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Abstract We study Incentive Trees for motivating the par-
ticipation of people in crowdsourcing or human tasking
systems. In an IncentiveTree, each participant is rewarded for
contributing to the system, as well as for soliciting new par-
ticipants into the system,who then themselves contribute to it
and/or themselves solicit new participants. An Incentive Tree
mechanism is an algorithm that determines howmuch reward
each individual participant receives based on all the partici-
pants’ contributions, aswell as the structure of the solicitation
tree. The sum of rewards paid by the mechanism to all par-
ticipants is linear in the sum of their total contribution. In
this paper, we investigate the possibilities and limitations
of Incentive Trees via an axiomatic approach by defining
a set of desirable properties that an Incentive Tree mecha-
nism should satisfy. We give a mutual incompatibility result
showing that there is no IncentiveTreemechanism that simul-
taneously achieves all the properties. We then present two
novel families of Incentive Treemechanisms. The first family
ofmechanisms achieves all desirable properties, except that it
fails to protect against a certain strong form of multi-identity
attack; the second set of mechanisms achieves all properties,
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including the strongmulti-identity protection, but fails to give
participants the opportunity to achieve unbounded reward.
Given the above impossibility result, these two mechanisms
are effectively the best we can hope for. Finally, our model
and results generalize recent studies onmulti-levelmarketing
mechanisms.
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Incentive Trees · Reward mechanisms

1 Introduction

There has been substantial interest in crowdsourcing and
human-computation systems. These systems are based on
mobilizing and utilizing people’s work in order to quickly
and efficiently achieve certain tasks. Commercial offerings
such as Gigwalk or Amazon’s Mechanical Turk allow users
to submit tasks and recruit people to complete those tasks.
Crowdsourcing is increasingly being used as the method of
choice to obtain large-scale user data, such as environmen-
tal data, application traces, or to generate indoor-localization
maps, e.g. [14,17].One key challenge in successfully deploy-
ing any such system is the question of how to incentivize
people to actually perform tasks and contribute meaning-
fully. In fact, the same challenge is found in many other
systems that rely on user contributions. For example, systems
such as social forums, file-sharing services, public computing
projects (e.g. SETI@Home), collaborative reference work,
etc. suffer from thewell-knownnetwork-effect bootstrapping
problem.These systems can become self-sustainingwhen the
scale of the participation list exceeds a certain threshold, but
below this threshold, theymay not provide sufficient inherent
benefit for users to participate in.
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2 Y. Lv, T. Moscibroda

One common type of incentive mechanisms for raising
user participation in such systems are Incentive Trees. Incen-
tive Trees are referral-based mechanisms in which (i) each
participant is rewarded for contributing to the system, and
(ii) a participant that has already joined the system can make
referrals, and thereby solicit new participants to also join
the system and contribute to it. The mechanism incentivizes
such solicitations by making a solicitor’s reward depend
on the contributions (and recursively also on their further
solicitations, etc) made by such solicitees. Incentive Trees
have been widely used in a variety of domains and under
different names, e.g., in referral trees, multi-level market-
ing schemes, affiliate marketing or even in the form of the
infamous illegal Pyramid Schemes. The question of how
people can be incentivized using Incentive Trees to par-
ticipate in crowdsourcing or network-effect systems is of
significant interest and—starting from the work on Lottery
Trees in [7], and most prominently through the work by the
MIT team on the Red Balloon Challenge [13]—has recently
attracted significant interest from the research community,
e.g. [3,9].

In this work, we study the foundations of Incentive Trees.
An Incentive Tree Mechanism takes as input a weighted tree,
where each node’s weight denotes its contribution to the
system, and the tree structure reflects the solicitation his-
tory. Based on this input, the mechanism then computes a
reward for each node in the tree in such a way that the sum
of rewards is linear in the sum of contributions. The ques-
tion is, how should this reward function look like? Ideally,
an Incentive Tree Mechanism is constructed such that every
participant is optimally incentivized to both (i) contribute
to the system as much as possible, and (ii) solicit as many
new and itself highly-contributing and highly-solicitating
participants as possible. As we will see, simultaneously
achieving both contribution and solicitation incentive is chal-
lenging, especially if themechanismshould satisfy additional
properties, such as fairness or robustness to strategic behav-
ior.

In this paper, we take an axiomatic approach. We define
a set of basic, desirable properties which ideally an Incen-
tive Tree Mechanism should satisfy. These include trivial
properties such as the continuing solicitation and continuing
contribution incentive properties, as well as more sophisti-
cated properties that relate to the mechanisms resilience to
strategic behavior. These are critically important. In web-
based campaigns for example, resilience to multi-identity
(Sybil [6]) attacks is key as it is often easy to forge identi-
ties by creating new free email accounts, and then “referring
oneself” in order to get extra reward.

Results We study 8 desirable properties of Incentive Trees,
that have also been studied in earlier work on Incentive Trees
and multi-level marketing; and suitably generalize these

properties to our new model. As it turns out, our new model
necessitates fundamentally different algorithmic approach–
the previously proposed mechanisms do not achieve an
maximal set of desirable properties. We present two novel
families of Incentive Tree rewardmechanisms, both of which
are based on algorithmic techniques previously unused in
the literature on multi-level marketing or Incentive Trees.
The first family of mechanisms achieves all desirable prop-
erties, except that it fails to protect against a certain strong
form of Sybil attack (technically, it satisfies all properties
except property Unprofitable Generalized Sybil Attack). The
second family of mechanisms does yield protection against
the strong form of Sybil attack, but fails to give participants
the opportunity to achieve unbounded reward (technically,
it satisfies all properties except Unbounded Reward Oppor-
tunity). Both mechanisms are resilient to the well-known
multi-identity attacks discussed above. Finally, we show that
under some mild assumptions, these two mechanisms are
essentially the best we can hope for. Specifically, we give
an impossibility result showing that no reward scheme can
simultaneously achieve property Unprofitable Generalized
Sybil Attack and Unbounded Reward Opportunity, while
maintaining the other properties. Thus, our results imply that
both of our mechanisms achieve a notion of optimality rela-
tive to the axiomatic properties we define in this paper: The
mechanisms are optimal in the sense that they achieve amax-
imal mutually satisfiable subset of properties.

1.1 Related work

The two most closely related works are by Douceur and
Moscibroda on Lottery Trees [7], and by Emek et al. on
multi-levelmarketing schemes [9]. The formerwork is aimed
at motivating people to participate in networked systems and
bootstrapping such systems by network effect. The paper
addresses the following question: Assuming that some sys-
tem organizer is willing to spend a fixed amount of money
incentivizing people to do a specific type ofwork, how should
the system be organized tomaximize the resultingwork? The
authors propose Lottery Trees, formalize a set of desirable
properties, prove impossibility results, and devise two non-
trivial mechanisms, one of which achieves near-optimality
in terms of achieved desirable properties. However, there is
a fundamental difference between our Incentive Tree model
and the one in [7]. In our model, the total amount of reward
distributed to the participants grows linearly in the total con-
tribution (thus, it is a multi-level marketing-type model),
whereas in [7], the total reward is a fixed, constant value. This
difference significantly changes the achievable properties as
well as the algorithmic design of the incentive mechanisms.
Indeed, the optimal algorithm in [7] (Pachira) is no longer
optimal in our setting and cannot be easily adjusted (see
Sect. 4.2).

123



Fair and resilient Incentive Tree mechanisms 3

The work by Emek et al. [9] has initiated the algorith-
mic study of multi-level marketing mechanisms. It proposes
mechanisms for a model in which users can purchase items
(specifically, each user can purchase one item of a fixed unit
price). Participants join the system by buying a product, and
can then refer friends to also buy this product. The paper
proposes several properties of such unit-price multi-level
marketing schemes and shows mechanisms that achieve a
subset of these properties. The IncentiveTreemodelwe study
in this paper can directly be translated into the multi-level
marketing context. When viewed in this context, our work
is a substantially generalized version of the model in [9]:
Participants correspond to buyers, and a participant’s con-
tribution corresponds to the amount of goods purchased.
The difference is that whereas in [9], each buyer can only
purchase a single item of unit price (i.e., each participant
makes the same contribution to the system), in our model
participants canmake arbitrary contributions, i.e., each buyer
can buy goods at arbitrary price. This generalized version
of the problem yields a richer structure, and allows us to
generalize the desirable properties in meaningful ways. The
results in this paper directly apply to this generalized ver-
sion of the multi-level marketing model. Moreover, as in the
above case, the algorithmic structure of incentive mecha-
nisms for the generalized model are substantially different
than in the more simplistic case with single items of unit
price.

