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Abstract Twomobile agents, starting from different nodes
of a network at possibly different times, have to meet at the
same node. This problem is known as rendezvous. Agents
move in synchronous rounds. Each agent has a distinct
integer label from the set {1, . . . , L}. Two main efficiency
measures of rendezvous are its time (the number of rounds
until themeeting) and its cost (the total number of edge traver-
sals). We investigate tradeoffs between these two measures.
A natural benchmark for both time and cost of rendezvous
in a network is the number of edge traversals needed for vis-
iting all nodes of the network, called the exploration time.
Hence we express the time and cost of rendezvous as func-
tions of an upper bound E on the time of exploration (where
E and a corresponding exploration procedure are known to
both agents) and of the size L of the label space. We present
two natural rendezvous algorithms. Algorithm Cheap has
cost O(E) (and, in fact, a version of this algorithm for the
model where the agents start simultaneously has cost exactly
E) and time O(EL). Algorithm Fast has both time and
cost O(E log L). Our main contributions are lower bounds
showing that, perhaps surprisingly, these two algorithms cap-
ture the tradeoffs between time and cost of rendezvous almost
tightly.We show that any deterministic rendezvous algorithm
of cost asymptotically E (i.e., of cost E + o(E)) must have
timeΩ(EL). On the other hand, we show that any determin-
istic rendezvous algorithmwith time complexity O(E log L)

must have cost Ω(E log L).
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1 Introduction

1.1 Background

Two autonomousmobile entities, called agents, starting from
different nodes of a network, have to meet at the same node.
Thiswell-researcheddistributed task is knownas rendezvous.
These mobile entities might represent human-made objects,
such as software agents in computer networks or mobile
robots navigating in a network of corridors in a mine. They
might also be natural, such as people who want to meet in
an unknown city whose streets form a network. The purpose
of meeting might be to exchange data previously collected
by the agents, or to coordinate future network maintenance
tasks, for example checking functionality of websites or of
sensors forming a network.

1.2 Model and problem description

The network is modeled as an undirected connected graph
with n nodes. We seek deterministic rendezvous algorithms
that do not rely on perceiving node identifiers, and therefore
can work in anonymous graphs as well (cf. [5]). The reason
for designing such algorithms is that, even when nodes have
distinct identifiers, agents may be unable to perceive them
because of limited sensory capabilities (e.g., a mobile robot
may be unable to read signs at corridor crossings), or nodes
may be reluctant to reveal their identifiers to software agents,

1 A different way of counting time and cost (under which our results
still hold) is discussed in Sect. 4
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e.g., due to security or privacy reasons. Note that, if nodes
had distinct identifiers visible to the agents, the agents might
explore the graph andmeet at the nodewith the smallest iden-
tifier, hence rendezvous would reduce to graph exploration.

On the other hand, we assume that, at each node v,
each edge incident to v has a distinct port number from
{0, . . . , d − 1}, where d is the degree of v. These port num-
bers are visible to the agents. Port numbering is local to each
node, i.e., there is no relation between port numbers at the two
endpoints of an edge. Note that in the absence of port num-
bers, edges incident to a node would be undistinguishable
for agents and thus rendezvous would be often impossible,
as an adversary could prevent an agent from taking some
edge incident to the current node, and this edge could be a
bridge to the part of the network where the other agent is
located. Security and privacy reasons for not revealing node
identifiers to software agents are irrelevant in the case of port
numbers, and port numbers in the case of a mine or labyrinth
can bemade implicit, e.g., bymarking one edge at each inter-
section (using a simple mark legible even by a mobile robot
with very limited vision), considering it as corresponding to
port 0, and all other port numbers increasing clockwise.

Agents are initially located at different nodes of the graph
and traverse its edges in synchronous rounds. They cannot
mark visited nodes or traversed edges in any way, and they
cannot communicate before meeting. The adversary wakes
up each of the agents, possibly in different rounds. Each agent
starts executing the algorithm in the round of its wake-up. It
has a clock that ticks at each round and starts at the wake-
up round of the agent. In each round, each agent decides
to either remain at the current node, or to choose a port in
order to move to one of the adjacent nodes. When an agent
enters a node, it learns the node’s degree and the port of entry.
When agents cross each other on an edge while traversing it
simultaneously in different directions, they do not notice this
fact.

Each agent has a distinct integer label from a fixed label
space {1, . . . , L}, which it can use in its execution of the
deterministic algorithm that both agents execute. It does not
know the label nor the starting round of the other agent.
Notice that, since we study deterministic rendezvous, the
absence of distinct labels precludes the possibility of meet-
ing in highly symmetric networks, such as rings or tori, for
which there exist non-trivial port-preserving automorphisms.
Indeed, in such networks, identical agents starting simul-
taneously and executing the same deterministic algorithm
in a distributed way will never meet, since they will be at
different nodes in every round. In other words, assigning dif-
ferent labels to agents is the only way to break symmetry,
as is needed to meet in every network using a determin-
istic algorithm. On the other hand, if agents knew each
other’s identities, then the smaller-labelled agent could stay
idle, while the other agent would try to find it. In this case

rendezvous reduces to graph exploration. Assuming such
knowledge, however, is not realistic, as agents are often cre-
ated independently in different parts of the network and they
know nothing about each other prior to meeting.

The rendezvous is defined as both agents being at the same
node in the same round. Two main efficiency measures of a
rendezvous algorithm are its time (the number of rounds from
the start of the earlier agent until the meeting) and its cost
(the total number of edge traversals by both agents before
rendezvous).2 We investigate tradeoffs between these mea-
sures of rendezvous performance. A natural benchmark for
both time and cost of rendezvous in a network is the time of
exploration of this network by a single agent, i.e., the worst-
case number of edge traversals needed for visiting all nodes
of the network, taken over all starting nodes. Indeed, this is a
lower bound on both the time and the cost of rendezvous: an
adversary can impose a large delay on one of the agents and
place it at the node last explored by the other agent. Even for
simultaneous start, there are many networks for which the
best exploration time is a lower bound on rendezvous time
and cost. (One such example is oriented rings.) Hence we
assume that some upper bound E on the time of exploration
starting at any node of the graph is known to the agents, and
that an agent knows how to explore the graph in time at most
E , starting at any node of the graph.

We express the time and cost of rendezvous as functions
of E and the size L of the label space. In the Sect. 4, we
comment on the situation when no upper bound E is known
to the agents. For given parameters E and L , we say that a
deterministic rendezvous algorithm works at a cost at most
C and in time at most T , if, for any two agents whose distinct
labels are from the label space {1, . . . , L} and whose initial
positions are arbitrary distinct nodes in a graph that can be
explored by a single agent in time E , the agents meet after a
total of at most C edge traversals and after at most T rounds
since the start of the earlier agent.

A remark is in order about the value of E and how it is
calculated. If only an upper bound m on the size of the net-
work is known, then the best known estimate of the time
of a (log-space constructible) exploration is Reingold’s [44]
polynomial estimate R(m) based on universal exploration
sequences (UXS); see also [2,19] for solutions not log-space
constructible. The situation improves significantly if each
agent has a map of the graph with unlabeled nodes, labeled
ports, and the agent’s starting position marked. In this case,
depth-first-search can be performed in time at most 2n − 3,
so E can be taken as 2n−3, which is the optimal exploration
time in networks such as the star (a tree of diameter 2). How-
ever, for some graphs a better bound E can be found. For
example, if the graph has a Hamiltonian cycle, then E can
be taken as n − 1. If the graph has an Eulerian cycle, then E
can be taken as e − 1, where e is the number of edges. Next,
suppose that each agent has a port-labeled map, but without
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a marked starting position. In this case, the agent identifies
on the map a DFS traversal of the graph, starting from each
node and returning to the same node. Each DFS is a sequence
of length 2n−2 of ports (we consider the port by which each
node of the traversal should be exited). From its initial posi-
tion, the agent “tries” each DFS one after another. In each
attempt, the agent aborts the exploration if a prescribed port
is not available at the current node, and returns to the starting
node. One of the attempts correctly visits all nodes, as it is a
DFS corresponding to the actual starting node of the agent,
so E can be taken to be n(2n − 2). In our study we consider
E to be a parameter available to both agents, together with
the corresponding exploration procedure, regardless of the
particular scenario and of the sharpness of this bound.

