
Distrib. Comput. (2015) 28:253–295
DOI 10.1007/s00446-015-0242-y

Fast and compact self-stabilizing verification, computation,
and fault detection of an MST

Amos Korman1 · Shay Kutten2 · Toshimitsu Masuzawa3

Received: 4 November 2011 / Accepted: 16 March 2015 / Published online: 30 April 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract This paper demonstrates the usefulness of dis-
tributed local verification of proofs, as a tool for the design
of self-stabilizing algorithms. In particular, it introduces a
somewhat generalized notion of distributed local proofs, and
utilizes it for improving the time complexity significantly,
while maintaining space optimality. As a result, we show
that optimizing the memory size carries at most a small cost
in terms of time, in the context of minimum spanning tree
(MST). That is, we present algorithms that are both time
and space efficient for both constructing an MST and for
verifying it. This involves several parts that may be con-
sidered contributions in themselves. First, we generalize the
notion of local proofs, trading off the time complexity for
memory efficiency. This adds a dimension to the study of
distributed local proofs, which has been gaining attention
recently. Specifically, we design a (self-stabilizing) proof
labeling scheme which is memory optimal (i.e., O(log n)

bits per node), and whose time complexity is O(log2 n) in

Supported in part by a France–Israel cooperation grant
(“Mutli-Computing” project) from the France Ministry of Science and
Israel Ministry of Science, by the ANR projects ALADDIN and
PROSE, by the INRIA project GANG, by a grant from the Israel
Science Foundation, by the Technion funds for security research, and
by JSPS Grant-in-Aid for Scientific Research ((B)26280022).

B Amos Korman
amos.korman@liafa.univ-paris-diderot.fr

Toshimitsu Masuzawa
masuzawa@ist.osaka-u.ac.jp

1 CNRS and Univ. Paris Diderot, 75013 Paris, France

2 Information Systems Group, Faculty of IE&M, The Technion,
32000 Haifa, Israel

3 Graduate School of Information Science and Technology,
Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871,
Japan

synchronous networks, or O(Δ log3 n) time in asynchronous
ones,whereΔ is themaximumdegree of nodes. This answers
an open problem posed by Awerbuch et al. (1991). We also
show that Ω(log n) time is necessary, even in synchronous
networks. Another property is that if f faults occurred, then,
within the required detection time above, they are detected
by some node in the O(f log n) locality of each of the
faults. Second,we showhow to enhance a known transformer
that makes input/output algorithms self-stabilizing. It now
takes as input an efficient construction algorithm and an effi-
cient self-stabilizing proof labeling scheme, and produces
an efficient self-stabilizing algorithm. When used for MST,
the transformer produces a memory optimal self-stabilizing
algorithm, whose time complexity, namely, O(n), is signifi-
cantly better even than that of previous algorithms (the time
complexity of previous MST algorithms that usedΩ(log2 n)

memory bits per node was O(n2), and the time for optimal
space algorithms was O(n|E |)). Inherited from our proof
labeling scheme, our self-stabilisingMST construction algo-
rithm also has the following two properties: (1) if faults occur
after the construction ended, then they are detected by some
nodes within O(log2 n) time in synchronous networks, or
within O(Δ log3 n) time in asynchronous ones, and (2) if
f faults occurred, then, within the required detection time
above, they are detected within the O(f log n) locality of
each of the faults. We also show how to improve the above
two properties, at the expense of some increase in the mem-
ory.

