U , A constructs
a spanning line in U which has the endpoints in state q1,
the internal nodes in state q2, and has additionally a unique

qu qu qu qu qu

qd qd qd qd qd

U

D

Fig. 4 The population partitioned into sets U and D. The vertical
active edges (solid) match the nodes of the two sets. The horizontal
active edges between nodes in U form a spanning line that is used to
simulate a TM. The TMwill construct the desired network on the nodes
of set D by activating the appropriate edges between them (dashed edges
that are initially inactive)

leader on some node. We should mention that, though we
use protocol Simple-Global-Line here as our reference, any
protocol that constructs a spanning line would work. Given
such a construction,A organizes the line into a TM. The goal
is for the TM to compute a graph from L and construct it on
the nodes of set D. To achieve this, the TM implements a
binary counter (log n bits long) in its memory and uses it in
order to uniquely identify the nodes of set D according to
their distance from one endpoint, say the left one. Whenever
it wants to modify the state of edge (i, j) of the network to be
constructed, it marks by a special activating or deactivating
state the D-nodes at distances i and j from the left end-
point, respectively. Then an interaction between two such
marked D-nodes activates or deactivates, respectively, the
edge between them. To compute a graph from L equiprob-
ably, the TM performs the following random experiment. It
activates or deactivates each edge of D equiprobably (i.e.,
each edge becomes active/inactive with probability 1/2) and
independently of the other edges. In thismanner, it constructs
a random graphG in D and all possible graphs have the same
probability to occur. Then it simulates on inputG the TM that
decides L inΘ(n) space to determinewhetherG ∈ L . Notice
that the n/2 space of the simulator is sufficient to decide on an
input graph encoded by an adjacencymatrix of (n/2)2 binary
cells (which are the edges ofU ). If theTMrejects, thenG /∈ L
and the protocol repeats the random experiment to produce a
new random graph G ′ and starts another simulation on input
G ′ this time. When the TM accepts for the first time, the
constructed random network belongs to L and the protocol
releases the constructed network by deactivating one after the
other the active (qu, qd) edges and at the same time updates
the state of each D-node to a special qout state. Finally,
we should point out that, whenever the global line protocol
makes progress, all edges in D are deactivated and the TM-
configuration is reinitialized to ensure that, when the final
progress is made (resulting in the final line spanning U ) the
TM will be executed from the beginning on a correct config-
uration (free of residues from previous partial simulations).

We now proceed with a more detailed presentation of the
various subroutines of the protocol.

Simulating the direction of the TM’s head We begin by
assuming that the spanning line has been constructed some-
how (we defer for the end of the proof the actual mechanism
of this construction), as in Fig. 4, and that each node has
three components (c1, c2, c3) in its state. c1 is used to store
the head of the TM, i.e., the actual state of the control of
the TM; assume that initially the head lies on an arbitrary
node, e.g., on the second one from the left as in Fig. 4.
c2 is used to store the symbol written on each cell of the
TM. c3 is l, r , t for “left”, “right”, and “temporary” respec-
tively, or � (for “empty”) and we assume that initially the left
endpoint is l, the right endpoint is r , and all internal nodes
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t t rel

rl

t r r rel

tt

l l r rele

Fig. 5 The main idea of using l and r marks to simulate the movement
of the head of a TM. The first three snapshots present the phase of the
initialization of the marks where a temporary t mark is used to move
for the first time towards an endpoint. In the fourth snapshot, after the
head has visited both endpoints, the t marks have been removed and all
nodes to the left of the head are marked l while all nodes to the right
are marked r . Additionally, the endpoints have special marks to ensure
that the head recognizes them

are�. As initially the head cannot have any sense of direction,
it moves towards an arbitrary neighbor, say w.l.o.g. the right
one, and leaves a t on its previous position. The t mark gives
to the head a sense of direction on the line. Now the head
can continue its progress towards the right endpoint by just
moving only towards the unmarked neighbor (avoiding the
one marked by t). Once the head reaches the right endpoint
for the first time, it starts moving towards the left endpoint
by leaving r marks on the way. Once it reaches the left end-
point it is ready to begin working as a TM. Now every time it
wants to move to the right it moves onto the neighbor that is
marked by r while leaving an l mark on its previous position.
Similarly, to move to the left, it moves onto the l neighbor
and leaves an r mark on its previous position. In this way,
no matter what the position of the head will be, there will be
always l marks to its left and r marks to its right, as in Fig. 5,
and the head can exploit them to move correctly. Addition-
ally, we ensure that the endpoints are in special states, e.g.,
le and re, to ensure that the head recognizes them in order to
start moving in the opposite direction.