As far as the memory of the agent is concerned, the most
demanding part of our algorithms is the underlying graph
exploration. Hence, the way in which an exploration of time
at most E is performed has a decisive impact on the size of
thememory required. If the agent knows only an upper bound
m on the size of the graph and relies on a UXS to make the
exploration, then exploration requires only O(logm) bits of
memory (this is the main result of [44]) but the upper bound
E is then fairly large, i.e., a high-degree polynomial in m. If
the agent is given as input aDFSwalk, coded as a sequence of
port numbers, starting and ending at its starting node, then the
memory required to record this walk is of size O(n log n), but
the bound E is then sharper. If, given a port-labeledmapof the
graph with a marked starting node, the agent has to discover
an efficient exploration walk by itself, then recording this
map is memory-consuming, i.e., up to O(n2 log n) bits. In
particular cases, e.g., when the underlying graph is a ring of
size n, only �log n� bits of memory are needed to record n,
and E can be made as tight as possible, i.e., n − 1. However,
regardless of the scenario used to organize exploration, the
rest of our algorithms does not require much memory: as
will be seen, it is enough to have simple counters that can be
implemented with O(log E + log L) memory bits.

1.3 Our results

First, recall that the cost of every rendezvous algorithm is
at least E and the time is at least Ω(E log L), even for the
class of rings [26] (for which E = n − 1). We present two
natural rendezvous algorithms that achieve optimal cost and
time, respectively, up to multiplicative constants. Algorithm
Cheap has cost O(E) and time O(EL). Algorithm Fast
has both time and cost O(E log L). These algorithms work
for arbitrary connected graphs and arbitrary starting times of
the agents. In fact, a version of Algorithm Cheap has cost
exactly E for the model where the agents start simultane-
ously.Ourmain contributions are lower bounds showing that,
perhaps surprisingly, these two algorithms achieve nearly
optimal tradeoffs between the time and cost of rendezvous.

These lower bounds hold even in a scenario very favourable
for potential rendezvous algorithms, i.e., for oriented rings
of known size and with simultaneous start. We show that
any deterministic rendezvous algorithm with time complex-
ityO(E log L)must have costΩ(E log L).Hence, ifwewant
to be as fast as Fast, we cannot be cheaper. On the other
hand, we show that any deterministic rendezvous algorithm
of cost asymptotically E (i.e., of cost E + o(E)) must have
time Ω(EL). Hence, in the model with simultaneous start,
if we want to be as cheap as Cheap, we cannot be faster.

It is natural to ask if it is possible to solve rendezvous
both at cost o(E log L), i.e., beating the cost of Algo-
rithm Fast, and in time o(EL), i.e., beating the time
of Algorithm Cheap. It turns out that the answer to this
question is “yes”. Indeed, we provide an algorithm called
FastWithRelabeling that works at cost O(E) and in
time o(EL). Moreover, this shows a separation between the
time necessary to solve rendezvous at cost asymptotically
E , i.e., at cost E + o(E), and the time sufficient to solve
rendezvous at cost Θ(E). In the first case, the lower bound
Ω(EL) on time holds, while in the second it does not.

1.4 Related work

Exploration and rendezvous are the two main tasks accom-
plished by mobile agents in networks modeled as graphs.
Algorithms for graph exploration by mobile agents (often
called robots) have been intensely studied in recent liter-
ature. A lot of research is concerned with the case of a
single agent exploring a labeled graph. In [1,16,17,23,31]
the agent explores strongly-connected directed graphs. In
a directed graph, an agent can move only in the direction
from tail to head of a directed edge, not vice versa. In par-
ticular, [23] investigates the minimum time of exploration
of directed graphs, and [1,31] give improved algorithms for
this problem in terms of the deficiency of the graph (i.e.,
the minimum number of directed edges to be added to make
the graph Eulerian). Many papers, e.g., [6,27,30,41] study
the scenario where the explored graph is labeled and undi-
rected, and the agent can traverse edges in both directions.
In [41], it is shown that a graph with n nodes and e edges
can be explored in time e + O(n). In some papers, addi-
tional restrictions on the moves of the agent are imposed. It
is assumed that the agent has either a restricted tank [12,18],
forcing it to periodically return to the base for refueling, or
that it is tethered, i.e., attached to the base by a rope or cable
of restricted length [30]. In [27], the authors investigate the
problem of how the availability of a map influences the effi-
ciency of exploration. In [2], the authors proved the existence
of a polynomial-time deterministic exploration for all graphs
with a given bound on size. In [44], a log-space construction
of such an exploration was shown.
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In all the above papers, except [17], exploration is per-
formed by a single agent. Deterministic exploration by many
agents has been investigated mostly in the context when
the moves of the agents are centrally coordinated. In [35],
approximation algorithms are given for the collective explo-
ration problem in arbitrary graphs. In [10,11], the authors
construct approximation algorithms for the collective explo-
ration problem in weighted trees. On the other hand, in [33],
the authors study the problem of distributed collective explo-
ration of trees of unknown topology. In [28], exploration of
arbitrary networks by many anonymous agents is investi-
gated, while in [25], this task is studied for labeled agents
and labeled nodes.

The problem of rendezvous has been studied both under
randomized and deterministic scenarios. An extensive survey
of randomized rendezvous in various models can be found
in [5], cf. also [3,4,7,14,36]. Deterministic rendezvous in
networks has been surveyed in [42]. Several authors consid-
ered geometric scenarios (rendezvous in an interval of the
real line, e.g., [14,15], or in the plane, e.g., [8,9]). Gathering
more than two agents was studied, e.g., in [32,36,40,46].

For the deterministic settingmany authors studied the fea-
sibility and time complexity of rendezvous. For instance,
deterministic rendezvous of agents equipped with tokens
used tomark nodes was considered, e.g., in [39]. Determinis-
tic rendezvous in rings by labeled agents, without the ability
to mark nodes, was investigated, e.g., in [26,37]. In [26], the
authors gave tight upper and lower bounds of Θ(D log �)

on the time of rendezvous when agents start simultane-
ously, where D is the initial distance between agents and
� is the smaller label. They also gave a lower bound of
Ω(n + D log �) on the time of rendezvous with arbitrary
delay between the agents’ starting times in n-node rings. In
[37] an upper bound O(n log �) on the time of rendezvous
was given, evenwithout knowledge of n.Most relevant to our
work are the results about deterministic rendezvous in arbi-
trary graphs, when the two agents cannot mark nodes, but
have unique labels [26,37,45]. In [26], the authors present
a rendezvous algorithm whose running time is polynomial
in the size of the graph, in the length of the shorter label
and in the delay between the starting times of the agents. In
[37,45], rendezvous time is polynomial in the first two of
these parameters and independent of the delay between the
starting times.

Memory required by the agents to achieve deterministic
rendezvous was studied in [34] for trees and in [21] for gen-
eral graphs. Memory needed for randomized rendezvous in
the ring is discussed, e.g., in [38].

Apart from the synchronous model used in this paper,
several authors investigated asynchronous rendezvous in the
plane [20,32] and in network environments [13,22,24,29].
In the latter scenario, the agent chooses the edge to traverse,
but the adversary controls the speed of the agent. Under this

assumption, rendezvous at a node cannot be guaranteed even
in very simple graphs. Hence the rendezvous requirement is
relaxed to permit the agents to meet inside an edge.

2 Algorithms

In this section we present three rendezvous algorithms:
Algorithm Cheap, Algorithm Fast, and Algorithm Fast
WithRelabeling (s) for any function s(L) ≤ L . In each
case, we first describe the algorithm in the easier case of
simultaneous start, give a general formulation for arbitrary
starting times of the agents, prove its correctness, and estab-
lish its time and cost complexities.

Assume that each agent X is given a distinct label �X
from the set {1, . . . , L}. Let EXPLORE be a procedure that,
for every possible starting node, takes E rounds to perform
an exploration of the entire input graph. If the exploration
is completed earlier, the agent waits after finishing it until a
total of E rounds have elapsed. Upon meeting, both agents
stop.

We start with the description of a version of Algorithm
Cheap for the model where the agents start simultaneously.
Agent X waits (�X −1)E rounds and then explores the graph
once.

To see why this works, assume, without loss of generality,
that �A < �B . Then, agent B waits at its starting node in
rounds {1, . . . , (�B − 1)E} ⊇ {1, . . . , �AE}, and agent A
explores the entire graph in rounds {(�A−1)E+1, . . . , �AE}.
Therefore, agent Ameets agent B at its starting node by round
�AE . Thus, rendezvous is achieved in at most �E rounds,
where � is the smaller label. In theworst case this is (L−1)E .
Since atmost one exploration is performed, the cost is atmost
E .

