
Distrib. Comput. (2015) 28:309–320
DOI 10.1007/s00446-015-0246-7

Efficient distributed computation of distance sketches in networks

Atish Das Sarma1 · Michael Dinitz2 · Gopal Pandurangan3

Received: 20 November 2012 / Accepted: 24 April 2015 / Published online: 8 May 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Distance computation (e.g., computing shortest
paths) is one of the most fundamental primitives used in
communication networks. The cost of effectively and accu-
rately computing pairwise network distances can become
prohibitive in large-scale networks such as the Internet
and Peer-to-Peer (P2P) networks. The idea behind distance
sketches is to preprocess the graph and store a small amount
of information (called as sketch or distance label) such that
whenever a query for any pairwise distance is issued, the dis-
tance can be well approximated (i.e., with small stretch) very
quickly in an online fashion. Specifically, the pre-processing

A preliminary version of this paper appeared in the proceedings of the
24th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Pittsburgh, PA, USA, 2012.

Michael Dinitz: Work supported in part by an Israel Science
Foundation Grant #452/08, a US-Israel BSF Grant #2010418, and by
a Minerva grant.
Gopal Pandurangan: Work done when the author was at the Division
of Mathematical Sciences, Nanyang Technological University,
Singapore 637371, and Department of Computer Science, Brown
University, Providence, RI, 02912, USA. Research supported in part
by the following grants: Nanyang Technological University Grant
M58110000, Singapore Ministry of Education (MOE) Academic
Research Fund (AcRF) Tier 2 Grant MOE2010-T2-2-082, and the
United States-Israel Binational Science Foundation Grant 2008348.

B Gopal Pandurangan
gopalpandurangan@gmail.com

Atish Das Sarma
atish.dassarma@gmail.com

Michael Dinitz
mdinitz@cs.jhu.edu

1 eBay Research Labs, San Jose, CA, USA

2 Johns Hopkins University, Baltimore, MD, USA

3 Department of Computer Science, University of Houston,
Houston, TX 77204, USA

(usually) involves storing this sketch with each node, such
that at query time only the sketches of the concerned nodes
need to be looked up to compute the approximate distance.
In this paper, we present the first theoretical study of dis-
tance sketches derived from distance oracles in a distributed
network.Wefirst present a fast distributed algorithm for com-
puting approximate distance sketches, based on a distributed
implementation of the distance oracle scheme of (Thorup
and Zwick, J ACM 52(1):1–24, 2005). We also show how to
modify this basic construction to achieve different tradeoffs
between the number of pairs for which the distance estimate
is accurate, the size of the sketches, and the time andmessage
complexity necessary to compute them. These tradeoffs can
then be combined to give an efficient construction of small
sketches with provable average-case as well as worst-case
performance. Our algorithms use only small-sized messages
and hence are suitable for bandwidth-constrained networks,
and can be used in various networking applications such
as topology discovery and construction, token management,
load balancing, monitoring overlays, and several other prob-
lems in distributed algorithms.

Keywords Distributed network · Shortest paths ·
Distance labeling · Distributed algorithm

1 Introduction

A fundamental operation on large networks is finding short-
est paths between pairs of nodes, or at least finding the
lengths of these shortest paths. This problem is not only a
common building block in many algorithms, but is also a
meaningful operation in its own right. In a social network
one may be interested in finding the shortest sequence of
friends that connects one to a celebrity. In the web graph, a

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-015-0246-7&domain=pdf

310 A. D. Sarma et al.

short sequence of links between two URLs may indicate a
certain degree of relatedness between the two pages [14,39].
In a distributed network such as a large peer-to-peer network,
this may be useful in search, topology discovery, overlay
creation, and basic node to node communication. However,
given the large size of these networks, computing short-
est path distances can, if done naively, require a significant
amount of both time and network resources. Moreover, run-
ning Dijkstra’s well known shortest-path algorithm [9] on a
large network (e.g., Web graph) containing tens of billions
of nodes and trillions of edges would take several hours, if
not days. Even in a distributed setting, if the computation is
parallelized, the sequentially dependent nature of Dijkstra’s
computationwould require huge amounts of communication.
Furthermore, in a real-time computation, only a small amount
of resources—memory access, CPU cycles—are available
for a single shortest distance query. As we would like to
make distance queries in real time with minimal latency, it
becomes important to use small amounts of resources per
distance query. Particular to distributed networks, storing
some approximate distances or network views from nodes
are important as they facilitate understanding the overall
topology from a local view of each node. In particular, such
distance “sketches” (also known as distance labelings) of
particular importance in the Internet or P2Pnetworkswhere it
is often critical to understand the network topology. Sketches
present an ideal way for each node to store its view of the
overall global structure of the distributed network. Since
distance information can change dynamically, it is impor-
tant to compute the sketches quickly and also in an online
fashion.

One approach to handle online distance requests is to
perform a one-time offline or centralized computation. A
straightforward brute force solution would be to compute the
shortest paths between all pairs of nodes offline and to store
the distances locally in the nodes. Once this has been accom-
plished, answering a shortest-path query online can be done
with no communication overhead; however, the local space
requirement is quadratic in the number of nodes in the graph
(or linear if only shortest paths from the node are stored). For
a large network containing millions of nodes, this is simply
infeasible. An alternative, more practical approach is to store
some auxiliary information with each node that can facilitate
a quick distance computation online in real time. This auxil-
iary information is then used in the online computation that is
performed for every request or query. One can view this aux-
iliary information as a sketch of the neighborhood structure
of a node that is stored with each node. Simply retrieving the
sketches of the two nodes should be sufficient to estimate the
distance between them. Three properties are crucial for this
purpose: first, these sketches should be reasonably small in
size so that they can be stored with each node and accessed
for any node at run time. Second, there needs to be a simple

algorithm that, given the sketches of two nodes, can estimate
the distance between them quickly. And third, even though
the computation of the sketches is an offline computation,
this cost also needs to be accounted for (as the distance infor-
mation or network itself changes frequently, and this would
require altering the sketches periodically).

Sketches for the specific purpose of distance computa-
tion in communication networks have been referred to as
distance labelings (by the more theoretical literature) and
as network coordinate systems (by the more applied litera-
ture). There has been a significant amount of work from a
more theoretical point of view on the fundamental tradeoff
between the size of the sketches and the accuracy of the dis-
tance estimates they give (see e.g. Thorup and Zwick [37],
Gavoille et al. [16], Katz et al. [21], and Cohen et al. [6]).
However, all of these papers assumed a centralized compu-
tation of sketches, so are of limited utility in real distributed
systems. In the networking community there has also been
much work on constructing good network coordinate sys-
tems, including seminal work such as the Vivaldi system [10]
and the Meridian system [38]. While this line of work has
resulted in almost fully functioning systems with efficient
distributed algorithms, the theoretical underpinning of such
systems is lacking; most of them can easily be shown to
exhibit poor behavior in pathological instances. The main
exception to this is Meridian, which has a significant theo-
retical component. However, it assumes that the underlying
metric space is “low-dimensional”, and it is easy to con-
struct high-dimensional instances on which Meridian does
poorly.