Keywords Distributed network algorithms · Locality ·
Proof labels · Minimum spanning tree · Distributed property
verification · Self-stabilization · Fast fault detection · Local
fault detection

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-015-0242-y&domain=pdf

254 A. Korman et al.

1 Introduction

1.1 Motivation

In a non-distributed context, solving a problem is believed to
be, sometimes, much harder than verifying it (e.g., for NP-
Hard problems). Given a graph G and a subgraph H of G,
a task introduced by Tarjan [63] is to check whether H is
a minimum spanning tree (MST) of G. This non-distributed
verification seems to be just slightly easier than the non-
distributed computationof anMST. In the distributed context,
the given subgraph H is assumed to be represented distrib-
utively, such that each node stores pointers to (some of) its
incident edges in H . The verification task consists of check-
ing whether the collection of pointed edges indeed forms
an MST, and if not, then it is required that at least one node
raises an alarm. It was shown recently that such anMST ver-
ification task requires the same amount of time as the MST
computation [24,51]. On the other hand, assuming that each
node can store some information, i.e.,a label, that can be used
for the verification, the time complexity of an MST verifica-
tion can be as small as 1, when using labels of sizeΘ(log2 n)

bits per node [52,53], where n denotes the number of nodes.
To make such a proof labeling scheme a useful algorithmic
tool, one needs to present a marker algorithm for computing
those labels. One of the contributions of the current paper is
a time and memory efficient marker algorithm.

Every decidable graph property (not just an MST) can
be verified in a short time given large enough labels [53].
A second contribution of this paper is a generalization of
such schemes to allow a reduction in the memory require-
ments, by trading off the locality (or the time). In the context
of MST, yet another (third) contribution is a reduced space
proof labeling scheme for MST. It uses just O(log n) bits of
memory per node (asymptotically the same as the amount of
bits needed for merely representing distributively the MST).
This is below the lower bound of Ω(log2 n) of [52]. The rea-
son this is possible is that the verification time is increased
to O(log2 n) in synchronous networks and to O(Δ log3 n)

in asynchronous ones, where Δ is the maximum degree of
nodes. Another important property of the new scheme is that
any fault is detected rather close to the nodewhere it occurred.
Interestingly, it turns out that a logarithmic time penalty for
verification is unavoidable. That is, we show that Ω(log n)

time for anMST verification scheme is necessary if themem-
ory size is restricted to O(log n) bits, even in synchronous
networks (this, by the way, means that a verification with
O(log n) bits cannot be silent, in the sense of [31]; this is
why they could not be of the kind introduced in [53]).

Given a long enough time, one can verify T by recom-
puting the MST. An open problem posed by Awerbuch and
Varghese [13] is to find a synchronous MST verification
algorithm whose time complexity is smaller than the MST

computation time, yet with a small memory. This problem
was introduced in [13] in the context of self-stabilization,
where the verification algorithm is combined with a non-
stabilizing construction protocol to produce a stabilizing
protocol. Essentially, for such purposes, the verification algo-
rithm repeatedly checks the output of the non-stabilizing
construction protocol, and runs the construction algorithm
again if a fault at some node is detected. Hence, the construc-
tion algorithm and the corresponding verification algorithm
are assumed to be designed together. This, in turn,may signif-
icantly simplify the checking process, since the construction
algorithm may produce output variables (labels) on which
the verification algorithm can later rely. In this context, the
above mentioned third contribution solves this open prob-
lem by showing an O(log2 n) time penalty (in synchronous
networks) when using optimal O(log n)memory size for the
MST verification algorithm. In contrast, if we study MST
construction instead of MST verification, time lower bounds
which are polynomial in n forMST construction follow from
[56,60] (even for constant diameter graphs).

One known application of some methods of distributed
verification is for general transformers that transform non-
self-stabilizing algorithms to self-stabilizing ones. The fourth
contribution of this paper is an adaptation of the transformer
of [13] such that it can transform algorithms in our context.
That is, while the transformer of [13] requires that the size
of the network and its diameter are known, the adapted one
allows networks of unknown size and diameter. Also, here,
the verification method is a proof labeling scheme whose
verifier part is self-stabilizing. Based on the strength of the
original transformer of [13] (and that of the companion paper
[11] it uses), our adaptation yields a result that is rather useful
even without plugging in the new verification scheme. This
is demonstrated by plugging in the proof labeling schemes of
[52,53], yielding an algorithm which already improves the
time of the previous O(log2 n)memory self-stabilizingMST
construction algorithm [15], and also detects faults using 1
time and at distance at most f from each fault (if f faults
occurred).