In the general case of arbitrary starting times of the agents,
Algorithm Cheap is described as follows.

Algorithm 1 Cheap(�,EXPLORE)
1: Execute EXPLORE once
2: Wait 2�E rounds
3: Execute EXPLORE once

Proposition 1 AlgorithmCheap completes rendezvouswith
cost at most 3E and in time at most (2L + 1)E.

Proof Suppose that agent A starts its execution in round 1
and that agent B starts its execution in round τ for some
τ ≥ 1. From the algorithm’s specification, we can deduce
the following:

– Agent A’s first exploration (i.e., Line 1) starts in round
1 and ends in round E , its waiting period (i.e., Line 2)
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starts in round E + 1 and ends in round (2�A + 1)E ,
and its second exploration (i.e., Line 3) starts in round
(2�A + 1)E + 1 and ends in round (2�A + 2)E .

– Agent B’s first exploration starts in round τ and ends in
round τ + E − 1, its waiting period starts in round τ + E
and ends in round τ + (2�B + 1)E − 1, and its second
exploration starts in round τ + (2�B + 1)E and ends in
round τ + (2�B + 2)E − 1.

First, observe that, if B’s start is significantly delayed, then
agent A meets agent B during agent A’s first exploration of
the graph. Namely, if τ > E , then the agents meet within the
first E rounds.

So, in what follows, we assume that τ ≤ E . Since 1 ≤
τ ≤ E , B’s second exploration occurs completely within the
time segment [(2�B + 1)E + 1, . . . , (2�B + 3)E − 1].

If �A > �B , then A’s waiting period ends in round
(2�A+1)E ≥ (2(�B+1)+1)E = (2�B+3)E .Also, note that
A’s waiting period starts in round E + 1 ≤ �B E + 1. There-
fore, agent A is idle throughout the time segment [�B E +
1, . . . , (2�B+3)E] ⊇ [(2�B+1)E+1, . . . , (2�B+3)E−1].
Hence, agent B meets agent A by round (2�B + 3)E − 1.

If �B > �A, then B’s waiting period ends in round τ +
(2�B+1)E−1 ≥ τ+(2�A+3)E−1.Also, B’swaitingperiod
starts in round τ + E ≤ τ + �AE . Since 1 ≤ τ ≤ E , B is
idle throughout the time segment [τ + �AE, . . . , τ + (2�A +
3)E − 1] ⊇ [(�A + 1)E, . . . , (2�A + 3)E]. However, A’s
second exploration occurs during the time segment [(2�A +
1)E+1, . . . , (2�A+2)E)] ⊆ [(�A+1)E, . . . , (2�A+3)E].
Hence, agent A meets agent B by round (2�A + 2)E .

Thus, Algorithm Cheap completes rendezvous using at
most (2� + 3)E rounds, where � is the smaller label. In the
worst case, this is (2L+1)E . Since themeeting occurs before
the start of the second exploration of the agent with the larger
label, the total cost of the algorithm is at most 3E . �	

Next, in order to describe Algorithm Fast, we recall
the label transformation from [29]. If x = (c1 . . . cr ) is
the binary representation of the label � of an agent, define
the modified label of the agent to be the sequence M(�) =
(c1c1c2c2 . . . cr cr01). Note that, for any distinct x and y, the
sequence M(x) is never a prefix of M(y). Also, M(x) 
=
M(y) if x 
= y. Since the (original) labels of the agents are
different, there exists an index for which their transformed
labels differ. Note that if z = 1 + �log �� is the length of
the binary representation of the label � of the agent, then
m = 2z + 2 is the length of its modified label.

We describe Algorithm Fast, first in the case of simulta-
neous start. Suppose that (b1 . . . bm) is the transformed label
of an agent. In the time segment [(i−1)E+1, i E], the agent
executes EXPLORE if bi = 1, and, otherwise, the agent stays
idle.

To see why this works, consider any two agents A and B,
and let SA and SB denote their transformed labels, respec-
tively. Consider the smallest index j such that SA[ j] 
=
SB[ j]. Without loss of generality, assume that SA[ j] = 1
and SB[ j] = 0. It follows that, during the time segment
[( j − 1)E + 1, . . . , j E], agent A explores the entire graph
while B is idle. Therefore, agent A meets agent B by round
j E . Hence theworst possible time is (2�log(L−1)�+4)E =
O(E log L). The cost is bounded above by twice the time,
hence it is also O(E log L).

In the general case of arbitrary starting times Algorithm
Fast is described as follows.

Algorithm 2 Fast(�,EXPLORE)
1: S[1 . . .m] ← M(�)

2: T [1 . . . 2m + 1] ← (1, S[1], S[1], S[2], S[2], . . . , S[m], S[m])
3: for i = 1 to 2m + 1 do
4: if (T [i] = 1) then
5: execute EXPLORE once
6: else
7: wait E rounds
8: end if
9: end for

Proposition 2 Algorithm Fast completes rendezvous with
cost at most (8 log (L − 1) + 18)E and in time at most
(4 log (L − 1) + 9)E.

Proof As the cost is bounded above by twice the time, it is
sufficient to analyze time. Consider any two agents A and B.
For each agent X , let SX = M(�X ), and letm be the length of
SX . Let TX be the string of length 2m+1 such that TX [1] = 1,
and, for each i ∈ {2, . . . ,m}, TX [2i] = TX [2i + 1] = SX [i].

Suppose that agent A starts its execution in round 1 and
that agent B starts its execution in round τ for some τ ≥ 1.
First, observe that, if B’s start is significantly delayed, then
agent A meets agent B during agent A’s first exploration of
the graph. Namely, if τ > E , then the agents meet within the
first E rounds. So, in what follows, we assume that τ ≤ E .
Consider the smallest j such that SA[ j] 
= SB[ j].

First, suppose that SA[ j] = 0. It follows that TA[2 j] =
TA[2 j + 1] = 0, so A is idle during the time segment [(2 j −
1)E + 1, . . . , (2 j + 1)E]. Also, TB[2 j] = 1, so B performs
procedure EXPLORE starting in round (2 j−1)E+τ +1 and
ending in round 2 j E + τ . Since 0 ≤ τ ≤ E , this execution
of EXPLORE is completely contained in the time segment
[(2 j − 1)E + 1, . . . , (2 j + 1)E]. Therefore, B meets A by
round (2 j + 1)E .

Next, suppose that SA[ j] = 1. It follows that TB[2 j] =
TB[2 j + 1] = 0, so B is idle during the time segment [(2 j −
1)E + τ + 1, . . . , (2 j + 1)E + τ ]. Since 0 ≤ τ ≤ E , this
interval contains the time segment [2 j E+1, . . . , (2 j+1)E].
Also, TA[2 j + 1] = 1, so A performs procedure EXPLORE
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starting in round 2 j E + 1 and ending in round (2 j + 1)E .
Therefore, A meets B by round (2 j + 1)E .

Hence, the two agents meet by round (2 j + 1)E , and
thus, the worst possible time is (4�log(L − 1)� + 9)E ∈
O(E log L). �	

The worst-case cost of Algorithm Fast occurs when the
binary representation of an agent’s label has largeweight, i.e.,
has many 1’s. We can reduce the cost if we relabel the agents
in such away that all labels have small weight. Thismotivates
the following algorithm called FastWithRelabeling.

For any function w : N −→ N such that w(L) ≤ L , we
define Algorithm FastWithRelabeling(w) as follows.
Let t be the smallest positive integer such that

( t
w(L)

) ≥ L .
For any set A ⊂ {1, . . . , t}, the characteristic function χA :
{1, . . . , t} −→ {0, 1} is defined by χA(i) = 1 if and only if
i ∈ A. Each characteristic function χA yields a t-bit binary
string sA where the i’th bit of sA is equal to χA(i). We say
that a set A ⊂ {1, . . . , t} is lexicographically smaller than a
set B ⊂ {1, . . . , t} if sA is lexicographically smaller than sB .
Each agent X is assigned the lexicographically �X th smallest
w(L)-subset of {1, . . . , t}, and its new label �′

X is taken to
be the t-bit binary string corresponding to the characteristic
function of this set. Then, Algorithm Fast is executed with
the new labels.

Proposition 3 Algorithm FastWithRelabeling(w)

completes rendezvous with cost at most (2 · w(L))E and
in time at most (4t + 5)E, where t is the smallest positive
integer such that

( t
w(L)

) ≥ L.