In addition to these two works, there has recently been
many other work on incentive systems. For example, Cebrian
et al. [3] studies the Red Balloon Challenge [13] with split
contracts and shows that in contrast to fixed-payment con-
tracts, split contracts are robust to nodes’ selfishness. The
Bitcoin system by Babaioff et al. [2] studies a problem simi-
lar to multi-level marketing. It uses a game-theoretic solution
concept to study a problem in which agents are incentivized
to forward sensitive information in such a way that the over-
all system performance is maximized. The work of Drucker
and Fleischer [8] considers a multi-level marketing model
with multi-items proving properties defined in [9]. Ghosh
and McAfee [10] provide a game-theoretic model within
which the design and performance of mechanisms for incen-
tivizing high-quality user generated content can be analyzed.
Other related work such as [4,11] on query incentive net-
works and the corresponding efficient sybil-proof incentive
mechanisms, Domingos and Richardson [5] on finding influ-
ential users in a social network, Anderson et al. [1] on
influencing and steering user behavior, or Tennenholtz [15]
on the effects of social structure on behavior and norms, is
only loosely related to our work. Finally, incentive mech-
anisms have also been used in mobile systems to recruit
people [14,18]. Besides incentive-mechanisms, Sybil attack
resilience has also been studied in other contexts, for example
in voting [16].

2 Model

In our model, participants can join a system and contribute
to it (e.g. by doing work such as finding weather balloons,
uploading crowd-sourced data, solving tasks, etc). For a par-
ticipant u, we denote its contribution by C(u), C(u) ≥ 0.
Participants can also solicit new participants. Such referrals
induce a referral forest F . Each participant is a node in F ,
and there is a directed edge (u, v) between two participants
u and v if u has joined the system in response to a solicitation
by v. In other words, if u joins the system via a referral by v,
it becomes a child-node of v in F . A new participant u who
joins the system independently of any solicitation joins F as
an independent node. For simplicity, we consider the equiva-
lent referral-tree T , in which there is an imaginary root node
r with contribution C(r) = 0, and all root-nodes in F are
children of r . T is a weighted tree in which the weight of a
node u is its contribution to the system C(u). We denote by
C(T ) = ∑

u∈T C(u) the total contribution in the system.
A reward mechanism is a function that takes as input the

weighted referral tree T , and computes for each u ∈ T a
non-negative real reward, denoted by R(u). Following [9],
we impose a budget constraint on this function: The sys-
tem administrator is willing to spend no more than a certain
fraction Φ ≤ 1 of the total accumulated contribution on
rewarding participants. That is, the upper bound of total
reward R(T ) = ∑

u∈T R(u) paid to participants grows lin-
early in the total contribution, i.e., R(T ) ≤ Φ ·C(T ). While
in principle, any function satisfying these properties defines a
possible reward mechanism, a well-functioning mechanism
shouldmaintain several desirable properties,whichwedefine
in Sect. 3.

Generalized multi-level marketing When viewed in the
context of multi-level marketing, our model generalizes the
model of Emek et al. [9], allowing buyers to purchase not
just a single item of unit price or multi-items, but purchase
items at arbitrary prices. Buyers can purchase goods from a
seller. For some buyer u, her contribution to the systemC(u)

is the total cost of the goods purchased. The seller is willing
to return a certain fraction of his total income in the form of
rewards R(u) to the buyers. Notice that in this context, the
amount of money a buyer u effectively ends up paying for the
goods is his payment, Pay(u) = C(u) − R(u). And since a
buyer’s reward can potentially exceed his cost (if he accumu-
lates many contributing descendants), we also consider the
profit as P(u) = R(u) − C(u).

Comparison to existingmodelsThe twomain parameters in
our model are contribution and reward. Many existing mod-
els have restrictions on either or both parameters. The Pachira
in [7], Geometric Mechanism in [9] as well as the winning
strategy in the DARPA network challenge [13] require the
total reward to be fixed. In [9,13] the contribution of each
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node is the same, while in [7], contributions are allowed to
be variable. In previous multilevel marketing models [8,9],
the total reward is linear in the total contribution, but the
contribution (payment) of each node is fixed. We general-
ize and unify these models such that (i) each participant can
make different contributions of arbitrary size, and ii) the total
rewardpaid to participants is a linear fraction of the total sys-
tem contribution. As we will see, these generalizations have
major implications on the structure of the resulting incentive
mechanisms. None of the existing incentivemechanisms per-
forms well in the new model, or can be easily adjusted. The
new model requires novel algorithmic techniques.

Tree notationWe use standard tree notation. Tu denotes the
subtree rooted at node u. pT (u) denotes the parent of a node
u in T . Finally, depp(u) denotes the depth of u in a tree Tp,
i.e., the distance between u and p. To simplify notation, we
define depp(u) = −∞ if u /∈ Tp.

3 Desirable properties

In this section, we define the set of desirable properties that
an Incentive Treemechanism should ideally satisfy. All these
properties are inspired by related properties defined in [7] for
Lottery Trees; or in [9] for multi-level marketing; and they
are adjusted appropriately to our new generalizedmodel with
arbitrary contributions.

3.1 Basic properties

Continuing contribution incentive (CCI) [7] A reward
mechanism satisfies CCI if it provides a participant u with
increasing reward in response to an increase of u’s contribu-
tion. This encourages participants to continue contributing
to the system (e.g., to continue purchasing goods from the
seller). Formally, given a referral tree T . If a node u ∈ T
increases its contribution, C ′(u) > C(u), and the contri-
bution of all other nodes v ∈ T \{u} remains the same,
C ′(v) = C(v), then the reward of u increases: R′(u) > R(u).

Continuing solicitation incentive (CSI) [7]A rewardmech-
anism satisfies CSI if every participant always has an
incentive to solicit new participants. This encourages ongo-
ing solicitation and ensures continuing growth of the system.
Let Tu and T ′

u be the subtree rooted at u before and after a
new participant has joined the system in u’s subtree. Then,
R′(u) > R(u).

Reward proportional to contribution (φ-RPC) [7] This
property suggests that a reward mechanism should maintain
some basic notion of fairness among the participants, the
degree ofwhich is determinedby the parameterφ.We say that
a reward mechanism satisfies φ-RPC for some 0 ≤ φ ≤ 1, if

a participant u who contributes C(u), should at least receive
a reward of R(u) ≥ φC(u). In other words, every participant
should receive at least a φ-fraction of his contribution to the
system. Note that we assume φ ≤ Φ since otherwise no
reward mechanism can satisfy the φ-RPC property.

Unbounded reward opportunity (URO) [9] This property
demands that there should be no limit to the reward a partici-
pant can potentially receive, even when his own contribution
is fixed by constant. Formally, a reward mechanism satisfies
URO if for every positive real R, C(u) and positive integer
k, there exist k trees T1, . . . , Tk attached to u in the referral
tree such that R(u) ≥ R.

Profitable opportunity (PO) The PO property is a weaker
version of URO. It suggests that a buyer with any positive
contribution has the opportunity to get positive profit (reward
minus contribution). Formally, a reward mechanism satisfies
PO if for every positive real C(u) and positive integer k,
there exist k trees T1, . . . , Tk attached to u in the referral tree
such that R(u) ≥ C(u). A mechanism that satisfies URO
satisfies PO.

Subtree locality (SL) [9] This property demands that the
reward paid to a participant u is determined uniquely by its
subtree Tu , R(u) = f (Tu). The property ensures that each
user is credited only for actions (contributions and solicita-
tions) performedby itself, or its descendants.Violation of this
property can have undesirable consequences. For example,
the reward of a user could increase or decrease without him
having taken any action (no new purchases or newly solicited
buyers in his subtree). Note that as an important special case,
the SL property subsumes the so-called Unprofitable Solic-
itor Bypassing (USB) property defined in [7]. This property
demands that for a newparticipant, it should notmatterwhere
in the tree he joins, such that a new participant has no incen-
tive to join the system as a child of someone other than
his solicitor. Thus, the SL property prevents certain types
of strategic behavior. Specifically, if a new participant has an
incentive to join the system not as child of the participant that
solicited him, then participants may altogether lose interest
in soliciting new referrals.

3.2 Sybil-attack resilience properties

It is desirable that a reward mechanism is robust against
strategic behavior by participants. In particular, we seek
mechanisms that are resilient against multi-identity attacks,
commonly known as Sybil-attacks [6]. A participant who is
able to forge multiple identities (which is typically simple in
web-based applications) should not be able to use this abil-
ity and “cheat” the mechanism for his own benefit. Previous
work has defined two different definitions of Sybil resilience.

