
Distrib. Comput. (2017) 30:325–338
DOI 10.1007/s00446-015-0245-8

Linear-in-Δ lower bounds in the LOCAL model

Mika Göös1 · Juho Hirvonen2 · Jukka Suomela2

Received: 1 October 2014 / Accepted: 17 April 2015 / Published online: 19 May 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract By prior work, there is a distributed graph algo-
rithm that finds a maximal fractional matching (maximal
edge packing) in O(Δ) rounds, independently of n; here Δ

is the maximum degree of the graph and n is the number of
nodes in the graph. We show that this is optimal: there is no
distributed algorithm that finds a maximal fractional match-
ing in o(Δ) rounds, independently of n. Our work gives the
first linear-in-Δ lower bound for a natural graph problem in
the standard LOCAL model of distributed computing—prior
lower bounds for a wide range of graph problems have been
at best logarithmic in Δ.

Keywords Local distributed algorithms · Lower bounds ·
Maximal edge packing · Maximal fractional matching

1 Introduction

This work settles the distributed time complexity of the
maximal fractional matching problem (see Sect. 1.2 for defi-

This work is an extended and revised version of a preliminary
conference report [10].

B Mika Göös
mika.goos@mail.utoronto.ca

Juho Hirvonen
juho.hirvonen@aalto.fi

Jukka Suomela
jukka.suomela@aalto.fi

1 Department of Computer Science, University of Toronto,
Toronto, Canada

2 Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University,
Espoo, Finland

nitions) as a function of Δ, the maximum degree of the input
graph.

By prior work [4], there is a distributed algorithm that finds
a maximal fractional matching (also known as a maximal
edge packing) in O(Δ) communication rounds, indepen-
dently of the number of nodes. In this work, we show that
this is optimal: there is no distributed algorithm that finds a
maximal fractional matching in o(Δ) rounds.

This is the first linear-in-Δ lower bound for a natural graph
problem in the standard LOCAL model of distributed com-
puting. It is also a step towards understanding the complexity
of the non-fractional analogue, the maximal matching prob-
lem, which is a basic symmetry breaking primitive in the field
of distributed graph algorithms. For many related primitives,
the prior lower bounds in the LOCAL model have been at
best logarithmic in Δ.

1.1 Matchings: state-of-the-art

Simple randomised distributed algorithms that find a maxi-
mal matching in time O(log n) have been known since the
1980s [1,16,23]. Currently, the fastest algorithms that com-
pute a maximal matching stand as follows:

– Dense graphs. There is an O(log Δ + log4 log n)-time
randomised algorithm due to Barenboim et al. [6].
The fastest known deterministic algorithm runs in time
O(log4 n) and is due to Hańćkowiak et al. [13].

– Sparse graphs. There is an O(Δ + log∗ n)-time deter-
ministic algorithm due to Panconesi and Rizzi [27]. Here
log∗ n is the iterated logarithm of n, a very slowly grow-
ing function.

Our focus is on the sparse case. It is a long-standing open
problem to either improve on the algorithm of Panconesi

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-015-0245-8&domain=pdf

326 M. Göös et al.

and Rizzi, or prove it optimal. As we are dealing with two
independent parameters n and Δ, we must be careful what
we mean by “proving it optimal”. The meaning is: (1) there
is no algorithm with run-time O(Δ) + o(log∗ n); (2) nor an
algorithm with run-time o(Δ) + O(log∗ n).

The first type of lower bound follows from Linial’s [22]
seminal work. Linial shows that 3-colouring a cycle is not
possible in time o(log∗ n), so by a simple reduction:

(1) Linial’s result:Maximalmatchings cannot be computed
in time f (Δ) + o(log∗ n) for any function f .

Hence we have an arbitrarily large lower bound in terms of Δ,
since Δ = 2 on cycles. However, viewing Linial’s result
from the perspective of Δ is not very meaningful: the source
of hardness exhibited in Linial’s proof is not the degree of
the graph but its growing size.

The second type of lower bound has remained elusive (see
Barenboim and Elkin [5, OpenProblem10.6]):

(2) Open problem: Can maximal matchings be computed
in time o(Δ) + O(log∗ n)?

We conjecture that there are no such algorithms. Our linear-
in-Δ lower bound for the fractional version of this problem
builds towards proving such conjectures: the source of hard-
ness for maximal fractional matchings is not the size of the
graph but the growing degree. The graphs in our lower bound
construction end up satisfying Δ = Θ(log∗ n); if this could
be improved to a family where Δ = ω(log∗ n), we would
obtain a negative answer to (2).

1.2 Fractional matchings

While a matching associates a weight 0 or 1 with each edge
of a graph, with 1 indicating that the edge is in a matching, a
fractional matching (FM) associates a weight between 0 and
1 with each edge. In both cases, the total weight of the edges
incident to any given node has to be at most 1.

Formally, let G = (V, E) be a simple undirected graph
and let y : E → [0, 1] associate weights to the edges of G.
Define, for each v ∈ V ,

y[v] :=
∑

e∈E :v∈e
y(e).

The function y is called a fractional matching, or an FM for
short, if y[v] ≤ 1 for each node v. A node v is saturated if
y[v] = 1.

There are two interesting varieties of fractional matchings.

– Maximum weight. An FM y is of maximum weight, if
its total weight

∑
e∈E y(e) is the maximum over all frac-

tional matchings on G.
– Maximality. An FM y is maximal, if each edge e has at

least one saturated endpoint v ∈ e.

See below for examples of (a) a maximum-weight FM, and
(b) a maximal FM; the saturated nodes are highlighted.

0.2

0.3

0.5

0.5

0.0

(a)

0.5

0.5

0.0

0.5

0.5

(b)

Distributed complexity. The distributed complexity of com-
puting maximum-weight FMs is completely understood. It is
easy to see that computing an exact solution requires time
Ω(n) already on odd-length path graphs (a node needs to
learn the parity of its distance from an endpoint). If one set-
tles for an approximate solution, then FMs whose total weight
is at least a (1 − ε)-fraction of the maximum can be com-
puted in time O(ε−1 log Δ) by the well-known results of
Kuhn et al. [17–19]. This is optimal: Kuhn et al. also show
that any constant-factor approximation of maximum-weight
FMs requires time Ω(log Δ).

By contrast, the complexity of computing maximal FMs
has not been understood. A maximal FM is a 1/2-
approximation of a maximum-weight FM, so the results of
Kuhn et al. imply that finding a maximal FM requires time
Ω(log Δ), but this lower bound is exponentially small in
comparison to the O(Δ) upper bound [4].

1.3 Contributions

We prove that the O(Δ)-time algorithm [4] for maximal frac-
tional matchings is optimal:

Theorem 1 There is no (randomised) LOCAL algorithm
that finds a maximal fractional matching in o(Δ) rounds,
independently of n.

To our knowledge, this is the first linear-in-Δ lower bound
in the LOCAL model for a classical graph problem. Indeed,
prior lower bounds have typically fallen in one of the follow-
ing categories:

– they are logarithmic in Δ [17–19],
– they analyse the complexity as a function of n for a fixed

Δ [7–9,11,21,22,25],
– they only hold in a model that is strictly weaker than
LOCAL [15,20].

123

Linear-in-Δ lower bounds in the LOCAL model 327

1.4 The LOCAL model

Our result holds in the standard LOCAL model of distributed
computing [22,28]. For now, we only recall the basic setting;
see Sect. 3 for precise definitions.

