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Abstract In this paper we study the Near-Gathering
problem for a finite set of dimensionless, deterministic, asyn-
chronous, anonymous, oblivious and autonomous mobile
robots with limited visibility moving in the Euclidean plane
in Look–Compute–Move cycles. In this problem, the robots
have to get close enough to each other, so that every robot
can see all the others, without touching (i.e., colliding with)
any other robot. The importance of solving the Near-Ga-
thering problem is that it makes it possible to overcome the
restriction of having robots with limited visibility. Hence it
allows to exploit all the studies (the majority, actually) done
on this topic in the unlimited visibility setting. Indeed, after
the robots get close enough to each other, they are able to
see all the robots in the system, a scenario that is similar
to the one where the robots have unlimited visibility. We
present the first (deterministic) algorithm for the Near-Ga-
thering problem, to the best of our knowledge,which allows
a set of autonomous mobile robots to nearly gather within
finite time without ever colliding. Our algorithm assumes
some reasonable conditions on the input configuration (the
Near-Gathering problem is easily seen to be unsolvable in
general). Further, all the robots are assumed to have a com-
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pass (hence they agree on the “North” direction), but they do
not necessarily have the same handedness (hence they may
disagree on the clockwise direction). We also show how the
robots can detect termination, i.e., detect when the Near-
Gathering problem has been solved. This is crucial when
the robots have to perform a generic task after having nearly
gathered.We show that termination detection can be obtained
even if the total number of robots is unknown to the robots
themselves (i.e., it is not a parameter of the algorithm), and
robots have no way to explicitly communicate.

1 Introduction

Consider a distributed system whose entities are a finite set
of dimensionless robots or agents that can freely move on the
Euclidean plane, operating in Look–Compute–Move (LCM)
cycles. During each cycle, a robot takes a snapshot of the
positions of the other robots (Look); executes a determinis-
tic protocol, the same for all robots, using the snapshot as
an input (Compute); and moves towards the computed des-
tination (Move). After each cycle, a robot may stay idle for
some time. With respect to the LCM cycles, the most com-
mon models used in these studies are the fully synchronous
(Fsync), the semi-synchronous (Ssync), and the asynchro-
nous (Async). In the asynchronous (Async) model, each
robot acts independently from the others and the duration of
each cycle is finite but unpredictable; thus, there is no com-
mon notion of time, and robots can compute and move based
on “obsolete” observations. In contrast, in the fully synchro-
nous (Fsync) model, there is a common notion of time, and
robots execute their cycles synchronously. In thismodel, time
is assumed to be discrete, and at each time instant all robots
are activated, obtain the same snapshot, compute and move
towards the computed destination; thus, no computation or
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move can be made based on obsolete observations. The last
model, the semi-synchronous (Ssync), is like Fsync where,
however, not all robots are necessarily activated at each time
instant.

In the last few years, the study of the computational capa-
bilities of such a system has gained much attention, and the
main goal of the research efforts has been to understand the
relationships between the capabilities of the robots and their
power to solve common tasks. The main capabilities of the
robots that, to our knowledge, have been studied so far in
this distributed setting are visibility,memory,orientation, and
direct communication. With respect to visibility, the robots
can either have unlimited visibility, if they sense the positions
of all other robots, or have limited visibility, if they sense just
a portion of the plane, up to a given distance V [2,12]. With
respect to memory, the robots can either be oblivious, if they
have access only to the information sensed or computed dur-
ing the current cycle (e.g., [20]), ornon-oblivious, if they have
the capability to store the information sensed or computed
since the beginning of the computation (e.g., [3,21,22]).With
respect to orientation, the two extreme settings studied are
the one where the robots have total agreement, and agree on
the orientation and direction of their local coordinate sys-
tems (i.e., they agree on a compass), e.g., [13], and the one
where the robots have no agreement on their local coordi-
nate axes, e.g., [21,22]. In the literature, there are studies
that tackle also the scenarios in between; for instance, when
the robots agree on the direction of only one axis, or there
is agreement just on the orientation of the coordinate system
(i.e., right-handed or left-handed), e.g., [10]. With respect
to direct communication, some recent studies introduced the
use of external signals or lights to enhance the capabilities of
mobile robots. These were first suggested in [19], and were
also referenced in [11], which provided the earliest indica-
tion that incorporating some simplemeans of signaling in the
robot model might positively affect the power of the team.
Recently, a study that tackles this particular capability more
systematically has been presented in [7].

In this paper, we solve the Near-Gathering problem:
the robots are required to get close enough to each other,
without ever colliding during their movements. Here, the
team of robots under study executes the cycles according to
the Async model, the robots are oblivious and have limited
visibility. The importance of solving the Near-Gathering
problem is that it allows to overcome the limitations of hav-
ing robots with limited visibility, and it makes it possible
to exploit all the studies (the majority, actually) done in
the unlimited visibility setting, such as, for instance, the
Arbitrary Pattern Formation Problem [10,13,21,22], or the
Uniform Circle Formation (e.g., [8,9]). Indeed, if all the
robots get close enough, they eventually become able to see
one another, reaching a configuration in which they may be
assumed to have unlimited visibility (recall that the robots are

dimensionless). Sincemost of the studies related to theunlim-
ited visibility case assume a starting configuration where no
two robots coincide (i.e., they do not share the same location
in the plane), it is of crucial importance to ensure that no
collision occurs during the process.

A problem that is similar toNear-Gathering is the gath-
ering problem, in which the robots have to meet, within finite
time, in a point of the plane not agreed upon in advance.
Note that the gathering problem requires all robots to actually
become coincident, while in Near-Gathering they have to
approach a point, but they are not allowed to collidewith each
other. Another related problem is the convergence problem,
in which the robots have only to approach a point in the plane
and converge to it in the limit, but they do not necessarily have
to reach it in finite time, and they may collide with each other
in the process. Hence, the convergence problem is easier than
both gathering and Near-Gathering. For a discussion on
previous solutions to the problems of gathering and conver-
gence, and how they fail to solve Near-Gathering, refer to
Sect. 3.1.

A preliminary solution to the Near-Gathering problem
has been presented by the authors in [18]; however, that solu-
tion worked with distances induced by the infinity norm.1 In
this paper we drop that assumption, presenting a more gen-
eral solution that works with the usual Euclidean distance.
We emphasize that the technique used in this paper can be
easily adapted to solve theNear-Gathering problem under
any p-norm distance with p ≥ 1, including the infinity norm
distance used in [18]. We also note that, in contrast with
[18] and other works on limited visibility, such as [12], we
only assume that the robots have agreement on one axis (as
opposed to both axes). In order to detect termination, the algo-
rithm in [18] requires either the knowledge of the number of
robots in the system, or the ability of the robots to commu-
nicate through visible lights that can be turned on or off. In
the present paper we are able to drop both requirements, and
still detect termination.

It is worth mentioning that in [18] a tacit assumption is
made on the starting positions of the robots. Namely, we
consider the graph on the robot set, with an edge connecting
two robots if their initial distance is at most D, where D is a
known constant that is smaller than the visibility radius of the
robots (but may be arbitrarily close to it). The assumption is
that such a graph is connected.Herewemake this assumption
explicit, andwe give amore rigorous proof of our algorithm’s
correctness. Finally, we remark that, since the algorithm pre-
sented here is for the Async model, it solves the problem a
fortiori also in the Ssync and Fsync models.

The organization of the paper is as follows: in Sect. 2 the
formal definition of the robot model is presented; in Sect. 3

1 The infinity norm of a vector (x, y) ∈ R
2 is defined as ‖(x, y)‖∞ =

max{|x |, |y|}.
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the collision-free algorithm that solves the Near-Gathe-
ring problem is presented, after discussing why previous
solutions to related problems fail to solve it; in Sect. 4 the cor-
rectness of our algorithm is proven. Finally, Sect. 5 concludes
the paper, suggesting some directions for future research.

2 The model

The system is composed of a team of finitely many mobile
entities, called robots, each representing a computational unit
provided with its own local memory and capable of perform-
ing local computations. The robots are modeled as points
in the Euclidean plane R

2. Let r(t) denote the “absolute”
position of robot r at time t (i.e., with respect to an absolute
coordinate system), where 0 ≤ t ∈ R; also, we will denote
by r(t).x and r(t).y the abscissa and the ordinate value of
r(t), respectively. When no ambiguity arises, we shall omit
the temporal indication; also, the configuration of the robots
at time t is the set of robots’ positions at time t .