We attempt to move the theoretical line of research
closer to practice by designing efficient distributed algo-
rithms for computing accurate distance sketches. We give
algorithms with bounded round and message complexity in
a standard model of distributed computation (the CONGEST
model [33]) that compute sketches that give distances esti-
mates provably close to the actual distances. In particular,
we engineer a distributed version of the seminal centralized
algorithm of Thorup and Zwick [37]. Their algorithm com-
putes sketches that allow us to approximate distances within
a factor 2k − 1 (this value is known as the stretch) by using
sketches of size Õ(k · n1/k), for any integer k ≥ 1. Up to the
factor of k in the size, this is known to be a tight tradeoff in
the worst case assuming a famous conjecture by Erdős [37].
Note that this achieves its minimum size at k = log n, giv-
ing an O(log n)-factor approximation to the distances using
sketches of size O(log2 n). We further extend these results
to give a distributed algorithm based on the centralized algo-
rithms ofChan et al. [5] that computes sketcheswith the same
worst-case stretch and almost the same size, but with prov-
ably better average stretch. To the best of our knowledge, this
is the first theoretical analysis of distributed algorithms for
computing distance sketches. Our work can also be viewed

123

Efficient distributed computation of distance sketches in networks 311

as an efficient computation of local node-centric views of
the global topology, which may be of independent interest
for numerous different applications (cf. Sect. 2.1).

1.1 Our contributions

Our main contributions are new distributed algorithms for
various types of distance sketches i.e., distance labeling
schemes (which is more commonly used terminology in the
distributed computing literature.1 Most of the actual sketches
have been described in previous work (in particular [37]
and [5]), butwe are thefirst to show that they canbe efficiently
constructed in a distributed network. While we formally
define the model and problem in Sect. 2.2, at a high level we
assume a synchronous distributed network in which in a sin-
gle communication “round” every node can send a message
of up to O(log n) bits (or 1 word) to each of its neighbors.
Every edge has a nonnegative weight associated with it, and
the distance between two nodes is the total weight of the
shortest path (with respect to weights) between them. An
important parameter (defined formally in Sect. 2.2) is S, the
shortest-path diameter [24], which is (informally) the maxi-
mumover all

(n
2

)
pairs of theminimumnumber of hops in any

shortest path (where “short” is determined by weight). In an
unweighted network, S is the same as the network diameter
D, hence S can be thought of as a generalization of D in a
weighted network. Note that D is a time lower bound on any
exact distance computation.

We begin in Sect. 3 by giving a distributed algorithm that
constructs the distance sketches of Thorup and Zwick [37]
efficiently:

Theorem 1 For any integer k ≥ 1, there is a distributed
algorithm that takes O(kn1/k S log n) rounds after which
with high probability every node has a sketch of size at most
O(kn1/k log n) words that provides approximate distances
up to a factor of 2k − 1.

In Sect. 4 we show how to extend the techniques of Chan
et al. [5] and combine them with the techniques of Sect. 3 to
give sketches with “slack”. Informally, a sketch has ε-slack if
the stretch factor (i.e. the distance approximation guarantee)
only holds for a (1 − ε)-fraction of the pairs, rather than all
pairs.While this is a weaker guarantee, since some pairs have
no bound on the accuracy of the distance estimate at all, both
the size of the sketches and the time needed to construct them
become much smaller. For example, when ε is a constant
(even a small constant) we can construct constant stretch
sketches in only O(S log2 n) rounds.

1 We simply use the terminology “sketch” throughout this paper, if only
for the sake of brevity).

Theorem 2 For any value ε > 0 and integer 1 ≤ k ≤
O(log 1

ε
), there is a distributed sketching algorithm that with

high probability gives sketches with stretch 8k − 1 with ε-

slack that have size at most O(k
(1

ε
log n

)1/k
log n) words

and completes in at most O
(
kS

(1
ε
log n

)1/k
log n

)
rounds.

Finally, in Sect. 4.1 we extend the slack techniques further
by combining a hierarchy of sketches with different slack
parameters. This allows us to efficiently construct sketches
with the same worst-case stretch as in Theorem 1 (with k =
O(log n)) but with average stretch only O(1):

Theorem 3 There is a distributed sketching algorithm that
with high probability gives sketches of size at most O(log4 n)

with O(log n)-stretch and O(1) average stretch and com-
pletes in at most O(S log4 n) rounds.

2 Related work and model

2.1 Applications and related work

Applications of approximate distance computations in dis-
tributed networks include token management [8,19], load
balancing [20], small-world routing [26], and search [7,
17,29]. Several other areas of distributed computing also
use distance computations in a crucial way; some examples
are information propagation and gathering [4,22], network
topology construction [17,27,28], monitoring overlays [30],
group communication in ad-hoc network [12], gathering and
dissemination of information over a network [2], and peer-
to-peer membership management [15,40].

The most concrete application of our algorithms is to
quickly computing approximate shortest path distances in
networks, i.e. the normal application of network coordinate
systems. In particular, in weighted networks, after using our
algorithms to preprocess the network and create distance
sketches we can compute the approximate distance between
any two nodes in at most O(D) times the size of the sketch
rounds (where D, the hop-diameter, is the maximum over
all pairs of nodes of the minimum number of hops between
the nodes) by simply exchanging the sketches of the two
nodes. On the other hand, note that any distance computa-
tion without using preprocessing (say, Dijkstra’s algorithm,
Bellman-Ford, or even a simple network ping to obtain the
round-trip time) will take at least Ω(S) rounds, where S is
the shortest path diameter. This is less than ideal since S can
be as large as n even when D (the hop-diameter) is much
smaller. Therefore our sketches yield improved algorithms
for pairwise weighted distance computations. Moreover, in
networks such as P2P networks and overlay networks, using
our algorithms a node can compute distances (number of
hops in the overlay) in constant times size of sketch rounds

123

312 A. D. Sarma et al.

if it simply knows the IP address of the other node: it can
directly contact the other node using its IP address and
ask for its sketch. Thus these sketch techniques can be
very relevant and applicable even for unweighted distance
computations.

Probably the closest results to ours are from the theory
behind Meridian [38], which is based on a modification of
the “ring-of-neighbors” theoretical framework developed by
Slivkins [35,36] to prove theoretical bounds. However, there
are some substantial differences. For one, the bounds given
by these papers (including [38]) are limited to special types
of metric spaces: those with either bounded doubling dimen-
sion or bounded growth. Our bounds hold for all weighted
graphs (with weaker guarantees on the stretch, obviously).
Furthermore, the distributed framework used by Slivkins is
significantly different from the standard CONGEST model
of distributed computation that we use, and is based on being
able to work in the metric completion of the graph. This
means, for example, that the algorithms in [36] have the abil-
ity to send a unit-size packet between any two nodes in O(1)
time (and the algorithms do in fact make strong use of this
ability).

Several studies, for example the ones by Goldberg et
al. [11,18], have focused on answering exact shortest path
queries on road networks. These algorithms make use of a
small set of precomputed landmarks and shortcuts and use
them at query time to connect a source, destination pair; these
landmarks and shortcuts are chosenvery carefully using algo-
rithms that are specialized to the structure of road networks.
This approach has also proven to be useful in the context
of network distances, though, and has been used heavily in
several constructions of network location services (e.g. the
Meridian system [38] and the theory that it is based on [25]).
Our algorithms can be viewed in this framework as using a
randomly sampled set of landmarks.