In the LOCAL model an input graph G = (V, E) defines
both the problem instance and the structure of the commu-
nication network. Each node v ∈ V is a computer and each
edge {u, v} ∈ E is a communication link through which
nodes u and v can exchange messages. Initially, each node is
equipped with aunique identifier and, if we study randomised
algorithms, a source of randomness. In each communication
round, each node in parallel (1) sends a message to each
neighbour, (2) receives a message from each neighbour, and
(3) updates its local state. Eventually, all nodes have to stop
and announce their local outputs—in our case the local out-
put of a node v ∈ V is an encoding of the weight y(e) for
each edge e incident to v. The running time t of the algorithm
is the number of communication rounds until all nodes have
stopped. We call an algorithm strictly local, or simply local,
if t = t (Δ) is only a function of Δ, i.e., independent of n.

The LOCAL model is the strongest model commonly
in use—in particular, the size of each message and the
amount of local computation in each communication round
is unbounded—and this makes lower bounds in this model
very widely applicable.

2 Overview

We will first show how to prove Theorem 1 for determin-
istic distributed algorithms; then we can use fairly standard
techniques to extend the results to randomised distributed
algorithms.

2.1 Deterministic models

Our lower bound builds on a long line of prior research.
During the course of the proof, we will visit each of the
following deterministic models (see Fig. 1), whose formal
definitions are given in Sect. 3.

ID: Deterministic LOCAL. Each node has a unique identi-
fier [22,28]. This is the standard model in the field of
deterministic distributed algorithms.

OI: Order-invariance. The output of an algorithm is not
allowed to change if we relabel the nodes while preserv-
ing the relative order of the labels [25]. Equivalently,
the algorithm can only compare the identifiers, not
access their numerical value.

PO: Port numbering and orientation. For each node, there
is an ordering on the incident edges, and all edges carry
an orientation [24]. Each node knows the orientations

ID OI

PO

a < b < c < d

1
2

2
1

2

1 13
EC

3

2

1

2

3

5

2 8

b

c

a d

Fig. 1 Deterministic models that are discussed in this work

of the incident edges, and a node of degree d can refer to
its incident edges with d distinct port numbers: incom-
ing messages are labelled with the port numbers, and
outgoing messages are addressed with port numbers.

EC: Edge colouring. A proper edge colouring with O(Δ)

colours is given [15]. Each node knows the colours of
the incident edges, and the edge colours play the same
role as a port numbering in communication: incoming
messages are labelled with the edge colours, and out-
going messages are addressed with edge colours.
There are two key differences between PO and EC:
(1) The edge orientation provides additional symmetry-
breaking information in PO, and this information is
not available in EC. (2) For each edge {u, v}, nodes
u and v can use the same label (edge colour) to refer
to each other in EC, but possibly different labels (port
numbers) to refer to each other in PO.

The models are listed here roughly in the order of decreas-
ing strength. For example, the ID model is strictly stronger
than OI, which is strictly stronger than PO. However, theEC
model is not directly comparable:

– There are problems that are trivial to solve in ID, OI, and
PO but impossible to solve in EC with any deterministic
algorithm. A simple example is graph colouring in 1-
regular graphs.

– There are also problems that can be solved with a local
algorithm in EC but they do not admit a local algorithm
in ID or OI, nor any algorithm in PO. A simple exam-
ple is maximal matching in cycles: In the EC model we
can find a maximal matching in O(1) rounds by iterat-
ing through the colour classes and greedily selecting all
available edges in each class [15]. In essence, we can use
the existence of the edge colouring to circumvent Linial’s
lower bound [22].

2.2 Proof outline

In short, our proof is an application of techniques that were
introduced in two of our earlier works [9,15], followed by

123

328 M. Göös et al.

a straightforward reduction that extends the result to ran-
domised algorithms.

A weak deterministic lower bound. In our prior work [15]
we showed that maximal matchings cannot be computed in
time o(Δ) in the EC model. The lower-bound construction
there is a regular graph, and as such, tells us very little about
the fractional matching problem, since maximal fractional
matchings are trivial to compute in regular graphs.

Nevertheless, we use a similar unfold-and-mix argument
on what will be called loopy EC-graphs to prove the follow-
ing intermediate result in Sect. 4:

Step 1 The maximal FM problem cannot be solved in time
o(Δ) on loopy EC-graphs with deterministic distributed
algorithms.

The proof heavily exploits the limited symmetry breaking
capabilities of the EC model. To continue, we need to argue
that similar limitations exist in the ID model.

Strengthening the deterministic lower bound. To extend the
lower bound to the ID model, we give a series of local simu-
lation results

EC � PO � OI � ID,

which state that a local algorithm for the maximal fractional
matching problem in one model can be simulated fast in the
model preceding it. That is, even though the models EC,
PO, OI, and ID are generally very different, we show that
the models are roughly equally powerful for computing a
maximal fractional matching.

This part of the argument applies ideas from another prior
work [9]. There, we showed that, for a large class of optimi-
sation problems, a run-time preserving simulation PO � ID
exists. Unfortunately, the maximal fractional matching prob-
lem is not included in the scope of this result (fractional
matchings are not simple in the sense of [9]), so we may not
apply this result directly in a black-box fashion. In addition,
this general result does not hold for the EC model.

Nevertheless, we spend Sect. 5 extending the methods
of [9] and show that they can be tailored to the case of frac-
tional matchings:

Step 2 If themaximal FMproblem can be solved in time t (Δ)

on ID-graphs with deterministic distributed algorithms, then
it can be solved in time t (Θ(Δ)) on loopy EC-graphs with
deterministic distributed algorithms.

Extending to randomised algorithms. So far we have proved
Theorem 1 for deterministic algorithms. We will now extend
the result so that it also holds for randomised algorithms

(more specifically, for Monte Carlo algorithms that may fail
to produce a feasible solution with some small probability).

The maximal FM problem is an example of a locally
checkable problem: there is a local algorithm that can check
whether a proposed function y is a feasible solution. It is
known that randomness does not help a local algorithm
in solving a locally checkable problem with bounded out-
puts [25]: if there is a t (Δ)-time randomised algorithm,
then there is a t (Δ)-time deterministic algorithm. In the FM

problem, the local outputs are not necessarily bounded—a
feasible solution y may use a superconstant number of bits
to represent the edge weights y(e). However, we can circum-
vent this technicality and strengthen Step 2 as follows; the
details are given in “Appendix A”:
Step 2’ If the maximal FM problem can be solved in time
t (Δ) on ID-graphs with randomised distributed algorithms,
then it can be solved in time t (Θ(Δ)) on loopy EC-graphs
with deterministic distributed algorithms.

In combination with Step 1, this proves Theorem 1.

3 Tools of the trade

Before we dive into the lower-bound proof, we recall the
definitions of the four models mentioned in Sect. 2.1, and
describe the standard tools that are used in their analy-
sis. In what follows, we will only discuss deterministic
algorithms—see “Appendix A” for the details on how to
extend the results to randomised algorithms.

3.1 Locality

Distributed algorithms are typically described in terms of
networked state machines: the nodes of a network exchange
messages for t synchronous communication rounds after
which they produce their local outputs (cf. Sect. 1.4).

Instead, for the purposes of our lower-bound analysis, we
view an algorithm A simply as a function that associates to
each pair (G, v) an output A(G, v) in a way that respects
locality. That is, an algorithm A is said to have run-time t ,
if the output A(G, v) depends only on the information that
is available in the radius-t neighbourhood around v. More
formally, define

τt (G, v)

as the restriction of the structure (G, v) to the t-neighbour-
hood of v. That is, τt (G, v) consists of the nodes and edges
of G that are within distance t from v; here the distance of an
edge {u, w} from v is defined as min{dist(v, u), dist(v,w)}+
1. A t-time algorithm A is then a mapping that satisfies

A(G, v) = A(τt (G, v)). (1)

123

Linear-in-Δ lower bounds in the LOCAL model 329

(Note that, according to our definition, a node needs to use
an algorithm with run-time at least 1 to learn its own degree.
While this might seem restrictive, we adopt this convention
merely for technical convenience: our algorithms are at most
1 round slower than algorithms in the more natural model
where the degree is known at the start.)