123



Fair and resilient Incentive Tree mechanisms 5

Unprofitable Sybil attack (USA) [7] This property is taken
directly from [7], and it captures the classic notion of Sybil
resilience. The USA property imposes that no participant
can increase his profit purely by pretending to have multiple
identities: A mechanism satisfies USA if a participant with
a given contribution cannot increase his reward by joining
the system as a set of Sybil nodes instead of joining as a
single node. In otherwords, a participantwhomakes a certain
contribution to the system should never have a benefit of
“splitting” himself and its contribution up and making this
contributions as two or more identities, even if these “Sybil
identities” join the tree as if referring themselves.

Unprofitable generalized Sybil attack (UGSA) This prop-
erty is strictly stronger than USA, and subsumes USA as a
special case. It is a generalization of the so-called Profitable
Sybil Attack or Split Proof property from [9], where it was
defined for the restricted single-item multi-level marketing
model. The property demands that a participant can never
increase his profit by joining the tree as multiple identities,
even if by doing so, he increases his contributions, i.e., pur-
chases additional goods.

We can formally defineUSA andUGSA as follows. Given
a tree T0. Let u be a participant that joins the tree. Let T ′

1 be the
tree that resultswhenu joins T as a single node.Alternatively,
u can join the tree as a set of Sybil nodes Su = {u1, . . . , uk},
which can be arbitrarily connected in the referral tree. Let T ′′

1
be the tree that results when u joins T as the Sybil node set
Su . Let J = v1, v2, . . . be an arbitrary sequence of new par-
ticipants joining the tree, and let T ′

1, T
′
2, . . . and T ′′

1 , T ′′
2 , . . .

be a sequence of trees resulting from these joins. Notice
that in the case u joins as a set of Sybil nodes, there can
be many different such sequences because any new child
solicited by u can join as a child of any of the Sybil nodes
u1, . . . , uk . Finally, let R′

i (u),C ′
i (u) be the reward and cost

of u in T ′
i , and let R′′

i (u) = ∑
j=1,...,k R

′′
i (u j ),C ′′

i (u) =
∑

j=1,...,k C
′′
i (u j ) be the total reward and cost of u in T ′′

i ,
respectively. We say that a reward mechanism satisfies USA
if for any i > 0, R′

i (u) ≥ R′′
i (u), if C ′

i (u) = C ′′
i (u). We say

that a reward mechanism satisfies UGSA if for any i > 0,
R′
i (u) − C ′

i (u) ≥ R′′
i (u) − C ′′

i (u), if C ′
i (u) ≤ C ′′

i (u). As
mentioned, the UGSA property strictly subsumes the USA
property by taking C ′

i (u) = C ′′
i (u).

The difference between USA and UGSA is illustrated in
Fig. 1. USA requires that a participant p who contributes a
certain amount Cp be unable to increase his reward by join-
ing as multiple identities p1, p2, . . .. Therefore, participant
p in the right figure must receive at least as much reward as
participant p in themiddle figure. Notice that the total contri-
bution of p remains the same; only the number of identities
in the tree change. So, assume that the participant p starts
out as shown in the right figure, with a contribution of 2 and
a single identity. Then, he decides to split up into two identi-

p 

… 

p 

… 

p 

… 

1 1 
1 

2 
UGSA USA 

Fig. 1 Participant p joining (left) as a single node with cost 1; (middle)
as two Sybil nodes that refer one another, each with cost 1; and (right)
as a single node with cost 2

ties of contribution 1 each. An incentive mechanism satisfies
USA, if this splitting up does not benefit p.

UGSA is a stronger property: It additionally demands that
p’s profit (=reward-cost) in the middle figure cannot exceed
his profit in the left figure. For example, assume that the
participant p starts out as shown in the left figure, with a
contribution of 1 and a single identity. Then, he decides to
split up and increase its contribution to 1+1 = 2. An incen-
tive mechanism satisfies UGSA, if this identity splitting does
not benefit p.

It is interesting to discuss the relative importance of these
properties from the point of view of the system administra-
tor or the seller in a multi-level marketing context. USA is
clearly a desirable property from his point of view because
if USA is violated, he will simply pay too much reward
for no additional contribution. The case of UGSA may be
less obvious; and its importance depends on the specific
circumstances. In particular, it is possible that UGSA is vio-
lated even though the seller does not actually lose money
(i.e., if the contribution exceeds the reward). This is pos-
sible if the Sybil buyer p increases his contribution not
at the cost of the system administrator, but at the cost of
other participants in the system, for instance the parent of
p. However, if this is the case—i.e., UGSA is violated not
at the cost of the seller, but at the cost of some ancestors
of p—then there is nuanced breakdown of the incentive
structure: If nodes may profit from Sybils at the expense
of their referrers, the referrer is not incentivized to recruit
more nodes. Thus, UGSA is a desirable property to main-
tain, even if a violation may not always be at the cost of the
seller.

When discussing our TDRMmechanism (end of Sect. 5),
we will give a concrete example of TDRM violating UGSA.

4 Existing Incentive Tree mechanisms and
impossibility result

In this section, we briefly review existing (multi-level mar-
keting and Incentive Tree) algorithms and analyze which
desirable properties they achieve. Then observing that each
existing algorithm can only achieve a subset of desirable
properties, we give an impossibility proof showing that there
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can be no reward mechanism that simultaneously satisfies
PO and UGSA.

4.1 Geometric mechanism

The simple geometric reward mechanism is commonly used,
e.g. in [13]. The idea is that a certain fraction a of a node’s
contribution “bubbles-up” to its parent, a fraction a2 bubbles
up to its grand-parents, etc. Given two constants 0 < a < 1
and b ≥ φ such that b ≤ (1−a)Φ, the reward of a participant
u in the (a, b)−geometricmechanism is defined as follows.

Algorithm 1: (a, b)-Geometric Mechanism

R(u) = ∑
v∈Tu a

depu (v) · b · C(v) ;

The condition b ≤ (1 − a)Φ is to ensure the budget
constraint. Specifically, the total reward that a node u is
responsible for is at most b 1

1−aC(u), which should be less
than ΦC(u). The fairness property φ − RPC is satisfied if
we also set b ≥ φ. It is easy to derive the following theorem.

Theorem 1 The (a, b)-GeometricMechanismwithφ ≤ b ≤
(1 − a)Φ achieves all desirable properties, except USA and
UGSA.

The reason why USA (and thus, UGSA) is violated is also
easy to see. A node can increase his reward by splitting itself
into multiple Sybil nodes that are linked to each other as a
chain. Some of the “bubbled-up” reward is then handed to
other Sybil nodes of u and the total sum of rewards accumu-
lated by u is larger than if u joins as a single node.

4.2 Multi-level marketing mechanisms derived from
Incentive Tree mechanisms

In [7], two Incentive Tree mechanisms are given (called
Luxor and Pachira) for a model in which the total reward
in the system is a fixed constant. Any such Incentive Tree
Mechanism A for the fixed total reward model can be trans-
formed into an Incentive Tree Mechanism L-A in our model
by simply multiplying the reward paid to a user u by a fac-
tor of ΦC(T ) (assuming that the total reward is normalized
to 1). Applying this transformation to Luxor and Pachira
yields two mechanisms L-Luxor and L-Pachira. As it turns
out, L-Luxor is very similar to the (a, b)-Geometric Mech-
anism, and achieves the same properties. On the other hand,
L-Pachira is interesting. For two parameters 0 ≤ β ≤ 1
and δ > 0, the (β, δ)-L-Pachira Mechanism is defined as
follows. The main technique for Pachira to achieve USA is
to utilize the concave function π(x), that is, according to
Jensen’s Inequality, the splitting will decrease a participant’s
reward.

Algorithm 2: (β, δ)-L-Pachira Mechanism
Let u be a participant with k children q1, . . . , qk ;
Define π(x) = βx + (1 − β)x1+δ ;

R(u) = Φ · C(T ) ·
[
π(

C(Tu )
C(T )

) − ∑k
i=1 π(

C(Tqi )
C(T )

)
]
;

It was shown in [7] that Pachira achieves USA, and the
same proof carries over to L-Pachira as well. Moreover, φ −
RPC can be satisfied by setting β ≥ φ/Φ. Pachira does
not satisfy the CSI property in the Incentive Tree model. But
when transforming it into the multi-level marketing model,
L-Pachira does achieve CSI, although the fact is not straight-
forward. On the other hand, it is easy to see that L-Pachira
fails to satisfy the SL constraint, because of its dependency
on the total system contribution C(T ).

Theorem 2 The (β, δ)-L-Pachira Mechanism with β ≥
φ/Φ achieves all desirable properties, except SL and UGSA.

4.3 Split-proof mechanism

For the single-item multi-level marketing model studied
in [9], Emek et al. give a mechanism that achieves sev-
eral properties, including the single-item model equivalent
of UGSA and URO. This algorithm is based on the idea of
computing a deepest binary subtree of the referral tree and
then computing the rewards based on that subtree. Unfortu-
nately, this fails the basic CSI property because depending
on the number of direct children it has, a node may no longer
have an incentive to directly solicit additional children.