Each robot has its own local orthogonal coordinate system,
centered at its location, and we assume that the local coor-
dinate systems of the robots agree on the directions of the
x- and y-axes. As discussed in Sect. 5, the algorithms that
we present in this paper also works in the more restricted
model in which the robots agree on the direction of just one
axis, as illustrated in Fig. 1a. A robot is endowed with sen-
sorial capabilities and it observes the world by activating its
sensors, which return a snapshot of the positions of all other
robots with respect to its local coordinate system. The vis-
ibility radius of the robots is limited: robots can sense only
points in the plane within distance V . This setting, referred to
in the literature as limited visibility, is understandably more
difficult; for example, a robot with limited visibility might
not even know the total number of robots nor where they are
located, if outside its visibility range. Also, when combined
with the asynchronous behavior of the robots, it introduces a
higher level of difficulty in the design of collision-free proto-
cols. For instance, in the example depicted in Fig. 1b, robot
s, in transit towards its destination, might be seen by r ; how-
ever, s is not aware of r ’s existence and, if it starts the next
cycle before r starts moving, s will continue to be unaware of
r ; hence, since r does not see s when s starts its movement,
it must take care of the possible arrival of s when computing
its destination.

All robots are identical: they are indistinguishable from
their appearance and they execute the same protocol. Robots
are autonomous, without a central control. Robots are silent,
in the sense that they have nomeans of direct communication
(e.g., radio, infrared) of information to other robots. Robots
are endowed with motorial capabilities, and can move freely
in the plane. As a robot moves, its coordinate system is trans-
lated accordingly, in such a way the the robot’s location is
always at the origin.

x

y

x

y

x

y

x

y

x

y

(a)

r

s

(b)

Fig. 1 a The robots in the swarm agree on the y-axis but not on the
x-axis. b In the limited visibility setting a robot can only see robots
that are within its radius of visibility. As a consequence, when s starts
moving (the left end of the arrow), r and s do not see each other. While
s is moving, perhaps r Looks and sees s; however, s is still unaware of
r . After s passes the area of visibility of r , it is still unaware of r

Each robot continually performs Look–Compute–Move
(LCM) cycles, each consisting of three different phases:

(i) Look The robot observes the world by activating its sen-
sor,which returns a snapshot of the positions of all robots
within its radius of visibilitywith respect to its own coor-
dinate system (since robots are modeled as points, their
positions in the plane are just the set of their coordinates).

(ii) Compute The robot executes its (deterministic) algo-
rithm, using the snapshot as input. The result of the
computation is a destination point, expressed in the
robot’s own coordinate system. There is no time limit
to perform such a computation, although the robot can
only compute finite sequences of algebraic functions on
the visible robots’ coordinates (actually, the algorithm
proposed in this paper uses only arithmetic operations
and square roots).

(iii) Move The robot moves monotonically towards the com-
puted destination along a straight line; if the destination
is the current location, the robot stays still (performs a
null movement). No assumptions are made on the speed
of the robot, as it may vary arbitrarily throughout the
whole phase.

The robots do not have persistentmemory, that is, memory
whose content is preserved from one cycle to the next; they
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are said to be oblivious. The only availablememory they have
is used to store local variables needed to execute the algo-
rithm, which are erased at each cycle. All robots are initially
idle, until they are activated by a scheduler and start execut-
ing the Look phase of the first cycle. The amount of time to
complete a cycle is assumed to be finite, but unpredictably
variable from cycle to cycle and from robot to robot (i.e., the
scheduler model is Async), but the Look phase is assumed
to be instantaneous. As a consequence, a robot may even stay
still for a long time after it has reached its current destination
point, before performing the Look phase of the next cycle,
or it can stop for a while in the middle of a move and then
proceed, etc. All these actions are controlled by the sched-
uler, which is an entity independent of the robots and their
protocol, and may be seen as an “adversary” whose purpose
is to prevent the robots from accomplishing their task.

The scheduler may also end the Move phase of a robot
before it has reached its destination, forcing it to start a new
cycle with a new input and a new destination: this feature is
intended to model, for instance, a limit to a robot’s motion
energy. However, there exists a constant δ > 0 such that,
if the destination point computed by a robot has distance
smaller than δ from the robot’s current location, the robot is
guaranteed to reach it; otherwise, it will move towards it by
at least δ. Note that, without this assumption, the scheduler
could make it impossible for a robot to ever reach its destina-
tion, even if the robot keeps computing the same destination
point. For instance, the schedulermay force the robot tomove
by smaller and smaller amounts at every cycle, converging
to a point that is not the robot’s intended destination. Instead,
if the robot cannot be interrupted by the scheduler before it
has moved by at least δ, and it keeps computing the same
destination point, it is guaranteed to reach it in finitely many
cycles. The value of δ is not known to the robots, hence it
cannot be used in their computations.

We will denote by L(t), C(t),M(t) the sets of robots that
are, respectively, active in a Look phase, in a Compute phase,
and in a Move phase at time t .

We stress that robots are modeled as just points in the
plane, and as such they do not have an associated vector
indicating their “heading” or “forward direction”. Likewise,
a robot’s coordinate system never rotates, but only translates
following the robot’s movements. Moreover, all robots have
the same visibility radius V , which is known to them and can
be used in their computations. V also serves as a common
unit distance for the robots.

2.1 Notation and assumptions

We will denote by R = {r1, . . . , rn} the set of robots in the
system. The purpose of this paper is to study the Near-Ga-
thering problem:

Definition 1 (Near-Gathering) The Near-Gathering
problem requires all robots to terminate their execution in
a configuration such that there exists a disk of radius ε con-
taining all the robots, where ε is a fixed constant, and no two
robots occupy the same location.

All the robots are required to execute the same protocol
during their Compute phase. The input to such a protocol
is the snapshot of the robots’ locations obtained by the exe-
cuting robot during its previous Look phase, along with the
visibility radius V (which is the same for all robots), and of
course the value of ε.

The protocol executed by the robots must be independent
of the initial configuration of the robots, and must make the
robots solve the Near-Gathering problem from any initial
configuration. However, in the limited visibility model, this
requirement is known to be too strong, and some additional
assumptions must be made on the initial distance graph in
order to make the problem solvable.

Definition 2 (Initial distance graph [12]) The initial dis-
tance graph I = (R, E) of the robots is the graph such
that, for any two distinct robots r and s, {r, s} ∈ E if and
only if r and s are initially at distance not greater than the
visibility radius V , i.e.,

dist(r(0), s(0)) ≤ V .

By“dist”wedenote the usual Euclidean distance. In [12] it
is proven that, if the initial distance graph I is not connected,
then the gathering problem may be unsolvable; the same
result clearly holds also for the Near-Gathering problem:

Observation 1 If the initial distance graph I is not con-
nected, the Near-Gathering problem may be unsolvable.

��
However, our solution to the Near-Gathering problem

requires a slightly more restrictive initial condition. Let σ be
an arbitrary small and positive constant, and let D = V − σ .

Definition 3 (Initial strong distance graph) The initial
strong distance graph J = (R, E) of the robots is the graph
such that, for any two distinct robots r and s, {r, s} ∈ E if
and only if r and s are initially at distance not greater than
D, i.e., dist(r(0), s(0)) ≤ D.

In the following, we will assume that:

Assumption 1 The initial strong distance graph J is con-
nected.

We remark that D (or at least lower bound on D) must
be known to the robots. This is not much of a benefit
to the robots in terms of raw computational power, since
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V is already known to all the robots and can already be
used in their computations as a common unit distance.
Besides, by choosing σ to be small enough, the set of
initial configurations ruled out by Assumption 1 becomes
negligible.

The reasons why we need such a slightly more restric-
tive assumption are technical, and will become apparent in
Sect. 4, when the correcntess of our algorithmwill be proven.
We stress that Assumption 1 only refers to the initial strong
distance graph, while it does not require such a graph to be
connected at all times. However, as we will prove in Sect. 4,
our algorithm will indeed preserve the connectedness of a
closely related distance graph throughout the execution.

Note that the definition of Near-Gathering does not
require the robots to avoid collisions during the execution, but
it only requires them to occupy distinct locations when they
all have terminated their execution. However, for Near-Ga-
thering to be solvable, the robots must necessarily occupy
distinct locations in the initial configuration, otherwise the
scheduler could always activate coinciding robots simulta-
neously, and never allow them to occupy distinct locations.
The algorithm we will describe in this paper is in fact
collision-free, that is, it always prevents robots from col-
liding, provided that they start from distinct locations. As a
by-product, our algorithm works regardless of the ability of
the robots to detect the presence of more than one robot in
the same location (called multiplicity detection in the litera-
ture [3,12]).

Another necessary assumption is that no robot is moving
at time t = 0. If the robots are already moving when the exe-
cution starts, and two robots have the same destination point,
nothing can prevent them from colliding. Moreover, after
they have collided, the scheduler can force them to remain
coincident forever, by activating them synchronously. If this
happens, the Near-Gathering cannot be solved.