Finally,weobtain an optimalO(log n)memory size,O(n)

time asynchronous self-stabilizing MST construction algo-
rithm. The state of the art time bound for such optimal
memory algorithms was O(n|E |) [16,46]. In fact, our time
bound improves significantly even the best time bound for
algorithms using polylogarithmicmemory,whichwas O(n2)
[15].

Moreover, our self-stabilizingMSTalgorithm inherits two
important properties from our verification scheme, which
are: (1) the time it takes to detect faults is small: O(log2 n)

time in a synchronous network, or O(Δ log3 n) in an asyn-
chronous one; and (2) if some f faults occur, then each
fault is detected within its O(f log n) neighbourhood. Intu-
itively, a short detection distance and a small detection time

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 255

may be helpful for the design of local correction, for fault
confinement, and for fault containment algorithms [14,41].
Those notions were introduced to combat the phenomena
of faults “spreading” and “contaminating” non-faulty nodes.
For example, the infamous crash of the ARPANET (the pre-
decessor of the Internet) was caused by a fault in a single
node. This caused old updates to be adopted by other nodes,
who then generatedwrong updates affecting others [57]. This
is an example of those non-faulty nodes being contaminated.
The requirement of containment [41] is that such a contam-
ination does not occur, or, at least, that it is contained in a
small radius around the faults. The requirement of confine-
ment [14] allows the contamination of a state of a node, as
long as this contamination is not reflected in the output (or
the externally visible actions) of the non-faulty nodes. Intu-
itively, if the detection distance is short, non-faulty nodes can
detect the faults and avoid being contaminated.

1.2 Related work

The distributed construction of an MST has yielded tech-
niques and insights that were used in the study of many
other problems of distributed network protocols. It has also
become a standard to check a new paradigm in distributed
algorithms theory. The first distributed algorithm was pro-
posed by [23], its complexity was not analyzed. The seminal
paper of Gallager, Humblet, and Spira presented a message
optimal algorithm that used O(n log n) time, improved by
Awerbuch to O(n) time [8,38], and later improved in [39,55]
toO(D+√

n log∗ n), where D is the diameter of the network.
This was coupled with an almost matching lower bound of
Ω(D + √

n) [60].
Proof labeling schemes were introduced in [53]. The

model described therein assumes that the verification is

restricted to 1 unit of time. In particular, a 1 timeMST verifi-
cation scheme was described there using O(log2 n) bits per
node. This was shown to be optimal in [52]. In [44], Göös
and Suomela extend the notion of proof labeling schemes by
allowing constant time verification, and exhibit some effi-
cient proof labeling schemes for recognizing several natural
graph families. In all these schemes, the criterion to decide
failure of a proof (that is, the detection of a fault) is the case
that at least one node does not manage to verify (that is,
detects a fault). The global state passes a proof successfully
if all the nodes verify successfully. This criterion for detec-
tion (or for a failure to prove) was suggested by [2,3] in the
contexts of self-stabilization, and used in self-stabilization
(e.g. [11–13]) as well as in other contexts [58].

Self-stabilization [27] deals with algorithms that must
cope with faults that are rather severe, though of a type that
does occur in reality [48]. The faults may cause the states of
different nodes to be inconsistent with each other. For exam-
ple, the collection of marked edges may not be an MST.

Table 1 summarizes the known complexity results for
self-stabilizing MST construction algorithms. The first sev-
eral entrees show the results of using (to generate an MST
algorithm automatically) the known transformer of Katz and
Perry [50], that extends automatically non-self-stabilizing
algorithms to become self-stabilizing. The transformer of
Katz and Perry [50] assumes a leader whose memory must
hold a snapshot of the whole network. The time of the result-
ing self-stabilizing MST algorithm is O(n) and the memory
size is O(|E |n). We have attributed a higher time to [50]
in the table, since we wanted to remove its assumption of a
known leader, to make a fair comparison to the later papers
who do not rely on this assumption.