The information contained in τt (G, v) depends on which
of the models EC, PO, OI, and ID we are studying. For each
model we define an associated graph class.

3.2 Identifier-based networks

An ID-graph is simply a graph G whose nodes are assigned
unique identifiers; namely, V (G) ⊆ N. Any mapping A sat-
isfying (1) is a t-time ID-algorithm.

An OI-graph is an ordered graph (G,�) where � is a lin-
ear order onV (G). AnOI-algorithmAoperates onOI-graphs
in such a way that if (G,�, v) and (G ′,�′, v′) are isomorphic
(as ordered structures), then A(G,�, v) = A(G ′,�′, v′).

Every ID-graph G is naturally an OI-graph (G,≤) under
the usual order ≤ on N. In the converse direction, we often
convert an OI-graph (G,�) into an ID-graph by specifying
an ID-assignment ϕ : V (G) → N that respects� in the sense
that v � u implies ϕ(v) ≤ ϕ(u). The resulting ID-graph is
denoted ϕ(G).

3.3 Anonymous networks

On anonymous networks the nodes do not have identifiers.
The only symmetry breaking information is now provided in
an edge colouring of a suitable type. This means that when-
ever there is an isomorphism between (G, v) and (G ′, v′) that
preserves edge colours, we will have A(G, v) = A(G ′, v′).

An EC-graph carries a proper edge colouring E(G) →
{1, . . . , k}, where k = O(Δ). That is, if two edges are adja-
cent, they have distinct colours.

A PO-graph is a directed graph whose edges are coloured
in the following way: if (u, v) and (u, w) are outgoing edges
incident to u, then they have distinct colours; and if (v, u) and
(w, u) are incoming edges incident to u, then they have dis-
tinct colours. Thus, we may have (v, u) and (u, w) coloured
the same.

We find it convenient to treatPO-graphs as edge-coloured
digraphs, even if this view is slightly nonstandard. Usually,
PO-graphs are defined as digraphs with a port numbering,
i.e., each node is given an ordering of its neighbours. This is
equivalent to our definition as it is easy to give local simu-
lations in both directions: A port numbering gives rise to an
edge colouring where an edge (u, v) is coloured with (i, j)
if v is the i-th neighbour of u and u is the j-th neighbour of
v (see Fig. 2a). Conversely, we can derive a port numbering
from an edge colouring—using some agreed-upon ordering
of the edge colours, first take all outgoing edges ordered by

2

1
3

1 121

2 a

a = (1, 2)
b = (3, 1)a

a

b

1
1

1

2

2

2
2

1 131

1

(a)

(b)

PO1 PO2

Fig. 2 Two equivalent definitions of PO-graphs: (PO1) a node of
degree d can refer to incident edges with labels 1, 2, . . . , d; (PO2)
edges are coloured so that incoming edges have distinct colours and
outgoing edges have distinct colours (colour figure online)

H G

1
11

21 1

1
2

1
1

1

2

Fig. 3 H is a lift of G

their colours, and then take all incoming edges ordered by
their colours (see Fig. 2b). (Note that this does not give a
one-to-one correspondence between port-numbered graphs
and edge-coloured graphs, but what matters is that we can
simulate any algorithm designed for one model in the other
model with the same run-time).

We are not done with defining EC and PO algorithms.
We still need to restrict their power by requiring that their
outputs are invariant under graph lifts, as defined next.

3.4 Lifts

A graph H is said to be a lift of another graph G if there exists
an onto graph homomorphism α : V (H) → V (G) that is a
covering map, i.e., α preserves node degrees, degH (v) =
degG(α(v)); see Fig. 3. Our discussion of lifts always takes
place in either EC or PO; in this context we require that a
covering map preserves edge colours.

The defining characteristic of anonymous models is that
the output of an algorithm is invariant under taking lifts.. That
is, if α : V (H) → V (G) is a covering map, then

A(H, v) = A(G, α(v)), for each v ∈ V (H). (2)

Since an isomorphism between H and G is a special case of
a covering map, the condition (2) generalises the discussion
in Sect. 3.3. We will be exploiting this limitation extensively
in analysing the models EC and PO.

Graphs are partially ordered by the lift relation. For any
connected graph G, there are two graphs UG and FG of spe-
cial interest that are related to G via lifts.

123

330 M. Göös et al.

1
1

1

2 UGG

1 1

1

21 1

1

2 1

Fig. 4 Universal cover UG of G

PO:

EC:
2 1 2 FGG

2 1

1

1 1

2

H

1 2

2 2

2
1FH

u

v

u

v

Fig. 5 Factor graphs and loops. We follow the convention that undi-
rected loops inEC-graphs count as a single incident edge, while directed
loops in PO-graphs count as two incident edges: an incoming edge and
an outgoing edge. In this example, both u and its preimage u′ are nodes
of degree 2; they are incident to one edge of colour 1 and one edge of
colour 2. Both v and its preimage v′ are nodes of degree 3; they are
incident to two outgoing edges of colours 1 and 2, and one incoming
edge of colour 1 (colour figure online)

Universal cover UG . The universal cover UG of G is an
unfolded tree-like version of G; see Fig. 4. More precisely,
UG is the unique tree that is a lift of G. Thus, if G is a tree,
UG = G; if G has cycles, UG is infinite. In passing from
G to UG we lose all the cycle structure that is present in G.
The universal cover is often used to model the information
that a distributed algorithm—even with unlimited running
time—is able to collect on an anonymous network [2].

Factor graph FG . The factor graph FG of G is the smallest
graph F such that G is a lift of F ; see Fig. 5. In general, FG
is a multigraph with loops and parallel edges. It is the most
concise representation of all the global symmetry breaking
information available in G. For example, in the extreme case
when G is vertex-transitive, FG consists of just one node and
some loops.

An input graph to an algorithm is always required to
be simple (no loops or parallel edges). However, we find
it convenient to virtually run EC and PO-algorithms A on
multigraphs F with the understanding that the outputA(F, v)

is interpreted as if we had run A on a simple lift of F and
then mapped the solution back to F according to (2). That
is, to determine A(F, v) where F is a multigraph, do the
following:

1. Lift F to a simple graph G (e.g., take G = UF) via some
α : V (G) → V (F).

2. Execute A on (G, u) for some u ∈ α−1(v).
3. Interpret the output of u as an output of v.

In what follows we refer to multigraphs simply as graphs.

G
H

v v1

v2

Fig. 6 EC-graphG is loopy. Assume that anEC-algorithmAproduces
an output in which node v is unsaturated. Then we can construct a
simple EC-graph H that is a lift of G via α : V (H) → V (G) such that
α(v1) = α(v2) = v and {v1, v2} ∈ E(H). If we apply A to H , both v1
and v2 are unsaturated; hence A fails to produce a maximal FM

3.5 Loops

In EC-graphs, a single loop on a node contributes +1 to
its degree, whereas in PO-graphs, a single (directed) loop
contributes +2 to its degree, once for the tail and once for
the head. This is reflected in the way we draw loops—see
Fig. 5.