Summarizing, we will make Assumption 1 on the initial
configuration of the robots, and we will also assume that
initially no robot is moving, and no two robots occupy the
same location. The protocol executed by the robots in the
Compute phase takes this input:

– an array of points expressed in the local coordinate system
of the executing robot, denoting the locations of the visible
robots observed during the previous Look phase;

– the visibility radius V (the same for all robots);
– the value of D (the same for all robots);
– the value of ε (required for termination).

Observe that the value of δ is not part of the input, and
therefore the robots do not have a lower bound on the min-
imum distance that they are guaranteed to cover in a single
Move phase.

3 The NEAR-GATHERING problem and its solution

In Sect. 3.1 we discuss some previous solutions to the
gathering and convergence problems, explaining why they
cannot be easily adapted to solve Near-Gathering. Then,
in Sect. 3.2 we give our solution to the Near-Gathering
problem.

3.1 Previous solutions to related problems

Gathering Of course, since the gathering problem requires
all robots to collide, no solution to this problem is a valid
solution to Near-Gathering. However, we may wonder if
a simplemodification of an existing gathering algorithmmay
solve Near-Gathering.

The gathering problem has been studied in the literature
in all models but, to the best of our knowledge, the most
pertinent paper is [12], which considers robots with limited
visibility in theAsync setting. The algorithm in [12] assumes
all robots to agree on the direction of both axes, and ideally it
makes the leftmost and topmost robots move first, rightwards
and downwards, until all the robots gather. According to the
protocol, a robot r will occasionally compute a destination
point that coincides with another visible robot s’s location.
To avoid this type of move, we may make r move toward s
without reaching it. If we consider an initial configuration in
which all robots lie on the same vertical line, the only robot
that is allowed to move according to the algorithm in [12] is
the topmost robot r . Moreover, if r moves downward without
ever reaching the next robot, then no robot other than r will
ever be able to move. Therefore, we ought to let robots other
than r move, as well. Unfortunately, the proof of correct-
ness of the algorithm, given in [12], strongly depends on the
fact that the robots in the swarm move in a strictly ordered
fashion. If we let any robot move, then we have to make
sure that the visibility graph remains connected throughout
the execution, and that the robots still converge to a single
point. Clearly, even if a suitable adaptation of this idea can be
effectively applied to solve Near-Gathering, the modified
protocol would require a radically new analysis and proof of
correctness.
Convergence Several solutions to the convergence problem
havebeenproposed, aswell. Ifwemanage to obtain a solution
that also avoids collisions, we can successfully apply it to
Near-Gathering.

Perhaps the most natural strategy, at least in the unlimited
visibility model, is to make all robots move to their center
of gravity. This simple protocol has been analyzed in [4],
and it has been proven correct even in the Async model.
In the limited visibility setting, the only relevant work, to
the best of out knowledge, is [2], which gives a convergence
algorithm that assumes the Ssync scheduler. However, in the
special case in which the robots’ locations are the vertices of
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a regular polygon and they are all mutually visible, both the
center-of-gravity algorithm and the algorithm in [2] behave
in the same way, and make any active robot move to the
center of the polygon. Hence, if two robots are activated
simultaneously from this configuration, they collide and fail
to solve Near-Gathering.

Therefore, we may modify the protocol and make each
robot approach the center of gravity by, say, moving half-
way towards it. We show that this protocol may still cause
collisions in the Async model, even in the very simple case
in which the system consists of only two robots. Let r and
s be two mutually visible robots, such that r(0) = (0, 0)
and s(0) = (3124, 0). Let the scheduler activate r , which
observes that the center of gravity is point (1562, 0), and
therefore computes the destination point (781, 0) (i.e., the
point half-way toward the center of gravity). Now the sched-
uler lets r startmoving and, as soon as it reaches point (52, 0),
it temporarily delays the remaining part of the move and
makes s quickly perform five complete cycles. As r is always
seen in (52, 0), s moves first to (2356, 0), then to (1780, 0),
(1348, 0), (1024, 0), and finally to (781, 0). Now the sched-
uler lets r finish its original move, and this causes a collision
with s in (781, 0). Observe that, even if the protocol does not
make the robots move half-way toward the center of gravity,
but to some other fraction of the distance, similar examples
can be constructed in which the robots collide.
Further literature Several other papers considered the gath-
ering or the convergence problems in various models, but
these results are either not relevant to Near-Gathering in
our model, or they can be reduced to solutions already dis-
cussed above, and therefore discarded.

In [20], the gathering problem is studied for robots with
limited visibility, theSsync scheduler, and temporarily unre-
liable compasses. In the special case in which the robots
are close enough and their compasses are reliable, the pro-
posed algorithm becomes equivalent to that of [12], which
has already been analyzed and discussed.

The gathering problem is studied in [14] in the context of
non-convex environments and limited visibility, but with the
Fsync scheduler. However, if the robots are close enough
and they all see each other, the algorithm makes them all
move to the center of the smallest enclosing circle. Hence, in
the special case in which they form a small-enough regular
polygon, they move to the center of gravity, and therefore the
algorithm becomes equivalent to those of [2,4], which have
already been discussed.

The convergence problem with limited visibility has been
studied also for robots whose level of asynchronicity lies
strictly between Ssync and Async. In [17], it is assumed
that the time spent in a Look or Move phase is bounded,
and the algorithm is a slight modification of that of [2]. In
particular, it suffers from the issues that have already been
discussed for [2].

On the other hand, in [16] the scheduler is 1-bounded
Async, which means, roughly, that no robot can perform
more than one Look phase between two consecutive Look
phases of another robot. As it turns out, if the number of
robots is even and they are vertices of a small-enough reg-
ular polygon, the algorithm makes them move to the center
of gravity. Once again, this type of move has already been
analyzed and discarded.

In [15], the gathering problem is considered for the
Ssync scheduler and the unlimited visibility setting. Here
the focus is on the expected termination time of a random-
ized algorithmwhere the robots have some sort ofmultiplicity
detection, i.e., the ability to detect the presence of more than
one robot in the same location. Unfortunately, both algo-
rithms presented in this paper make all robots move to the
center of the smallest enclosing circle, except in some spe-
cial cases. When applied to the Near-Gathering problem,
this approach suffers from the same issues of the center-of-
gravity approach.

In [6], the gathering problem in Async is studied for fat
robots, i.e., robots that are modeled as solid discs rather than
dimensionless points. Unfortunately, the problem is solved
only for a swarm of at most four robots, and the technique
involves a case analysis that does not generalize to bigger
swarms. Therefore this solution is irrelevant to our problem.

The above result has been generalized in [1], which solves
the gathering problem for any number of fat robots. The
robots considered have an unlimited visibility radius, and
therefore the limitations posed by a bounded visibility radius
are not addressed in the paper. Additionally, letting fat robots
collide is not an issue, but instead it is a necessary event that
is sought by the algorithm. For these reasons, the approach
of this paper can hardly be adapted to our problem.

Another work that considers the gathering problem for fat
robots is [5], which works in the unlimited visibility setting
and the Fsync scheduler. Moreover, the gathering point is
given as input to all the robots. Because of these differences
with our model, it is impossible to extract a sound algorithm
for Near-Gathering from this work: indeed, the task of
making such fat robots touch each other is simple, and the
paper focuses on how to make robots slide around each other
in order to occupy a small area. All these issues are meaning-
less in our model, and the real issues of our model become
meaningless with fat robots.

3.2 Solving the NEAR-GATHERING problem

We conjecture that no solution to Near-Gathering exists
in the Asyncmodel in which the robots do not agree at least
on one axis. Therefore, in the following we will assume to
have agreement on both axes, and in Sect. 5 we will observe
that our solution works even in the case of agreement on just
one axis.
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The general high-level idea of the algorithm is to make
the robots move upward and to the right, until they aggregate
around the top-right corner of the smallest box that contains
all of them. A robot’s destination point is carefully com-
puted, taking into account several factors. To avoid collisions,
robots try to move in order, never “passing” each other, and
never getting in each other’s way. This is not a trivial task,
because the visibility of the robots is limited, and they can-
not predict the moves of the robots they cannot see. On the
other hand, robots try to preserve mutual visibility by not
moving too far from other visible robots, avoiding to leave
them behind. This is supposed to prevent the robots from
separating into different groups, which may be unaware of
each other and aggregate around different points. As it turns
out, the robots are unable to always preserve mutual visibil-
ity, but they can indeed preserve “mutual awareness”, which
is a concept that will be introduced shortly. These different
behaviors are blended together and balanced in such a way
that the robots are not only guaranteed to avoid collisions
and remain mutually aware, but also to effectively aggregate
around some point, and never “get stuck” or converge to dif-
ferent limit points. This is obtained by always making robots
move by the greatest possible amount, compatibly with the
above restrictions.