To remove the assumption, in the first entry we assumed
the usage of the only leader election known at the time of

Table 1 Comparing self-stabilizing MST construction algorithms

Algorithm Space Time Asynch Comment

[50]+ [3]+ [8] O(|E |n) O(n2) Yes

[50]+ [4]+ [8] Unbounded O(D) Yes The 2nd component can be replaced by [25],
assuming the LOCAL model

[50]+ [8]+ [9] O(|E |n log n) O(min{D log n, n}) Yes The third component here can be replaced by [1] or
by [26]

[45] O(n log n) O(n) No Implies an O(n2) time bound in asynchronous
networks, assuming a good bound on the network
size is known. The time is based on assuming the
LOCAL model

[46] O(log n) Ω(|E |n) Yes The time complexity is based on the assumption that
a good bound on the network diameter is known

[16] O(log n) Ω(|E |n) Yes Aims to exchanging less bits with neighbours than
[46]. Assumes a leader is known

[15] O(log2 n) O(n2) Yes

Current paper O(log n) O(n) Yes

123

256 A. Korman et al.

[50]. That is, in [3], the first self-stabilizing leader election
algorithm was proposed in order to remove the assumptions
of [50] that a leader and a spanning tree are given. The com-
bination of [3] and [50] implied a self-stabilizing MST in
O(n2) time (Independently, a leader election algorithm was
also presented by [6]; however, we cannot use it here since
it needed an extra assumption that a bound on n was known;
also, its higher time complexity would have driven the com-
plexity of the transformed MST algorithm higher than the
O(n2) stated above).

Using unbounded space, the time of self-stabilizing leader
election was later improved even to O(D) (the actual diame-
ter) [4,25]. The boundedmemory algorithms of [9] or [1,26],
together with [50] and [8], yield a self-stabilizingMST algo-
rithm using O(n|E | log n) bits per node and time O(D log n)

or O(n).
Antonoiu and Srimani [5] presented a self-stabilizing

algorithm whose complexities were not analyzed. As men-
tioned by [46], the model in that paper can be transformed
to the models of the other papers surveyed here, at a high
translation costs. Hence, the complexities of the algorithm
of [5] may grow even further when stated in these models.
Gupta and Srimani [45] presented an O(n log n) bits algo-
rithm. Higham and Liang [46] improved the core memory
requirement to O(log n), however, the time complexity went
up again to Ω(n|E |). An algorithm with a similar time com-
plexity and a similar memory per node was also presented by
Blin et al. [16]. This latter algorithm exchanges less bits with
neighbours than does the algorithm of [46]. The algorithm of
[16] addressed also another goal—even during stabilization
it is loop free. That is, it also maintains a tree at all times
(after reaching an initial tree). This algorithm assumes the
existence of a unique leader in the network (while the algo-
rithm in the current paper does not). However, this does not
seem to affect the order of magnitude of the time complexity.

Note that thememory size in the last two algorithms above
is the same as in the current paper. However, their time com-
plexity is O(|E |n) versus O(n) in the current paper. The
time complexity of the algorithm of Blin et al. [15] improved
the time complexity of [16,46] to O(n2) but at the cost
of growing the memory usage to O(log2 n). This may be
the first paper using labeling schemes for the design of a
self-stabilizingMSTprotocol, aswell as thefirst paper imple-
menting the algorithm by Gallager, Humblet, and Spira in a
self-stabilizing manner without using a general transformer.

Additional studies aboutMSTverification in variousmod-
els appeared in [24,28,29,51–53]. In particular, Kor et al.
[51] shows that the verification from scratch (without labels)
of an MST requires Ω(

√
n+ D) time and Ω(|E |)messages,

and that these bounds are tight up to poly-logarithmic factors.
We note that the memory complexity was not considered in
[51], and indeed the memory used therein is much higher
than the one used in the current paper. The time lower bound

proof in [51] was later extended in [24] to apply for a variety
of verification and computation tasks.