The loop count on a node v ∈ V (G) measures the inability
of v to break local symmetries. Indeed, if v has
 loops, then in
any simple lift H of G each node u ∈ V (H) that is mapped
to v by the covering map will have
 distinct neighbours
w1, . . . , w
 that, too, get mapped to v. Thus, an anonymous
algorithm is forced to have the same output on u as on each
of w1, . . . , w
.

We consider loops as an important resource.

Definition 1 An edge-coloured graph G is called k-loopy if
each node in FG has at least k loops. A graph is simply loopy
if it is 1-loopy.

When computing maximal fractional matchings on a
loopy graph G, an anonymous algorithm must saturate all
the nodes. Otherwise, if v ∈ V (G) is a node that does not get
saturated, the loopiness of G implies that v has a neighbour
u (can be u = v via a loop) that produces the same output
as v. But now neither endpoint of {u, v} is saturated, which
contradicts maximality; see Fig. 6. We record this observa-
tion.

Lemma 1 Any EC-algorithm for the maximal FM problem
computes a fully saturated FM on loopy EC-graphs.

4 Lower bound in EC

In this section we carry out Step 1 of our lower-bound plan.
To do this we extend the previous lower bound result [15] to
the case of maximal fractional matchings.

4.1 Strategy

Let A be any EC-algorithm computing a maximal fractional
matching. We construct inductively a sequence of EC-graph
pairs

(Gi , Hi), i = 0, 1, . . . , Δ − 2,

123

Linear-in-Δ lower bounds in the LOCAL model 331

0.5

0.2

0 0.3

G0: H0:

0.4

0.2 0.4

e

same colour c0,

different weight

Fig. 7 Base case. By removing a loop e with a non-zero weight, we
force the algorithm to change the weight of at least one edge that is
present in both G0 and H0

that witness A having run-time greater than i . Each of the
graphs Gi and Hi will have maximum degree at most Δ,
so for i = Δ − 2, we will have the desired lower bound.
More precisely, we show that there are nodes gi ∈ V (Gi)

and hi ∈ V (Hi) satisfying the following property:

(P1) The i-neighbourhoods τi (Gi , gi) and τi (Hi , hi) are iso-
morphic, yet

A(Gi , gi) 	= A(Hi , hi).

Moreover, there is a loop of some colour ci adjacent
to both gi and hi such that the outputs disagree on its
weight.

We will also make use of the following additional properties
in the construction:

(P2) The graphs Gi and Hi are (Δ − 1 − i)-loopy. Conse-
quently, A will saturate all their nodes by Lemma 1.

(P3) When the loops are ignored, both Gi and Hi are trees.

4.2 Base case (i = 0)

Let G0 consist of a single node v that has Δ differently
coloured loops. When A is run on G0, it saturates v by
assigning at least one loop e a non-zero weight; see Fig. 7.
Letting H0 := G0 − e it is now easy to check that the pair
(G0, H0) satisfies (P1–P3) for g0 = h0 = v. For example, we
have τ0(G0, v) ∼= τ0(H0, v) because both 0-neighbourhoods
consist of a single isolated node of degree 0. Recall our con-
vention that the loops are at distance 1 from v.

4.3 Inductive step

Suppose (Gi , Hi) is a pair satisfying (P1–P3). For conve-
nience, we write G, H , g, h, and c in place of Gi , Hi , gi , hi ,
and ci . Also, we let e ∈ E(G) and f ∈ E(H) be the colour-
c loops adjacent to g and h to which A assigns different
weights.

To construct the pair (Gi+1, Hi+1) we unfold and mix;
see Fig. 8.

0.5

0.2

0 0.3

G: H:

0.4

0.2 0.4

0.5

0.2

0 0.3

0.4

0.2 0.4

0.5

0 0.3 0.2 0.4

GG: HH:GH:

e f

e f

g

h

Fig. 8 Unfold and mix. The weights of e and f differ; hence the weight
of {g, h} is different from the weight of e or f

Unfolding. First, we unfold the loop e in G to obtain a 2-
lift GG of G. That is, GG consists of two disjoint copies of
G − e and a new edge of colour c (which we still call e) that
connects the two copies of g in GG. For notational purposes,
we fix some identification V (G) ⊆ V (GG) so that we can
easily talk about one of the copies. Similarly, we construct a
2-lift HH of H by unfolding the loop f .

Recall that A cannot tell apart G from GG, or H from
HH . In particular A continues to assign unequal weights to
e and f in these lifts.

Mixing. Next, we mix together the graphs GG and HH to
obtain a graph GH defined as follows: GH contains a copy
of G − e, a copy of H − f , and a new colour-c edge that
connects the nodes g and h. For notational purposes, we let
V (GH) := V (G) ∪ V (H), where we tacitly assume that
V (G) ∩ V (H) = ∅.

Analysis. Consider the weight that A assigns to the colour-c
edge {g, h} in GH . Since A gives the edges e and f different
weights in GG and HH , we must have that the weight of
{g, h} differs from the weight of e or the weight of f (or
both). We assume the former (the latter case is analogous),
and argue that the pair

(Gi+1, Hi+1) := (GG,GH)

satisfies the properties (P1–P3). It is easy to check that (P2)
and (P3) are satisfied by the construction; it remains is to find
the nodes gi+1 ∈ V (GG) and hi+1 ∈ V (GH) that satisfy
(P1).

To this end, we exploit the following property of fractional
matchings:

123

332 M. Göös et al.

0.5

0.2

0
0.3

0.5

0 0.3

0.3

0.2

0.1

0.3 0.4

GG:

0.5

0.2

0

0.5

0.3
0

GH:

0.5

0.3

0
0.4

0.4

0 0.3

eg

g h

e*

e*

g

g*

g*

Fig. 9 Propagation. The weights of e and {g, h} differ. We apply the
propagation principle towards the common part G that is shared by GG
and GH . The graphs are loopy and hence all nodes are saturated by A;
we will eventually find a loop e∗ that is present in both GG and GH ,
with different weights

Fact 1 (Propagation principle) Assume that y and y′ are
fractional matchings that saturate a node v. If y and y′ dis-
agree on some edge incident to v, there must be another edge
incident to v where y and y′ disagree.

Our idea is to apply this principle in a fully saturated graph,
where the disagreements propagate until they are resolved at
a loop; this is where we locate gi+1 and hi+1. See Fig. 9 for
an example.

We consider the following fully saturated fractional
matchings on G:

y = the FM determined by A′s output

on the nodes V (G) in GG,

y′ = the FM determined by A’s output

on the nodes V (G) in GH.

Starting at the node g ∈ V (G) we already know by assump-
tion that y and y′ disagree on the colour-c edge incident to
g. Thus, by the propagation principle, y and y′ disagree on
some other edge incident to g. If this edge is not a loop, it
connects to a neighbour g′ ∈ V (G) of g and the argument
can be continued: because y and y′ disagree on {g, g′}, there
must be another edge incident to g′ where y and y′ disagree,
and so on. Since G does not have any cycles (apart from the
loops), this process has to terminate at some node g∗ ∈ V (G)

such that y and y′ disagree on a loop e∗ 	= e incident to g∗.
Note that e∗ is a loop in both GG and GH , too. Thus, we
have found our candidate gi+1 = hi+1 = g∗.

To finish the proof, we need to show that

τi+1(GG, g∗) ∼= τi+1(GH, g∗). (3)

The critical case is when g∗ = g as this node is the closest
among V (G) to seeing the topological differences between
the graphs GG and GH . Starting from g and stepping along
the colour-c edge towards the differences, we arrive, in GG,
at a node ĝ that is a copy of g ∈ V (G), and in GH , at the
node h. But these nodes satisfy

τi (GG, ĝ) ∼= τi (GH, h)

by our induction assumption. Using this, (3) follows.