Reading and Writing on the edges of set D We now present
the mechanism via which the TM reads or writes the state
of an edge joining two D-nodes. The TM uniquely identifies
a D-node by its distance from the left endpoint. To do this,
it implements a binary counter on log n cells of its memory.
Whenever it wants to read (write, resp.) the state of the edge
joining the D-nodes i and j , it sets the counter to i , places a
special mark on the left endpoint, and repeatedly moves the
mark one position to the rightwhile decrementing the counter
by one. When the counter becomes 0, it knows that the mark
is over the i thU -node. Now by exploiting the corresponding
active vertical edge it may assign a special mark to the i th D-
node (Fig. 6 provides an illustration). By setting the counter

le re

qd qr qd
qr

qd

U

D

1
counter

Fig. 6 Byexploiting the implemented binary counter, theTMhasman-
aged to mark the desired nodes from set D, in this case the 2nd and the
4th ones counting from left, which are now in a special “reading” state
qr . An interaction between them will read the state of the edge joining
them, which here happens to be an active one. Then the TM will read
that value from one of these two nodes, in this case from the 2nd one.
A write is implemented similarly

to j and repeating the same process, another special mark
may be assigned to the j th D-node. Now the TM waits for
an interaction to occur between the marked D-nodes i and
j . During that interaction edge (i, j) is read (written, resp.)
by the corresponding endpoints. Then, in case of a read (and
similarly for a write), the TM reads the value of the edge
that the endpoints detected, and in both cases unmarks both
endpoints resetting them to their original states.

Creating the input of the TM We now describe how the net-
work construction works. As already stated, to simplify the
description and in order to present an equiprobable construc-
tor we have allowed nodes to toss a fair coin during their
interaction. In particular, we allow transitions that with prob-
ability 1/2 give one outcome andwith probability 1/2 another.
Now before executing the simulation, the simulating proto-
col does the following. It visits one after the other the edges
of set D and on each one of them performs the following ran-
domexperiment:with probability 1/2 it activates the edge and
with probability 1/2 it deactivates it. The result of this random
process is an equiprobable construction of a random graph.
In particular, all possible graphs have the same probability
to occur. Note that the protocol can detect when all random
experiments have been performed because it can detect the
endpoints of the spanning line. For example, to visit all edges
one after the other we may: (i) place two marks on the left
endpoint; let i and j , 1 ≤ i < j ≤ n, denote the positions of
these marks on the line, (ii) for all 1 ≤ i ≤ n − 1, perform
random experiments on all i < j ≤ n by starting the right-
most mark from position i + 1 and moving it each time one
position to the right, (iii) the process stops when i becomes
n, i.e., when the leftmost mark occupies the right endpoint
(which can be detected). Thus we can safely compose the
process that draws the random graph to the process that sim-
ulates the TM. Once the random graph has been drawn, the
protocol starts the simulation of the TM.Notice that the input
to the TM is the random graph that has been drawn on the
edges of D which provide an encoding equivalent to an adja-
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cency matrix. There are (n/2)2 edges and the simulator has
available space n/2, which is sufficient for the simulation of
a Θ(n)-space TM. We now distinguish two cases, one for
each possible outcome of the simulation.

1. The TM rejects: In this case, the constructed random
graph does not belong to L . The protocol repeats the
random experiment, i.e., draws another random graph,
and starts over the simulation on the new input.

2. The TM accepts: The constructed graph belongs to L and
the protocol enters the Releasing phase (see below).

ReleasingWhen the TM accepts for the first time, the simu-
lating protocol updates the head to a special finalizing state
f . Now the head moves to the left endpoint and starts releas-
ing one after the other the nodes of set D by deactivating
the vertical edges and updating the states of the released D-
nodes to qout . Now the network constructed over the nodes
of set D is free to move in the “solution”.

It remains to resolve the following issue. In the beginning,
we made the assumptions that the population has been par-
titioned into sets U and D and that a spanning line in U has
been constructed somehow. Though it is clear that the rule
(q0, q0, 0) → (qu, qd , 1) can achieve the partitioning and
that the Simple-Global-Line protocol can construct a span-
ning line inU , it is not yet clear whether these processes can
be safely composed to the simulating process. To get a feel-
ing of the subtlety, consider the following situation. It may
happen that a small subset S of the nodes has been partitioned
into setsU ′ and D′ and thatU ′ has been organized into a line
spanning its nodes. If the nodes in S do not communicate for a
while to the rest of the network, then it is possible that a graph
is constructed in D′, which on one hand belongs to L but on
the other hand its order is much smaller than the desired n/2.
To resolve this we introduce a reinitialization phase.