Proof We note that, for two distinct agents A and B, we have
�′
A 
= �′

B . This is because �A 
= �B , and, by the choice of
t , there are at least L subsets of {1, . . . , t} of size w(L), so
A and B are assigned distinct subsets of {1, . . . , t}. Using
the same proof of correctness and worst-case time analysis
as Algorithm Fast, with labels of fixed length t instead of
length at most 1 + log (L − 1), it follows that Algorithm
FastWithRelabeling correctly solves rendezvous in
time at most (4t+5)E . To analyze the cost, we note that each
label has exactly w(L) 1’s, so the combined cost incurred by
the two agents is at most (2 · w(L))E . �	

The following corollary shows thatAlgorithmFastWith
Relabeling(w), for constant functions w(L) = c where
c > 1, solves rendezvous at cost O(E) and in time o(EL).

Corollary 1 For any positive integer function w ∈ O(1),
Algorithm FastWithRelabeling(w) works with cost
O(E) and in time O(L1/w(L)E).

Proof Let w(L) = c for some positive constant integer c.

Let t ′ = c · L1/c. Then
( t ′
w(L)

) = (c·L1/c

c

) ≥
(
c·L1/c

c

)c = L .

Therefore, t ≤ t ′ = c ·L1/c. By Proposition 3, the worst-case

time of Algorithm FastWithRelabeling(w) is at most
(4c · L1/c + 5)E ∈ O(L1/w(L)E), and the worst-case cost is
at most 2cE ∈ O(E). �	

3 Lower bounds

In order to make our lower bounds as strong as possible, we
show that they hold even in a very restricted situation: when
the underlying graph is particularly simple and the agents
have full knowledge of it. A ring is oriented if every edge
has port labels 0 and 1 at the two end-points. Such a port
labeling induces orientation of the ring: at each node, we will
say that taking port 0 is going clockwise and taking port 1 is
going counterclockwise. Throughout this section, we assume
that agents operate in an oriented ring of size n known to the
agents. Hence, in this case, E is taken as n − 1: starting
from any node an agent can explore the ring going n − 1
steps clockwise. This is, of course, an optimal exploration.
Moreover, we assume that both agents start simultaneously,
i.e., their clock values are equal in each round. Even in this
scenario, which is very favourable to potential rendezvous
algorithms, we establish lower bounds proving that our algo-
rithms Cheap and Fast capture the time vs. cost tradeoffs
for rendezvous almost tightly.

In our lower bound proofs, we use the following termi-
nology. For simplicity, an agent with label x will be called
agent x . Consider a rendezvous algorithm A. Consider two
arbitrary agents x, y and two arbitrary nodes px , py in the
oriented ring of size n. We denote by α(x, px , y, py) the
execution of algorithm A in which x starts at node px and y
starts at node py . The final round of α(x, px , y, py), denoted
by |α(x, px , y, py)|, is the first round in which x and y meet.
In a slight abuse of notation, we denote by α(x, px ,⊥,⊥)

the solo execution of A, i.e., when x executes the algorithm
alone, starting at node px . Note that the behaviour of agent x
in an execution α(x, px , y, py) is the same as its behaviour
in execution α(x, px ,⊥,⊥) until round |α(x, px , y, py)|.

For each label x ∈ {1, . . . , L}, algorithm A specifies a
behaviour vector Vx . In particular, Vx is a sequence with
terms from {−1, 0, 1} that specifies, for each round i of the
solo execution of agent x , whether agent x moves clock-
wise (denoted by 1), remains idle (denoted by 0), or moves
counter-clockwise (denoted by −1). Note that an agent’s
behaviour vector is independent of its starting position, since
an agent cannot determine where on the ring it is initially
positioned.

We now describe a procedure Trim(A) which modifies
the behaviour vectors specified byA. At a high level, we are
zeroing the entries that the algorithm never uses so that, if
we show the existence of a non-zero entry in round number
i of some behaviour vector, then there is an execution of the

123



Time versus cost tradeoffs for deterministic rendezvous in networks 57

algorithm that takes at least i rounds. Specifically, for each
x ∈ {1, . . . , L}:

1. Find the maximum value of |α(x, px , y, py)|, taken over
all y ∈ {1, . . . , L} \ {x} and nodes px , py . Denote this
maximum by mx .

2. For all j > mx , set Vx [ j] = 0.

Note that this does not change any non-solo execution ofA:
any modified entry in Vx corresponds to a round that occurs
after x has met with any other agent. Also, after performing
this trimming operation, for any non-zero entry Vx [i], there
exists an agent y and there exist starting positions for x and
y such that x and y have not met by round i and agent x
moves during round i .Weobtain lower bounds on the running
time (or cost) of A by proving lower bounds on the length
(or weight) of behaviour vectors resulting from procedure
Trim(A).

Our first lower bound shows that no rendezvous algorithm
of cost asymptotically E (i.e., of cost E+o(E)), can beat the
time Θ(EL) of Algorithm Cheap. (Recall that Algorithm
Cheap always has cost O(E) and it has cost exactly E in a
model with simultaneous start.)

Theorem 1 Any deterministic rendezvous algorithm of cost
E + o(E) must have time Ω(EL).

Proof Let A be a rendezvous algorithm such that, for some
ϕ ∈ o(E), for every pair of agent labels, and for every pair
of starting positions of the agents, rendezvous is completed
at cost at most E + ϕ. As previously explained, instead of
behaviour vectors of algorithm A, we consider behaviour
vectors resulting from procedure Trim(A).

For any execution α, let seg(x, α) be the segment of the
ring that agent x explores during execution α, and denote by
|seg(x, α)| the number of edges in this segment.

During any particular round of an execution α, we can
determine on which ‘side’ of its starting position the agent is
currently situated.More specifically, in any round i ofα, if the
prefix of an agent’s behaviour vector up to round i has at least
as many (resp. at most as many)−1’s as 1’s, then we say that
the agent is on its counterclockwise side (resp. clockwise side)
in round i . Let seg−1(x, α) be the segment of the ring that
agent x explores while on its counterclockwise side during
executionα, anddenote by |seg−1(x, α)| the number of edges
in this segment. Similarly, let seg1(x, α) be the segment of
the ring that agent x explores while on its clockwise side
during execution α, and denote by |seg1(x, α)| the number
of edges in this segment. Note that seg(x, α) = seg1(x, α)∪
seg−1(x, α), hence we have |seg(x, α)| ≤ |seg1(x, α)| +
|seg−1(x, α)|.

Note that |seg−1(x, α(x, px ,⊥,⊥))| and |seg1(x, α(x,
px ,⊥,⊥))| do not depend on the choice of px , since, in

a solo execution, the agent’s behaviour is the same regard-
less of its starting node. If |seg−1(x, α(x, px ,⊥,⊥))| ≥
|seg1(x, α(x, px ,⊥,⊥))|, we say that agent x is counter-
clockwise-heavy.Otherwise,we say that agent x is clockwise-
heavy. Without loss of generality, we assume that at least half
of the agents are clockwise-heavy, and we proceed by con-
sidering only the clockwise-heavy agents.

For any agent x and for any node px , let f orward(x)
be the number of edges in seg1(x, α(x, px ,⊥,⊥)) and let
back(x)be thenumber of edges in seg−1(x, α(x, px ,⊥,⊥)).
Since we consider only clockwise-heavy agents, we have
back(x) ≤ f orward(x). For any agent x and any execution
α, let cost (x, α) be the number of edge traversals performed
by x during execution α.

Fact 1 Consider two agents A, B and two nodes pA, pB
such that |seg(A, α(A, pA, B, pB))| + |seg(B, α(A, pA,

B, pB))| < E. Then, for some node p′
B, during the first

|α(A, pA, B, pB)| rounds of α(A, pA, B, p′
B), the segments

seg(A, α(A, pA, B, p′
B)) and seg(B, α(A, pA, B, p′

B)) are
disjoint.

If the nodes are labeled 0, . . . , n − 1 in the clockwise direc-
tion, then choosing p′

B = pA+ f orward(A)+1+back(B)(

mod n) verifies the above fact.

Fact 2 For any agent A and any node pA, cost (A, α(A, pA,

⊥,⊥)) ≥ 2back(A) + f orward(A).

To see why, note that, in a solo execution, agent A must visit
all edges in seg(A, α(A, pA,⊥,⊥)). To do so, there must
be a round in which A returns to pA after reaching one of the
endpoints of seg(α(A, pA,⊥,⊥)). Therefore, A must visit
all of the edges in seg−1(α(A, pA,⊥,⊥)) = back(A) at
least twice, or all of the edges in seg1(α(A, pA,⊥,⊥)) =
f orward(A) at least twice. By assumption, back(A) ≤
f orward(A), which implies the fact.