5 Local simulations

Now that we have an Ω(Δ) time lower bound in the EC
model, our next goal is to extend this result to the ID model.
In this section we implement Step 2 of our plan and give a
series of local simulations

EC � PO � OI � ID.

Here, each simulation preserves the running time of an algo-
rithm up to a constant factor. In particular, together with
Step 1, this will imply the Ω(Δ) time lower bound in the
ID model.

5.1 Simulation EC � PO

We start with the easiest simulation. Suppose there is a t-time
PO-algorithm for the maximal fractional matching problem
on graphs of maximum degree Δ; we describe a t-time EC-
algorithm for graphs of maximum degree Δ/2.

The local simulation is simple; see Fig. 10. On an EC-
graph G we interpret each edge {u, v} of colour c as two
directed edges (u, v) and (v, u), both of colour c; this inter-
pretation makes G into aPO-graph G�. We can now locally

PO

3

1

2

EC

3

1

2

1

2

3

0.5 0.3

0.2

input

output

Fig. 10 EC � PO. Mapping an EC-graph G into a PO-graph G� ,
and mapping the output of a PO-algorithm back to the original graph

123

Linear-in-Δ lower bounds in the LOCAL model 333

simulate the PO-algorithm on G� to obtain an FM y as out-
put. Finally, we transform y back to an FM of G: the edge
{u, v} is assigned weight y(u, v) + y(v, u).

5.2 Tricky identifiers

When we are computing a maximal fractional matching
y : E(G) → [0, 1], we have, a priori, infinitely many choices
for the weight y(e)of an edge. For example, in a path on nodes
v1, v2, and v3, we can freely choose y({v1, v2}) ∈ [0, 1] pro-
vided we set y({v2, v3}) = 1 − y({v1, v2}). In particular,
an ID-algorithm can output edge weights that depend on the
node identifiers whose magnitude is not bounded.

Unbounded outputs are tricky from the perspective of
proving lower bounds (we will have the same challenge in
“Appendix A” when we deal with randomness). The main
result of the recent work [9] is a run-time preserving local
simulation PO � ID, but the result only holds under the
assumption that the solution can be encoded using finitely
many values per node on graphs of maximum degree Δ.
This restriction has its source in an earlier local simulation
OI � ID due to Naor and Stockmeyer [25] that is crucially
using Ramsey’s theorem. In fact, these two local simulation
results fail if unbounded outputs are allowed; counterexam-
ples include even natural graph problems [14].

In conclusion, we need an ad hoc argument to establish
that an ID-algorithm cannot benefit from unique identifiers
in the case of the maximal fractional matching problem.

5.3 Simulation PO � OI

Before we address the question of simulating ID-algorithms,
we first salvage one part of the result in [9]: there is local
simulation PO � OI that applies to many locally checkable
problems, regardless of the size of the output encoding. Even
though this simulation works off-the-shelf in our present set-
ting, we cannot use this result in a black-box fashion, as we
need to access its inner workings later in the analysis. Thus,
we proceed with a self-contained proof.

The following presentation is considerably simpler than
that in [9], since we are only interested in a simulation that
produces a locally maximal fractional matching, not in a sim-
ulation that also provides approximation guarantees on the
total weight, as does the original result.
PO-checkability. Maximal fractional matchings are not only
locally checkable, but also PO-checkable: there is a local
PO-algorithm that can check whether a given y is a maximal
FM. An important consequence of PO-checkability is that if
H is a lift of G then any PO-algorithm produces a feasible
solution on H if and only if it produces a feasible solution
on G.

Order homogeneity. The key to the simulation PO � OI is
a canonical linear order that can be computed for any tree-
like PO-neighbourhood. To define this ordering, let d denote
the maximum number of edge colours appearing in the input
PO-graphs that have maximum degree Δ, and let T denote
the infinite 2d-regular d-edge-coloured PO-tree. We fix a
homogeneous linear order for T :

Lemma 2 There is a linear order� on V (T) such that all the
ordered neighbourhoods (T,�, v), v ∈ V (T), are pairwise
isomorphic (i.e., up to any radius).

Proof The tree T can be thought of as a Cayley graph of the
free group on d generators, and the free group admits a linear
order that is invariant under the group acting on itself by mul-
tiplication; for details, see Neumann [26] and the discussion
in [9, §5]. �
For an alternative, combinatorial proof of Lemma 2, “Appen-
dix B”.

Simulation. Let AOI be any t-time OI-algorithm solving a
PO-checkable problem; we describe a t-time PO-algorithm
APO solving the same problem.

The algorithm APO operates on aPO-graph G as follows;
see Fig. 11. Given a PO-neighbourhood τ := τt (UG, v), we
first embed τ in T : we choose an arbitrary node u ∈ V (T),
identify v with u, and let the rest of the embedding τ ⊆ (T, u)

be dictated uniquely by the edge colours. We then use the
ordering � inherited from T to order the nodes of τ . By
Lemma 2, the resulting structure (τ,�) is independent of the
choice of u, i.e., the isomorphism type of (τ,�) is only a
function of τ . Finally, we simulate

APO(τ) := AOI(τ,�). (4)

To see that the output of APO is feasible, we argue as
follows. Embed the universal cover UG as a subgraph of
(T,�) in a way that respects edge colours. Again, all possible
embeddings are isomorphic; we call the inherited ordering
(UG,�) the canonical ordering of UG . Our definition of
APO and the order homogeneity of (T,�) now imply that

APO(UG, v) = AOI(UG,�, v) for all v ∈ V (UG).

Therefore, the output of APO is feasible on UG . Finally, by
PO-checkability, the output of APO is feasible also on G, as
desired.

5.4 Simulation OI � ID

The reason why an ID-algorithm A cannot benefit from
unbounded identifiers is due to the propagation principle.
We formalise this in two steps.

123

334 M. Göös et al.

G
v

UG
v

T

u

u

Fig. 11 Given a PO-graph G, algorithm APO simulates the execution
of AOI on OI-graph τ . The linear order on V (τ) is inherited from the
regular tree T . As T is homogeneous, the linear order does not depend
on the choice of node u in T

(i) We use the Naor–Stockmeyer OI � ID result to see
that A can be forced to output fully saturated FMs on
so-called loopy OI-neighbourhoods.

(ii) We then observe that, on these neighbourhoods, A
behaves like an OI-algorithm: A’s output cannot change
if we relabel a node in an order-preserving fashion,
because the changes in the output would have to propa-
gate outside of A’s run-time.

That is, our simulation OI � ID will work only on certain
types of neighbourhoods (in contrast to our previous simula-
tions), but this will be sufficient for the purposes of the lower
bound proof.

Step (i). Let A be a t-time ID-algorithm that computes a
maximal fractional matching on graphs of maximum degree
Δ.

From A we can derive, by a straightforward simulation, a
t-time binary-valued ID-algorithm A∗ that indicates whether
A saturates a node. That is, A∗(G, v) := 1 if A saturates v

in G, otherwise A∗(G, v) := 0. Such saturation indicators
A∗ were considered previously in [3, §4].

Because (and only because) A∗ outputs finitely many
values, we can now apply the Ramsey technique of Naor
and Stockmeyer [25, Lemma3.2]. To avoid notational clut-
ter, we use a version of their result that follows from the
application of the infinite Ramsey’s theorem (rather than the
finite):

Lemma 3 (Naor and Stockmeyer) There is an infinite set
I ⊆ N such that A∗ is an OI-algorithm when restricted to
graphs whose identifiers are in I .