Another line of work in estimating distances is the study
of spanner construction. A spanner is a sparse subgraph of
the given graph, such that the distance on this sparse graph
approximates the actual distance, for any pair of points.
Although spanners take small space, they do not exactly
provide a sketch for each node; thus the online algorithm
for estimating distance may take a long time. Some theo-
retically efficient algorithms for spanners are presented by
Feigenbaum et al. [13], and Baswana [3] and the references
therein.

2.2 Model and notation

We model a communication network as a weighted, undi-
rected, connected n-node graph G = (V, E). Every node
has limited initial knowledge. Specifically, assume that each
node is associated with a distinct identity number (e.g., its
IP address). At the beginning of the computation, each node

v accepts as input its own identity number and the identity
numbers of its neighbors in G. The node may also accept
some additional inputs as specified by the problem at hand.
The nodes are allowed to communicate through the edges of
the graph G. We assume that the communication occurs in
synchronous rounds. We will use only small-sized messages.
In particular, in each round, each node v is allowed to send a
message of size O(log n) through each edge e = (v, u) that
is adjacent to v. The message will arrive at u at the end of the
current round. We also assume that all edge weights are at
most polynomial in n, and thus in a single round a distance
or node ID can be sent through each edge. A word is a block
of O(log n) bits that is sufficient to store either a node ID or
a network distance.

This is a widely used standard model to study distributed
algorithms (called the CONGEST model, e.g., see [32,33])
and captures the bandwidth constraints inherent in real-world
computer networks. Many classical network algorithms have
been studied in this model, including algorithms for short-
est paths (Bellman-Ford, Dijsktra), minimum spanning trees,
etc. Our algorithms can be easily generalized if B bits
are allowed (for any pre-specified parameter B) to be sent
through each edge in a round. Typically, as assumed here,
B = O(log n), which is number of bits needed to send a
node id in an n-node network. We assume that n (or some
constant factor estimate of n) is common knowledge among
nodes in the network.

Every edge in the network has some nonnegative weight
associated with it, and the distance between two nodes is the
minimum, over all paths between the nodes, of the sum of
the weights of the edges on the path. In other words, the nor-
mal shortest-path distance with edge weights. We let d(u, v)

denote this distance for all u, v ∈ V . For a set A ⊆ V
and a node u ∈ V , we define the distance from the node to
the set to be d(u, A) = min{d(u, a) : a ∈ A}. For a node
u ∈ V and real number r ∈ R

≥0, the ball around u of radius
r is defined to be the nodes within distance r of u, namely
B(u, r) = {v ∈ V : d(u, v) ≤ r}.

The hop-diameter D of G is defined to be the maximum
over all pairs u,v in V of the number of hops between u
and v. In other words, its the maximum over all pairs of the
distance between u and v but where distance is computed
assuming that all edge weights are 1, rather than their actual
weights. The shortest-path diameter S of G is slightly more
complicated to define. For u, v ∈ V , let Pu,v be the set of
simple paths between u and v with total weight equal to
d(u, v) (by the definition of d(u, v) there is at least one such
path). Leth(u, v)be theminimum,over all paths in P ∈ Pu,v ,
of the number of hops in P (i.e. the number of edges). Then
S = maxu,v∈V h(u, v). It is easy to see that D ≤ S and in
general, any method of computing the distance from u to v
must use at least S rounds (or else the shortest path will not
be discovered).

123

Efficient distributed computation of distance sketches in networks 313

3 Distributed sketches

We are concerned with the problem of constructing a dis-
tance labeling scheme in a distributedmanner. Given an input
(weighted) graph G = (V, E), we want a distributed algo-
rithm so that at termination every node u ∈ V knows a
small label (or sketch) L(u) with the property that we can
(quickly) compute an approximation to the distance between
u and v just from L(u) and L(v). Since the requirement of
sketch sizes and latency in distance computation may vary
from application to application, typically one would like
a trade-off between the distance approximation and these
parameters.

3.1 Thorup–Zwick construction

The famous algorithm for constructing distance sketches in
a centralized manner is Thorup-Zwick [37], which works as
follows. They first create a hierarchy of node sets: A0 = V ,
and for 1 ≤ i ≤ k − 1, we get Ai by randomly sampling
every vertex in Ai−1 with probability n−1/k , i.e. every vertex
in Ai−1 is included in Ai with probability n−1/k . We set
Ak = ∅ and d(u, Ak) = ∞ by definition.

Let Bi (u) = {w ∈ Ai : d(u, w) < d(u, Ai+1)}, and
let B(u) = ∪k−1

i=0 Bi (u) (for now we will assume that all dis-
tances are distinct; this can bemadewithout loss of generality
by breaking ties consistently through processor IDs or some
other method). B(u) is called the bunch of u. Let pi (u) be the
vertex in Ai with minimum distance from u. The label L(u)

of u consists of all nodes {pi (u)}k−1
i=0 and B(u), as well as the

distances to all of these nodes. Thorup and Zwick showed
that these labels are enough to approximately compute the
distance, and that these labels are small. We give sketches of
these proofs for completeness (the reader can safely skip the
proofs of these without affecting the continuity).

Lemma 1 ([37]) With high probability the size of Bi (u) is
at most O(n1/k log n) for all u ∈ V and i ∈ {0, . . . , k − 1}.
This means that the size of L(u) is at most O(kn1/k log n)

words with high probability.

Proof Wefirst prove that the expected size of Bi (u) is atmost
n1/k for every 0 ≤ i ≤ k − 1. Suppose that we have already
made the random decisions that define levels A0, . . . , Ai ,
and now for each v ∈ Ai we flip the coin to see if it is also
in Ai+1. If we flip these coins in order of distance from u
(this is just in the analysis; the algorithm can flip the coins
simultaneously or in arbitrary order) then the size of Bi (u) is
just the number of coins we flip before we see a heads, where
the probability of flipping a heads is n−1/k . In expectation
this is n1/k . Now a Chernoff bound guarantees that |Bi (u)|
is at most O(n1/k log n) with high probability, and we can
take a union bound over all u and all i. 	

Lemma 2 ([37]) Given L(u) and L(v) for some u, v ∈ V ,
we can compute a distance estimate d ′(u, v) with d(u, v) ≤
d ′(u, v) ≤ (2k − 1)d(u, v) in time O(k).

Proof For each 0 ≤ i ≤ k − 1, we check whether pi (u) ∈
Bi (v) or pi (v) ∈ Bi (u). Let i∗ be the first level at which
at least one of these events occurs. Note that i∗ is well-
defined and is at most k − 1, since pk−1(u) ∈ Bk−1(v)

and pk−1(v) ∈ Bk−1(u). If the first condition is true then
we return the distance estimate d ′(u, v) = d(u, pi∗(u)) +
d(v, pi∗(u)), and if the second condition is true we return
d ′(u, v) = d(u, pi∗(v)) + d(v, pi∗(v)). Note that the neces-
sary distances are in the labels as part of Bi∗(u) and Bi∗(v),
so we can indeed compute this from L(u) and L(v).