The details of ourNear-Gatheringprotocol are reported
in Fig. 2. The protocol is executed by each robot during every
Compute phase. In the following, we denote by r∗ the robot
that is currently executing the algorithm. The returned value
is dp, which is the destination point for r∗. The algorithm
computes separately the horizontal and the vertical compo-
nents of the movement of r∗, i.e., dp.x and dp.y. Note that
the computation of the horizontal component dp.x is sym-
metrical to the computation of the vertical component, hence
any proposition that holds for the x coordinate holds sym-
metrically for the y coordinate.

Referring to theNear-Gathering protocol and to Fig. 3,
let D1 and D2 be the (closed) disks with radius V −ρ/2 and
V − ρ, respectively, and center in the current position of r∗.
Also, let S be the closed square circumscribed around D2

(with sides parallel to the x- and y-axes), and R = D1 ∩ S.
Finally, let H1 and H2 be the halt zones of r∗, and NW
and SE the sets of visible robots in Q1 and Q2, respectively
(note that Q1 contains its right border, but not the bottom
one; similarly, Q2 contains its top border, but not the left
one).

Because no robot ever moves leftwards or downwards, we
give the following definition:

Definition 4 (Move space) The Move Space of a robot r at
time t , denoted by MS(r, t), is the set

{
(x ′, y′) ∈ R

2 | x ′ ≥ r(t).x ∧ y′ ≥ r(t).y
}

.

State Look

Take the snapshot of the positions of the visible robots,
which returns, for each robot r ∈ R at distance at most
V , Pos[r], the position in the plane of robot r, according
to my coordinate system (i.e., my position is (0, 0)).

State Compute (returns destination point dp = (dp.x, dp.y)
ρ = min {V/4, V − D};
ε′ = min{ε, ρ/2};
Z = Set of visible robots (including myself);
If ∀r1, r2 ∈ Z, dist(Pos[r1], Pos[r2]) ≤ ε′ Then Termi-
nate;
D0 = Closed disk with radius V and center in (0, 0);
D1 = Closed disk with radius V − ρ/2 and center in (0, 0);
D2 = Closed disk with radius V − ρ and center in (0, 0);
p1 = Leftmost intersection between D1 and the horizontal
line through (0, V − ρ);
p2 = Bottommost intersection between D1 and the vertical
line through (V − ρ, 0);
S = Full closed square circumscribed around D2 with edges
parallel to the x- and y-axes;
R = D1 ∩ S;
Q1 = Set of points of D0 with positive y-coordinate and
non-positive x-coordinate;
Q2 = Set of points of D0 with positive x-coordinate and
non-positive y-coordinate;
H1 = Set of points of (R \ D2)∩ Q1 whose x-coordinate is
lower than p1.x;
H2 = Set of points of (R \ D2) ∩ Q2 whose y-coordinate is
lower than p2.y;
NW = {r ∈ Z | Pos[r] ∈ Q1};
SE = {r ∈ Z | Pos[r] ∈ Q2};
dp.x = min

{
min
r∈SE

{Pos[r].x} , max
r∈Z

{Pos[r].x} , ρ/2
}
;

dp.y = min
{

min
r∈NW

{Pos[r].y} , max
r∈Z

{Pos[r].y} , ρ/2
}
;

For Each r ∈ Z Do
If Pos[r] ∈ H1 Then dp.x = 0;
Else If Pos[r] ∈ R Then

s1 = Leftmost intersection between R \ H1 and the
horizontal line through Pos[r];
dp.x = min {dp.x, Pos[r].x − s1.x};

If Pos[r] ∈ H2 Then dp.y = 0;
Else If Pos[r] ∈ R Then

s2 = Bottommost intersection between R \ H2 and
the vertical line through Pos[r];
dp.y = min {dp.y, Pos[r].y − s2.y};

If dp.x > dp.y Then dp = (dp.x/2, 0); Else dp =
(0, dp.y/2);

State Move
Move(dp).

Fig. 2 The Near-Gathering protocol

The destination point of r∗ is computed according to the
rules below:

1. r∗ only moves rightward or upward (not diagonally) at
every move. It moves by the greatest possible amount,
compatibly with the following restrictions (this is needed
for the algorithm’s convergence, see Sect. 4.4).

123



340 L. Pagli et al.
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0D1D

2D
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2Q

Fig. 3 Some of the elements computed by the Near-Gathering pro-
tocol. The computing robot lies in the center, and the thick line represents
the boundary of R

2. r∗ never enters themove space of a visible robot, unless it
already is in its move space (this is required for collision
avoidance, Sect. 4.3);

3. r∗ never moves to the right of (resp. above) the rightmost
(resp. topmost) robot it can see (needed for convergence,
Sect. 4.4);

4. If r∗ sees a robot in the halt zone to its left (i.e., H1 in
Fig. 3), r∗ does not move rightward. Symmetrically, if r∗
sees a robot in the bottom halt zone (i.e., H2 in Fig. 3), r∗
does notmoveupward.This is needed for the preservation
of mutual awareness, see Sect. 4.2;

5. If r∗ sees a robot r in R\H1 (resp. R\H2), itmoves so that
r stays inside R\H1 (resp. R\H2) (preservation ofmutual
awareness, Sect. 4.2). Note that this does not guarantee a
priori that r will actually stay inside R\H1 (resp. R\H2),
since r moves asynchronously and independently of r∗;

6. The length of the so-computed movement is capped at
ρ/2 (where ρ = min {V/4, V − D}), and then halved
(this is needed for both mutual awareness preservation
and collision avoidance, see Sects. 4.2 and 4.3).

To correctly detect termination, we make sure that ε is not
greater than ρ/2, by setting ε′ = min{ε, ρ/2}. This is neces-
sary to prove Lemma 6.

4 Correctness

In this section, we will prove that the protocol reported in
Fig. 2 correctly solves the Near-Gathering problem. The
proofwill be articulated in three parts: first, wewill prove that
a suitably-defined distance graph remains connected during
the execution; second, we will prove that no collisions occur
during the movements of the robots; finally, we show that

all the robots converge to the same limit point, and correctly
terminate their execution.

4.1 Preliminary definitions and observations

Before presenting the correctness proof, we will introduce a
few preliminary definitions and observations. First, it is easy
to observe the following:

Observation 2 No robot’s x- or y-coordinate may ever
decrease. No robot’s x- and y-coordinates can both increase
during the same move. Furthermore, a robot can move right-
ward (resp. upward) only if there is another robot strictly to
the right of (resp. strictly above) its destination point. ��
Observation 3 During each cycle, a robot travels a distance
not greater than ρ/4 ≤ V/16. ��

We may assume that, in the last line of the algorithm,
if dp.x and dp.y are equal, then one of the two values
(dp.x/2, 0) and (0, dp.y/2) is chosen arbitrarily as the des-
tination point dp. With this assumption, the following holds.

Observation 4 The algorithm is symmetric with respect to
x- and y-coordinates. ��
Definition 5 (First and last) Given a robot r , letFirst(r, t) =
min{t ′ > t |r ∈ L(t ′)} be the first time, after time t , at which
r performs a Look operation. Also, let Last(r, t) = max{t ′ ≤
t |r ∈ L(t ′)} be the last time, from the beginning up to time
t , at which r has performed a Look operation; if r has not
performed a Look yet, then Last(r, t) = 0.

Now, we define the destination point of a robot at a time
t as follows:

Definition 6 (Destination point) Given a robots r , we define
the destination point DP(r, t) of r at time t as follows:

– If r ∈ L(t), then DP(r, t) is the point dp as computed in
the next Compute phase after t (in the current cycle).

– If r ∈ C(t), then DP(r, t) is the point dp as computed in
the current Compute phase.

– If r ∈ M(t), then DP(r, t) is the point dp as computed in
the last Compute phase before t (in the current cycle).

From the previous definition, we can state the following:

Observation 5 Let r be a robot. During the time strictly
between two consecutive Looks, the destination point of r
does not change.

Proof Let t be any time when r executes a Look; then, by
definition, DP(r, t) is the point dp as computed in the next
Compute phase after t (in the current cycle). Also, the desti-
nation point does not change in the next Compute and Move
phases of r . ��
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The following proposition states a straightforward geo-
metric fact (refer also to Fig. 3): among the segments
contained in the annulus D1\D2, with one endpoint on the
boundary of D1 and the other endpoint on the boundary of
D2, the shortest are those that are collinear with the center
of D2. This will be often used in conjunction with Observa-
tion 3, to show that robots cannot lose visibility to each other
under certain conditions.

Proposition 1 The length of a segment contained in the
annulus D1\D2, with one endpoint on the boundary of D1

and the other endpoint on the boundary of D2, is at least
ρ/2.