We say that τt (UG,�, v) is a loopy OI-neighbourhood
if G is a loopy PO-graph and (UG,�) is the canonically
ordered universal cover of G. We also denote by Bt (v) ⊆
V (UG) the node set of τt (UG, v).

Our saturation indicator A∗ is useful in proving the fol-
lowing lemma, which encapsulates step (i) of our argument.

Lemma 4 Let τ := τt (UG,�, v) be loopy. If ϕ : Bt (v) → I
is an ID-assignment to the nodes of τ that respects �, then
A saturates v under ϕ.

Proof By loopiness of G, the node v has a neighbour
u ∈ V (UG) such that τt (UG, v) ∼= τt (UG, u) as PO-
neighbourhoods. By order homogeneity, τt (UG,�, v) ∼=
τt (UG,�, v) as OI-neighbourhoods. By Lemma 3, this
forces A∗ to output the same on v and u under any ID-
assignment ϕ′ : Bt (v) ∪ Bt (u) → I that respects �. But A∗
cannot output two adjacent 0’s if A is to produce a maximal
fractional matching. Hence, A∗ outputs 1 on ϕ′(τ). Finally,
by order-invariance, A∗ outputs 1 on ϕ(τ), which proves the
claim. �

Step (ii). Define J as an infinite subset of I that is obtained
by picking every (m+1)-th identifier from I , where m is the
maximum number of nodes in a (2t + 1)-neighbourhood of
maximum degree Δ. That is, for any two j, j ′ ∈ J , j < j ′,
there are m distinct identifiers i ∈ I with j < i < j ′.

The next lemma states that A behaves like anOI-algorithm
on loopy neighbourhoods that have identifiers from J .

Lemma 5 Assume that τ := τt (UG,�, v) is loopy. If
ϕ1, ϕ2 : Bt (v) → J are any two ID-assignments that respect
�, then A(ϕ1(τ)) = A(ϕ2(τ)).

Proof We first consider the case where ϕ1 and ϕ2 disagree
only on a single node v∗ ∈ Bt (v). Towards a contradiction
suppose that

A(ϕ1(τ)) 	= A(ϕ2(τ)). (5)

We start with partial ID-assignments for UG that are
defined on the nodes B2t+1(v); this will suffice for running
A on the nodes Bt+1(v). Indeed, because J ⊆ I is suffi-
ciently sparse, we can extend ϕ1 and ϕ2 into assignments
ϕ̄1, ϕ̄2 : B2t+1(v) → I such that

– ϕ̄1 and ϕ̄2 respect �, and
– ϕ̄1 and ϕ̄2 still disagree only on the node v∗.

123

Linear-in-Δ lower bounds in the LOCAL model 335

Let yi , i = 1, 2, be the fractional matching defined on the
edges incident to Bt+1(v) that is determined by the output
of A on the nodes Bt+1(v) under the assignment ϕ̄i . By
Lemma 4, all the nodes Bt+1(v) are saturated in both y1

and y2.
Let D ⊆ UG be the subgraph consisting of the edges e

with y1(e) 	= y2(e) and of the nodes that are incident to such
edges; by (5), we have v ∈ V (D). Now we can reinterpret
the propagation principle from Sect. 4:

Fact 2 (Propagation principle)For each node u ∈ Bt+1(v)∩
V (D) we have degD(u) ≥ 2.

Using the fact that D ⊆ UG is a tree, we can start a simple
walk at v ∈ V (D), take the first step away from v∗, and finally
arrive at a node u ∈ Bt+1(v) ∩ V (D) that has dist(u, v∗) ≥
t + 1, i.e, the node u does not see the difference between
the assignments ϕ̄1 and ϕ̄2. But this is a contradiction: as the
t-neighbourhoods ϕ̄i (τt (UG , u)), i = 1, 2, are the same, so
should be the weights output by A.

General case. If ϕ1, ϕ2 : Bt (v) → J are any two assign-
ments respecting �, they can be related to one another by a
series of assignments

ϕ1 = π1, π2, . . . , πk = ϕ2,

where any two consecutive assignments πi and πi+1 both
respect � and disagree on exactly one node. Thus, the claim
follows from the analysis above. �

Let AOI be any t-time OI-algorithm that agrees with the
order-invariant output of A on loopyOI-neighbourhoods that
have identifiers from J . We now obtain the final form of our
OI � ID simulation:

Corollary 1 If G is a loopy PO-graph, AOI produces a
maximal fractional matching on the canonically ordered uni-
versal cover (UG,�).

Proof The claim follows by a standard argument [25, Lemma
3.2] from two facts: J is large enough; and maximal fractional
matchings are locally checkable. �

5.5 Concluding Theorem 1

To get the final lower bound of Theorem 1 we reason
backwards. We will first consider the case of determinis-
tic algorithms. Assume that A is a t-time ID-algorithm that
computes a maximal fractional matching on any graph of
maximum degree Δ.

OI � ID: Corollary 1 above gives us a t-time OI-algo-
rithm AOI that computes a maximal fractional
matching on the canonically ordered universal
cover (UG ,�) for any loopy PO-graph G of
maximum degree Δ.

PO � OI: Simulation (4) in Sect. 5.3 queries the output
of AOI only on (UG,�). This gives us a t-time
PO-algorithm APO that computes a maximal
fractional matching on any loopy PO-graph
G of maximum degree Δ.

EC � PO: The simple simulation in Sect. 5.1 gives us
a t-time EC-algorithm AEC that computes
a maximal fractional matching on any loopy
EC-graph G of maximum degree Δ/2.

But now we can use the construction of Sect. 4: there is a
loopy EC-graph of maximum degree Δ/2 where AEC runs
for Ω(Δ) rounds. Hence the running time of A is also Ω(Δ).

This completes the proof of Theorem 1 for deterministic
algorithms—“Appendix A” shows how to extend it to ran-
domised Monte Carlo algorithms.

6 Discussion

We have now a complete characterisation of the distrib-
uted time complexity of maximal fractional matchings in the
region Δ � n:

1. There is a deterministic distributed algorithm that finds a
maximal fractional matching in O(Δ) rounds, indepen-
dently of n.

2. There is no (deterministic or randomised) distributed
algorithm that finds a maximal fractional matching in
o(Δ) rounds, independently of n.

Any maximal matching is also a maximal fractional match-
ing. However, our lower bound does not have any nontrivial
implications on the distributed time complexity of maximal
matchings: Linial’s lower bound [22] already shows that there
is no distributed algorithm that finds a maximal matching in
o(Δ) rounds, independently of n.

As discussed in Sect. 1.1, a major open question is whether
there is a distributed algorithm that finds a maximal match-
ings in o(Δ) + O(log∗ n) rounds. A more careful analysis
of our construction would show that a maximal (fractional)
matching cannot be found in o(Δ) + o(log∗ n) rounds, but
the proof cannot be extended directly to algorithms with a
running time of o(Δ) + O(log∗ n).

Informally, the key obstacle is that we can no longer argue
that ID andOI are equally strong from the perspective of algo-
rithms with a running time of Θ(log∗ n): in the ID model,
such algorithms can produce, e.g., a vertex colouring, which
may possibly help with symmetry breaking. Therefore, a nat-
ural first step towards stronger lower bounds would be to
extend the techniques of Sect. 4 so that they hold also for
vertex-coloured graphs. This suggests the following concrete

123

336 M. Göös et al.

open question that is currently just beyond the reach of our
techniques:

– Is there a deterministic distributed algorithm that finds a
maximal matching in o(Δ) rounds in bipartite, 2-vertex-
coloured graphs in the port-numbering model?