We first prove by induction that d(u, pi (u)) ≤ i · d(u, v)

and d(v, pi (v)) ≤ i · d(u, v) for all i ≤ i∗. In the base case,
when i = 0, both inequalities are true by definition. For the
inductive step, let 1 ≤ i ≤ i∗. Since i ≤ i∗ we know that
i − 1 < i∗, so pi−1(u) /∈ Bi−1(v) and pi−1(v) /∈ Bi−1(u).
This implies that d(v, pi (v)) ≤ d(v, pi−1(u)) ≤ d(v, u) +
d(u, pi−1(u) ≤ d(u, v)+(i−1)d(u, v) = i ·d(u, v), where
the first inequality is from i − 1 < i∗, the second is from the
triangle inequality, and the third is from the inductive hypoth-
esis. Similarly, we get that and d(u, pi (u)) ≤ i · d(u, v).

Now suppose without loss of generality that pi∗(v) ∈
Bi∗(u) (if the roles are reversed we can just switch the names
of u and v). Then our distance estimate is

d ′(u, v) = d(u, pi∗(v)) + d(v, pi∗(v))

≤ d(u, v) + 2d(v, pi∗(v))

≤ d(u, v) + 2i∗d(u, v) = (2i∗ + 1)d(u, v),

where the first inequality is from the triangle inequality and
the second is from our previous inductive proof. Since i∗ ≤
k − 1, this gives a stretch bound of 2k − 1 as claimed. 	

3.2 Distributed algorithm

The natural question is whether we can construct these labels
in a distributedmanner. For a vertex v ∈ Ai\Ai+1, letC(v) =
{w ∈ V : d(w, v) < d(w, Ai+1)}. This is called the cluster
of v. Note that the clusters are the inverse of the bunches:
u ∈ C(v) if and only if v ∈ B(u). So we will construct a
distributed algorithm in which every vertex u knows exactly
which clusters it is in and its distance from the centers of
those clusters, and thus is able to construct its label. Also,
it’s easy to see that the clusters are connected: if u ∈ C(v)

then obviously any vertex w on the shortest path from u to v
is also in C(v).

The distributed protocol is as follows: we first divide into
k phases, where in phase iwe deal with clusters from vertices
in Ai\Ai+1. However, we run the phases from top to bottom
– we first do phase k − 1, then phase k − 2, down to phase 0.

123

314 A. D. Sarma et al.

In phase i the goal is for every node u ∈ V to know for every
node v ∈ V whether u ∈ C(v), and if so, its distance to v.
Thus every node u will know Bi (u) at the end of phase i. We
will give an upper bound on the length of each phase with
respect to n and S, so if every node knows both n and S they
can all start each phase together by waiting until the upper
bound ismet. For nowwewillmake the assumption that every
node knows S (the shortest path diameter), thus solving the
issue of synchronizing the beginning of the phases, but we
will show in Sect. 3.3 how to remove this assumption.

Let us first consider phase k − 1, i.e. the first phase that
is run. This phase is especially simple, since by definition
Bk−1(u) = Ak−1 for every node u. So at the end of this phase
we simply want every node to know all of the nodes in Ak−1

and its distances to all of them. This is known as the k-Source
Shortest Paths Problem, and can be done in O(|Ak−1|S)

rounds by running distributed Bellman-Ford from each node
in Ak−1 simultaneously [32]. In particular, for a fixed source
v ∈ Ak−1 every node u ∈ V runs the following protocol:
initially, u guesses that its distance to v is d ′(u, v) = ∞. If it
hears a message from a neighbor w that contains a distance
a(w), then it checks if d(u, w) + a(w) < d ′(u, v). If so,
then it updates d ′(u, v) to d(u, w) + a(w) and sends to all
its neighbors a message that contains the new d ′(u, v). This
algorithm is given in detail as Algorithm 1.

Algorithm 1: Basic Bellman-Ford for u
Initialization: d ′ = ∞
For each neighbor w of u, get message a(w)1
z ← minw∈N (u){a(w) + d(u, w)}2
if z < d ′ then3

d ′ ← z4
Send message d ′ to all neighbors5

In this descriptionwe assume that there is one source v that
is known to all nodes, but this clearly is not necessary. With
multiple unknown sources each message could also contain
the ID of the source and each node u could keep track of its
guesses d ′(u, ·) for every source that it has seen at least one
message from. The standard analysis of Bellman-Ford (see
e.g. [32]) gives the following lemmas:

Lemma 3 At the end of phase k − 1, every node u ∈ V
knows which vertices are in Ak−1 as well as d(u, v) for all
v ∈ Ak−1.

Lemma 4 Phase k − 1 uses at most O(|Ak−1|S) rounds.

Tohandle phase i, wewill assume inductively that Bi+1(u)

is known to u at the start of phase i, as well as the dis-
tance from u to every node in Bi+1(u). In particular, we
will assume that u knows its distance to the closest node
in Ai+1, i.e. d(u, Ai+1). In phase i we will simply use a

modified version of Bellman-Ford in which the sources are
Ai\Ai+1, but node u only “participates” in the algorithm for
sources v ∈ Ai\Ai+1 when it gets a message that implies
that d(u, v) < d(u, Ai+1), i.e. that v ∈ Bi (u). To handle the
multiple sources, each node u will maintain for every pos-
sible source v ∈ V an outgoing message queue, which will
only ever have a 0 or 1 message in it. u just does round-robin
scheduling among the nonempty queues, sending the current
message to all neighbors and removing it from the queue.
To simplify the code, we will assume without loss of gen-
erality that V = {0, 1, . . . , n − 1} (this assumption is only
used to simplify the round-robin scheduler, and can easily be
removed). This algorithm is given as Algorithm 2.

Algorithm 2: Modified Bellman-Ford for node u in
phase i

Initialization:1
foreach v ∈ V \{u} do2

d ′(v) ← ∞3
q(v) ← 04
i ← 05

In the first round:6
if u ∈ Ai\Ai+1 then7

Send message 〈u, 0〉 to all neighbors8

In each round:9
//Receive and process new messages
foreach w ∈ N (u) do10

Get message m(w) = 〈vw, aw〉11
if aw + d(u, w) < d(u, Ai+1)∧ aw + d(u, w) < d ′(vw) then12

d ′(vw) ← aw + d(u, w)13
q(vw) ← 114

//Send message from next nonempty queue
i ′ ← i15
i ← (i + 1)%n16
while q(i) = 0 ∧ i �= i ′ do i ← (i + 1)modn if q(i) = 1 then17

Send message 〈i, d ′(i)〉 to all neighbors18
q(i) ← 019

Lemma 5 At the end of phase i, every node u ∈ V knows
Bi (u) and its distance to all nodes in Bi (u).

Proof Weprove this by induction on the phase. The base case
is phase k−1, which is satisfied by Lemma 3. Now consider
some phase i ≥ 0. Let v ∈ Ai\Ai+1—we will show by
induction on the hop count of the shortest path that all nodes
u ∈ C(v) find out their distance to v. If u ∈ C(v) is adjacent
to v via a shortest path, then obviously after the first round
it will know its distance to v. If u ∈ C(v) is not adjacent
to v via a shortest path, then by induction the next hop on
the shortest path from u to v finds out its correct distance to
v, and thus will forward the announcement to u. Thus at the
end of phase i every node u ∈ C(v) knows its distance from
v, and since this holds for every v ∈ Ai\Ai+1 we have that
every u ∈ V knows its distance to all nodes in Bi (u). 	

123

Efficient distributed computation of distance sketches in networks 315

We can now bound the time and message complexity of
each phase:

Lemma 6 Each phase takes O(n1/k S log n) rounds (with
high probability).