This paper has results concerning distributed verifica-
tion. Various additional papers dealing with verification have
appeared recently, but the models of some of them are rather
different than the model here. Verification in the LOCAL
model (where congestion is abstracted away) was studied
in [35] from a computational complexity perspective. That
paper presents various complexity classes, shows separation
between them, and provides complete problems for these
classes. In particular, the class NLD defined therein exhibits
similarities to the notion of proof labeling schemes. Perhaps
the main result in [35] is a sharp threshold for the impact
of randomization on local decision of hereditary languages.
Following that paper, [36] showed that the threshold in [35]
holds also for any non-hereditary language, assuming it is
defined on path topologies. In addition, [36] showed fur-
ther limitations of randomness, by presenting a hierarchy
of languages, ranging from deterministic, on the one side of
the spectrum, to almost complete randomness, on the other
side. Still, in the LOCAL model, [37] studied the impact of
assuming unique identifiers on local decision. We stress that
the memory complexity was not considered in neither [35]
nor in its follow-up papers [36,37].

1.3 Our results

This paper contains the following two main results.

(1) Solving an open problem posed by Awerbuch and Vargh-
ese [13]: In the context of self-stabilization, an open problem
posed in [13] is to find a (synchronous) MST verification
algorithm whose time complexity is smaller than the MST
computation time, yet with a small memory. Our first main
result solves this question positively by constructing a time
efficient self-stabilizing verification algorithm for an MST
while using optimal memory size, that is O(log n) bits of
memory per node. More specifically, the verification scheme
takes as input a distributed structure claimed to be an MST.
If the distributed structure is indeed an MST, and if a marker
algorithm properly marked the nodes to allow the verifica-
tion, and if no faults occur, then our algorithm outputs accept
continuously in every node. However, if faults occur (includ-
ing the case that the structure is not, in fact, an MST, or that
themarker did not perform correctly), then our algorithmout-
puts reject in at least one node. This reject is outputted in time
O(log2 n) after the faults cease, in a synchronous network
(recall, lower boundswhich are polynomial inn forMST con-
struction are known even for synchronous networks [56,60]).
In asynchronous networks, the time complexity of our ver-
ification scheme grows to O(Δ log3 n). We also show that
Ω(log n) time is necessary if the memory size is restricted to
O(log n), even in synchronous networks. Another property

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 257

of our verification scheme is that if f faults occurred, then,
within the required detection time above, they are detected
by some node in the O(f log n) locality of each of the faults.
Moreover, we present a distributed implementation of the
marker algorithm whose time complexity for assigning the
labels is O(n), under the same memory size constraint of
O(log n) memory bits per node.

(2) Constructing an asynchronous self-stabilizing MST con-
struction algorithm which uses optimal memory (O(log n)

bits) and runs in O(n) time: In our second main result,
we show how to enhance a known transformer that makes
input/output algorithms self-stabilizing. It now takes as input
an efficient construction algorithm and an efficient self-
stabilizing proof labeling scheme, and produces an efficient
self-stabilizing algorithm. When used with our verifica-
tion scheme, the transformer produces a memory optimal
self-stabilizing MST construction algorithm, whose time
complexity, namely, O(n), is significantly better even than
that of previous algorithms (recall, the time complexity of
previous MST algorithms that used Ω(log2 n) memory bits
per node was O(n2), and the time for optimal space algo-
rithmswasO(n|E |)). Inherited fromour verification scheme,
our self-stabilising MST construction algorithm also has
the following two properties. First, if faults occur after the
construction ended, then they are detected by some nodes
within O(log2 n) time in synchronous networks, or within
O(Δ log3 n) time in asynchronous ones, and second, if f
faults occurred, then, within the required detection time
above, they are detected within the O(f log n) locality of
each of the faults. We also show how to improve these two
properties, at the expense of some increase in the memory.