Reinitialization A reinitialization phase is executed when-
ever a line on U -nodes expands (either by attracting free
nodes or by merging with another line). At that point, the
protocol “makes the assumption” that no further expansions
will occur, restores the components of the simulation to their
original values, ensures that each node in the updated set U
has a D-neighbor (as it is possible that some of them have
released their neighbors), and initiates the drawing of a new
random graph on the new set D. Though the assumption of
the protocol may be wrong as long as further expansions
of the line may occur, at some point the last expansion will
occur and the assumption of the protocol will be correct.
From that point on, the simulation will be reinitialized and
executed for the last time on the correct sets U and D. A
final point that we shouldmake clear is the following. During
reinitialization we have two options: (i) block the line from
further expansions until all components have been restored

correctly and then unblock it again or (ii) leave it unblocked
from the beginning. In the latter case, if another expansion
occurs before completion of the previous reinitialization then
another reinitialization will be triggered. However, if the two
reinitialization processes ever meet then we can always kill
one of them and restart a new single reinitialization process.
Both options are correct and equivalent for our purposes. �

We now show an interesting trade-off between the space
of the simulated TM and the order of the constructed net-
work. In particular, we prove that if the constructed network
is required to occupy 1/3 instead of half of the nodes, then the
available space of the TM-constructor dramatically increases
to O(n2) from O(n).

Theorem 15 (Linear Waste-Two Thirds) DGS(O(n2) +
O(n)) ⊆ PREL(�n/3�). In words, for every graph language
L that is decidable by a (O(n2) + O(n))-space TM, there is
a protocol that constructs L equiprobably with useful space
�n/3�.
Proof The idea is to partition the population into three equal
setsU , D, and M instead of the two sets of Theorem 14. The
purpose of sets U and D is more or less as in Theorem 14.
The purpose of the additional set M is to constitute a Θ(n2)
memory for the TM to be simulated. The goal is to exploit
the (n/3)(n/3 − 1)/2 edges of set M as the binary cells of
the simulated TM (see Fig. 7). The setU now, instead of exe-
cuting the simulation on its own nodes, uses for that purpose
the edges of set M . Reading and writing on the edges of set
M is performed in precisely the same way as reading/writing
the edges of set D (described in Theorem 14).

As everything works in precisely the same way as in The-
orem 14, we only present the subroutine that constructs the
(U, D, M) partitioning.

qu qu qu qu qu

qd qd qd qd qd

U

D

qm qm qm qm qm
M

Fig. 7 A partitioning into three equal sets U , D, and M . The line of
set U plays the role of an ordering that will be exploited both by the
random graph drawing process and by the TM-simulation. The line of
set U instead of using its Θ(n) memory as the memory of the TM it
now uses the Θ(n2) memory of set M for this purpose. Set D is again
the useful space on which the output-network will be constructed. Sets
U and M constitute the waste
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Fig. 8 An example construction of a (U, D, M) partitioning

Constructing the (U, D, M) partitioningThe rules that guar-
antee the desired partitioning into the three sets are:

(q0, q0, 0) → (q ′
u, qd , 1)

(q ′
u, q0, 0) → (qu, qm, 1)

(q ′
u, q

′
u, 0) → (qu, q

′
m, 1)

(q ′
m, qd , 1) → (qm, q0, 0)

The idea is to consider a U -node as unsatisfied as long as
it has not managed to obtain a qm neighbor. The unsat-
isfied state of a U -node is q ′

u . If a q ′
u meets a q0 then

it makes that q0 its qm neighbor and becomes satisfied.
Note that it is possible that at some point the popula-
tion may only consist of q ′

u nodes matched to D-nodes
which is not a desired outcome. For this reason, we have
allowed q ′

u nodes to be capable of making other q ′
u nodes

their qm neighbors. That is, when two q ′
u nodes interact,

one of them becomes satisfied, the other becomes q ′
m , and

the edge joining them becomes active. A q ′
m just waits

to meet its active connection to a D-node, deactivates it,
isolates the D-node by making it q0 again, and becomes
qm . For an illustration, see Fig. 8. Then, for the con-
struction of the line spanning U , we only allow satisfied
U -nodes to participate to the construction. As a satisfied
U -node never becomes unsatisfied again, this choice is
safe. �

6.2 Logarithmic waste

We now relax our requirement for simulation space in order
to reduce the waste (which, in both of the previous two the-
orems, was of the order of n).