Proof Let v ∈ Ai\Ai+1. Intuitively, if vwere the only vertex
in Ai\Ai+1, then in phase i the algorithm devolves into dis-
tributed Bellman-Ford in which the only vertices that ever
forward messages are vertices in C(v). This would clearly
take O(S) rounds. In the general case, each vertex u only
participates in O(|Bi (u)|) = O(n1/k log n) of these shortest
path algorithms, so each “round” of the original algorithm
can be split up into O(n1/k log n) rounds to accommodate
all of the different sources. Thus the total time taken is
O(n1/k S log n) as claimed.

To prove this formally, let u ∈ V and v ∈ Ai\Ai+1,
with v ∈ Bi (u). Let v = v0, v1, . . . , v�−1 = u be a short-
est path from v to u with the fewest number of hops. Thus
� ≤ S. We prove by induction that v j receives a mes-
sage 〈v, d(v j−1, v)〉 at time at most O(n1/k j log n), which
clearly implies the lemma. For the base case, in the first
round v sends out the message 〈v, 0〉 to its neighbors, so
v1 receives the correct message at time 1 ≤ n1/k log n. For
the inductive step, consider node v j . We know by induc-
tion that v j−1 received a message 〈v, d(v j−2, v)〉 at time at
most t = O(n1/k(j − 1) log n). If v j−1 already knew this
distance from v, then it also already sent a message (or put
one in the queue) informing its neighbors (v j in particular)
about this. Otherwise, v j−1 puts a message in its outgoing
queue at time t. Since the nonempty queues are processed
in a round-robin manner, and by Lemma 1 we know that
at most O(n1/k log n) queues are ever nonempty throughout
the phase, v j−1 sends a message 〈v, d(v j−1v)〉 at time at
most t + O(n1/k log n) = O(n1/k j log n). This implies the
lemma. 	

Lemmas 2, 5, 1 and 6 obviously imply the following the-
orem:

Theorem 4 For any k ≥ 1, there is a distributed sketching
algorithm that takes O(kn1/k S log n) rounds, after which
with high probability every node has a sketch of size at most
O(kn1/k log n) words (and expected size O(kn1/k) words)
that provides approximate distances with stretch 2k − 1.

Note that the probabilistic guarantee is on the time and
the size: the approximation of 2k − 1 is in fact deterministic.
Thismeans that in the (extremely unlikely) case that the algo-
rithm fails, the algorithm is still correct in that it computes
valid distance sketches. But with very low probability these
sketches might be large and take a long time to compute.
Thus our algorithm is a Las Vegas algorithm. With knowl-
edge of S, though, each node knows the value of the upper
bound of O(n1/k S log n) from Lemma 6 on the number of

rounds, so if a phase takes more rounds we can detect failure
and raise an error and restart with new randomness. Without
knowing S this process is more difficult: as we show in the
next section we can still detect when a phase ends, but it is
no longer clear how to detect failure. We leave this as an
interesting open problem.

3.3 Termination detection

We now show how to remove the assumption that every node
knowsS.Note thatwedonot showhow to satisfy this assump-
tion, i.e. we do not give an algorithm that computes S and
distributes it to all nodes. Rather,we showhow to detectwhen
a phase has terminated, and thus when a new phase should
start. We use basically the same termination detection algo-
rithm as the one used by Khan et al. [23], just adapted to our
context.

At the very beginning of the algorithm, even before phase
k − 1, we run a leader election algorithm to designate some
arbitrary vertex r as the leader, and then build a breadth-first
search (BFS) tree T out of r so that every node knows its
parent in the tree as well as its children. This can be done in
O(D) ≤ O(S) rounds and O(|E | log n) messages [23].

At the beginning of phase i, the leader r sends amessage to
all nodes (along T) telling themwhen they should start phase
i, so they all begin together. We say that a node u is complete
if either u /∈ Ai\Ai+1 or every vertex in C(u) knows its
distance to u (we will see later how to use echo messages to
know when this is the case). So initially the only complete
nodes are the ones not in Ai\Ai+1. Any such node that is
also a leaf in T immediately sends a COMPLETE message
to its parent in the tree. Throughout the phase, when any node
has heard COMPLETE messages from all of its children in
T and is itself complete, it sends a COMPLETE message to
its parent.

Now suppose that when running phase i, some node u
gets a message m(w) = 〈vw, aw〉 from a neighbor w. There
are two reasons that this message might not result in a
new message added to the send queue: if aw + d(u, w) ≥
d(u, Ai+1) (vw has not yet been shown to be in Bi (u)), or if
aw + d(u, w) ≥ d ′(vw) (u already knows a shorter path to
vw). Furthermore, even ifm(w) does result in a new message
added to the send queue, it might get superseded by a new
message added to the queue with an updated value of d ′(vw)

before the value based onm(w) can be sent. All three of these
conditions can be tracked by u, so for each message m that
u receives (say from neighbor w) it keeps track of whether
or not it sends out a new message based on m. If it does not
(one of the two conditions failed, or it was superseded), then
it sends an ECHO message back to w, together with a copy
of the message. If u does send out a new message based on
m, then when it has received ECHO messages for m from all

123

316 A. D. Sarma et al.

of its neighbors (except for w) it sends an ECHO message to
w together with a copy of m.

It is easy to see inductively that when a node u sends
a message m, it will also know via ECHO messages when
m has ceased to propagate in the network since all of its
neighbors will have ECHO’d it back to u. So if u ∈ Ai\Ai+1,
and thus only sends out one message that has first coordinate
u, it will know when this message has stopped propagating,
which clearly implies that every node v ∈ V that is in C(u)
knows its correct distance to u (as well as the fact that u ∈
Bi (v)). At this point u is complete, so once it has received
COMPLETE messages from all of its children in T it will
send a COMPLETE message to its parent.

Once r has received COMPLETEmessages from all of its
children (and is itself complete) the phase is over. So r starts
the next phase by sending a START message to all nodes
using T, and the next phase begins.

It is easy to see that the ECHOs only double the number of
messages and rounds, since any message sent along an edge
corresponds to exactly one ECHO sent back the other way.
Electing a leader and building a BFS tree take only a negligi-
ble number of messages and rounds compared to the bounds
of Theorem 4. Each node sends only one COMPLETE mes-
sage, so there are at mostO(n) COMPLETEmessages which
is tiny compared to the bound in Theorem 4, and the number
of extra rounds due to COMPLETE messages is clearly only
O(D). Thus even with the extra termination detection, the
bounds of Theorem 4 still hold.

4 Sketches with slack

Let u, v ∈ V .We say that v is ε-far from u if |{w : d(u, w) <

d(u, v)}| ≥ εn, i.e. if v is not one of the εn closest nodes to
u. Given a labeling L(u) for each u ∈ V , we say that it has
stretch twith ε-slack if the distance thatwe compute for u and
v given L(u) and L(v) is at least d(u,v) and at most t · d(u, v)

for all u, v ∈ V where v is ε-far from u. Labelings with
slack were previously studied by Chan, Dinitz, and Gupta [5]
and Abraham, Bartal, Chan, Dhamdhere, Gupta, Kleinberg,
Neiman, and Slivkins [1]. The main technique of Chan et
al. was the use of a new type of net they called a density
net. For each u ∈ V , let R(u, ε) = inf{r : |B(u, r)| ≥ εn}
be the minimum distance necessary for the ball around u to
contain at least εn points, and let Bε(u) = B(u, R(u, ε)) be
this ball. We give a definition of density net that is slightly
modified from [5] in order to make it easier to work with in
a distributed context.