4.4 Impossibility result

The subsequent constructions of our two new mechanisms
are motivated by the following impossibility result, which
suggests that if a mechanism satisfies the SL property, then
UGSA and PO (and thus URO) are mutually incompatible.
Since SL is a fundamental property, this result motivates our
search for (i) a mechanism that achieves all the properties
except UGSA (Sect. 5) and (ii) a mechanism that achieves
all the properties except PO/URO (Sect. 6).

Theorem 3 There is no Incentive Tree mechanism that can
simultaneously achieve SL, PO and UGSA.

Proof We prove the theorem by contradiction. Suppose a
mechanism A can achieve SL, PO and UGSA. In the follow-
ing proof, all reward computations are done usingmechanism
A.

Consider a node v∗ with C(v∗) > 0. According to PO,
there exists a case in which v∗ has one child tree, and yet v∗’s
profit is positive, P(v∗) = R(v∗) − C(v∗) > 0. We denote
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T* u* T* ub

ua

… … 

Fig. 2 Illustration of notation used in the proof

the child tree as T ∗ and its root as u∗. Suppose the contri-
bution of u∗ is C(u∗) and T ∗\{u∗} forms a set of subtrees
denoted as T1, . . . , Tk . According to SL, R(v∗) only depends
on C(v∗) and T ∗. We compare two cases. The first case is
exactly as described above (Fig. 2, left). The profit of u∗ is
P(u∗) = R(u∗) − C(u∗). In the second case (Fig. 2, right),
node u∗ launches a (generalized) Sybil attack by joining the
referral tree as two nodes ua and ub withC(ua) = C(v∗) and
C(ub) = C(u∗). Notice that the Sybil attack is generalized
(i.e., of the USGA-type), since the total contribution of ua
and ub exceeds the contribution of u∗. Further notice that in
the second case, the root of v∗’s descendant tree is ua ; ua is
ub’s parent; and ub is the parent of T1, . . . , Tk , i.e., we keep
every node in T ∗ unchanged except u∗.

According to SL, it must hold that ua has the same reward
as v∗ (with T ∗ attached to it), and for the same reason, ub
must have the same reward as u∗. Specifically, it holds that
R(ua) = R(v∗) and R(ub) = R(u∗). The total profit of
u∗’s two Sybil nodes ua and ub is thus P ′(u∗) = R(ua) +
R(ub) − C(ua) − C(ub) = (R(v∗) − C(v∗)) + (R(u∗) −
C(u∗)) > P(u∗). This implies that u∗ can get more profit by
contributing more, which violates UGSA. �	

In the following context, as themain technical contribution
of this paper, we present two novel reward mechanisms, both
of which achieve a maximal subset of mutually satisfiable
properties. The mechanism in Sect. 5 achieves all properties
except UGSA, and the mechanism in Sect. 6 achieves all
properties except URO/PO.

5 Satisfying all but UGSA: topology-dependent
reward mechanisms (TDRM)

We construct the mechanism in two steps. We first give an
intermediate mechanism which manages to satisfy USA, but
does not satisfy budget constraint. This preliminary form of
the mechanism could be turned into a feasible reward mech-
anism that satisfies the budget constraint, but doing so would
violate subtree locality (SL).We then show howwe can elim-
inate the shortcomings of this preliminarymechanism in such
a way that both budget constraint and SL are satisfied.

As we discussed in the previous section, the reason why
the simple Geometric Mechanism fails the USA property is

that it is beneficial for a node to split up and accumulate its
own “bubbled up” rewards. This can be avoided by chang-
ing the linear dependency of a node’s reward on its own and
other node’s contribution to a dependency that is of quadratic
nature. Specifically, when computing the reward of a partic-
ipant u, we multiply u’s contribution by the contribution of
every node in u’s subtree, including itself. In this way, even
though u could still accumulate “bubbled-up” rewards from
its own Sybil nodes, we can show that it is always benefi-
cial for u to focus its total contribution in a single node. The
resulting mechanism works as follows.

Algorithm 3: Preliminary Version of TDRM – Not a
correct reward mechanism
R(u) = C(u) · ∑v∈Tu a

depu (v) · b · C(v) ;

The problem is that while the structure of this quadratic
geometric reward mechanism is such that it achieves USA,
it is not in fact a feasible mechanism: It fails the budget
constraint. On the positive, its structure is such that it does
achieve USA. To see why, consider a node u. Suppose u
can benefit from splitting itself into a set of Sybil nodes
u1, . . . , uk , such that C(u) = ∑

i=1..k C(ui ). We can re-
write the reward of u if it remains a single node as

R(u) = C(u)2 + C(u)
∑

v∈Tu\u
adepu(v) · b · C(v).

If it splits itself into Sybil nodes, its new reward is at most

R′(u) ≤ [C(u1) + · · · + C(uk)] ·
∑

v∈Tu\u
adepu(v) · b · C(v)

+ (C(u1) + · · · + C(uk))
2,

because the distance between any descendant v ∈ Tu\u to
any of the Sybil nodes ui is at least as large as the orig-
inal distance between u and v in T . Comparing the two
expressions, it can be seen that splitting u intomultiple nodes
u1, . . . , uk does neither increase the first summand (because
of the quadratic term), nor the second.

The fundamental problem with this approach is that in
order to stay within budget, we would need to scale down the
rewards R(u) that are distributed to the participants. How-
ever, the amount by which we would need to scale would
depend on a global property of the referral tree, for example
C(T ). Thus, such a scaling would fundamentally violate the
SL property. In order to overcome this problem, we would
like to constrain the reward a node can obtain. This will allow
us tomeet the budget constraint by scaling eachnode’s reward
by a constant factor, independent of C(T ). This could easily
be achieved if there was a constant upper bound μ on the
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8 Y. Lv, T. Moscibroda

contribution C(u) of every node u ∈ T . However, since our
model allows a participant to potentially have an unlimited
contribution, our mechanism simulates such an upper bound
μ by splitting each participant with contribution exceeding
μ into a set of nodes, each with contribution at most μ.
The mechanism then computes the rewards in the resulting
Reward Computation Tree (RCT), which may differ from
the referral tree. In fact, one user can correspond to multiple
nodes in the RCT. A participant’s final reward is the sum of
the rewards of his corresponding nodes in the RCT.

The effect of computing the rewards in the Reward Com-
putation Tree in this way is that for participants with very
large contribution, the algorithm effectively linearizes this
node’s reward with regard to its contribution. In the process,
we need to be careful about not violating the USA prop-
erty. Specifically, in order to make sure that this linearization
does not thwart the USA-achieving structure of the quadratic
reward computation, the mechanism must be careful about
the way it splits participants with large contribution. In par-
ticular, ourmechanism ensures that for any such split, it is the
best possible split for such a participant. In other words, even
though the splitting effectively reduces the reward of very
large contributors (compared to the preliminary quadratic
TDRM mechanism), participants can nevertheless not ben-
efit from a Sybil attack, because they are already given the
best possible split.

TheTDRMmechanismworks as follows.Given four para-
meters λ < Φ − φ, μ > 0, a and b, such that a + b < 1,
TDRM first transforms the referral tree T into a reward com-
putation tree T ′, and then computes the rewards on T ′. We
denote by C(u) and C ′(u) the contributions of a node u in
T and T ′, respectively. For a participant u ∈ T , we define
a chain CHu of length Nu in T ′ as a sequence of nodes
mu

1, . . . ,m
u
Nu
, such that mu

i is the parent node of mu
i+1, for

all i = 1...Nu − 1. We call mu
1 and m

u
Nu

the head and the tail
of the chain, respectively.

Figure 3 gives an example of how the mechanism trans-
forms the referral tree T (left) into a corresponding reward
computation tree T ′ (right).After this transformation, TDRM
first computes the rewards for each node in T ′ according a

2uu 

3.7u

3.5u

p 

q1 q2 q3

p 

q1 q2 q3

u u 
u 

0.5u
u 
u 
u 

0.7u
u 
u 
u 

Referral Tree

Reward 
Computation 
Tree

Fig. 3 Transformation of a referral tree T into a reward computation
tree T ′ by TDRM

Algorithm 4: TDRM Mechanism
Transformation of T into T ′:
for u ∈ T do

Nu = 
C(u)/μ� ;
Create a chain CHu of length Nu in T ′, such that

C ′(mu
i ) =

{
C(u) − (Nu − 1)μ , if i = 1

μ , if i > 1
;

end
for Every directed edge (u, v) ∈ T do

Create a directed edge (mu
Nu

,mv
1) in T ′;

end
for w ∈ T ′ do

R′(w) = λ
μ
C(w)

∑
x∈T ′

w
adepw(x)b · C(x) + φC(w);

– Reward Calculation in T ′
end
for u ∈ T do

R(u) = ∑
v∈CHu

R′(v) ;
– Reward Calculation in T

end

function similar to the one given in the preliminary TDRM
mechanism. Finally, the reward of a participant u ∈ T is
computed as the sum of all the nodes in the corresponding
chain CHu in T ′. It remains to show that the mechanism
meets the budget constraint—we do this in the next section.
With this, we can prove the following key theorem.