Theorem 16 (LogarithmicWaste)DGS(O(log n)) ⊆ PREL
(n − log n). In words, for every graph language L that is
decidable in logarithmic space, there is a protocol that con-
structs L equiprobably with useful space n − log n.

Proof SketchThe protocol first constructs a spanning line. Let
us for now assume that the spanning line has been somehow
constructed by the protocol. Then the protocol exploits the
line to count the number of nodes in the network. We may
assume that counting is performed in the rightmost cells of the
line. The head visits one after the other the nodes from left to
right and for each next move it increments the binary counter
by one. When the head reaches the right endpoint, counting
stops and the binary counter will have occupied approxi-
mately log n nodes (in fact, the rightmost log n nodes). Now
the protocol releases the counter without altering its line
structure and additionally makes all remaining n − log n
nodes isolated by resetting their states and deactivating the
edges between them.

From now on, we may assume w.l.o.g. that there is a line
of log n nodes with a unique leader and with a distributed
variable containing a very good estimate of the number of
isolated nodes (for this, we just compute in the logarithmic
memory n− log n, where n was already stored in binary and
log n is the number of cells of the memory; another way to
achieve this is to stop counting when the head - moving from
left to right - reaches the first, i.e., leftmost, cell occupied by
the counter). All nodes of the memory are in a specialm state
while all remaining nodes are in some other state, e.g., f , so
the two sets are distinguishable.

Next the leader starts a random experiment in order to
construct a randomgraphon the free nodes as follows. It picks
the first free node that it sees, call it u1, activates the edge
between them and informs it to start tossing coins on each
one of the edges joining it to other free nodes. Whenever u1
tosses a coin on a new edge, it marks the corresponding node
to avoid it in the future and informs the leader to decrement
its (n − log n)-counter by 1. When the counter becomes 0,
u1 has tossed coins on all its edges, by a similar counting
process it removes all marks from the other free nodes, and
remains marked so that the leader avoids picking it again in
the future. Then the leader moves to some other free node u2,
repeatingmore or less the same process. At the same time the
leader decrements another (n−log n)-counter by one to know
when all free ui s have been picked. In this manner, a random
graph is drawn equiprobably on the set of free nodes. Next,
the leader simulates a logarithmic TM in itsmemory trying to
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decidewhether the randomgraph belongs to a given language
L or not. If so, then we are done. If not, then the TM just
repeats the random experiment and restarts the simulation.

Reinitialization Clearly, the protocol cannot know when the
line that it was initially trying to construct has become span-
ning. Due to this, after every expansion of the line it assumes
that the line has become spanning and starts counting. It is
clear that every counting process leads to the formation of a
small line with a leader (of length logarithmic in the length of
the original line) and several free nodes. The small line and its
leader are kept forever by the simulationprocess.This implies
that if there is more than one such line, they will eventually
interact and detect that their original line was not spanning.
At that point, the interacting lines may merge to form a new
line. It is clear that the only stable case is the one in which the
original line was spanning and this will eventually occur. �

6.3 No waste

Going one step further, we prove that if we sacrifice the
requirement of constructing all graphs in the language
equiprobably, then a large class of graph-families can be con-
structed with no waste.

Theorem 17 (No Waste) Let L be a graph language such
that: (i) there exists a natural number d s.t. for all G ∈ L
there is a subgraph G ′ of G, of order logarithmic in the order
of G, s.t. either G ′ or its complement is connected and has
degree upper bounded by d and (ii) L ∈ DGS(O(log n)),
i.e., L is decidable in logarithmic space. Then there is a
randomized protocol that constructs L with useful space n.

Proof Sketch As in Theorem 16, the protocol first constructs
a spanning line used to separate a subpopulation S of VI

of size approximately log n. Before deactivating the line of
T = VI \S of length n − log n the protocol first exploits
it to construct a random graph in S of active or inactive
degree (choosing randomly between these) upper bounded
by d (note that d is finite and thus it is known in advance
by the protocol). Then the line of T organizes the bounded-
degree graph of S into a TM M (which is feasible due to
the fact that the degree is bounded; see Theorem 7 of [1]) of
logarithmic space with a unique leader on some node. Next
M draws (more or less as in Theorem 16) a random graph
on the edges of EI \E[S], i.e., on all edges apart from those
between the nodes of S (to prevent destroying the structure
of the TM). Note that, in order for the TM to be able to dis-
tinguish the nodes of S, the protocol has all these nodes in a
special state that is not present in T . Observe now that, in this
manner, the protocol has constructed on VI a random graph
from those having a connected subgraph of logarithmic order
and degree upper bounded by d. It remains to verify whether
the one constructed indeed belongs to L . To do this, M sim-

ulates the TM N that decides L in logarithmic space. If N
accepts, then we are done (given that the final reinitialization
has occurred, as in the previous theorems). If N rejects, then
M builds another line in T that repeats the whole process,
i.e., draws a new random graph in S and so on.