Proof Due to the rotational symmetry of the annulus, it is
enough to prove the proposition for vertical segments only.
The claim is equivalent to saying that, if x ∈ [0, V −ρ] ⊂ R,
then
√

(V − ρ/2)2 − x2 −
√

(V − ρ)2 − x2 ≥ ρ/2.

Let f (x) = √
(V − ρ/2)2 − x2 − √

(V − ρ)2 − x2. Then,
f (0) = ρ/2, and f (x) is monotonically increasing on
[0, V − ρ]. Indeed, the derivative of f (x) on (0, V − ρ)

is

d

dx
f (x) = x

(
1√

(V − ρ)2 − x2
− 1√

(V − ρ/2)2 − x2

)
,

which is positive. ��
Let Q1 be defined as in the Near-Gathering protocol

reported in Fig. 2; in the following,wewill denote by Q1(r, t)
the set Q1 as robot r would compute it if it were in aCompute
phase at time t (this set is expressed in the global coordinate
reference system). A similar notation will be used for the
other sets and points computed in our protocol (e.g., D0, D1,
Q2, etc.).

4.2 Preservation of mutual awareness

We define yet another notion of distance graph on the robots.
This is useful, because in Corollary 2 we will prove that this
graph remains connected throughout the execution of our
Near-Gathering protocol.

Definition 7 (Intermediate distance graph) The intermedi-
ate distance graph at time t ≥ 0 is the graph G(t) =
(R, E(t)) such that, for any two distinct robots r and s,
{r, s} ∈ E(t) if and only if r and s are at distance not greater
than V − ρ/2 at time t , i.e.,

dist(r(t), s(t)) ≤ V − ρ/2,

where ρ = min{V/4, V − D}.

Recall that, by assumption, the initial strong distance
graph J is connected. This implies that G(0) is connected,
because V − ρ/2 > D, and hence J ⊆ G(0). We will now
prove that the connectedness of the intermediate distance
graph is preserved during the entire execution of the algo-
rithm. We will do so after introducing the notion of mutual
awareness, in Definition 9.

First we define the auxiliary relation AW(p, q).

Definition 8 Given two points p, q ∈ R
2, we denote by

AW(p, q) the (symmetric) relation2

‖p − q‖2 ≤ V − ρ/2 ∧ ‖p − q‖∞ ≤ V − ρ.

A simple fact to observe is the following (recall that r(t)
denotes the position of robot r at time t).

Observation 6 For any two robots r and s, AW(r(t), s(t))
is equivalent to s(t) ∈ R(r, t), which is equivalent to r(t) ∈
R(s, t). ��

Recall that, according to the algorithm, if a robot r sees
a robot s in R, it will make its next move in such a way
that s, as it was observed, does not exit R (see how s1 and
s2 are computed in the algorithm). This is stated in the next
observation.

Observation 7 If r and s are two robots, r ∈ L(t) and
AW(r(t), s(t)), then AW(DP(r, t), s(t)). ��

Before introducing the next lemmas, let us recall that D1

and D2 are the closed disks with radius V − ρ/2 and V − ρ,
respectively, and center in (0, 0); S is the full closed square
circumscribed around D2 with sides parallel to the x- and
y-axes; and that R = D1 ∩ S (refer to the Near-Gathering
protocol, and to Fig. 3).

The next two lemmas are technical, and will be used in
the proof of Lemma 3.

Lemma 1 Let two robots r and s be given, with r ∈ L(t). If
AW(r(t), s(t)) and AW(r(t),DP(s, t)), then

AW(DP(r, t), s(t)) and AW(DP(r, t),DP(s, t)).

Proof From Observation 7 it immediately follows that
AW(DP(r, t), s(t)).Nextweprove thatAW(DP(r, t),DP(s, t)).

Without loss of generality we may assume that s is not
moving horizontally at time t , that is, s(t).x = DP(s, t).x and
0 ≤ DP(s, t).y − s(t).y ≤ ρ/4 (cf. Observations 2–4). Let
Δ = DP(r, t)−r(t); first observe that AW(DP(r, t),DP(s, t))
is equivalent to AW(r(t),DP(s, t) − Δ). Hence we have to

2 By ‖a‖2 = √
a.x2 + a.y2 we denote the usual Euclidean norm; by

‖a‖∞ = max {|a.x |, |a.y|} we denote the infinity norm.
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Fig. 4 Proof of Lemma 1. The thick line is the border of R. In a, r
moves vertically. In b, r moves horizontally and s is to the right of r at
time t

prove that the pointDP(s, t)−Δ lies in R(r, t) = R, provided
that s(t) and DP(s, t) do.

If Δ is the null vector, there is nothing to prove. So, let us
assume first thatΔ.x = 0 andΔ.y > 0. Referring to Fig. 4a,
and by the convexity of R, it is sufficient to prove that s(t)−Δ

lies in R, which is equivalent toAW(DP(r, t), s(t)), which has
already been proven.

Otherwise, Δ.x > 0 and Δ.y = 0. Referring to Fig. 4b,
if s(t).x ≥ r(t).x , our claim that DP(s, t) − Δ lies in
R(r, t) is trivially true, due to Proposition 1 and recalling
that Δ.x ≤ ρ/4: indeed, s(t) and DP(s, t) move leftward in
the coordinate system of r by at most ρ/4, hence they stay
to the right of p1. Moreover, s(t) cannot lie in H1 or else r
would not move rightward.

The only case left is that in which s(t) belongs to
R\H1 and lies to the left of r(t). Recall that, according to
the algorithm, s(t) − Δ belongs to R\H1 as well. Since
DP(s, t).y − s(t).y ≤ ρ/4, and due to Proposition 1, it is

)t(r Δ

Δ− )t(s

)s, t(DP

1p

1H

(a)

)t(r Δ

Δ− )t(s

)s, t(DP
1p

(b)

Fig. 5 Proof of Lemma 1. The thick line is the border of R. In a, r
moves horizontally and s is to the left of p1 at time t . In b, s is to the
right of p1 at time t

clear that DP(s, t) − Δ lies in R, provided that s(t) − Δ

lies to the left of p1 (see Fig. 5a). Otherwise (see Fig. 5b),
if p1.x ≤ s(t).x − Δ.x < r(t).x , the claim follows from
the fact that DP(s, t).y ≤ p1.y (because by assumption
AW(r(t),DP(s, t))), and therefore DP(s, t) − Δ lies below
p1 and to its right. ��

Lemma 2 Let two robots r and s be given, with r ∈ L(tr )
and ts = Last(s, tr ). If AW(r(ts), s(ts)) and
AW(r(tr ), s(tr )), then AW(r(tr ),DP(s, tr )).

Proof From ts = Last(s, tr ) it follows that ts ≤ tr . If
ts = tr , then s ∈ L(tr ) and, due to Observation 7,
AW(DP(s, tr ), r(tr )), which is our claim. So let us assume
that ts < tr . If DP(s, ts) = s(ts), there is nothing to prove,
because in this case DP(s, tr ) = DP(s, ts) = s(ts) = s(tr ).
So wemay assume that s moves strictly vertically (cf. Obser-
vation 4), and therefore DP(s, ts).x = s(ts).x and s(ts).y <
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DP(s, ts).y ≤ s(ts).y +ρ/4. LetΔ = DP(s, ts)− s(ts). Also
observe that, by definition of ts , DP(s, tr ) = DP(s, ts).

We reason by considering the “point of view” of robot r .
LetΔ′ = r(tr )−r(ts). HenceDP(s, tr )−r(tr ) = DP(s, ts)−
Δ′ − r(ts). In other terms, as a consequence of r moving
upward and rightward (by Δ′) between ts and tr , DP(s, t)
moves downward and leftward in the coordinate system of
r , as t varies from ts to tr .

Recall that AW(r(tr ), s(tr )) by hypothesis, and hence
s(tr ) ∈ R(r, tr ). If s(tr ).y ≤ r(tr ).y, then, by Proposi-
tion 1, DP(s, tr ) ∈ R(r, tr ), as desired. Therefore, assume
that s(tr ).y > r(tr ).y. This also implies that

DP(s, t).y > r(t).y, ∀t ∈ [ts, tr ].

Note that |s(t).x − r(t).x | ≤ V − ρ, for every t ∈ [ts, tr ].
Indeed, the inequality holds at times ts and tr by the hypothe-
ses of the lemma, and moreover s(t).x is independent of
t ∈ [ts, tr ], while r(t).x may only increase.

Let t ′ = First(r, ts). We claim that both s(t ′) and DP(s, t ′)
belong to R(r, t ′). Assume first that r moves upward (or
stays still) between ts and t ′. Then, by Observation 7 and
the convexity of R, the segment with endpoints s(ts) and
DP(s, ts) lies in R(r, ts). If such a segment moves downward
in the coordinate system of r (as a consequence of r mov-
ing upward), and, at time t ′, s lies strictly below R(r), this
implies that DP(s, t ′).y cannot be greater than r(t ′).y, due
to Proposition 1 (recall that DP(s, t ′).y − s(t ′).y ≤ ρ/4).
This contradicts the assumption on DP(s, t ′).y made in the
previous paragraph.