Theorem 4 The T DRMmechanism with parameters λ <

Φ−φ, b < 1−a, andμ > 0 achieves all desirable properties
except UGSA.

Proof idea The full version of the proof is in the appendix.
Here are some intuitions. At the heart of our proof is that
TDRM satisfies USA. To do so, we define an ε-chain as
a chain in the reward computation tree of which only the
head node can have contribution less than μ. Then consider
the set of optimal partitions for u in the reward computation
tree (partitions maximizing R(u)). We show that at least one
optimal partition has the structure of a single ε-chain in the
RCT. In other words, we show that u’s best possible Sybil
attack is to join in such away that the resulting structure in the
RCT is an ε-chain. However, since the TDRM mechanism
transforms u into an ε-chain in the RCT even if u joins as
a single node, it follows that u has no benefit of joining the
referral tree asmultiple Sybil identities. Themechanism itself
will give u the best possible split, thus giving u no incentive
to split itself.

Example To show that TDRM does indeed violate UGSA,
consider the following counter-example. Let u be a partici-
pant with C(u) = 1

2μ and let v1, . . . , vk be u’s children with
C(v1) = · · · = C(vk) = μ (k > 1

abλ ). The profit of u as
computed by TDRM is P(u) = 1

2 ((ak + 1)λμb+ φμ − μ).
If we increase u’s contribution to C ′(u) = μ, then we can
show that the new profit of u is P ′(u) = R′(u) − C ′(u) =
(ak+1)λμb+φμ−μ, which is larger than P(u). That is, by
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Fair and resilient Incentive Tree mechanisms 9

increasing his contribution u can increase his profit, which
violates UGSA.

6 Satisfying all but URO:
contribution-deterministic reward mechanisms

Given the impossibility results in Theorem 3, we cannot
expect to achieve a mechanism that achieves all the desir-
able properties defined in this paper, in particular, we cannot
hope to simultaneously achieveUGSAandURO.TheTDRM
mechanism in the previous section has achieved all, but
UGSA. In this section, we show that we can also relax the
other property, URO, and satisfy instead all the remaining
properties. For this, however, entirely different algorithmic
techniques are required.

The key idea is that whereas the previously discussed
mechanisms are topology-dependent (i.e., the reward is
among other things a function of the structural property of
a node’s descendant tree), we now consider mechanisms in
which the reward of a participant u is independent of the
topology of its subtree. In particular, we seek mechanisms
in which the reward R(u) is purely a function of u’s own
contribution and the sum

∑
v∈Tu C(v) of the contributions in

Tu . We show that this can yield a family of mechanisms that
achieve UGSA, albeit at the cost of URO.

For ease of notation, define xp = C(p) and yp =
C(Tp\{p}) for a participant p ∈ T . Then, we want that
the reward function R(p) is purely a function of xp and
yp. What properties should this function R(xp, yp) have in
order to satisfy the desirable properties? The SL constraint
is automatically satisfied by the definition of R(xp, yp).
The CCI property demands that R(xp, yp) is increasing in

xp, i.e. 0 <
dR(xp,yp)

dxp
. In order to satisfy CSI, it should

hold that an increase in yp increases p’s reward, hence

0 <
dR(xp,yp)

dyp
. If we want to globally ensure the budget

constraint, one way to do this is to demand that R(xp, yp) <

Φxp, and similarly, the ϕ-RPC property can be enforced
by φxp < R(xp, yp). It is important to point out that
demanding the budget constraint to be satisfied by means
of R(xp, yp) < Φxp implies that we cannot achieve the
unbounded reward property URO. The reason is that if URO
were to be satisfied, R(xp, yp)would need to be able to grow
larger and larger as yp increases,whichwould eventually vio-
late this constraint. In order to also achieve USA, we need
the condition that for any x ′

p, x
′′
p such that x ′

p + x ′′
p = xp,

it holds that R(xp, yp) ≥ R(x ′
p, x

′′
p + yp) + R(x ′′

p, yp),
and, finally, in order to achieve UGSA (under the assump-
tion that we already have USA satisfied), we only need
dR(xp,yp)

dxp
< 1.

Combining these observations, we can demand that a
function R(xp, yp) satisfies four properties. If it satisfies

all of them, we call the function successfully contribution-
deterministic. The properties are, for any xp > 0, yp:

(i) 0 <
dR(xp, yp)

dxp
< 1, (ii) 0 <

dR(xp, yp)

dyp
,

(iii) φxp < R(xp, yp) < Φxp,

(iv) R(xp, yp) ≥ R(x ′
p, x

′′
p + yp) + R(x ′′

p, yp),

for any x ′
p, x

′′
p such that x

′
p + x ′′

p = xp.

Theorem 5 If R(xp, yp) is a successfully contribution-
deterministic function, then the reward mechanism that
distributes rewards according to R(xp, yp)achieves all prop-
erties, except URO.

Proof The proof follows closely along the lines of how the
properties are defined. The SL constraint is obviously satis-
fied. CCI is satisfied because R(xp, yp) is increasing in xp
(Property i); CSI is satisfied because R(xp, yp) is increasing
in yp (Property ii); and both φ-PPC and the budget con-
straint are clearly satisfied because of Property iii.

We prove that USA is satisfied by contradiction. Suppose
there is a participant p that can maximize his reward by
joining the system as k ≥ 2 nodes, and assume that the
cardinality k is minimal among all those maximal splits.
Consider two of these Sybil nodes p1 and p2, and define
x1 = C(p1), x2 = C(p2), y1 = C(Tp1) − C(p1) and
y2 = C(Tp2) − C(p2). There are two cases:

(a) p1 is an ancestor of p2 (or vice versa). Then we know
that y1 ≥ x2 + y2, 0 <

dR(xp,yp)
dyp

, so for any xp and yp,

R(x1, y1) + R(x2, y2) ≤ R(x1, y1) + R(x2, y1 − x2).

According to Property iv defined above, we know that

R(x1, y1) + R(x2, y1 − x2) ≤ R(x1 + x2, y1 − x2).

Combining these two expressions implies that the following
inequality holds:

R(x1, y1) + R(x2, y2) ≤ R(x1 + x2, y1 − x2).

Thismeans that p can get at least the same reward bymerging
p1 and p2 into one node, which contradicts our assumption.

(b) p1 is not an ancestor of p2 (or vice versa). According
to Property iv, it holds that

R(x1 + x2, y1 + y2) ≥ R(x1, y1 + y2 + x2)

+ R(x2, y1 + y2) > R(x1, y1) + R(x2, y2).

Like in case (a), this implies that p can get at least the same
reward by merging p1 and p2 which contradicts our assump-
tion. This concludes the proof that USA is satisfied.
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10 Y. Lv, T. Moscibroda

Finally, we prove that UGSA is satisfied. Consider some
participant p. We need to compare two cases. In the first
case, p joins the system as k nodes, p1, . . . , pk . In the sec-
ond case, p joins the system as a single node. In order
to prove UGSA, we need to show that for any k and any

k
i=1C(pi ) which is equal to or larger than C(p), in the

second case, p can get higher profit, namely 
k
i=1(C(pi ) −

R(C(pi ),C(Tpi \pi ))) ≥ C(p) − R(C(p),C(Tp\p)).
According to theUSAproperty, we know that any participant
p with a fixed cost can get the highest reward by joining the
system as single node. Therefore, we can assume that there
is an optimal choice in the scenario in which k = 1.

It remains to prove that for any ε > 0, it holds xp −
R(xp, yp) < xp +ε − R(xp +ε, yp). According to Property
i, we know that for any xp, yp,

dR(xp, yp)

dxp
< 1.

Therefore, it follows that for any ε > 0,

R(xp + ε, yp) − R(xp, yp) < ε

⇒ xp − R(xp, yp) < xp + ε − R(xp + ε, yp).

As ε > 0, the total profit decreases,which implies thatUGSA
is satisfied. �	

6.1 CDRM mechanisms

The properties derived in the previous section imply a fam-
ily of reward mechanisms all of which achieve all properties
except URO. It remains to find specific, practical functions
that belong to this family. In this section, we give two exam-
ples. First, we set R(xp, yp) = f (xp, yp)xp, so that the
reward function is proportional to xp.