1.4 Outline

Preliminaries and some examples of simple, yet useful, proof
labeling schemes are given in Sect. 2. An intuition is given
in Sect. 3. A building block is then given in Sect. 4. Namely,
that section describes a synchronousMST construction algo-
rithm in O(log n) bits memory size and O(n) time. Section
5 describes the construction of parts of the labeling scheme.
Those are the parts that use labeling schemes of the kind
described in [53]—namely, schemes that can be verified in
one time unit. These parts use the MST construction (of
Sect. 4) to assign the labels. Sections 6, 7, and 8 describe the
remaining part of the labeling scheme. This part is a labeling
scheme by itself, but of a new kind. It saves on memory by
distributing information. Specifically, Sect. 6 describes how
the labels should look if they are constructed correctly (and if
anMST is indeed represented in the graph). The verifications,
in the special case that no further faults occur, are described
in Sect. 7. This module verifies (alas, not in constant time)
by moving the distributed information around, for a “distrib-

uted viewing”. Because the verification is not done in one
time unit, it needs to be made self-stabilizing. This is done
in Sect. 8. Section 9 presents a lower bound for the time of
a proof labeling scheme for MST that uses only logarithmic
memory (essentially, the proof behind this lower bound is
based on a simple reduction, using the rather complex lower
bound given in [52]).

The efficient self-stabilizing MST algorithm is given
in Sect. 10. Using known transformers, we combine effi-
cient MST verification schemes and (non-self-stabilizing)
MST construction schemes to yield efficient self-stabilizing
schemes. The MST construction algorithm described in
Sect. 4 is a variant of some known time efficient MST con-
struction algorithms. We show there how those can also be
made memory efficient (at the time, this complexity measure
was not considered), and hence can be used as modules for
our optimal memory self-stabilizing MST algorithm.

2 Preliminaries

2.1 Some general definitions

We use rather standard definitions; a reader unfamiliar with
these notions may refer to the model descriptions in the rich
literature on these subjects. In particular, we use rather stan-
dard definitions of self-stabilization (see, e.g. [30]). Note that
the assumptions we make below on time and time complex-
ity imply (in self-stabilization jargon) a distributed daemon
with a very strong fairness. When we speak of asynchronous
networks, this implies a rather fine granularity of atomicity.
Note that the common self-stabilization definitions include
the definitions of faults. We also use standard definitions of
graph theory (including an edgeweighted graphG = (V, E),
with weights that are polynomial in n = |V |) to represent a
network (see, e.g. [33]). Each node v has a unique iden-
tity ID(v) encoded using O(log n) bits. For convenience, we
assume that each adjacent edge of each node v has some
label that is unique at v (edges at different nodes may have
the same labels). This label, called a port-number, is known
only to v and is independent of the port-number of the same
edge at the other endpoint of the edge. (Clearly, each port-
number can be assumed to be encoded using O(log n) bits).
Moreover, the network can store an object such as anMST by
having each node store its component of the representation.
A component c(v) at a node v includes a collection of point-
ers (or port-numbers) to neighbours of v, and the collection
of the components of all nodes induces a subgraph H(G)

(an edge is included in H(G) if and only if at least one of its
end-nodes points at the other end-node). In the verification
scheme considered in this current paper, H(G) is supposed to
be anMST and for simplicity, we assume that the component
of each node contains a single pointer (to the parent, if that

123

258 A. Korman et al.

node is not defined as the root). It is not difficult to extend
our verification scheme to hold also for the case where each
component can contain several pointers. Note that the def-
initions in this paragraph imply a lower bound of Ω(log n)

bits on the memory required at each node to even represent
an MST (in graphs with nodes of high degree).