Definition 1 A set of vertices N ⊆ V is an ε-density net if:

1. For all u ∈ V , there is a vertex v ∈ N such that d(u, v) ≤
R(u, ε), and

2. |N | ≤ 10
ε
ln n.

Chan et al. give a centralized algorithm that computes an
ε-density net in polynomial time for any ε. Their density
nets are somewhat different, in that they contain only 1/ε
nodes but the closest net node to u is only guaranteed to be
within 2R(u, ε) instead of R(u, ε).Wemodify these values in
order to give a distributed construction, and in fact with these
modifications it is trivial to build density nets via random
sampling.

Lemma 7 There is a distributed algorithm that, with high
probability, constructs an ε-density net in constant time.

Proof The algorithm is simple: every vertex independently
chooses to be in N with probability 5 ln n

εn . The expected size
of N is clearly 5 ln n

ε
, and by a simple Chernoff bound (see

e.g. [31]) we have that the probability that |N | > 10 ln n
ε

is
at most e−(20 ln n)/(3ε) ≤ 1/n6/ε, so the second constraint is
satisfied with high probability.

For the first constraint, that for every vertex u there is some
vertex v ∈ Bε(u) ∩ N , we split into two cases depending on
ε. If ε ≤ 5 ln n

n , then every node has probability 1 of being in
N, so the condition is trivially satisfied. Otherwise we have
ε > 5 ln n

n , so for every u we have |Bε(u)| ≥ 5 ln n and the
expected size of Bε(u) ∩ N is exactly 5 ln n. Using a similar
Chernoff bound (but from the other direction) gives us that
the probability that |Bε(u) ∩ N | is less than 1 is at most
e−(25 ln n)/8 ≤ 1/n3. Now we can just take a union bound
over all u to get that the first constraint is satisfied with high
probability. 	

Unfortunately, even if we assume knowledge of S it is not
clear how to test whether the random set N we construct is
in fact a density net. This is because doing so would require
knowing R(u, ε) for every u, which might take a long time
to calculate if (for example) ε is large. However, we only fail
with very low probability (i.e. 1/n2), and by increasing the
constant in the bound on |N | from 10 to larger values we can
drop this failure probability to any inverse polynomial that
we want.

Using this construction, we can efficiently construct short
sketches with ε-slack:

Theorem 5 There is a distributed algorithm that with high
probability uses at most O(S 1

ε
log n) rounds and at comple-

tion, every node has a sketch that with high probability has
size at most O(1

ε
log n) words and stretch at most 3 with

ε-slack.

Proof The algorithm first uses Lemma 7 to construct an ε-
density net N. It is easy to see that the closest net points to
u and v are a good approximation to the distance between u
and v. In particular, suppose that v is ε-far from u, let u′ be

123

Efficient distributed computation of distance sketches in networks 317

the closest node in N to u, and let v′ be the closest node in
N to v. Then d(u, u′) ≤ R(u, ε) ≤ d(u, v) by the definition
of ε-far and ε-density nets, d(v, u′) ≤ d(v, u) + d(u, u′) ≤
2d(u, v), and thusd(u, u′)+d(v, u′) ≤ 3d(u, v). Thismeans
that if every vertex keeps as its sketch its distance from all
nodes in N, we will have sketches with ε-uniform slack and
stretch 3 (to compute an approximation to d(u, v) we can
just consider use minw∈N {d(u, w)+d(w, v)}, which we can
compute from the two sketches). The size of these sketches
is clearly O(|N |) = O(1

ε
log n), since for every node in N

we just need to store its ID and its distance.
It just remains to show how to compute these sketches

efficiently. But this is simple, since it is exactly the k-Source
Shortest Paths problem where the sources are the nodes in
N. So we simply run the k-source version of Distributed
Bellman-Ford, which gives the claimed time and message
complexity bounds. 	

We can get a different tradeoff by applying Thorup and
Zwick to the density net itself, instead of simply having every
node remember its distance to all net nodes. This is essen-
tially what is done in the slack labeling schemes of Chan et
al. [5], just with slightly different parameters and construc-
tions (since they were able to use centralized constructions).
In particular, suppose that we manage to use Thorup-Zwick
on the net, so the distances between net points are preserved
up to stretch 2k − 1. Then these sketches would have size at

most O(k|N |1/k log n) = O(k
(1

ε
log n

)1/k
log n). For each

u ∈ V , let u′ ∈ N be the closest node in the density net
to u. We let the sketch of u be the identity of u′, the dis-
tance between u and u′, and the Thorup-Zwick label of u′.
We call this the (ε, k)-CDG sketch. Clearly this sketch has

size O(k
(1

ε
log n

)1/k
log n). Let u, v ∈ V such that v is ε-

far from u. Our estimate of the distance will be d(u, u′) +
d ′′(u′, v′)+d(v′, v), where d ′′(u′, u′) ≤ (2k−1)d(u′, v′) is
the approximate distance given by the Thorup-Zwick labels.
This can obviously be computed given the sketches for u and
v. To bound the stretch, we simply use the definition of den-
sity nets, the triangle inequality, and the fact that v is ε-far
from u. This gives us a distance estimate d ′(u, v) with

d ′(u, v) = d(u, u′) + d ′′(u′, v′) + d(v′, v)

≤ d(u, u′) + (2k − 1)d(u′, v′) + d(v′, v)

≤ d(u, v) + (2k − 1)(d(u′, u) + d(u, v)

+ d(v, v′)) + 2d(u, v)

≤ 3d(u, v) + (2k − 1)(4d(u, v))

= (8k − 1)d(u, v)

This gives the basic lemma about these sketches, which
was proved by [5] (modulo ourmodifications to density nets):

Lemma 8 ([5]) For any ε > 0 and 1 ≤ k ≤ O(log 1
ε
),

with high probability the (ε, k)-CDG sketch has size at most

O(k
(1

ε
log n

)1/k
log n) words and (8k − 1)-stretch with ε-

slack.

It remains to show how to construct (ε, k)-CDG sketches
in a distributed manner, which boils down to modifying the
algorithm of Theorem 4 to work with the density net rather
than with the full point set (this is trivial in a centralized
setting since we can just consider the metric completion).

Lemma 9 For any ε > 0 and 1 ≤ k ≤ O(1
ε
), there is a

distributed algorithm so that after O
(
kS

(1
ε
log n

)1/k
log n

)

rounds, with high probability every node knows its (ε, k)-
CDG sketch.

Proof We first apply Lemma 7 to construct the ε-density net
N. We now want every node u to know its closest net node u′
and its distance from u′. This can be done via a single use of
Distributed Bellman-Ford, where we just imagine a “super
node” consisting of all of N. This takes O(S) rounds.