Observe that this construction has an important difference
from the previous ones. The TM does not work on a separate
part of the population, which will be then thrown away as
waste. It works on a part of the input graph that it tries to
decide. Still the graph can be processed more or less as in
Theorem 16. The only difference is that now the TM also
takes into account the edges that involve at least one node in
S. This can be easily achieved by using separate components,
in the states of the nodes of S, for the simulation and the
reading of the input (while, on the other hand, nodes outside
S need only have a reading component). �

The above protocol constructs everyG ∈ L with non-zero
probability but not all graphs in L have the sameprobability to
be constructed. For example, if a graph G1 has more distinct
subgraphs satisfying condition (i) of the theorem than a graph
G2, then the random bounded-degree graph constructed by
the protocol is more often a subgraph of G1 than it is of G2.
Therefore we cannot claim that L ∈ PREL(n) (the latter was
erroneously reported in [28]). We leave this as an interesting
open problem.

Remark 1 If the graph-property L (in any of the above
results) happens to occur with probability at least 1/ f (n),
where f (n) is polynomial on n, in the Gn,1/2 random graph
model, then its corresponding generic constructor runs in
polynomial expected time. Connectivity is such an example
as everyG ∈ Gn,Θ(log n/n) is almost surely connected and the
same holds for every G ∈ Gn,1/2 (hamiltonicity is another
example).

Remark 2 All of the above generic results, but the last one,
have been proved for PREL. The reason is that we have
exploited aminimal internal randomness of the nodes in order
to be able to draw random graphs (equiprobably). The only
exception was Theorem 17, which does not concern PREL,
however, it also relies on the use of internal randomness.Note
that in REL we can again construct a sufficiently long line
(as our protocols for global line are inREL, since they do not
use internal randomness) and exploit it as a space-bounded
TMof the following sort: on input g(n) (i.e., the size, in num-
ber of nodes, of the useful space) the TM outputs a graph of
order g(n). By exploiting such graph-constructing TMs we
can again construct a possibly large class of networkswithout
giving to our protocols access to randomization. For exam-
ple, it could be a TM, that on every input i ∈ N constructs
(deterministically, and without any random experiment) a
ring (or a clique or a planar graph) of size i . Alternatively,
we could simulate the internal randomness of the nodes by
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marking half of the nodes as 0 and the other half as 1. Then
the current probabilistic choice of a node would depend on
whether its previous interaction was with a node marked 0
or with a node marked 1 (this is not 100% equiprobable but
it can be made so by other simple tricks).

6.4 Constructing and simulating supernodes with
logarithmic memories

We now show that a population consisting of n nodes can be
partitioned into k supernodes each consisting of log k nodes,
for the largest such k. The internal structure of each supern-
ode is a line, thus it can be operated as a TM of memory
logarithmic in the total number of supernodes. This amount
of storage is sufficient for the supernodes to obtain unique
names and exploit their names and their internal storage to
realize nontrivial constructions. We are interested in the net-
works that can be constructed at the supernode abstraction
layer. The following theorem establishes that such a con-
struction is feasible and presents a network constructor that
achieves it.

Theorem 18 (Partitioning into Supernodes) For every net-
work G that can be constructed by k nodes having local
memories �log k� and unique names there is a NET that con-
structs G on n = k�log k� nodes.
Proof We present a NET A that when executed on n nodes
it is guaranteed to organize the nodes into k lines of length
�log k� each for the maximum k for which k�log k� ≤ n. We
assume a unique pre-elected leader in the initial configuration
of the system andwewill soon show how to drop this require-
ment. Assume also for simplicity that n ≥ 8 (this is again
not necessary). The protocol operates in phases. Variable j
denotes the current phase number, r denotes the number of
new lines that should be constructed in the current phase,
and a is a line counter. We assume that the leader has some-
how already created 4 lines of length 2 each (note that here
we count the length of a line in terms of its nodes). One of
them is the leader’s line. Also the left endpoint of the leader’s
line is directly connected to the left endpoints of the other
3 lines. In fact, all these assumptions are trivial to achieve.
Initially j ← 2. All variables are stored by the leader in the
distributed memory of its line.