So, let r move rightward, and let r(t ′) = r(ts) + Δ′′,
with 0 < Δ′′.x ≤ ρ/4. Hence, if s(ts).x ≥ r(ts).x ,
our claim is once again easily proven. Indeed, by Obser-
vation 7, DP(s, ts) lies in R(r, ts), as well as s(ts). Then,
by Proposition 1, these two points cannot move outside of
R(r) as r moves rightward by at most ρ/4, provided that
s(ts).x = DP(s, ts).x ≥ r(ts).x . So, let us assume that
s(ts).x < r(ts).x .

Since by hypothesis s moves strictly upward based on a
Look performed at time ts , it means that r(ts) /∈ H2(s, ts).
Equivalently, s(ts) does not belong to the region symmetric to
H2(r, ts)with respect to r(ts), whichwedenote by−H2(r, ts)
(seeFig. 6a).As a consequenceof the algorithm (in particular,
byRule 5 of Sect. 3.2), s does not compute a destination point
that would make r enter the region H2. Equivalently, in r ’s
coordinate system, DP(s, ts) /∈ − H2(r, ts).

In particular, as illustrated inFig. 6b, if s(ts) ∈ H1(r, ts)\−
H2(r, ts), then also DP(s, ts) ∈ H1(r, ts)\ − H2(r, ts).
Hence both s(t ′) and DP(s, t ′) belong to R(r, t ′) (recall that
|s(t ′).x − r(t ′).x | ≤ V − ρ).

Suppose now that s(ts) ∈ D2(r, ts). Note that, as a con-
sequence of the algorithm (again, by Rule 5 of Sect. 3.2),
DP(s, ts).y ≤ r(ts).y+V −ρ. Additionally, s has tomove by

2H

)st(r

2H−

′′Δ

(a)

−

)st(s

2H\1H −
)′s, t(DP

)′t(s′′Δ

(b)

Fig. 6 Proof of Lemma 2. In a, the gray area in the upper-left corner
is −H2(r, ts). In b, a detail of the set difference H1\ − H2 is shown

more than ρ/2 in the coordinate system of r in order to cross
the boundary of D1(r). But ‖Δ+Δ′′‖2 ≤ ρ/4+ρ/4 = ρ/2.
As a consequence, both s(t ′) and DP(s, t ′) still belong to
D1(r, t ′), and therefore also to R(r, t ′) (note that we already
proved that |s(t ′).x − r(t ′).x | ≤ V − ρ).

The only case left is when s(ts) lies in the lower-left
area bounded by R(r, ts) and D2(r, ts). By Proposition 1 and
because DP(s, ts).y − s(ts).y ≤ ρ/4, DP(s, t ′) certainly lies
in R(r, t ′). However,we also know thatDP(s, t ′).y > r(t ′).y,
and that DP(s, t ′).y −s(t ′).y ≤ ρ/4. Hence, again by Propo-
sition 1, s(t ′) must lie in R(r, t ′) as well.

Now our claim is proven. If t ′ = tr , we are done.
Otherwise, we apply Lemma 1 by setting t := t ′. As a
result, AW(DP(r, t ′), s(t ′)) and AW(DP(r, t ′),DP(s, t ′)). Let
t ′′ = First(r, t ′). By the convexity of R, it follows that both
s(t ′′) and DP(s, t ′′) belong to R(r, t ′′) (recall that DP(s, t)
does not depend on t ∈ [ts, tr ]). If t ′′ = tr , we are done.
Otherwise, we keep applying Lemma 1 (with t := t ′′, etc.)
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and repeating the previous reasoning, until we prove that
DP(s, tr ) ∈ R(r, tr ), which concludes the proof. ��

Now we are ready to give the full definition of mutual
awareness and the related graph.

Definition 9 (Mutual awareness) Two distinct robots r and
s are mutually aware at time t if both conditions hold:

1. AW(r(tr ), s(tr )), with tr = Last(r, t), and
2. AW(r(ts), s(ts)), with ts = Last(s, t).

Definition 10 (Mutual awareness graph)Themutual aware-
ness graph at time t ≥ 0 is the graph G̃(t) = (R, E(t)) such
that, for any two distinct robots r and s, {r, s} ∈ E(t) if and
only if r and s are mutually aware at time t .

We recall that D = V − σ , with σ > 0 arbitrary small.
By definition of Last and of mutual awareness, we have the
following.

Observation 8 All the pairs of robots that are at (Euclidean)
distance not greater than D from each other at time t = 0
are initially mutually aware. Hence J ⊆ G̃(0), and therefore
G̃(0) is connected. ��

In the following lemma, we will prove that any two robots
that are mutually aware at some point keep being so during
the entire execution.

Lemma 3 If robots r and s are mutually aware at time t,
they are mutually aware at any time t ′ ≥ t .

Proof Let (ti )i≥0 be the strictly increasing sequence of time
instants at which either r or s executes a Look; if both r and
s execute a Look simultaneously, such a time instant appears
only once in the sequence. Without loss of generality, we
may assume that r and s first become mutually aware at time
tm , when r enters a Look phase.

We will prove by induction that, for all i ≥ m, the follow-
ing conditions hold:

1. AW(r(ti ), s(ti )),
2. AW(DP(r, ti ), s(ti )),
3. AW(r(ti ),DP(s, ti )),

which will clearly imply our claim (Condition 1 actually suf-
fices).

Let i = m, and observe that Condition 1 holds by def-
inition of mutual awareness. Moreover, by Lemma 2 with
tr := tm , Condition 3 holds, too. Finally, Condition 2 is
implied by Conditions 1 and 3 and by Lemma 1 with t := tm .

Suppose now that i > m, and let the three conditions
hold at every time t j with m ≤ j ≤ i − 1. Without loss of
generality, we may assume that r ∈ L(ti−1) (if s ∈ L(ti−1),

we just exchange r and s in our proof). By Conditions 1 and 3
on ti−1, we have

AW(r(ti−1), s(ti−1)) and

AW(r(ti−1),DP(s, ti−1)).

By Lemma 1 with t := ti−1, we have also

AW(DP(r, ti−1), s(ti−1))

and

AW(DP(r, ti−1),DP(s, ti−1)).

These are equivalent, respectively, to

AW(r(ti−1), s(ti−1) − DP(r, ti−1) + r(ti−1)) and

AW(r(ti−1),DP(s, ti−1) − DP(r, ti−1) + r(ti−1)).

Collectively, s(ti−1), DP(s, ti−1), s(ti−1) − DP(r, ti−1) +
r(ti−1) andDP(s, ti−1)−DP(r, ti−1)+r(ti−1) are four points
whose convex hull C is either a rectangle or a segment
(depending if r and s move orthogonally or parallel to each
other between ti−1 and ti ). Because the vertices ofC are con-
tained in R(r, ti−1) (cf. the definition of R in the algorithm),
and because R is convex,C is entirely contained in R(r, ti−1)

(refer to Fig. 3).
Moreover, r(ti ) (resp. s(ti )) lies on the segment with

endpoints in r(ti−1) and DP(r, ti−1) (resp. s(ti−1) and
DP(s, ti−1)). Let r(ti ) = r(ti−1) + Δr and s(ti ) = s(ti−1) +
Δs . So, the point s(ti−1)+Δs −Δr belongs to C , and there-
fore to R(r, ti−1). In other terms,

AW(r(ti−1), s(ti−1) + Δs − Δr ),

which is equivalent to AW(r(ti−1) + Δr , s(ti−1) + Δs), and
to AW(r(ti ), s(ti )). Hence Condition 1 holds at ti .

Once again,without loss of generality,wemayassume that
r ∈ L(ti ). Then, Condition 3 at ti follows from Condition 1
and Lemma 2 with tr := ti . Condition 2, on the other hand,
follows from Conditions 1 and 3, and from Lemma 1 with
t := ti . ��
Corollary 1 G̃(t) is connected at any time t ≥ 0.

Proof G̃(0) is connected by Observation 8. By Lemma 3,
G̃(0) is a subgraph of G̃(t), and therefore G̃(t) is connected.

��
Corollary 2 G̃(t) ⊆ G(t), and therefore G(t) is connected
at any time t ≥ 0.

Proof Suppose that robots r and s are mutually aware at
time t . Then, by Lemma 3, they are mutually aware at any
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time after t , regardless of the scheduler’s choices. Moreover,
observe that the proof of Lemma 3 goes through even if the
scheduler can stop the robots before they have moved by
at least δ (recall that the fairness assumption of our robot
model normally forbids the scheduler to interrupt a robot’s
Move phase before it has moved by at least δ).