Now we need to run Thorup-Zwick on N. But this is easy
to do, since we just modify the Ai sets to be subsets of N
instead of V and change the sampling probability from n−1/k

to
(10

ε
ln n

)−1/k
. Note that for every u ∈ V the bunch Bi (u)

is still well defined, and with high probability has size at

most O
((1

ε
log n

)1/k
log n

)
(via an argument analogous to

Lemma 1). This means that we can run Algorithm 2 using
these new Ai sets and every node will know their Thorup-
Zwick sketch for these Ai sets. In particular, the nodes in
N will have a sketch that is exactly equal to the sketch they
would have if we ran Algorithm 2 on the metric comple-
tion of N, rather than on G. It is easy to see that Lemma 6
still applies but with n1/k log n (the upper bound on the size

of each Bi (u)) changed to O
((1

ε
log n

)1/k
log n

)
, so each

phase takes O
(
S

(1
ε
log n

)1/k
log n

)
rounds. Since there are

k phases, this gives the desired complexity bound.
As before, this assumes that every node knows S in order

to synchronize the phases. However, we can remove this
assumption by using the termination detection algorithm of
Sect. 3.3. This at most doubles the number of rounds and
adds an extra O(D) rounds, which is negligible. 	

Theorem 6 For any ε > 0 and integer value 1 ≤ k ≤
O(log 1

ε
), there is a distributed sketching algorithm that

completes in at most O
(
kS

(1
ε
log n

)1/k
log n

)
rounds, after

which with high probability every node has a sketch of size

at most O(k
(1

ε
log n

)1/k
log n) words that provides approx-

imate distances with stretch 8k − 1 and ε-slack.

Proof Implied by Lemmas 8 and 9. 	

4.1 Gracefully degrading sketches and average stretch

We now show how to use Theorem 6 to construct sketches
with bounded average stretch, as well as bounded worst-case

123

318 A. D. Sarma et al.

stretch. Formally, suppose that we have a weighted graph
G = (V, E) that induces the metric d and a sketching algo-
rithm that allows us to compute distance estimates d ′ with
the property that d ′(u, v) ≥ d(u, v) for all u, v ∈ V . The
average stretch of the sketching algorithm is defined to be
(1/

(n
2

)
)
∑

{u,v}∈(V2)
d ′(u,v)
d(u,v)

.

In fact, we will prove a stronger statement, that there
are good distributed algorithms for computing gracefully
degrading sketches. A sketching algorithm is gracefully
degrading with f (ε) stretch if for every ε ∈ (0, 1) it is a
sketch with stretch f (ε) and ε-slack. In other words, instead
of specifying ε ahead of time (as in the slack construc-
tions) we need a single sketch that works simultaneously for
every ε. It is easy to see that when f is O(log 1

ε
), gracefully

degrading sketches provide the desired average and worst-
case stretch bounds (this was implicit in Chan et al. [5], but
they only formally showed this for their specific gracefully-
degrading construction, which is slightly different than ours):

Lemma 10 Any gracefully degrading sketching algorithm
with O(log 1

ε
) stretch has stretch at most O(log n) and aver-

age stretch at most O(1).

Proof The bound on the worst-case stretch is immediate by
setting ε = 1

2n . With this setting of ε, every two points are ε-
far from each other, and thus the stretch bound of O(log 1

ε
) =

O(log n) holds for all pairs.
To bound the average stretch, for each 1 ≤ i ≤ log n

and vertex u ∈ V let A(u, i) = B1/2i−1
(u) ∩ (V \B1/2i (u)).

In other words, A(u, i) is the set of points that are outside
the smallest ball around u containing at least n/2i points,
but inside the smallest ball around u containing at least
n/2i−1 points. So |A(u, i)| = n/2i .We can bound the stretch
between u and any node in A(u, i) by O(i), since when we
set ε = 1/2i we have a stretch bound of O(log 1

ε
) = O(i)

for the nodes in A(u, i). Then the average stretch is at most

1
(n
2

)
∑

{u,v}∈(V2)

d ′(u, v)

d(u, v)
≤ 1

n(n − 1)

∑

u∈V

∑

v �=u

d ′(u, v)

d(u, v)

≤ 1

n(n − 1)

∑

u∈V

log n∑

i=1

∑

v∈A(u,i)

d ′(u, v)

d(u, v)

≤ 1

n(n − 1)

∑

u∈V

log n∑

i=1

O(i · n

2i
)

≤ 1

n(n − 1)

∑

u∈V
O(n)

≤ O(1),

proving the lemma. 	

This lemma reduces the problem of constructing sketches

with good average stretch to the problem of constructing

gracefully degrading sketches. But this turns out to be simple,
given Theorem 6. The intuition behind gracefully degrading
sketches is that they work simultaneously for every slack
parameter ε, so to create them we simply use O(log n) dif-
ferent sketches with slack, one for each power of 2 between
1/n and 1.

Theorem 7 There is a distributed gracefully degrading
sketching algorithm that with high probability gives sketches
of size at most O(log4 n) words with O(log 1

ε
)-stretch and

completes in at most O(S log4 n) rounds.

Proof Our construction is simple: for every 1 ≤ i ≤ log n
we use Theorem 6 with slack εi = 1

2i
and stretch k =

O(log 1
εi

) = O(log 2i). The sketch remembered by a node is
just the union of these O(log n) sketches. Given the sketches
for two different vertices u and v where v is ε-far from u, we
can compute the O(log n) different distance estimates and
take the minimum of them as our estimate.

To see that this is gracefully degrading with stretch at
most O(log 1

ε
), first note that all of the O(log n) estimates

are at least as large as d(u, v), so we just need to show that
at least one of the estimates is at most O(log 1

ε
)d(u, v). Let

εi be ε rounded down to the nearest power of 1/2. Then v is
obviously εi -far from u, so the estimate for the εi -sketch
will provide an estimate of at most O(log 1

εi
)d(u, v) =

O(log 1
ε
)d(u, v).

Theorem 6, when specialized to the case of k = O(log 1
ε
),

completes in at most O(S log 1
ε
log2 n) rounds and provides

sketches of size O(log 1
ε
log2 n). Since we just run each of

the O(log n) instantiations of the theorem back to back, the
total number of rounds is atmost O(S log2 n)

∑log n
i=1 log 2i =

O(S log4 n) and the size is at most O(log4 n). Note that we
can handle determination detection for each of these as usual,
based on Sect. 3.3. 	

Together with Lemma 10, this gives the following corol-
lary:

Corollary 1 There is a distributed sketching algorithm that
with high probability gives sketches of size at most O(log4 n)

with at most O(log n)-stretch and O(1) average stretch and
which completes in at most O(S log4 n) rounds.

Note that, when compared to our sketch from Theorem 4
with O(log n) stretch, we pay only an extra O(log2 n) factor
in the size of the sketch as well as the number of rounds, and
in return we are able to achieve constant average stretch.

5 Conclusions

In this paper we initiated the study from a theoretical point
of view of distributed algorithms for computing distance
sketches in a network. We showed that the Thorup-Zwick

123

Efficient distributed computation of distance sketches in networks 319

distance sketches [37], which provide an almost optimal
tradeoff between the size of the sketches and their accuracy,
can be computed efficiently in a distributed setting,where our
notion of efficiency is the standard definition of the number of
rounds in the CONGEST model. Combining this distributed
algorithm with centralized techniques of Chan et al. [5], that
wewere also able to turn into efficient distributed algorithms,
yielded a combined construction with the same worst-case
stretch as the smallest version of Thorup-Zwick, but much
better average stretch. This required only a polylogarithmic
cost in the size of the sketches and the time necessary to
construct them. These results are a first step towards making
the theoretical work on distance sketches more practical, by
moving from a centralized setting to a distributed setting.