– A new phase starts when the leader manages to increase
by one the length of its line by attaching an isolated node
its right endpoint. When this occurs, the leader sets j ←
j+1, r ← 2 j−1, and a ← 2. A phase is divided into two
subphases: the Increment existing lines subphase and the
Create new lines subphase.

– Increment existing lines: Initially, all existing lines,
excluding the leader’s line, are marked as unvisited.

While a ≤ r the leader visits an unvisited line and
tries to increment its length by one by attaching an
isolated node to its right endpoint. When it succeeds,
it marks the line as visited, sets a ← a+1 and returns
to its own line. When this subphase ends all existing
lines have length j . Then the leader sets a ← 1 and
the Create new lines subphase begins.

– Create new lines: While a ≤ r the leader becomes
connected to an isolated node, it marks that node as
the left endpoint of the new line and then starts creat-
ing the new line node-by-node, by attaching isolated
nodes to its right. It stops increasing the length of the
new line when it becomes equal to the length of its
own line. This can be easily implemented by a mark
on the leader’s line that moves one step to the right
every time the length of the new line increases by
one. The new line has the right length when the mark
reaches the right endpoint of the leader’s line. When
this subphase ends there is a total of 2r = 2 j lines
of length j each and the leader is directly connected
to the left endpoint of each one of them. Then the
leader waits again to increase its own length by one
and when this occurs a new phase begins.

Naming We now show that it is not hard to keep the con-
structed lines named (in fact there are various strategies for
achieving this). Initially, the leader has 4 lines of length 2 each
and we may assume that these are uniquely named 0, 1, 2, 3
in binary, that is, every line has its name stored in its own
memory. During a phase, the leader keeps a variable cname
storing the current name to be assigned, initially 0. When-
ever the leader increases the length of an existing line (during
the increment subphase) or creates a new line (during the
create subphase) it assigns to it cname in binary and sets
cname ← cname + 1. Clearly, at the end of phase j the
lines are uniquely named 0, 1, . . . , 2 j − 1.

Electing the leader We now show how to circumvent the
problem of not having initially a unique pre-elected leader.
In fact, as we will soon discuss, the solution we develop may
serve as a generic technique for simulating protocols that
assume a pre-elected leader. Initially all nodes are leaders
in state l0. Rule (l0, l0, 0) → (l, q0, 0) eliminates one of the
two l0 leaders and converts the other to l. These l leaders start
executing the above protocol by attaching q0 and l0 nodes to
their construction. Each l leader executes the protocol on its
own constructed component until it meets another l leader.
When this occurs, one of the two ls becomes w. The goal
of a w leader is to revert its whole component to a set of
isolated nodes in state q0 (itself inclusive). Note that a leader
can easily revert a single line by beginning from the right
endpoint and releasing one after the other the nodes until it
reaches the left endpoint.
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The generic idea (that works for other constructions as
well) is that in order to release a node it suffices to know
its degree. Then the only possible difficulty in our case is
the fact that the left endpoint of the leader’s line may be
connected to a non-constant number of other endpoints. To
resolve this, the leader exploits the fact that it can count in
its line’s memory the number of lines. When the reversion
process begins, the leader knows the number of lines, that
is, it knows also the degree of the left endpoint of its line.
Whenever it reverts another line it decreases the counter by
one. So, when the counter becomes equal to 1, it knows that
the only remaining line is its own line, thus it knows that
when it comes to release the last two nodes of its own line
(i.e., during the interaction between the left endpoint and the
other remaining node of the line) it should make both q0
as there is no other reversion to be performed. This is quite
important as it guarantees that reverting does not introduce
waste. Note that if the reversion process could not determine
its completion then every such reversion would result in a
node remaining forever in statew. Such zombiews cannot be
exploited by other leaders in their constructions, as allowing
a leader to attach a w would introduce conflicts between
constructing and reverting processes.

ReinitializationNote that the simulated protocol that con-
structs G assuming memories and names must be executed
from the beginning, because protocol A, that gives the orga-
nization into lines, is not terminating, so the two protocols
must be composed in parallel. It suffices to have every line
remember the number of active edges that it has to other lines.
Then, whenever a new phase begins (implying that what has
been constructed so far by the simulated protocol is not valid),
each line deactivates one after the other all those edges and
starts the simulation over.