Fact 3 For any agent A, back(A) ≤ ϕ.

We prove this fact by contradiction. Assume that, for
some agent A, back(A) > ϕ. Recall, from the trim-
ming of algorithm A, that mA is defined to be the max-
imum value of |α(A, px , y, py)|, taken over all y ∈
{1, . . . , L} \ {A} and nodes px , py . Choose pA, B, pB such
that |α(A, pA, B, pB)| = mA. Let α = α(A, pA, B, pB),
and let αA = α(A, pA,⊥,⊥).

In the trimmed version of A, VA[i] = 0 for all i > mA.
Therefore, A’s behaviour is identical in both α and αA.
In particular, this implies that cost (A, α) = cost (A, αA)

and seg(A, α) = seg(A, αA). By Fact 2, it follows that
cost (A, α) = 2back(A)+ f orward(A)+δ for some δ ≥ 0.
Also, since |seg(A, αA)| ≤ |seg1(A, αA)|+|seg−1(A, αA)|,
it follows that |seg(A, α)| ≤ back(A) + f orward(A).
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Next, note that |seg(B, α)| ≤ cost (B, α). Further, since
the combined costs incurred by A and B in execution α are at
most E + ϕ, we get that cost (B, α) ≤ E + ϕ − cost (A, α).
Thus, |seg(B, α)| ≤ E + ϕ − 2back(A) − f orward(A) −
δ. It follows that |seg(A, α)| + |seg(B, α)| ≤ E + ϕ −
back(A) − δ. By assumption, ϕ − back(A) < 0, so we get
that |seg(A, α)| + |seg(B, α)| < E .

By Fact 1, there is a node p′
B such that, if we exe-

cute α(A, pA, B, p′
B) for mA rounds, then the set of edges

traversed by A and the set of edges traversed by B are
disjoint. It follows that A and B do not meet during the
first mA rounds of execution α(A, pA, B, p′

B). By the def-
inition of mA, there is no choice of px , y, py such that
|α(A, px , y, py)| > mA. Therefore, A and B do not meet in
execution α(A, pA, B, p′

B), which contradicts the correct-
ness of A. This completes the proof of Fact 3.

Starting with an arbitrary node, label the nodes of the ring
using the integers 0, . . . , n − 1, ascending in the clockwise
direction. This is for analysis only: the agents do not have
access to any node labeling. For any execution α involving
an agent A, let disp(A, α) = ∑|α|

j=1 VA[ j]. In other words,
disp(A, α) is the displacement of agent A in the clockwise
direction at the end of executionα. The following fact follows
from this definition.

Fact 4 For any execution α involving an agent A,−back(A)

≤ disp(A, α) ≤ f orward(A).

Let F = �E/2�. For any execution α involving agents
A and B, we say that an agent A is eager if disp(A, α) ≥
disp(B, α) + F .

Fact 5 Consider any two agents A, B. In the execution
α(A, 0, B, F), exactly one of A or B is eager.

To see why, first note that it cannot be the case that both A
and B are eager. Next, if neither agent is eager, then, at the
end of the execution, the number of edges that separate A
and B is at least F −|disp(A, α)− disp(B, α)| > 0, which
contradicts rendezvous. This completes the proof of the fact.

A directed graph G is a tournament if, for each pair of
distinct vertices a, b ∈ V (G), exactly one of (a, b) or (b, a)

is an edge in E(G). We construct a tournament graph T with
� L
2 � vertices, as follows. First, assign to each vertex in T a

unique label from the set of clockwise-heavy agents. Next,
for each pair of vertices A, B in T , with A < B, we add
a directed edge between A and B whose tail is the eager
agent in α(A, 0, B, F). By Fact 5, this operation is well-
defined. Every tournament graph has a directed Hamiltonian
path [43]. Let (A1, . . . , A� L

2 �) be the sequence of agent labels
encountered along one such path. For each i ∈ {1, . . . , � L

2 �−
1}, let αi = α(min{Ai , Ai+1}, 0,max{Ai , Ai+1}, F). This
definition ensures that αi is the execution that was used to
define the directed edge (Ai , Ai+1) in the tournament graph.

Fact 6 For each i ∈ {1, . . . , � L
2 � − 1}, disp(Ai+1, αi ) ≤

(F + ϕ)/2.

In order to prove this fact, note that Ai is the eager agent in
execution αi . Therefore, disp(Ai , αi ) ≥ disp(Ai+1, αi ) +
F . It follows that the total cost incurred by the two agents
in execution αi is at least disp(Ai , αi ) + disp(Ai+1, αi ) ≥
2disp(Ai+1, αi )+F . Thus, 2disp(Ai+1, αi )+F ≤ E+ϕ ≤
2F +ϕ, so disp(Ai+1, αi ) ≤ (F +ϕ)/2. This completes the
proof of the fact.

Fact 7 For each i ∈ {1, . . . , � L
2 � − 1}, |αi+1| > |αi |.

In order to prove this fact, assume, for the purpose of
contradiction, that we have |αi+1| ≤ |αi |. Since Ai+1

is eager in execution αi+1, we have disp(Ai+1, αi+1) ≥
disp(Ai+2, αi+1) + F , and, by Facts 3 and 4, it follows
that disp(Ai+1, αi+1) ≥ F − ϕ. By the assumption that
|αi+1| ≤ |αi |, it follows that at time |αi+1| in execution
αi , agent Ai+1 has a positive (clockwise) displacement of
at least F − ϕ, and it incurred a cost of at least F − ϕ.
Since Ai is eager in execution αi , and the initial distance
between the two agents is F , it follows that the two agents
incur an additional cost of (F − ϕ) + F during execu-
tion αi in order for rendezvous to occur. Hence, the total
cost incurred by both agents in execution αi is at least
2(F − ϕ) + F = 3F − 2ϕ > 2F + ϕ ≥ E + ϕ, a con-
tradiction.

Fact 8 For each i ∈ {1, . . . , � L
2 � − 1}, |αi | ≥ i( F−3ϕ

2 ).

We prove this fact by induction on i . For the base case, note
that, in execution α1, the time needed for rendezvous is at
least F/2, hence |α1| ≥ F/2 ≥ F−3ϕ

2 .
Next, as induction hypothesis, assume that for some i ∈

{1, . . . , � L
2 � − 2}, |αi | ≥ i

(
F−3ϕ

2

)
. Consider the execu-

tion αi+1. From Fact 6, disp(Ai+1, αi ) = ∑|αi |
j=1 VAi+1[ j] ≤

(F +ϕ)/2. However, in execution αi+1, agent Ai+1 is eager,
so

∑|αi+1|
j=1 VAi+1[ j] = disp(Ai+1, αi+1) ≥ disp(Ai+2,

αi+1)+F . By Facts 3 and 4, disp(Ai+2, αi+1)+F ≥ F−ϕ.
So, we have shown that F − ϕ ≤ ∑|αi+1|

j=1 VAi+1 [ j] =
[∑|αi |

j=1 VAi+1 [ j]] + [∑|αi+1|
j=|αi |+1 VAi+1[ j]] ≤ [(F + ϕ)/2] +

[∑|αi+1|
j=|αi |+1 VAi+1[ j]]. (Note that the above decomposition of

the sum into two sub-sums is possible in view of Fact 7). It
follows that

∑|αi+1|
j=|αi |+1 VAi+1[ j] ≥ F−3ϕ

2 , so |αi+1|− |αi | ≥
F−3ϕ

2 . Finally, by the induction hypothesis, we get that

|αi+1| = (|αi+1|−|αi |)+|αi | ≥ (i+1)( F−3ϕ
2 ). This proves

Fact 8 by induction.
Fact 8 implies that execution α� L

2 �−1 lasts at least (� L
2 � −

1)
(
F−3ϕ

2

)
∈ Ω(EL) rounds. �	

Our second lower bound shows that no rendezvous algo-
rithm of time complexity of Algorithm Fast can beat the
cost complexity of this algorithm.
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Theorem 2 Any deterministic rendezvous algorithm with
time O(E log L) must have cost Ω(E log L).

Proof Let A be a rendezvous algorithm such that for every
pair of agent labels, and for every pair of starting positions
of the agents, rendezvous is completed in at most cE log L
rounds, for some constant c > 0. Our goal is to prove that
there exists an execution in which the total combined cost
incurred by the agents is in Ω(E log L).