Algorithm 5: Two examples of a CDRM Mechanism

i) R(p) = (Φ − θ
1+xp+yp

)xp , for θ + φ < Φ

ii) R(p) = Φxp + θ ln 1+yp
xp+yp+1 , for θ + φ < Φ

In both cases, it is easy to verify that the reward function
does satisfy all the properties stated in the theorem. Hence,
both CDRMmechanisms satisfy all our desirable properties,
except URO.

7 Conclusions

In this work, we have studied Incentive Tree mechanisms,
thus formalizing and generalizing previous algorithmic work

on Referral Trees, Lottery Trees [7,13] and multi-level
marketing mechanisms [8,9]. We design two families of
Incentive Tree mechanisms, both of which achieve all but
one among the set of axiomatic properties. Furthermore,
our impossibility result suggests that this is optimal. We
are encouraged that both of these mechanisms achieve the
slightly weaker notion of unprofitable Sybil attack (USA).
This shows that mechanisms can be designed that are prov-
ably resilient against basic forms of multi-identity attacks.

Any axiomatic approach based on a choice of desirable
properties is questionable as different people may deem dif-
ferent properties to be more important. Indeed, as we point
out, not all of the properties are equally relevant to the suc-
cessful operation of an Incentive Tree scheme in practice.
However, in ongoing work, we have been studying the effect
of our mechanisms in practical deployments; and experi-
ence has strengthened our belief the properties defined in
this paper are indeed of critical practical importance.

Acknowledgments This work was supported in part by the National
Basic Research Program of China Grant 2011CBA00300, 2011CBA
00302, the National Natural Science Foundation of China Grant
61033001, 61061130540, and the Hi-Tech research and Development
Program of China Grant 2006AA10Z216.

8 Appendix: Proof of Theorem 4

Proof It will be convenient to use the following definition.
Let SA, SB be two subsets of T ′. We define

B(SA, SB) =
∑

u∈SA

∑

v∈SB

λ

μ
b · C(u)C(v)adepu(v).

Intuitively, B(SA, SB) is the sum of the rewards accumulated
by nodes in SA through nodes in SB . Using this definition,
we can reformulate the reward function R(u) for u ∈ T as

R(u) =
∑

v∈CHu

λ

μ
C(v)

∑

x∈T ′
v

adepv(x)b · C(x) + φC(u)

= B
(
CHu, T

′
mu
1

)
+ φC(u).

There are two properties for function B(SA, SB). Suppose
S, S′, S∗ are subsets of T ′, and S, S′ are disjoint. We have

B(S ∪ S′, S∗) =
∑

u∈S∪S′

∑

v∈S∗

λ

μ
b · C(u)C(v)adepu(v)

=
∑

u∈S

∑

v∈S∗

λ

μ
b · C(u)C(v)adepu(v)

+
∑

u∈S′

∑

v∈S∗

λ

μ
b · C(u)C(v)adepu(v)

= B(S, S∗) + B(S′, S∗)
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and

B(S∗, S ∪ S′) =
∑

u∈S∗

∑

v∈S∪S′

λ

μ
b · C(u)C(v)adepu(v)

=
∑

u∈S∗

∑

v∈S

λ

μ
b · C(u)C(v)adepu(v)

+
∑

u∈S∗

∑

v∈S′

λ

μ
b · C(u)C(v)adepu(v)

= B(S∗, S) + B(S∗, S′).

Budget Constraint: We start by proving that the mechanism
meets the budget constraint. First, observe that the total
rewards in the referral tree is equivalent to the total rewards
in the reward computation tree. Then, in the reward compu-
tation tree T ′, it holds that

∑

u∈T ′
R(u) =

∑

u∈T ′

[

C(u) · λ

μ

∑

v∈T ′
adepu(v) · bC(v) + φC(u)

]

≤
∑

u∈T ′

[

λ
∑

v∈T ′
adepu(v) · bC(v)

]

+
∑

u∈T ′
φC(u)

<
∑

v∈T ′

[

λ · C(v)

∞∑

i=0

aib

]

+
∑

u∈T ′
φC(u)

< (λ + φ)
∑

u∈T ′
C(u).

By the constraint imposed on λ, this last expression is at most
Φ

∑
u∈T ′ C(u), which is the budget.

We now prove the desirable properties one by one.
CCI: Consider a participant u, who increases his contribution
from C(u) to C∗(u) = C(u) + ε. We denote by R∗(u) and
CH∗

u = {m∗u
1 , . . . ,m∗u

N∗
u
} the new reward and the new corre-

sponding chain, respectively. There are two cases depending
on whether u’s contribution increase leads to a change of its
corresponding chain CH∗

u in the RCT, or not. We consider
the two cases independently.

First, if N∗
u = Nu , then only the head-node mu

1’s contri-
bution increases in T ′: C(m∗u

1 ) = C(mu
1)+ ε. Then, the new

reward of participant u is R∗(u) > R(u).
Second, if N∗

u > Nu , then we only need to consider the
sub-chain in CH∗

u with Nu nodes from the leaf node up. As
each node of the sub-chain has contribution μ, we get that
R∗(u) > R(u).
φ-RPC: By the definition of the R(u), it holds that R(u) =
B(CHu, Tmu

1
) + φC(u) > φC(u).

CSI: The property holds because by the definition of R(u),
the reward of a participant u is strictly increasing when a new
node v attaches to u.
SL: The property holds because by the definition of R(u), the
reward of a participant u is independent of any node outside
of Tu .

URO:Consider a participant u, whose contribution isC(u) =
sμ+ε, for some integer s and 0 < ε ≤ μ, and supposeu has k
children in the referral tree, namely there are k trees attached
to u. Here s can be any non-negative integer and k can be any
positive integer. We denote one of u’s children as v and the
corresponding subtree as Tv . Suppose v has � children with
contribution μ. It holds that R(u) is at least R′(mu

Nu
) in the

reward computation tree. Calculating the value of R′(mu
Nu

)

using the definition, it can be shown that R′(mu
Nu

) ≥ � ·
a2bλε. As � can become arbitrarily large, R(u) can increase
to infinity.
USA: At the heart of our proof is that TDRM satisfies USA.
To do so, we define an ε-chain as a chain in the reward
computation tree of which only the head node can have con-
tribution less than μ.

USA states that no participant can increase his reward
by pretending to have multiple identities. Consider a par-
ticipant u that joins the referral tree as j Sybil nodes
( j ≥ 1), v1, v2, . . . , v j , with total contribution C(u). Fur-
ther assume that u has s children, q1, . . . , qs . Suppose
v1, v2, . . . , v j are transformed into k nodes u1, . . . , uk in
the reward computation tree. By definition, it holds that
C(u) = ∑k

i=1 C(ui ) and C(ui ) ≤ μ, i = 1, . . . , k. For
q1, . . . , qs , we denote the subtrees rooted at q1, . . . , qs in
the reward computation tree as T1, . . . , Ts . We define a
partition as any configuration of nodes u1, . . . , uk , sub-
trees T1, . . . , Ts , and contributions C(ui ), (i = 1, . . . , k)
in the reward computation tree that can feasibly result from
node u joining the referral tree as a set of multiple Sybil
nodes.

Our proof idea is as follows: Consider the set of optimal
partitions for u in the reward computation tree (partitions
maximizing R(u)). We show that at least one optimal parti-
tion has the structure of a single ε-chain in the RCT. In other
words, we show that u’s best possible Sybil attack is to join
in such a way that the resulting structure in the RCT is an
ε-chain. However, since the TDRM mechanism transforms
u into an ε-chain in the RCT even if u joins as a single node,
it follows that u has no benefit of joining the referral tree as
multiple Sybil identities. The mechanism itself will give u
the best possible split, thus giving u no incentive to split itself
(Fig. 4).

We formally prove this intuition by a sequel of struc-
tural lemmas. The lemmas describe the properties of a
reward-maximizing partition u1, . . . , uk, T1, . . . , Ts in the
RCT, ultimately showing that the optimal such partition is an
ε-chain. As a first step, notice that because we have proven
SL in TDRM, we consider only u1, . . . , uk, T1, . . . , Ts in the
RCT. All other nodes are irrelevant for u’s reward. The first
lemma shows that u1, . . . , uk, T1, . . . , Ts forms a tree. Here
notice that according to the soliciting sequence, ui can not
be a child of Tj (i = 1, 2, . . . , k, j = 1, 2, . . . , s).
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12 Y. Lv, T. Moscibroda
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Fig. 4 Illustration of the final topology in the proof

Lemma 1 If R(u) is maximized, u1, . . . , uk, T1, . . . , Ts
forms a tree.