Let us therefore modify the execution of r and s, and let
the scheduler interrupt their Move phase precisely at time
t , regardless of how much they have actually moved during
that phase. By the previous observations, r and s aremutually
aware at time t ′ = First(r, t), and additionally r(t) = r(t ′)
and s(t) = s(t ′). Hence, by definition of mutual awareness,
r and s are at (Euclidean) distance not grater than V − ρ/2
at time t ′, and therefore also at time t .

This implies that G̃(t) ⊆ G(t), and hence that G(t) is
connected, by Corollary 1. ��

4.3 Collision avoidance

In this section, we will prove that no collision occurs during
the execution of the algorithm.

Lemma 4 No collision ever occurs between any pair of
robots during the execution of the algorithm.

Proof Let us assume by contradiction that two distinct robots
r and s collide during their execution. Because r(t) and s(t)
are continuous functions, there exists aminimum time instant
t > 0 at which r(t) = s(t) = p. At least one robot, say r ,
must make a strictly positive movement toward p, at some
point. Let t ′ < t be the last time at which r performs a Look
phase such that r(t ′) �= p. Recall that, by Observation 2, r
and s move either upward or rightward at each move. With-
out loss of generality (cf. Observation 4), let us assume that
r moves strictly rightward between t ′ and t . Then, by Obser-
vation 3, 0 < p.x − r(t ′).x ≤ V/16. Several cases arise.

If s(0) = p, then s(t ′) = p ∈ Q2(r, t ′), which is a con-
tradiction because, by the algorithm (specifically, by Rule 2
of Sect. 3.2), DP(r, t ′).x must be less than the x-coordinate
of every robot in Q2(r, t ′), and therefore r cannot be found
in p at time t .

If s(0) �= p, then s performs at least one positive move-
ment to reach p. Let t ′′ < t be the last time at which s
performs a Look phase such that s(t ′′) �= p. By symmetry
between r and s, we may assume that t ′′ ≤ t ′ < t .

Suppose that s moves strictly upward between t ′′ and t
(see Fig. 7a). Hence 0 < p.y − s(t ′′).y ≤ V/16. Because
t ′′ ≤ t ′, it follows that s(t ′) ∈ Q2(r, t ′), which contradicts
the fact that r reaches p in the next move.

Otherwise, s moves strictly rightward between t ′′ and t .
Since t ′′ ≤ t ′, it follows that s(t ′′).y = s(t ′).y = p.y
(see Fig. 7b). s(t ′) cannot lie to the right of r(t ′), oth-
erwise it would be in Q2(r, t ′), yielding a contradiction
with the algorithm (Rule 2 of Sect. 3.2). Hence s(t ′′).x ≤

)′t(r

)′t(s

)′′t(s

p

(a)

)′t(r)′t(s)′′t(s p

)′′t(r

)′′′t(r

)′′′t(s )t̃(s )t̃(r

)′′s, t(2Q

(b)

Fig. 7 Proof of Lemma 4. In a, s moves upward between t ′′ and t . In b,
s moves rightward

s(t ′).x ≤ r(t ′).x < p.x . We claim that r(t ′′).y < s(t ′′).y.
Indeed, suppose by contradiction that r(t ′′).y = s(t ′′).y. If
r(t ′′).x > s(t ′′).x , then r(t ′′) ∈ Q2(s, t ′′) and s computes a
destinationpoint that is not to the left of r ,which again contra-
dicts Rule 2 of the algorithm. Otherwise r(t ′′).x ≤ s(t ′′).x ,
which implies that r and s collide between t ′′ and t ′, contra-
dicting the minimality of t .

Because r.y < p.y at time t ′′ and r.y = p.y at time t ′,
there is a time t̃ ∈ (t ′′, t ′] at which r.y first becomes equal
to p.y. Note that r (̃t).x > s (̃t).x , otherwise r and s would
collide between t̃ and t ′. Hence r (̃t) ∈ Q2(s, t̃). Note also
that r(t ′′) /∈ Q2(s, t ′′), because DP(s, t ′′).x ≥ r(t ′′).x . Since
each move covers at most V/16, r performs more than one
move between t ′′ and t̃ : if r enters Q2(s) for the last time
from below, it must move vertically more than once; if r
enters Q2(s) for the last time from the left, then it must turn
upwards at some point (refer to Fig. 7b). More precisely, r
performs at least one Look phase in [t ′′, t̃), the last of which
at time t ′′′, and r moves strictly upward between t ′′′ and t̃ .
Then

s(t ′′).x ≤ s(t ′′′).x ≤ s (̃t).x < r (̃t).x = r(t ′′′).x .

It follows that 0 < r(t ′′′).x − s(t ′′′).x ≤ V/16. More-
over, 0 < s(t ′′′).y − r(t ′′′).y ≤ V/16, hence s(t ′′′) ∈
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Q1(r, t ′′′). This contradicts Rule 2 of the algorithm, because
DP(r, t ′′′).y ≥ s(t ′′′).y. ��

4.4 Convergence and termination

In this final section, we will prove that the robots will con-
verge to the same limit point (Lemma 5), and then finally that
our Near-Gathering algorithm is correct (Theorem 1).

Let � be the point having the x-coordinate of the rightmost
point in I, and the y-coordinate of the topmost point in I.
That is,

� =
(
max
r∈R

{r(0).x} ,max
r∈R

{r(0).y}
)

.

Lemma 5 If no robot ever terminates its execution, then all
robots converge towards point �.

Proof Let an execution of the robot setR be fixed, in which
no robot ever terminates. By Observation 2, the movement of
each robot is monotonically increasing with respect to both
the x-coordinate and the y-coordinate.Also, at any time, each
robot’s coordinates are bounded from above by the coordi-
nates of �. It follows that each robot r converges towards a
point, denoted by LIM(r), such that LIM(r).x ≤ �.x and
LIM(r).y ≤ �.y.

If all robots have the same convergence point, then this
point must be �, because there is a robot whose x-coordinate
is constantly �.x and a (possibly distinct) robot whose y-
coordinate is constantly �.y. Hence, in this case the lemma
follows. Thus, let us assume that there is more than one con-
vergence point. Let λ ∈ R

+ be any positive number such
that:

– λ ≤ LIM(r).x − LIM(s).x for every r, s ∈ R with
LIM(r).x > LIM(s).x ;

– λ ≤ LIM(r).y − LIM(s).y for every r, s ∈ R with
LIM(r).y > LIM(s).y;

– λ ≤ V − dist(LIM(r),LIM(s)) for every r, s ∈ R with
dist(LIM(r),LIM(s)) < V ;

– λ ≤ min {ρ/2, δ}.

BecauseR is a finite set, there is a time t0 at which, for every
r ∈ R,

dist(r(Last(r, t0)),LIM(r)) < λ/3.

By definition of λ, if dist(LIM(r),LIM(s)) < V , then
dist(r(t), s(t)) < V for all t ≥ t0. On the other hand,
if AW(r(t), s(t)) for some t ≥ t0, then in particular
dist(r(t), s(t)) ≤ V − ρ/2, and therefore

dist(LIM(r),LIM(s)) < V .

Let us choose t1 > t0 such that every robot inR executes at
least one complete cycle between t0 and t1 (i.e., from a Look
phase to the next). We further assume that, for every r ∈ R,
if r(t0).x < LIM(r).x (resp. r(t0).y < LIM(r).y), then in
at least one such cycle (i.e., executed between t0 and t1) r
moves strictly rightward (resp. upward). Note that we can
make this assumption becauseLIM(r).x must be approached
indefinitely by r.x , and therefore, if r(t0).x < LIM(r).x , then
r must make a rightward move at some point after t0 (and
similarly for y-coordinates and upward moves).

Let a be the lowest among the leftmost convergence points
of the robots in R, and let A ⊂ R be the set of robots that
converge towards a.

Suppose first that there exists some robot s ∈ R\A con-
verging to b �= a, such that dist(a, b) < V and b.x > a.x .
Let r be any rightmost robot of A at time t1. As observed
three paragraphs above, r and s can see each other at any
time since t0.

If r.x < a.x then, by construction, there exists a time
t∗ ∈ [t0, t1] at which r performs a Look phase, such that
r(t∗).x < DP(r, t∗).x and r(First(r, t∗)).x = r(t1).x (see
Fig. 8a). According to the algorithm (specifically, by Rule 2
of Sect. 3.2), if r is able to compute such a destination
point, it means that no robot of A lies in Q2(r) at time
t∗. Therefore, by definition of λ and by construction, every
robot in Q2(r, t∗) has an x-coordinate that is greater than
a.x + 2λ/3. Because s(t∗).x > a.x + 2λ/3 as well, it
follows that DP(r, t∗).x > r(t∗).x + λ/3 (observe that no
robot in Q1(r, t∗) can prevent r from moving rightward by
at least ρ/4 > λ/3, due to Proposition 1). Additionally,
λ/3 < δ, hence r actually moves by more than λ/3. But
r(t∗).x +λ/3 > a.x , contradicting the fact that r.x monoton-
ically converges to a.x .