Instead of behaviour vectors of algorithm A, we con-
sider behaviour vectors resulting from procedure Trim(A).
Recall, from the trimming of algorithmA, thatmx is defined
to be the maximum value of |α(x, px , y, py)|, taken over all
y ∈ {1, . . . , L} \ {x} and all nodes px , py . Further, in agent
x’s trimmed behaviour vector, all entries aftermx have value
0.

Starting with an arbitrary node, label the nodes of the ring
using the integers 0, . . . , n − 1, ascending in the clockwise
direction. This is for analysis only: the agents do not have
access to any node labeling. For simplicity, assume that n is
divisible by 6. The proof can be modified in the general case.
Partition the set of nodes into 6 equal-sized sectors: for each
j ∈ {0, . . . , 5}, let Pj be { j ( n6 ), . . . , ( j + 1)( n6 ) − 1}. For
ease of notation, it will be assumed that all subscripts of sec-
tors are taken modulo 6. Next, let L ′ = �6c log L�, and, for
each integer i ∈ {1, . . . , L ′}, we defineblock Bi to be the time
interval [(i−1)( n6 )+1, . . . , i( n6 )]. For each agent x , let B(x)
be the block that contains roundmx . Since there are L distinct
agent labels and L ′ < L blocks, it follows from the Pigeon-
hole Principle that there exist at least � = �L/L ′� agents
x1, . . . , x� such that B(x1) = · · · = B(x�). Let M ≤ L ′ be
the index of the block that contains mx1, . . . ,mx�

. In what
follows, we only consider agents from the set {x1, . . . , x�}.

Since the number of nodes in a sector is equal to the num-
ber of rounds in a block, we observe that the segment of
the ring explored by an agent during a single block cannot
contain nodes from three different sectors. This implies the
following fact about which nodes an agent may visit during
a given block.

Fact 9 If agent x is located in a sector Pj at the beginning
of a block Bi , then, in all rounds from the beginning of block
Bi until the beginning of block Bi+1, x is never located at a
node outside of Pj−1 ∪ Pj ∪ Pj+1.

We now define an aggregate behaviour vector for x ,
denoted by Aggx,px , that describes x’s movement in execu-
tion α(x, px ,⊥,⊥) during each of the blocks B1, . . . , BM .
At the beginning of an arbitrary block Bi , suppose that agent
x is located at a node in Pj for some j ∈ {0, . . . , 5}. By
Fact 9, at the beginning of block Bi+1, agent x is located at
a node in Pj−1 ∪ Pj ∪ Pj+1. For each i ∈ {1, . . . , M}, we
define Aggx,px [i] to be z ∈ {−1, 0, 1} if x is located at a node

in Pj+z at the beginning of block Bi+1. Note that, for any
choice of nodes px , p′

x such that px ≡ p′
x ( mod n

6 ), we get
Aggx,px = Aggx,p′

x
. In particular, this implies the following

useful fact.

Fact 10 For any agent y, Aggy,0 = Aggy, n2 .

For any integer-valued vector V , define surplus(V ) =
∑length(V )

i=1 V [i]. For a vector V , we write V [a . . . b] to
denote the part of the vector V between positions a and b,
inclusive.

The following fact gives a necessary condition on the
aggregate vectors of agents that can meet.

Fact 11 Consider any distinct agents x, y and any fixed
i,m ∈ {1, . . . , M} such that i ≤ m. Suppose that, at the
beginning of block Bi during the execution α(x, 0, y, n

2 ),
agent x is located at a node in Pj and agent y is
located at a node in Pj+3. If, for all k ∈ {i, . . . ,m},
|surplus(Aggx,0[i . . . k])| ≤ 1 and |surplus(Aggy,0[i . . .
k])| ≤ 1, then agents x and y do not meet in the time interval
between the beginning of block Bi and the beginning of block
Bm+1.

To prove this fact, note that, since |surplus(Aggx,0[i . . . k])|
≤ 1 for all k ∈ {i, . . . ,m}, it follows that, in all rounds after
the beginning of block Bi until the end of block Bm , x is not
located at a node outside of Pj−1 ∪ Pj ∪ Pj+1 = Pj+5 ∪
Pj ∪ Pj+1. Next, by Fact 10, we have Aggy,0 = Aggy, n2 ,
so surplus(Aggy,0[i . . . k]) = surplus(Aggy, n2 [i . . . k]) for
all k ∈ {i, . . . ,m}. Since |surplus(Aggy,0[i . . . k])| ≤ 1
for all k ∈ {i, . . . ,m}, it follows that, at all times after the
beginning of block Bi until the end of block Bm , agent y is
not located at a node outside of Pj+2 ∪ Pj+3 ∪ Pj+4. So,
during blocks Bi , . . . , Bm of execution α(x, 0, y, n

2 ), agents
x and y are never located at the same node. This completes
the proof of Fact 11.

We now define a progress vector for each agent x , denoted
by Progx,px . At a high level, an agent x’s progress vector
keeps track of each time that x takes a “significant” number
of steps more in one direction than in the other. Essentially,
our goal is to zero out the entries of x’s aggregate behav-
iour vector that amount to x oscillating back and forth on the
ring without making sufficient progress towards the other
agent. More formally, a node x’s progress vector Progx,px
is obtained from its aggregate behaviour vector Aggx,px in
the following way. First, if every prefix of Aggx,px has sur-
plus of absolute value at most 1, then Progx,px is defined to
be the zero-vector of length M . This means that x is essen-
tially idle and waiting for the other agent to come meet it.
Otherwise, when there is a prefix of Aggx,px that has sur-
plus of absolute value 2, then the smallest such prefix pre
is chosen. Next, the ‘significant’ non-zero entries are found,
i.e., entries that actually contribute to the large surplus. More
formally, consider the case where surplus(pre) = 2 (the

123



60 A. Miller, A. Pelc

case where surplus(pre) = −2 is symmetric) and sup-
pose that x is initially located at a node in Pj . We determine
the last block Ba during which x moves from Pj to Pj+1,
and, the first block Bb during which x moves from Pj+1 to
Pj+2. Note that, by definition, b = length(pre). Then, we
set Progx,px [i] = Aggx,px [i] for each i ∈ {a, b}, and set
Progx,px [i] = 0 for each i ∈ {1, . . . , length(pre)} \ {a, b}.
The rest of Progx,px is calculated by repeating the above
process on the remaining part of the aggregate behaviour
vector, i.e., on Aggx,px [length(pre)+1 . . . M]. A complete
description is provided in the following pseudocode.

Algorithm 3 DefineProgress(Agg)
1: Prog ← 0-vector of length M
2: s ← 1
3: loop
4: if (s > M) OR |surplus(Agg[s . . . k])| ≤

1 for all k ∈ {s, . . . , M} then
5: % Case 1: no surplus with absolute value at least 2
6: % We don’t preserve any remaining entries from Agg
7: return Prog
8: else
9: % Case 2: there exists a prefix such that surplus has absolute

value 2
10: % Find the 2 “significant” entries to preserve from Agg
11: b ← smallest i ≥ s such that

|surplus(Agg[s . . . i])| = 2
12: a ← smallest integer in {s, . . . , b} such that,

for all i ∈ {a, . . . , b}, |surplus(Agg[s . . . i])| ≥ 1
13: set Prog[a] and Prog[b] equal to Agg[b]
14: s ← b + 1
15: end if
16: end loop

In the construction of Progx,0, consider an arbitrary iter-
ation j of the loop. We denote by s j the value of s at the
beginning of iteration j , and we denote by a j and b j the
values of a and b, respectively, at the end of iteration j . In
what follows, we will use the following invariants about the
construction of Progx,0.

Fact 12 For an arbitrary loop iteration j before the final
one, we have s j ≤ a j < b j < s j+1.

To see why this is true, we first note that a j is chosen
from the range {s j , . . . , b j }. It cannot be the case that
a j = b j , since |surplus(Agg[s j . . . b j ])| = 2 > 1 =
|surplus(Agg[s j . . . a j ])|. The last inequality holds since,
at the end of the loop, s j+1 is set to b j + 1.

Fact 13 At line 13, Agg[a] = Agg[b] = Prog[b] =
Prog[a] 
= 0.