Proof We prove the lemma by contradiction. Suppose R(u)

is maximized and u1, . . . , uk, T1, . . . , Ts forms a forest F
with more than one tree. We pick any two trees Tα , Tβ in F
with roots α and β. As u is the parent of q1, . . . , qs , it holds
that T1, . . . , Ts will be attached as subtrees to u1, . . . , uk .
Thus, α, β ∈ {u1, . . . , uk}. Now, assume that we attach
Tβ to α, thereby making it one tree. The attachment does
not change the reward accumulated by nodes in Tβ , but it
strictly increases the rewards accumulated by α (due to the
CSI property). This contradicts the assumption that R(u) is
maximized. �	

Thus if R(u) is maximized, u1, . . . , uk , T1, . . . , Ts forms
a tree. We denote this tree as Tu , and define Tu as the tree
induced by u1, . . . , uk , and Tu as the forest induced by
T1, . . . , Ts . With these definitions, we can write R(u) as

R(u) = B(Tu, Tu) + φC(u)

= B(Tu, Tu) + B(Tu, Tu) + φC(u).

Before continuing the proof, we distinguish different parts
of R(u): The inner reward Ri (u) = B(Tu, Tu) which is the
part of reward purely coming from u’s own contribution, and
the external reward Re(u) = B(Tu, Tu) which is the part of
reward coming from u’s descendants. Then we can rewrite
R(u) as R(u) = Ri (u) + Re(u) + φC(u). According to our
assumption that u has a fixed contribution, the third term
φC(u) is a constant and does not influence u’s decision.

As mentioned before, we need to prove that the best parti-
tion of u, maximizing the reward, is an ε-chain. Concretely,
as R(u) = Ri (u)+Re(u)+φC(u), we show that u canmax-
imize Ri (u) and Re(u), respectively, if Tu is an ε-chain. Our
next step is to prove u’s partition as an ε-chain will maxi-
mize Ri (u). We transform the topology of Tu step by step.
The lemma below shows that if uwants tomaximize his inner
reward Ri (u) at most one node in Tu can have contribution
less than μ.

Lemma 2 If Ri (u) is maximized, there can be at most one
node v ∈ Tu with contribution C(v) < μ.

Proof We prove the lemma by contradiction. Suppose there
is more than one node with contribution less than μ. We
denote two such nodes as x, y, i.e., x, y ∈ Tu satisfying
C(x) < μ andC(y) < μ. Let Su = Tu\{x, y}, and let Px , Py
be the set of ancestors of x, y in the reward computation tree.
The inner reward of u is

Ri (u) = B(Tu, Tu)

= B({x, y}, Su) + B(Su, Su)

+ B({x, y}, {x, y}) + B(Su, {x, y}).

To simplify the calculation, we define a function γp(S) =
∑

v∈S bλ
μ
C(v)max{adepp(v), adepv(p)} for any node p in

Tu .According to the definition and properties we proposed
for function B(), it holds that

B({x, y}, Su) = B(x, Su) + B(y, Su)

= C(x)
∑

v∈Su

λ

μ
b · C(v)adepx (v)

+C(y)
∑

v∈Su

λ

μ
b · C(v)adepy(v)

= C(x)
∑

v∈Tx\{x,y}

λ

μ
b · C(v)adepx (v)

+C(y)
∑

v∈Ty\{x,y}

λ

μ
b · C(v)adepy(v)

= C(x)γx (Tx\{x, y}) + C(y)γy(Ty\{x, y}).

B(Su, {x, y}) = B(Su, x) + B(Su, y)

= C(x)
∑

u∈Su

λ

μ
b · C(u)adepu(x)

+C(y)
∑

u∈Su

λ

μ
b · C(u)adepu(y)

= C(x)
∑

u∈Px\{x,y}

λ

μ
b · C(u)adepu(x)

+C(y)
∑

u∈Py\{x,y}

λ

μ
b · C(u)adepu(y)

= C(x)γx (Px\{x, y}) + C(y)γy(Py\{x, y}).
B({x, y}, {x, y}) = bλ

μ

[(
adepx (y) + adepy(x)

)
C(x)C(y)

+C(x)2 + C(y)2
]
.

Expanding Ri (u) and combining the above bounds, we
get
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Fair and resilient Incentive Tree mechanisms 13

Ri (u) = C(x)γx ((Px ∪ Tx )\{x, y})
+C(y)γy((Py ∪ Ty)\{x, y)})
+ bλ

μ

[(
adepx (y) + adepy(x)

)
C(x)C(y)

+C(x)2 + C(y)2 ] + B(Su, Su). (1)

Without loss of generality, suppose γx ((Px ∪ Tx )\{x, y})
≥ γy((Py ∪ Ty)\{x, y}). Then, consider two cases:

(a) IfC(x)+C(y) > μ, we can changeC(x) toμ andC(y)
to C(x) + C(y) − μ.

(b) IfC(x)+C(y) ≤ μ, we can changeC(x) toC(x)+C(y)
and C(y) to 0.

In both cases, the change does not have an impact on the
total contribution, but it increases Ri (u). Specifically, the
sum of the first two expressions in (1) will increase due to
the change. Then, using the fact that if for two reals A and B
with A > B, 0 < t < A−B

2 , k < 2 and S1 = A2+B2+k AB
and S2 = (A − t)2 + (B + t)2 + k(A − t)(B + t), it
holds that S1 > S2, it follows that the third expression
in (1) also increases. Meanwhile, the forth expression is
unchanged. This leads to a contradiction because it means
that this hypothetic partition does not maximize the inner
reward. Therefore, if Ri (u) is maximized, there can be at
most one node v ∈ Tu with contribution C(v) < μ. �	

Next, we characterize the location of the at most one node
in Tu that has contribution less than μ. In the following
lemma, we give the result.

Lemma 3 If Ri (u) is maximized, Tu is an ε-chain or a chain
in which only the leaf node has contribution less than μ.

Proof According toLemma2, if Ri (u) ismaximized, there is
at most one node with contribution less than μ in Tu . We call
it ε-node and suppose its contribution is ε(< μ). (Here we
need to pay attention that the ε-node has contribution strictly
less than μ.) We can prove the lemma by case analysis and
contradiction.

(a) Suppose Tu is not a chain. We distinguish three sub-
cases.

(a1) Suppose in Tu , there is an ε-node and the ε-node is
not a leaf node.

We denote the ε-node as x with contribution C(x) = ε,
and denote one of the leaf nodes which is a descendent of x
as y with C(y) = μ. Let Su = Tu\{x, y}, and let Px , Py be
the set of ancestors of x, y in the reward computation tree.
Just copy the expansion of Ri (u) calculated in Lemma 2, we
get that

Ri (u) = bλ

μ

[(
adepx (y) + adepy(x)

)
C(x)C(y) + C(x)2

+C(y)2
]

+ C(x) · γx ((Px ∪ Tx )\{x, y})
+C(y) · γy((Py ∪ Ty)\{x, y}) + B(Su, Su).

Since x is the ancestor of y, we know that nodes in Px are
ancestors of both x and y and it holds that

γx (Px ) =
∑

v∈Px

bλ

μ
C(v)adepv(x)

>
∑

v∈Px

bλ

μ
C(v)adepv(y) = γy(Px ).

Suppose there are n nodes in the path from y to x (not includ-
ing x and y), denoted as Sxy . Remember we have stated there
is at most one ε-node. So each of these n nodes has contri-
bution μ. Then we can infer that

γx (Sxy) =
∑

v∈Sxy

bλ

μ
μadepx (v) =

n∑

i=1

bλai

=
∑

v∈Sxy

bλ

μ
μadepv(y) = γy(Sxy).

Then we expand γx and γy using the union property

γx ((Px ∪ Tx )\{x, y}) = γx (Px ) + γx (Sxy)

+ γx (Tx\{x, y, Sxy})
γy((Py ∪ Ty)\{x, y}) = γy(Py\{x}) = γy(Px ) + γy(Sxy)

Then we can infer that

γx ((Px ∪ Tx )\{x, y}) > γy((Py ∪ Ty)\{x, y}).

Then in the expression of Ri (u), if u changes C(x) to μ and
C(y) to ε, u will increase the sum of the second and third
term in Ri (u), namely increaseC(x)·γx ((Px ∪Tx )\{x, y})+
C(y)·γy((Py∪Ty)\{x, y}), and the other terms don’t change
according to symmetry. So this change will increase Ri (u)

which contradicts the assumption.

(a2) Suppose in T , there is an ε-node and the ε-node is a
leaf node.