Otherwise, r.x = a.x holds. Then, let t∗ = First(r, t1).
At time t∗, r sees no robot q with r(t∗).x < q(t∗).x ≤
r(t∗).x + 2λ/3. Moreover, r sees s, and s(t∗).x > r(t∗).x +
2λ/3. Hence, DP(r, t∗) has distance greater than λ/3 from
r(t∗), and r actually moves rightward or upward by more
than λ/3 < δ. When r is done moving, either r.x > a.x or
r.y > a.y, contradicting the fact that LIM(r) = a.

Suppose now that there is no limit point b �= a such that
dist(a, b) < V and b.x > a.x . By Corollary 1, G̃(t0) is
connected, hence there exist robots r ′ ∈ A and s′ ∈ R\A
that aremutually aware at time t0 (and also at any time t ≥ t0,
by Lemma 3). Let b = LIM(s′). Then, either dist(a, b) ≥
V or a.x = b.x (recall that a is a leftmost convergence
point). However, observe that if dist(a, b) ≥ V , then r ′ and
s′ cannot be mutually aware at any time t ≥ t0, because
dist(r ′(t), s′(t)) > V −ρ/2. Therefore,a.x = b.x anda.y <

b.y < a.y + V .
Let r ′′ be any topmost robot ofA at time t1. ByCorollary 2,

r ′ sees s′ at any time t ≥ t0. Then, by definition of λ and t0,
also r ′′ sees s′ at any time t ≥ t0.
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Fig. 8 Proof of Lemma 5. In a, b lies strictly to the right of a. In b,
a.x = b.x and r ′′(t1).y < a.y. In c, a.x = b.x and r ′′(t1).y = a.y

Suppose first that r ′′(t1).y < a.y (see Fig. 8b). By def-
inition of t1, there exists a time t∗ ∈ [t0, t1] at which r ′′
performs a Look phase, such that r ′′(t∗).y < DP(r ′′, t∗).y
and r ′′(First(r ′′, t∗)).y = r ′′(t1).y. According to the algo-
rithm (specifically, by Rule 2 of Sect. 3.2), if r ′′ is able to
compute such a destination point, it means that no robot
of A lies in Q1(r ′′) at time t∗. Therefore, by definition of
λ and by construction, every robot in Q1(r ′′, t∗) has a y-
coordinate that is greater than a.y + 2λ/3. On the other

hand, r ′′ sees no robot q with q(t∗).y < r ′′(t∗).y and
dist(r ′′(t∗), q(t∗)) ≤ V − ρ/2, hence r ′′ is able to move
upward by more than λ/3. But indeed, r ′′ does see s′, and
s′(t∗).y > a.y+2λ/3, henceDP(r ′′, t∗).y > r ′′(t∗).y+λ/3.
Once again, this contradicts the fact that LIM(r ′′) = a.

Finally, suppose that r ′′(t1).y = a.y (see Fig. 8c), and let
t∗ = First(r ′′, t1). At time t∗, r ′′ sees no robotq in Q1(r ′′, t∗)
with r ′′(t∗).y < q(t∗).y ≤ r ′(t∗).y + 2λ/3. Similarly to the
previous paragraph’s case, no robot below r ′′ can prevent r ′′
from moving upward, and the presence of s′ makes r ′′ com-
pute a destination point that is more than λ/3 < δ away from
r ′′. Thus, r ′′ moves either upward of rightward by more than
λ/3,which is in contradictionwith the fact thatLIM(r ′′) = a.

��
To prove that termination is correctly detected, we need

one last lemma.

Lemma 6 A robot r terminates its execution at time t only
if it sees all the robots in R at time Last(r, t).

Proof Let r terminate its execution at time t , and let Z be
the set of robots that are at distance at most ε′ from r at time
t ′ = Last(r, t). Note that Z is not empty, because r ∈ Z .
Because r terminates, it follows that every robot inR\Z has
distance greater than V from r at time t ′.

Assume for a contradiction that R\Z is not empty.
By Corollary 2, G(t ′) is connected, and therefore there
are a robot s ∈ Z and a robot s′ ∈ R\Z such that
dist(s(t ′), s′(t ′)) ≤ V − ρ/2. Since dist(s′(t ′), r(t ′)) > V ,
then dist(s(t ′), r(t ′)) > ρ/2, by the triangle inequality. But
s ∈ Z , hence dist(s(t ′), r(t ′)) ≤ ε′ ≤ ρ/2, which yields a
contradiction. ��

By putting together all the previous results, we obtain the
following.

Theorem 1 The algorithm in Fig. 2 correctly solves the
Near-Gathering problem under Assumption 1.

Proof Assume for a contradiction that no robot ever termi-
nates its execution. Due to Lemma 5, all the robots converge
to the same point �. Therefore, when all the robots are con-
tained in a square Q with diagonal length ε′ and upper-right
vertex �, they all see each other at distance not greater than
ε′. From this time onward, whenever a robot executes a Look
and then a Compute phase, it terminates, contradicting our
assumption.

Hence, at least one robot r will terminate its execution at
some point in time t > 0. Due to Lemma 6, r sees all the
robots in R at time t ′ = Last(r, t). This means that, at time
t ′, all the robots are within distance ε′ from each other. Due
to Observation 2 and Lemma 5, at any time t ′′ ≥ t ′, all the
robots are contained in a square Q with diagonal length ε′ and
upper-right vertex �. Then, by the same reasoning used in the
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previous paragraph, we conclude that every robot eventually
terminates its execution while lying in Q.

By Lemma 4, no two robots ever collide, and hence they
correctly solve Near-Gathering. ��

5 Conclusions

In this paper we presented the first algorithm that solves
the Near-Gathering problem using the standard Euclid-
ean distance (in contrast with [18]) for a set of autonomous
mobile robots with limited visibility. The protocol presented
here is collision-free and handles termination: this allows
to potentially combine our protocol with solutions to other
problems designed for the unlimited visibility setting. This
is achieved without assuming that the total number of robots
in the system is known to the robots themselves, and without
allowing them to explicitly communicate.

We remark that our algorithm can be easily modified to
solve the Near-Gathering problem in the robot models
that use any p-norm distance as opposed to the Euclidean
distance, including the infinity norm distance.

Moreover, our algorithm is perfectly symmetric with
respect to the x- and y-axes. This implies that our solution
works also when the robots agree only on the direction of
one of the two axes, say, the y-axis, and not necessarily on
the orientation of the other axis.

Corollary 3 The Near-Gathering problem is solvable
under Assumption 1 even if the robots agree only on the direc-
tion of one of the two axes.

Proof Suppose without loss of generality that the robots
agree on the y-axis. Then, the following algorithm is
employed: the input snapshot is first rotated clockwise by
45◦, then the algorithm in Fig. 2 is applied to the resulting
snapshot, and finally the computed destination point dp is
rotated counterclockwise by 45◦.

Indeed, the two rotations effectively tilt the coordinate
systems of all robots, in such a way that their y-axes become
actually parallel to the line y = x in the “global” coordinate
system. This is equivalent to having the robots agree only on
the positive direction of the line y = x , but allowing them to
disagree on which is the x-axis and which is the y-axis. The
algorithm in Fig. 2 still works because, due to Observation 4,
it is symmetric with respect to x- and y-coordinates. ��

Therefore, under Assumption 1, the Near-Gathering
protocol can also be used to solve the classical gathering
problem in the limited visibility scenario, when the robots
have only this form of partial agreement on their local coor-
dination systems, thus improving on [12], which requires
total agreement on both axes and does not avoid collisions.
Indeed, it is sufficient to convert the termination command

in the algorithm in Fig. 2 with a move to point �, as defined
in Sect. 4.4.

We conjecture that no algorithm can solveNear-Gathe-
ring with no agreement on at least one axis, and we leave
this as an open problem.Another direction for future research
would be to solve Near-Gathering from any initial con-
figuration in which the distance graph is connected, with
no further assumption on the initial strong distance graph
(cf. Assumption 1). Again, we conjecture this problem to
be unsolvable in Async; note that in this case some extra
assumption is required, for instance that the total number
of robots is known, or that robots are able to communicate.
Finally, themore generalmodel inwhich robots do not neces-
sarily have the same visibility radius, and hence do not share
a common unit distance, should be considered in conjunction
with both the gathering problem and Near-Gathering.
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