Note that there is a simple algorithm that solves the prob-
lem in O(Δ) rounds: nodes of colour 1 send proposals to
their neighbours, one by one, until one of the proposals is
accepted, and nodes of colour 2 accept the first proposal that
they get, breaking ties with port numbers [12]. However, it
is not known if the problem can be solved in o(Δ) rounds,
independently of n. Proving such a lower bound could be a
stepping stone towards resolving the open questions related
to the distributed time complexity of maximal matchings, as
well as other problems for which the fastest current algo-
rithms have linear-in-Δ running times for Δ � n.

Acknowledgements We thank the anonymous reviewers for their help-
ful feedback. The combinatorial proof in “Appendix B” is joint work
with Christoph Lenzen and Roger Wattenhofer. This work is supported
in part by the Academy of Finland, Grants 132380 and 252018, and by
the Research Funds of the University of Helsinki. Much of this research
was done while the authors were affiliated with the Department of Com-
puter Science, University of Helsinki.

Appendix A: Derandomisation

As discussed in Sect. 5.2, unbounded outputs require special
care. In this appendix we note that even though Naor and
Stockmeyer [25] assume bounded outputs, their result on
derandomising local algorithms applies in our setting, too.

Recall that a randomised algorithm is an ID-algorithm
such that each node has in addition access to a source of
random bits. Let A be a randomised t (Δ)-time algorithm
that computes a maximal FM on graphs of maximum degree
Δ or possibly fails with some small probability. Given an
assignment of random bit strings ρ : V (G) → {0, 1}∗ to the
nodes of a graphG, denote by Aρ the deterministic algorithm
that computes as A, but uses ρ for randomness.

The proof of Theorem 5.1 in [25] is using the following
fact whose proof we reproduce here for convenience.

Lemma 6 For every n, there is an n-set Sn ⊆ N of identifiers
and an assignmentρn : Sn → {0, 1}∗ such thatAρn is correct
on all graphs that have identifiers from Sn.

Proof Denote by k = k(n) the number of graphs G with
V (G) ⊆ {1, . . . , n}. Let X1, . . . , Xq ⊆ N be any q dis-
joint sets of size n. Suppose for the sake of contradiction
that the claim is false for each Xi . That is, for any assign-
ment ρ : Xi → {0, 1}∗ of random bits, Aρ fails on at least

one of the k many graphs G with V (G) ⊆ Xi . By averag-
ing, this implies that for each i there is a particular graph
Gi , V (Gi) ⊆ Xi , on which A fails with probability at least
1/k. Consider the graph G that is the disjoint union of the
graphs G1, . . . ,Gq . Since A fails independently on each of
the components Gi , the failure probability on G is at least
1 − (1 − 1/k)q . But this probability can be made arbitrarily
close to 1 by choosing a large enough q, which contradicts
the correctness of A. �

The deterministic algorithms Aρn allow us to again obtain
a t (Δ)-timeOI-algorithm, which establishes the Ω(Δ) lower
bound for A. Only small modifications to Sect. 5.4 are
needed:

– Step (i). Instead of the infinite set I ⊆ N as previously
provided by Lemma 3, we can use the finite Ramsey’s the-
orem to find arbitrarily large sets In ⊆ Sn (i.e., |In| → ∞
as n → ∞) with the property that Aρn fully saturates the
nodes of a loopy OI-neighbourhood that has identifiers
from In (Lemma 4).

– Step (ii). Then, passing again to sufficiently sparse sub-
sets Jn ⊆ In , we can reprove Lemma 5 and Corollary 1,
which only require that J is large enough.

This concludes the lower bound proof for randomised
LOCAL algorithms.

Appendix B: Combinatorial proof of Lemma 2

In T there is a unique simple directed path x � y between
any two nodes x, y ∈ V (T). We use V (x � y) and E(x �
y) to denote the nodes and edges of the path. Also, we set
Vin(x � y) := V (x � y)\{x, y}. We will assign to each
path x � y an integer value, denoted �x � y�, which will
determine the relative order of the endpoints.

By definition, in thePOmodel, we are given the following
linear orders:

– Each node v ∈ V (T) has a linear order ≺v on its incident
edges.

– Each edge e ∈ E(T) has a linear order ≺e on its incident
nodes.

For notational convenience, we extend these relations a little:
for v ∈ Vin(x � y) we define x ≺v y ⇐⇒ e ≺v e′, where
e is the last edge on the path x � v and e′ is the first edge
on the path v � y; similarly, for e ∈ E(x � y), we define
x ≺e y ⇐⇒ x ′ ≺e y′, where e = {x ′, y′} and x ′ and y′
appear on the path x� y in this order.

123

Linear-in-Δ lower bounds in the LOCAL model 337

+ +

+

+

+

+

+

≺v:

≺e:

v

u

e

1

2
3

4
v

1 2

v

u

Fig. 12 In this example, �u � v� = +1, �v � u� = −1, and hence
u ≺ v

For any statement P , we will use the following type of
Iverson bracket notation:

[P] :=
{

+1 if P is true,

−1 if P is false.

We can now define

�x� y� :=
∑

e∈E(x�y)

[x ≺e y] +
∑

v∈Vin(x�y)

[x ≺v y].

(6)

In particular, �x � x� = 0. The linear order ≺ on V (T) is
now defined by setting

x ≺ y ⇐⇒ �x� y� > 0.

See Fig. 12. Next, we show that this is indeed a linear order.

Antisymmetry and totality. Since [x ≺v y] = −[y ≺v x]
and [x ≺e y] = −[y ≺e x], we have the property that

�x� y� = −�y� x�.

Moreover, if x 	= y, the first sum in (6) is odd iff the second
sum in (6) is even. Therefore �x � y� is always odd; in

particular, it is non-zero. These properties establish that either
x ≺ y or y ≺ x (but never both).

Transitivity. Let x, y, z ∈ V (T) be three distinct nodes with
x ≺ y and y ≺ z; we need to show that x ≺ z. Denote by
v ∈ V (T) the unique node in the intersection of the paths
x� z, z� y, and y� x .

Viewing the path x� z piecewise as x�v� z we write

�x� z� = �x�v� + [x ≺v z] + �v� z�,

where it is understood that [x ≺v z] := 0 in the degener-
ate cases where v ∈ {x, z}. Similar decompositions can be
written for z� y and y� x . Indeed, it is easily checked that

�x� z� + �z� y� + �y� x�

= [x ≺v z] + [z ≺v y] + [y ≺v x].

By assumption, �z� y�, �y� x� ≤ −1, so we get

�x� z� ≥ 2 + [x ≺v z] + [z ≺v y] + [y ≺v x].