To see why this is true, it is sufficient to consider the case
where surplus(Agg[s . . . b]) > 0 and prove that Agg[a] =
Agg[b] = 1 (in the casewhere this surplus is negative, a simi-
lar proof shows that Agg[a] = Agg[b] = −1.) From line 11,

b is the smallest index≥s such that surplus(Agg[s . . . b]) =
2. Clearly, b > s since, otherwise, surplus(Agg[s . . . b]) =
Agg[s] ∈ {−1, 0, 1}. Further, if Agg[b] ∈ {−1, 0}, then
surplus(Agg[s . . . b − 1]) ≥ surplus(Agg[s . . . b − 1]) +
Agg[b] = surplus(Agg[s . . . b]) = 2, which contradicts
the minimality of b. So, we conclude that Agg[b] = 1. Next,
from line 12 and the fact that surplus(Agg[s . . . b]) = 2,
a is the smallest index in the range {s, . . . , b} such that, for
all i ∈ {a, . . . , b}, surplus(Agg[s . . . i]) ≥ 1. If a = s,
then Agg[a] = surplus(Agg[s . . . a]) ≥ 1, which implies
that Agg[a] = 1. If a > s and Agg[a] ∈ {−1, 0}, then
surplus(Agg[s . . . a − 1]) ≥ surplus(Agg[s . . . a − 1]) +
Agg[a] = surplus(Agg[s . . . a]) ≥ 1, which contradicts
theminimality of a. So, we conclude that Agg[a] = 1, which
completes the proof of Fact 13.

Our next goal is to show that progress vectors of differ-
ent agents must be distinct. This is not immediately clear
because, in the construction of progress vectors, distinct
aggregate behaviour vectors can bemapped to equal progress
vectors. The following technical result will be used to show
that the entries of an agent’s aggregate behaviour vector that
got converted to zeroes in the agent’s progress vector actually
do not contribute to the completion of rendezvous.

Fact 14 Consider any agent x, and consider any integers
i1 ≤ i2 in {1, . . . , M} such that Progx,0[i1 . . . i2] is a maxi-
mal sequence of 0’s in Progx,0. Then,

1. for each i ∈ {i1, . . . , i2}, |surplus(Aggx,0[i1 . . . i])| ≤
1, and,

2. if i2 
= M, surplus(Aggx,0[i1 . . . i2]) = 0.

To prove this fact, consider any i1 ≤ i2 in {1, . . . , M}
such that Progx,0[i1 . . . i2] is a maximal sequence of 0’s in
Progx,0. In the construction of Progx,0, there exists an iter-
ation j such that either:

1. i1 = s j , i2 = a j − 1, or,
2. i1 = a j + 1, i2 = b j − 1, or,
3. i1 = s j , i2 = M .

If i1 = s j and i2 = a j −1, Fact 12 implies that i1 ≤ i2 < b j .
So, by the minimality of b j , for each i ∈ {i1, . . . , i2}, we
have |surplus(Aggx,0[i1 . . . i])| ≤ 1. Also, by the mini-
mality of a j , |surplus(Aggx,0[s j . . . a j − 1])| < 1, that is,
surplus(Aggx,0[i1 . . . i2]) = 0.

If i1 = a j + 1 and i2 = b j − 1, note that, by the choice of
a j , |surplus(Aggx,0[s j . . . i])| ≥ 1 for all i ∈ {i1−1, . . . i2}.
Also, by the minimality of b j , |surplus(Aggx,0[s j . . . i])| ≤
1 for all i ∈ {i1 − 1, . . . , i2}. Therefore, for all i ∈ {i1 −
1, . . . , i2}, we have |surplus(Aggx,0[s j . . . i])| = 1. So, for
an arbitrary i ∈ {i1, . . . , i2}, |surplus(Aggx,0[s j . . . i])| = 1
and |surplus(Aggx,0[s j . . . i − 1])| = 1, which implies that
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Aggx,0[i] ∈ {−2, 0, 2}. We conclude that Aggx,0[i] = 0 for
all i ∈ {i1, . . . , i2}. It follows that surplus(Aggx,0[i1 . . . i])
= 0 for all i ∈ {i1, . . . , i2}.

If i1 = s j and i2 = M , then we must have reached Case 1
in loop iteration j . It follows that |surplus(Aggx,0[i1 . . . i])|
≤ 1 for each i ∈ {i1, . . . , i2}. This completes the proof of
Fact 14.

We now show that, in order to meet in every execution,
agents must have distinct progress vectors.

Fact 15 For any distinct agents x, y, if Progx,0 = Progy,0,
then x and y do not meet in execution α(x, 0, y, n

2 ).

To establish this fact, it is sufficient to prove the following
statement:

for all i ∈ {1, . . . , M}, if
– i = 1 or Progx,0[i − 1] 
= 0, and,
– at the beginning of a block Bi of execution

α(x, 0, y, n
2 ), for some j ∈ {0, . . . , 5}, x is at a

node in Pj and y is at a node in Pj+3, and,
– Progx,0[i . . . M] = Progy,0[i . . . M],

then x and y do not meet after the beginning of block
Bi of execution α(x, 0, y, n

2 ).

We prove this statement by induction on the number k
of non-zero entries in Progx,0[i . . . M], for arbitrary i ∈
{1, . . . , M}. The base case of the induction is for k = 0.
For an arbitrary i ∈ {1, . . . , M}, suppose that the three
conditions of the statement hold. Then, Progx,0[i . . . M]
and Progy,0[i . . . M] are sequences of consecutive 0’s
in Progx,0 and Progy,0, respectively. Since i = 1 or
Progx,0[i − 1] 
= 0, these sequences are maximal. So, by
Fact 14, every prefix of Aggx,0[i . . . M] and every prefix of
Aggy,0[i . . . M] have surpluses with absolute value at most
1. By Fact 11, x and y do not meet in execution α(x, 0, y, n

2 )

after the beginning of block Bi .
As induction hypothesis, assume that, for all i ∈ {1, . . . ,

M}, if the three conditions of the statement hold, and, for
some k ≥ 0, there are k non-zero entries in Progx,0[i . . . M],
then x and y do not meet after the beginning of block Bi of
execution α(x, 0, y, n

2 ).
Now, consider an arbitrary i ∈ {1, . . . , M}. Suppose that

there are k + 1 non-zero entries in Progx,0[i . . . M], and
the three conditions of the statement hold. Let i ′ be the first
non-zero entry in Progx,0[i . . . M]. We set out to show that
no rendezvous occurs during blocks Bi , . . . , Bi ′ and that the
three conditions of the statement hold when i is replaced
with i ′ +1. This is sufficient to complete the proof: since the
number of non-zero entries in Progx,0[i ′ +1 · · · M] is k, the
induction hypothesis implies that agents x and y do not meet
after the beginning of block Bi ′+1.

First, we show that rendezvous does not occur during
blocks Bi , . . . , Bi ′−1. If i = i ′, there is nothing to prove.

Otherwise, since i = 1 or Progx,0[i −1] 
= 0, it follows that
Progx,0[i . . . i ′−1] is a maximal sequence of 0’s. Therefore,
by Fact 14, every prefix of Aggx,0[i . . . i ′ −1] and every pre-
fix of Aggy,0[i . . . i ′ − 1] have surpluses with absolute value
at most 1. By Fact 11, x and y do not meet during any of the
blocks Bi , . . . , Bi ′−1.

Next, we show that, at the beginning of block Bi ′ , x is
located at a node in Pj and that y is located at a node
in Pj+3. If i = i ′, this is true by assumption. Otherwise,
note that Progx,0[i . . . i ′ − 1] is a maximal sequence of
0’s and that i ′ − 1 < i ′ ≤ M . Therefore, by Fact 14,
surplus(Aggx,0[i . . . i ′ − 1]) = 0, and hence, at the begin-
ning of block Bi ′ agent x is in the same sector as at the
beginning of block Bi . The same holds for agent y. We con-
clude that rendezvous does not occur during block Bi ′ . This
follows fromFact 11, since |surplus(Progx,0[i ′ . . . i ′])| ≤ 1
and |surplus(Progx,0[i ′ . . . i ′])| ≤ 1.

Finally, we show that the three conditions of the statement
hold at the beginning of block Bi ′+1. The first condition holds
since Progx,0[i ′] 
= 0. Also, the third condition holds since
we assumed that Progx,0[i . . . M] = Progy,0[i . . . M]. To
show that the second condition holds, note that, by the def-
inition of the aggregate behaviour vector, at the beginning
of block Bi ′+1, agent x is located at a node in Pj+Aggx,0[i ′],
and agent y is located at a node in Pj+3+Aggy, n2

[i ′]. By Facts
10 and 13, Aggx,0[i ′] = Progx,0[i ′] = Progy,0[i ′] =
Aggy,0[i ′] = Aggy, n2 [i ′]. Thus, for j ′ = j + Aggx,0[i ′],
agent x is located at a node in Pj ′ and y is located at a node
in Pj ′+3 at the beginning of block Bi ′+1. This completes the
proof by induction and hence completes the proof of Fact 15.