The only drawback is that the above protocol retains for-
ever the connections between the left endpoint of the leader’s
line and the left endpoints of the other lines. However, if
we agree that the output-network of the protocol is the one
induced by the active edges joining the right endpoints of
lines then this is not an issue. Additionally, it should not be
that hard to circumvent this subtlety by having the leader
periodically release the constructed lines and reattracting
them only in case it manages to increase the length of one of
them. �

Many network construction problems are substantially
simplified given the supernodes with names and memories.
For a simple example, consider the problem of partitioning
the nodes into triangles. This construction is quite hard to
achieve in the original setting without a leader, however,
given the supernodes it becomes trivial. Each supernode with
id i checks whether its id is a multiple of 3 and, if it is, it con-
nects to id (i + 2), otherwise it connects to id (i − 1). This
is a totally parallel and thus a very efficient solution.

Finally, the above approach introduces the idea of con-
structing disjoint stable structures and then looking at those
structures from a higher level and considering them as units
(supernodes). It is then challenging, interesting, and valuable
to understand how these units behave,what is the dependence
of their behavior to their internal structure and configuration,
what is the outcome of an interaction between two such units,
and what are their constructive capabilities. In fact, one can
imagine a whole hierarchy of such layers where nodes self-
assemble into supernodes, supernodes self-assemble into
supersupernodes, and so on. Formalizing this hierarchy is
a very promising and totally open research direction.

7 Conclusions and further research

There are many open problems related to the findings of the
present work. Though our universal constructors show that
a large class of networks is in principle constructible, they
provide neither the simplest nor the most efficient protocol
for each single network in the class. To this end, we have pro-
videddirect constructors for someof themost basic networks,
but there are still many other constructions to be investi-
gated like grids or planar graphs. Moreover, a look at Table 2
makes it evident that there is even more work to be done
towards the probabilistic analysis of protocols and in partic-
ular towards the establishment of tight bounds. Of special
interest is the spanning line problem as it is a key component
of universal construction. All of our attempts to give a pro-
tocol asymptotically faster than O(n3) have failed. Observe
that with a pre-elected leader in state l and all edges initially
inactive, the straightforward protocol (l, q0, 0) → (q1, l, 1)
produces a stable spanning line in an expected number of
Θ(n2 log n) steps (follows from the meet everybody funda-
mental process). Moreover, by a one-to-one elimination we
can elect a unique leader in an expected number of Θ(n2)
steps. If we could safely compose these two protocols, then
we would obtain a Θ(n2 log n) constructor which is almost
optimal as our present best lower bound for the spanning line
isΩ(n2). The problem is that the protocol cannot detectwhen
the leader-election phase has completed, thus it has to activate
edges while still having more than one leader but this gives
an overhead for either merging the constructed disjoint lines
or deactivating some wrong connections. A possible solu-
tion could be to consider Monte Carlo protocols that may err
with some small probability, e.g., a protocol that would try
somehow to estimate when w.h.p. the leader-election phase
completes and only then start the line construction phase.

We should mention that there is an improvement (which
is also supported by experimental evidence) to the Fast-
Global-Line protocol, however it is not yet clear whether
this improvement is also an asymptotic one. The code of the
improvement is given in Protocol 10.
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Protocol 10 Faster-Global-Line

Q = {q0, q1, q2, q, l, f }
δ:

(q0, q0, 0) → (q1, l, 1)

(l, q0, 0) → (q2, l, 1)

(l, q, 0) → (q2, l, 1)

(l, l, 0) → (l, f, 0)

( f, q2, 1) → (q, f, 0)

( f, q1, 1) → (q, q, 0)

As in our previous protocols for the problem, many lines
grow in parallel. When the leaders of two lines interact, one
of them becomes a follower f . The follower starts deac-
tivating its own line, releasing its nodes, while the l that
survived does not change its behavior. Observe the contrast
to the Fast-Global-Line protocol: in that protocol sleeping
lines could only lose nodes by interacting with awake lead-
ers, while now sleeping lines keep releasing their own nodes
to make them available to the awake leaders. Eventually, a
single l will remain and all other lines will have an f . It
could be the case that the parallel releasing of the nodes of
the f -lines allows the l leader to be able to rapidly expand
towards free nodes and it would be really valuable to have
a formal analysis of the running time of this variation. Also
observe that the description of this protocol is rather simpler
than the description of Fast-Global-Line.