In this case, T has at least two leaf nodes. At least one leaf
node denoted by x has contributionμ. We then want to prove
that if we delete x and add a new node y with contribution
C(y) = μ andmake the remain tree T \{x} attached as a sub-
tree to y, the new inner reward of u will increase meanwhile
the total contribution of u remains unchanged.
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14 Y. Lv, T. Moscibroda

We define the new tree with y replacing x as T new. Sup-
pose there are n nodes in the path from x to y, denoted as
Sxy . Then we compare the new inner reward Ri (T new) to the
original inner reward Ri (T ). We expand Ri (T new) by using
the properties of B(., .) as

Ri (T new
) = B

(
T new, T new

)

= B
(
T ∪ {y}\{x}, T ∪ {y}\{x})

= B
(
T \{x}, T \{x})

+ B
(
y, T \{x}) + B

(
T \{x}, y) + B(y, y).

As y is the root node of T new, it holds that B(T \{x}, y) = 0.
Therefore,

Ri (T new
) = B

(
T \{x}, T \{x}) + B

(
y, T \{x}) + B(y, y)

= B
(
T \{x}, T \{x}) + B

(
y, T \({x} ∪ Sxy)

)

+ B(y, Sxy ∪ {y})
= B

(
T \{x}, T \{x}) + B

(
y, T \({x} ∪ Sxy)

)

+
n∑

i=0

bλai .

For the original inner reward Ri (T ), we have

Ri (T
) = B

(
T \{x}, T \{x})

+ B
(
x, T \{x}) + B

(
T \{x}, x) + B(x, x).

As x is the leaf node of T , it holds that B(x, T \{x}) = 0 and
B(T \{x}, x) = B(Sxy, x). Therefore,

Ri (T
) = B

(
T \{x}, T \{x}) + B(Sxy, x) + B(x, x)

= B
(
T \{x}, T \{x}) +

∑

v∈Sxy∪{x}

bλ

μ
adepvx

= B
(
T \{x}, T \{x}) +

n∑

i=0

bλai .

Wefind that Ri (T new) > Ri (T ) since B(y, T \({x}∪Sxy)) >

0, which contradicts the assumption.

(a3) Suppose in T , there is no ε-node. The proof is totally
the same as in a2). We can find that the proof in a2)
use the assumption only to make sure that the non-leaf
nodes have contribution μ.

(b) Suppose T is a chain and there is an ε-node which is
neither the root nor the leaf of the chain.

We denote the ε-node as x and the leaf of the chain as
y. Then we prove that u can increase the inner reward by
changing C(x) to μ and changing C(y) to ε. The proof is
similar to a1) as a chain is a special case of tree. Suppose

there are n nodes in the path from y to x , denoted as Sxy .
Let Su = Tu\{x, y}, and let Px , Py be the set of ancestors of
x, y in the reward computation tree. Here we just simplify
the proof by using results in a1):

Ri (u) = C(x) · γx ((Px ∪ Tx )\{x, y})
+C(y) · γy((Py ∪ Ty)\{x, y}) + B(Su, Su)

+ bλ

μ

[(
adepx (y) + adepy(x)

)
C(x)C(y)

+C(x)2 + C(y)2
]
.

γx ((Px ∪ Tx )\{x, y}) = γx (Px ) + γx (Sxy)

+ γx (Tx\{x, y, Sxy})
γy((Py ∪ Ty)\{x, y}) = γy(Py\{x})

= γy(Px ) + γy(Sxy),

Here the only difference is that T is a chain. So γx (Tx\
{x, y, Sxy}) = 0. But we still have

γx ((Px ∪ Tx )\{x, y}) > γy((Py ∪ Ty)\{x, y}).

according to γx (Px ) > γy(Px ) and γx (Sxy) = γy(Sxy).
This change will increase Ri (u) which contradicts the

assumption.
Above all, we know if Ri (x) is maximized, T is an

ε-chain or a chain with an ε-node which is the leaf. We
know these two topology is just reverse up-side-down. So
the inner rewards are the same according to symmetry. �	

Until now, we know u can partition as an ε-chain to maxi-
mize Ri (u). Then we begin the secondmain part. We want to
prove u’s partition as an ε-chain will maximize his external
reward, Re(u). In next lemma, it would be better to root each
tree in T to one leaf node in T .

Lemma 4 For any given topology Tu, suppose u1, u2, . . ., uk
are the nodes in Tu. There exists a partition that maximizes
Re(u) in which each tree in Tu is attached to a single node
ui , for some i = 1, 2, . . . , k.

Proof We denote the trees in T as T1, . . . , Ts . Suppose
T1, . . . , Ts are attached to v1, . . . , vs in T . (v1, . . . , vs
needn’t be different.) Then we use the definition of the exter-
nal reward and get

Re(u) = B
(
T , T

) =
s∑

i=1

B
(
T , Ti

)

=
s∑

i=1

B(Pvi ∪ {vi }, Ti )
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=
s∑

i=1

∑

u∈Pvi ∪{vi }

∑

v∈Ti

λ

μ
b

·C(u)C(v)adepu(v).

=
s∑

i=1

∑

u∈Pvi ∪{vi }

∑

v∈Ti

λ

μ
b

·C(u)C(v)adepu(vi )+depvi (v)

= bλ

μ

k∑

i=1

⎛

⎝
∑

v∈Ti
C(v)adepvi (v)

⎞

⎠

⎛

⎝
∑

u∈Pvi ∪{vi }
C(u)adepvi (u)

⎞

⎠ .

Suppose u∗ is the node in T which canmaximize
∑

u∈Pvi ∪{vi }
C(u)adepvi (u). For eachTi (i = 1, . . . , s),

∑
v∈Ti C(v)adepvi v

depends only on the topology of Ti . Therefore, taking the
attached nodes vi = u∗ can maximize Re(u). It indicates
that there is a partition that each tree in T is attached to one
node in T . �	

We now know that Re(u) can be maximized when each
tree in Tu is attached to a single node in Tu . For any given Tu ,
in order to maximize Re(u), we thus only need to consider
partition in which each tree in Tu is attached to some node
u∗ in Tu . Then using this property, we show that an ε-chain
is the best partition for maximizing u’s external reward.

Lemma 5 If Re(u) is maximized, Tu must be an ε-chain
and u∗ is the leaf node of Tu.

Proof Firstly, let us show Re(u) is maximized, Tu must be a
chain and u∗ is a leaf node in Tu .We prove it by contradiction.
Suppose Tu is not a chain or u∗ is not a leaf node in Tu . We
find that there exists a leaf node uL in T which is not in set
Pu∗ ∪ {u∗}. We delete uL in T and let it be the new root u′

L
of T \uL , namely relocate uL to be the root of T \uL . We
define the new tree as T new. We then compare the original
external reward Re(u) and the newexternal reward calculated
by T new, Re(u)′.

Re(u) = B(T , T ) = B(Pu∗ ∪ {u∗}, T )

Re(u)′ = B(T new, T ) = B(Pu∗ ∪ {u∗, u′
L}, T ) > Re(u).

From the above equality, we get a contradiction that u can
increase his external reward by improvements. So if Re(u)

is maximized, Tu must be a chain and u∗ is a leaf node in Tu .
Our next step is to show T is an ε-chain. We also prove it

by contradiction. Suppose T is a chain but not an ε-chain and
u can get the maximum external reward. Then there exists a
node x which is not the root node of T and has contribution
C(x) < μ. As x is not the root, we denote x’s parent as y.

Thenwe show that ifwe changeC(x) toC(x)+α andC(y) to
C(y)−α, (The constraints are α < μ−C(x) and α < C(y).
We can take very small α.) u can get higher external reward.
If we change the contribution like above, the new external
reward becomes Re(u)′. Then we compare it to the original
external reward Re(u):

Re(u) = B(T , T ) = B(T \{x, y}, T ) + B(x, T ) + B(y, T )

= B(T \{x, y}, T ) + C(x)
∑

v∈T

λb

μ
C(v)adepx (v)

+C(y)
∑

v∈T

λb

μ
C(v)adepy(v).

= (C(x) + aC(y))
∑

v∈T

λb

μ
C(v)adepx (v)

+B(T \{x, y}, T ).

In the same way, we can write

Re(u)′ = B(T \{x, y}, T ) + (C(x) + α + aC(y) − aα)

·
∑

v∈T

λb

μ
C(v)adepx (v).

According to the condition of TDRM that a < 1, we get
Re(u) < Re(u)′. So we get the contradiction and get our
solution that if u wants to maximize Re(u), he must take Tu
as an ε-chain and u∗ is the leaf node of Tu . �	

By Lemmas 3 and 5, we know that the partition which
makes Tu an ε-chain, and inwhich all trees in Tu are attached
to the tail node of Tu , can maximize both Ri (u) and Re(u).
According to the definition that R(u) = Ri (u) + Re(u) +
φC(u), we can infer that such a partition thus maximizes
R(u). However, if the participant u simply joins the referral
tree as a single, non-Sybil node with its entire contribution,
TDRM will automatically also transform u into the same
ε-chain in the reward computation tree. Thus, u has no ben-
efit from joining as multiple identities, which proves USA.
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