Using the fact that the progress vectors must all be distinct
(cf. Fact 15), we now show that there must be a progress
vector of large weight.

Fact 16 Consider the � = � L
�6c log L� � distinct progress vec-

tors Progx1, . . . , Progx�
. There exists j ∈ {1, . . . , �} such

that Progx j ,0 contains Ω(log L) non-zero entries.

To prove this fact, we show that, for a sufficiently small con-
stant γ , there are fewer than � distinct vectors of length M
with at most γ log L non-zero entries. The fact will then fol-
low from the Pigeonhole principle.

Using the bound
(n
k

) ≤ ( en
k

)k (where e is the Euler con-
stant), the total number of vectors of length n with at most k
non-zero entries can be bounded above as follows:

(
n

0

)
+

(
n

1

)
+· · ·+

(
n

k

)
≤(k + 1)ek

(n
k

)k ≤(2k)ek
(n
k

)k
.

Let f be a constant for which f ≥ 1/(4e) and
�6c log L� ≤ f log L . Substituting n = M ≤ f log L and
k = �γ log L�, we get that the number of distinct vectors of
length M with at most γ log L non-zero entries is bounded
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above by (2e)�γ log L�
(

f log L
�γ log L�

)�γ log L� ≤ (4e f )γ log L

((
1
γ

)γ )log L
. Next, it is not difficult to show that

(
1
γ

)γ

con-

verges to 1 as γ approaches 0. Also since � = � L
�6c log L� �,

there exists a positive constant β < 1 such that � > Lβ .
So, we pick sufficiently small 1 > γ ′ > 0 such that

log

((
1
γ ′

)γ ′)
< β/2, and, for all γ ≤ γ ′,

((
1
γ

)γ )log L
<

Lβ/2. Next, let γ ′′ = β
2 log (4e f ) , and note that, for all

γ ≤ γ ′′, (4e f )γ
′′ log L ≤ Lβ/2. Therefore, taking γ =

min{γ ′, γ ′}, it follows that the number of distinct vectors
of length M with at most γ log L non-zero entries it at most

(4e f )γ log L
((

1
γ

)γ )log L ≤ Lβ , which is less than �. This

completes the proof of Fact 16.
We now set out to prove that there exists an agent incurring

cost Ω(E log L) in some execution of the algorithm. During
each iteration i of the loop in the construction of Progx j ,0
(except for the last), two entries, at positions ai and bi , are
set to non-zero values. In particular, this means that, for all
d ∈ {ai + 1, . . . , bi − 1}, Progx j ,0[d] = 0. Let k be the
number of iterations in which two entries are set to non-
zero values. From Fact 12, we know that a1 < b1 < a2 <

b2 < · · · < ak < bk . From Fact 13, we know that for each
i ∈ {1, . . . , k} we have Progx j ,0[ai ] = Progx j ,0[bi ] 
= 0.

The following fact shows that the number of non-zero
entries in a progress vector induces a lower bound on the
cost incurred by an agent.

Fact 17 Consider any agent x and any integers a1, b1, . . . ,
ak, bk ∈ {1, . . . , M} such that

– a1 < b1 < · · · < ak < bk, and,
– for each i ∈ {1, . . . , k}, Progx,0[ai ] = Progx,0[bi ] 
=

0, and,
– for each i ∈ {1, . . . , k} and each d ∈ {ai +1, . . . , bi −1},

Progx,0[d] = 0.

During execution α(x, 0,⊥,⊥), agent x performs at least
kE
6 edge traversals.

To see why this is true, consider an arbitrary i ∈ {1, . . . , k}
and suppose that Progx,0[ai ] = Progx,0[bi ] = 1 (the case
where Progx,0[ai ] = Progx,0[bi ] = −1 is symmetric).
At the beginning of block Bai , agent x is located in some
sector Pj . By Fact 13, Aggx,0[ai ] = Progx,0[ai ], so, at
the beginning of block Bai+1, agent x is located in sector
Pj+1. Next, since Progx,0[ai + 1 . . . bi − 1] is a maximal
sequence of 0’s, and bi − 1 < M , it follows from Fact 14
that surplus(Aggx,0[ai + 1 . . . bi − 1]) = 0. Therefore, at
the beginning of block Bbi , x is still located in sector Pj+1.
Finally, by Fact 13, Aggx,0[bi ] = Progx,0[bi ], so, at the
beginning of block Bbi+1, x is located in sector Pj+2. It

follows that, from the beginning of block Bai until the end
of block Bbi , agent x must have visited every node in sector
Pj+1, i.e., it traversed at least E

6 edges. The inequalities a1 <

b1 < · · · < ak < bk give us k disjoint time intervals during
each of which at least E

6 edges are traversed. This completes
the proof of Fact 17.

By Fact 16 there exists an agent x j such that Progx j ,0
has at least Ω(log L) non-zero entries. Applying Fact 17 to
this agent implies that it incurs cost Ω(E log L) in its solo
execution of the trimmed version of algorithm A. Hence,
there exists an agent y and nodes px j and py , such that agent
x j incurs the same cost in execution α(x j , px j , y, py). This
completes the proof of Theorem 2. �	

4 Conclusion

We established tight tradeoffs at both ends of the time/cost
tradeoff curve, up to multiplicative constants. This sug-
gests that if we want to minimize cost (respectively time)
of rendezvous, then our natural algorithms Cheap (respec-
tively Fast) are good choices. A challenging open problem
yielded by our work is establishing the entire precise trade-
off curve, i.e., finding, for each cost value betweenΘ(E) and
Θ(E log L), theminimum timeof rendezvous that canbeper-
formed at this cost. In particular, it is natural to ask if the per-
formance of our Algorithm FastWithRelabeling(s) is
on, or close to, this optimal tradeoff curve.

In this paper, we adopted amodel in which both agents are
located at their starting positions from the beginning, and the
adversary wakes them up possibly at different times. Hence,
if the delay is sufficiently large, it is possible that the ear-
lier agent finds the later agent before it even starts executing
the algorithm. Consequently, both time and cost are counted
from the wake-up of the earlier agent. Such an approach is
natural, since we are interested in both the time and cost of
the algorithm, and the cost is defined as the combined number
of edge traversals by both agents. An alternative model, used
in papers dealing only with time of rendezvous (cf. [26,45]),
assumes that agents are “parachuted” onto their respective
starting positions at the time of their wake-up. In this model,
the earlier agent cannot find the later agent before its wake-up
because the later agent is not yet present. Hence, in [26,45],
time was counted from the wake-up of the later agent, since
otherwise rendezvous time can be made arbitrarily large by
an adversary. Similarly, in our case, we would have to count
both the time and the cost since the wake-up of the later
agent. This does not seem natural as far as cost is concerned,
because it is often the case that incurring cost results in con-
suming a limited resource, such as energy. So ignoring the
cost incurred by the earlier agent until thewake-up of the later
agent is unrealistic. Nevertheless, the time and cost complex-
ities of our algorithms do not change in this alternativemodel
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(although the proofs have to be slightly modified). Our lower
bounds are not affected either, as they work even for simul-
taneous start.

Finally, we address our assumption that an exploration
procedure and its cost E are known. As we argued in the
introduction, the exploration time is a benchmark for the cost
of rendezvous. Further, this knowledge can be deduced by the
agents from an upper bound on the size of the graph. What
if agents do not have any such upper bound? It turns out that
our algorithms can be slightly modified to preserve their time
and cost complexities in this case as well. Recall that a UXS
is a sequence of integers that can be used to explore any graph
of size at mostm at cost R(m), for some fixed polynomial R,
starting at any node of the graph. Let EXPLOREi be the the
UXS-based exploration procedure for the class of graphs of
size at most 2i , and let Ei be the time of EXPLOREi . Each
of our algorithms can be modified by iterating the original
algorithm using EXPLORE = EXPLOREi and E = Ei in the
i th iteration. Iterations proceed until rendezvous, which will
occur when 2i is at least the actual size of the graph. Due to
telescoping, the time and cost complexities will not change.
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