One of the problems that we considered in this work, was
the problem of constructing any k-regular network. Note that
this is a quite different problem than the problem of con-
structing a specific k-regular network. For example, given a
population of 10 processes is there a protocol that stabilizes
to the Petersen graph? In general, it is worth considering non-
uniform protocols that when executed on the correct number
of nodes are required to construct a unique network like the
cubical graph or the Wagner graph on 8 processes.

Another very intriguing issue has to do with the size of
network constructors. In particular, we would like to know
whether there is some generic lower bound on the size of all
constructors, to give problem-specific lower bounds, and to
formalize the apparent relationship between the size and the
running time of a protocol. Is there some sort of hierarchy
showing thatwithmore stateswecanproduce faster protocols
(until optimality is obtained)?

To this end, observe that neither the maximum degree nor
the number of different degrees of the target-network are
lower bounds on the number of states required to construct
the network. For the former, it is not hard to show that Θ(x)
states suffice to make a node obtain 2x neighbors (stably).
The idea is to have a node initially obtain 2 neighbors and
then repeatedly double their number. For the latter, one can
show that Θ(x) states suffice to have 2x nodes with different

degrees (stably) and in particular for all i ∈ {1, . . . , 2x } we
obtain a node with degree i . The idea is to mark a set of 2x

nodes as before and construct a line spanning these nodes.
Then the protocol assigns to the i th node of the line, count-
ing, e.g., from the left endpoint, i neighbors. This can be done
by using only a constant number of states. The head begins
from the left endpoint and moves step-by-step on the line
towards u. For every step it takes it assigns to u a new neigh-
bor and stops when it reaches u. In this manner, it assigns to
u a number of neighbors equal to its distance from the end-
point without having to explicitly count the distance. Is there
some other property of the target-network that determines
the number of states that have to be used?

It is also worth noting that our results on universal con-
struction indicate that the constructive power increases as a
function of the available waste. A complete characterization
of this dependence would be of special value.

There is also a practically unlimited set of variations of
the proposed model that are worth considering. We mention
a few of them. As already discussed, in this work we have
considered a model of network construction with as minimal
assumptions as possible to serve as a simple and clear starting
point for more applied models to be defined. We now intro-
duce such a model which seems to be of particular interest.
Assume that every node is equipped with a predefined num-
ber of ports at specific positions of its “body”. For example,
in the 2-dimensional case these could be “North”, “South”,
“East”, “West” having the obvious angles between them.
Nodes interact via their ports and they can detect which of
their ports are used in an interaction. Moreover, when a con-
nection is activated, it is always activated at a predetermined
distance (i.e., all connections have the same length d) and it
is always a straight line respecting the angles between itself
and the (potentially active) lines of the other ports of the same
node. Such a model (and possible variations of it, depend-
ing on the assumed hardware) seems particularly suitable for
studying/designing very simple and local distributed proto-
cols that are capable of constructing stable geometric objects
(even in three dimensions), like squares, cubes, or more com-
plex polyhedra, without any mobility-control mechanism (a
first attempt towards this direction is [26]).

Another immediate extension of our model is to allow the
connections to have more than just the two states that we
considered in this work. Recall also that, whenever we had
to analyze the running time of a protocol, we did it under
the uniform random scheduler, mainly because we wanted
to keep this first model of network construction as simple as
possible and because of its correspondence to a well-mixed
solution. However, there are many other natural probabilistic
scheduling models to be considered which would probably
require different algorithmic developments and techniques
to achieve efficiency. It is also natural to consider a variant
in which connected nodes communicate much faster (even
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in synchronous rounds) than disconnected nodes. Moreover,
it would be interesting to consider a model of network con-
struction in which the behavior of a node depends on some
input from the environment (this would allow the consid-
eration of codes that exhibit different behaviors in different
environments). The model in which a connected component
has access to a self-bit indicating whether a given interac-
tion involves two nodes of the same component or not, also
seems interesting and natural. It is not yet clear whether
this extra assumption increases the constructive power of
the model but it is clear that it substantially simplifies the
description of several protocols. It would also be of its own
value to depart from cooperative models and consider an
antagonistic scenario in which different sets of nodes try to
construct different networks (by deterministic codes and not
game-theoretic assumptions involving incentives). It would
be interesting to discover cases inwhich the antagonism leads
to unexpected stable formations.

Finally, a very valuable and challenging interdisciplinary
goal is to further investigate and formalize the apparent
applicability of the model proposed here (and potential vari-
ations of it) in physical and chemical (possibly biological)
processes. As already stated, we envision that a potential use-
fulness of such models is to unveil the algorithmic properties
underlying the structure/network formation capabilities of
natural processes.
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