The only way the right hand side can be negative is if

[x ≺v z] = [z ≺v y] = [y ≺v x] = −1,

but this is equivalent to having z ≺v x ≺v y ≺v z, which is
impossible. Hence �x � z� ≥ 0. But since x 	= z we must
have in fact that x ≺ z.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms
7(4), 567–583 (1986). doi:10.1016/0196-6774(86)90019-2

2. Angluin, D.: Local and global properties in networks of processors.
In: Proceedings of the 12th Annual ACM Symposium on Theory of
Computing (STOC 1980), pp. 82–93. ACM Press (1980). doi:10.
1145/800141.804655

3. Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J.,
Uitto, J.: A local 2-approximation algorithm for the vertex cover
problem. In: Proceedings of the 23rd International Symposium on
Distributed Computing (DISC 2009), Lecture notes in computer
science, vol. 5805, pp. 191–205. Springer (2009). doi:10.1007/
978-3-642-04355-0_21

4. Åstrand, M., Suomela, J.: Fast distributed approximation algo-
rithms for vertex cover and set cover in anonymous networks. In:
Proceedings of the 22nd Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA 2010), pp. 294–302. ACM
Press (2010). doi:10.1145/1810479.1810533

5. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamen-
tals and Recent Developments. Morgan & Claypool (2013). doi:10.
2200/S00520ED1V01Y201307DCT011

6. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of
distributed symmetry breaking. In: Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS
2012), pp. 321–330. IEEE Computer Society Press (2012). doi:10.
1109/FOCS.2012.60

123

http://dx.doi.org/10.1016/0196-6774(86)90019-2
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1145/1810479.1810533
http://dx.doi.org/10.2200/S00520ED1V01Y201307DCT011
http://dx.doi.org/10.2200/S00520ED1V01Y201307DCT011
http://dx.doi.org/10.1109/FOCS.2012.60
http://dx.doi.org/10.1109/FOCS.2012.60

338 M. Göös et al.

7. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distrib-
uted approximations in planar graphs. In: Proceedings of the 22nd
International Symposium on Distributed Computing (DISC 2008),
Lecture Notes in Computer Science, vol. 5218, pp. 78–92. Springer
(2008). doi:10.1007/978-3-540-87779-0_6

8. Floréen, P., Hassinen, M., Kaasinen, J., Kaski, P., Musto, T.,
Suomela, J.: Local approximability of max–min and min–max
linear programs. Theory Comput. Syst. 49(4), 672–697 (2011).
doi:10.1007/s00224-010-9303-6

9. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local
approximation. J. ACM 60(5), 39:1–39:23 (2013). doi:10.1145/
2528405. arXiv:1201.6675

10. Göös, M., Hirvonen, J., Suomela, J.: Linear-in-Δ lower bounds in
the LOCAL model. In: Proceedings of the 33rd ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing
(PODC 2014), pp. 86–95. ACM Press (2014). doi:10.1145/
2611462.2611467. arXiv:1304.1007

11. Göös, M., Suomela, J.: No sublogarithmic-time approximation
scheme for bipartite vertex cover. In: Proceedings of the 26th Inter-
national Symposium on Distributed Computing (DISC 2012), Lec-
ture Notes in Computer Science, vol. 7611, pp. 181–194. Springer
(2012). doi:10.1007/978-3-642-33651-5_13. arXiv:1205.4605

12. Hańćkowiak, M., Karoński, M., Panconesi, A.: On the distributed
complexity of computing maximal matchings. In: Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1998), pp. 219–225. Society for Industrial and Applied
Mathematics (1998)

13. Hańćkowiak, M., Karoński, M., Panconesi, A.: On the distributed
complexity of computing maximal matchings. SIAM J. Discrete
Math. 15(1), 41–57 (2001). doi:10.1137/S0895480100373121

14. Hasemann, H., Hirvonen, J., Rybicki, J., Suomela, J.: Deterministic
local algorithms, unique identifiers, and fractional graph colouring.
In: Proceedings of the 19th International Colloquium on Structural
Information and Communication Complexity (SIROCCO 2012),
Lecture Notes in Computer Science, vol. 7355, pp. 48–60. Springer
(2012). doi:10.1007/978-3-642-31104-8_5

15. Hirvonen, J., Suomela, J.: Distributed maximal matching: greedy
is optimal. In: Proceedings of the 31st Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC 2012),
pp. 165–174. ACM Press (2012). doi:10.1145/2332432.2332464.
arXiv:1110.0367

16. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm
for maximal matching. Inf. Process. Lett. 22(2), 77–80 (1986).
doi:10.1016/0020-0190(86)90144-4

17. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be
computed locally! In: Proceedings of the 23rd Annual ACM Sym-
posium on Principles of Distributed Computing (PODC 2004), pp.
300–309. ACM Press (2004). doi:10.1145/1011767.1011811

18. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being
near-sighted. In: Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2006), pp. 980–989.
ACM Press (2006). doi:10.1145/1109557.1109666

19. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation:
lower and upper bounds (2010). arXiv:1011.5470

20. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph
coloring. In: Proceedings of the 25th Annual ACM Symposium
on Principles of Distributed Computing (PODC 2006), pp. 7–15.
ACM Press (2006). doi:10.1145/1146381.1146387

21. Lenzen, C., Wattenhofer, R.: Leveraging Linial’s locality limit.
In: Proceedings of the 22nd International Symposium on Dis-
tributed Computing (DISC 2008), Lecture Notes in Computer
Science, vol. 5218, pp. 394–407. Springer (2008). doi:10.1007/
978-3-540-87779-0_27

22. Linial, N.: Locality in distributed graph algorithms. SIAM J. Com-
put. 21(1), 193–201 (1992). doi:10.1137/0221015

23. Luby, M.: A simple parallel algorithm for the maximal independent
set problem. SIAM J. Comput. 15(4), 1036–1053 (1986). doi:10.
1137/0215074

24. Mayer, A., Naor, M., Stockmeyer, L.: Local computations on static
and dynamic graphs. In: Proceedings of the 3rd Israel Symposium
on the Theory of Computing and Systems (ISTCS 1995), pp. 268–
278. IEEE (1995). doi:10.1109/ISTCS.1995.377023

25. Naor, M., Stockmeyer, L.: What can be computed locally?
SIAM J. Comput. 24(6), 1259–1277 (1995). doi:10.1137/
S0097539793254571

26. Neumann, B.H.: On ordered groups. Am. J. Math. 71(1), 1–18
(1949). doi:10.2307/2372087

27. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for
sparse networks. Distrib. Comput. 14(2), 97–100 (2001). doi:10.
1007/PL00008932

28. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach.
SIAM Monographs on Discrete Mathematics and Applications.
Society for Industrial and Applied Mathematics, Philadelphia
(2000)

123

http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/s00224-010-9303-6
http://dx.doi.org/10.1145/2528405
http://dx.doi.org/10.1145/2528405
http://arxiv.org/abs/1201.6675
http://dx.doi.org/10.1145/2611462.2611467
http://dx.doi.org/10.1145/2611462.2611467
http://arxiv.org/abs/1304.1007
http://dx.doi.org/10.1007/978-3-642-33651-5_13
http://arxiv.org/abs/1205.4605
http://dx.doi.org/10.1137/S0895480100373121
http://dx.doi.org/10.1007/978-3-642-31104-8_5
http://dx.doi.org/10.1145/2332432.2332464
http://arxiv.org/abs/1110.0367
http://dx.doi.org/10.1016/0020-0190(86)90144-4
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1109557.1109666
http://arxiv.org/abs/1011.5470
http://dx.doi.org/10.1145/1146381.1146387
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.2307/2372087
http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1007/PL00008932

	Linear-in-Δ lower bounds in the LOCAL model
	Abstract
	1 Introduction
	1.1 Matchings: state-of-the-art
	1.2 Fractional matchings
	1.3 Contributions
	1.4 The LOCAL model

	2 Overview
	2.1 Deterministic models
	2.2 Proof outline

	3 Tools of the trade
	3.1 Locality
	3.2 Identifier-based networks
	3.3 Anonymous networks
	3.4 Lifts
	3.5 Loops

	4 Lower bound in EC
	4.1 Strategy
	4.2 Base case (i = 0)
	4.3 Inductive step

	5 Local simulations
	5.1 Simulation EC leadsto PO
	5.2 Tricky identifiers
	5.3 Simulation PO leadsto OI
	5.4 Simulation OI leadsto ID
	5.5 Concluding Theorem 1

	6 Discussion
	Acknowledgements
	Appendix A: Derandomisation
	Appendix B: Combinatorial proof of Lemma 2
	References