Our distributed algorithms are all randomized. An inter-
esting question is whether the same performance can be
obtained using deterministic distributed algorithms. In the
centralized setting, obtaining a deterministic algorithm for
distance oracles was left open in Thorup and Zwicks origi-
nal paper [37] and later Roditty, Thorup and Zwick [34] show
that essentially the same results can be obtained deterministi-
cally. We leave it as a open problem to showwhether one can
obtain an efficient deterministic distributed algorithm using
the approach of [34] or another approach.

It would be interesting in the future to weaken the dis-
tributed model even further, by working in failure-prone
and asynchronous settings, in the hope of eventually get-
ting practical distance sketches with provable performance
guarantees.

References

1. Abraham, I., Bartal, Y., Chan, T.-H.H., Dhamdhere, K.D., Gupta,
A., Kleinberg, J., Neiman, O., Slivkins, A.: Metric embeddings
with relaxed guarantees. In: Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science, FOCS ’05, pp.
83–100, Washington, DC, USA. IEEE Computer Society (2005)

2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.:
Random walks, universal traversal sequences, and the complexity
of maze problems. In: FOCS, pp. 218–223 (1979)

3. Baswana, S.: Streaming algorithm for graph spanners: single pass
and constant processing time per edge. Inf. Process. Lett. 106(3),
110–114 (2008)

4. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting
scalable multi-attribute range queries. In: SIGCOMM, pp. 353–
366 (2004)

5. Chan, T.-H.H., Dinitz, M., Gupta, A.: Spanners with slack. In:
Proceedings of the 14th European Symposium on Algorithms, pp.
196–207 (2006)

6. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.:
Labeling schemes for tree representation. Algorithmica 53(1), 1–
15 (2009)

7. Cooper, B.F.: Quickly routing searches without having to move
content. In: IPTPS, pp. 163–172 (2005)

8. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random
walks on a graph. SIAM J. Discret. Math. 6(3), 363–374 (1993)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms, vol. 24, pp. 595–601. MIT Press and McGraw-Hill,
Cambridge (2001)

10. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decen-
tralized network coordinate system. In: Proceedings of the ACM
SIGCOMM ’04 Conference, Portland, Oregon, August (2004)

11. Demetrescu, C., Goldberg, A.V., Johnson, D.S.: Implementation
challenge for shortest paths. In: Encyclopedia ofAlgorithms (2008)

12. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-
stabilizing group communication in ad hoc networks. IEEE Trans.
Mob. Comput. 5(7), 893–905 (2006). also in PODC’02

13. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.:
Graph distances in the streaming model: the value of space. In:
SODA, pp. 745–754 (2005)

14. Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-walk
computation of similarities between nodes of a graph with appli-
cation to collaborative recommendation. IEEE Trans. Knowl. Data
Eng. 19(3), 355–369 (2007)

15. Ganesh, A.J., Kermarrec, A.-M.,Massoulié, L.: Peer-to-peer mem-
bership management for gossip-based protocols. IEEE Trans.
Comput. 52(2), 139–149 (2003)

16. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in
graphs. J. Algorithms 53(1), 85–112 (2004)

17. Gkantsidis, C., Mihail, M., Saberi, A.: Hybrid search schemes
for unstructured peer-to-peer networks. In: INFOCOM, pp. 1526–
1537 (2005)

18. Goldberg, A.V.: Point-to-point shortest path algorithms with pre-
processing. In: SOFSEM (1), pp. 88–102 (2007)

19. Israeli, A., Jalfon, M.: Token management schemes and random
walks yield self-stabilizing mutual exclusion. In: PODC, pp. 119–
131 (1990)

20. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms
for peer-to-peer systems. In: SPAA, pp. 36–43 (2004)

21. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for
flow and connectivity. SIAM J. Comput. 34(1), 23–40 (2004)

22. Kempe, D., Kleinberg, J.M., Demers, A.J.: Spatial gossip and
resource location protocols. In: STOC, pp. 163–172 (2001)

23. Khan, M., Kuhn, F., Malkhi, D., Pandurangan, G., Talwar, K.: Effi-
cient distributed approximation algorithms via probabilistic tree
embeddings. In: Proceedings of 27th ACM Symposium on Prin-
ciples of Distributed Computing (PODC), 2008. Journal version:
Distributed Computing (2012)

24. Khan,M., Pandurangan, G.: A fast distributed approximation algo-
rithm for minimum spanning trees. Distrib. Comput. 20, 391–402
(2008)

25. Kleinberg, J., Slivkins, A., Wexler, T.: Triangulation and embed-
ding using small sets of beacons. J. ACM 56, 32:1–32:37 (2009)

26. Kleinberg, J.M.: The small-world phenomenon: an algorithm per-
spective. In: STOC, pp. 163–170 (2000)

27. Law, C., Siu, K.: Distributed construction of random expander net-
works. In: Proceedings of IEEE INFOCOM (2003)

28. Loguinov, D., Kumar, A., Rai, V., Ganesh, S.: Graph-theoretic
analysis of structured peer-to-peer systems: routing distances and
fault resilience. In: SIGCOMM, pp. 395–406 (2003)

29. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and repli-
cation in unstructured peer-to-peer networks. In: ICS, pp. 84–95
(2002)

30. Morales, R., Gupta, I.: Avmon: Optimal and scalable discovery of
consistent availability monitoring overlays for distributed systems.
In: ICDCS, p. 55 (2007)

31. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge
University Press, New York (1995)

32. Pandurangan, G., Khan, M.: Theory of communication networks.
In:Algorithms andTheory ofComputationHandbook, SecondEdi-
tion. CRC Press (2009)

123

320 A. D. Sarma et al.

33. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA
(2000)

34. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of
approximate distance oracles and spanners. In: ICALP, pp. 261–
272 (2005)

35. Slivkins, A.: Distance estimation and object location via rings of
neighbors. In: Proceedings of the Twenty-Fourth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’05,
pp. 41–50. ACM, New York, NY (2005)

36. Slivkins, A.: Towards fast decentralized construction of locality-
aware overlay networks. In: Proceedings of the Twenty-Sixth
Annual ACM Symposium on Principles of Distributed Comput-
ing, PODC ’07, pp. 89–98. ACM, New York, NY (2007)

37. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM
52(1), 1–24 (2005)

38. Wong, B., Slivkins, A., Sirer, E.G.: Meridian: a lightweight net-
work location service without virtual coordinates. In: Proceedings
of the 2005 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, SIGCOMM
’05, pp. 85–96. ACM, New York, NY (2005)

39. Yen, L., Saerens, M., Mantrach, A., Shimbo, M.: A family
of dissimilarity measures between nodes generalizing both the
shortest-path and the commute-time distances. In: KDD, pp. 785–
793 (2008)

40. Zhong, M., Shen, K., Seiferas, J.I.: Non-uniform random mem-
bership management in peer-to-peer networks. In: INFOCOM, pp.
1151–1161 (2005)

123

	Efficient distributed computation of distance sketches in networks
	Abstract
	1 Introduction
	1.1 Our contributions

	2 Related work and model
	2.1 Applications and related work
	2.2 Model and notation

	3 Distributed sketches
	3.1 Thorup--Zwick construction
	3.2 Distributed algorithm
	3.3 Termination detection

	4 Sketches with slack
	4.1 Gracefully degrading sketches and average stretch

	5 Conclusions
	References