Some additional standard [38] parts of the model include
the assumption that the edge weights are distinct. As noted
often, having distinct edge weights simplifies our arguments
since it guarantees the uniqueness of the MST. Yet, this
assumption is not essential. Alternatively, in case the graph is
not guaranteed to have distinct edge weights, wemaymodify
theweights locally aswas done in [51]. The resultedmodified
weight function ω′(e) not only assigns distinct edge weights,
but also satisfies the property that the given subgraph H(G)

is an MST of G under ω(·) if and only if H(G) is an MST
of G under ω′(·).1

We use the (rather common) ideal time complexity which
assumes that a node reads all of its neighbours in at most
one time unit, see e.g. [15,16]. Our results translate easily to
an alternative, stricter, contention time complexity, where a
node can access only one neighbour in one timeunit. The time
cost of such a translation is at most a multiplicative factor of
Δ, the maximum degree of a node (it is not assumed that Δ
is known to nodes).

1 We note, the standard technique (e.g., [38]) for obtaining unique
weights is not sufficient for our purposes. Indeed, that technique orders
edge weights lexicographically: first, by their original weight ω(e), and
then, by the identities of the edge endpoints. This yields a modified
graph with unique edge weights, and an MST of the modified graph is
necessarily an MST of the original graph. For construction purposes it
is therefore sufficient to consider only the modified graph. Yet, this is
not the case for verification purposes, as the given subgraph can be an
MST of the original graph but not necessarily an MST of the modified
graph. While the authors in [51] could not guarantee that any MST of
the original graph is anMST of the modified graph (having unique edge
weights), they instead make sure that the particular given subgraph T is
anMST of the original graph if and only if it is anMST of modified one.
This condition is sufficient for verification purposes, and allows one to
consider only the modified graph. For completeness, we describe the
weight-modification in [51]. To obtain the modified graph, the authors
in [51] employ the technique, where edge weights are lexicographically
ordered as follows. For an edge e = (v, u) connecting v to its neigh-
bour u, consider first its original weight ω(e), next, the value 1 − Y v

u
where Y v

u is the indicator variable of the edge e (indicating whether e
belongs to the candidate MST to be verified), and finally, the identi-
ties of the edge endpoints, ID(v) and ID(u) (say, first comparing the
smaller of the two identities of the endpoints, and then the larger one).
Formally, let ω′(e) = 〈

ω(e), 1 − Y v
u ,IDmin(e),IDmax(e)

〉
, where

IDmin(e) = min{ID(v),ID(u)} and IDmax(e) = max{ID(v),ID(u)}.
Under this weight function ω′(e), edges with indicator variable set to
1 will have lighter weight than edges with the same weight under ω(e)
but with indicator variable set to 0 (i.e., for edges e1 ∈ T and e2 /∈ T
such that ω(e1) = ω(e2), we have ω′(e1) < ω′(e2)). It follows that the
given subgraph T is anMST of G under ω(·) if and only if T is anMST
of G under ω′(·). Moreover, since ω′(·) takes into account the unique
node identities, it assigns distinct edge weights.

As is commonly assumed in the case of self-stabilization,
each node has only some bounded number of memory
bits available to be used. Here, this amount of memory is
O(log n).

2.2 Using protocols designed for message passing

Weuse a self-stabilizing transformer ofAwerbuch andVargh-
ese as a building block [13]. That protocol was designed
for the message passing model. Rather than modifying that
transformer to work on the model used here (which would be
very easy, but would take space), we use emulation. That is,
we claim that any self-stabilizing protocol designed for the
model of [13] (including the above transformer) can be per-
formed in the model used here, adapted from [15,16]. This
is easy to show: simply use the current model to implement
the links of the model of [13]. To send a message from node
v to its neighbour u, have v write its shared variable that
(only v and) u can read. This value can be read by u after
one time unit in a synchronous network as required from a
message arrival in the model of [13]. Hence, this is enough
for synchronous networks.

In an asynchronous network, we need to work harder to
simulate the sending and the receiving of a message, but only
slightly harder, given known art. Specifically, in an asyn-
chronous network, an event occurs at u when this message
arrives. Without some additional precaution on our side, u
could have read this value many times (per one writing)
resulting in duplications: multiple message “arriving” while
we want to emulate just one message. This is solved by a
self-stabilizing data link protocol, such as the one used by
[3], since this is also the case in a data link protocol in
message passing systems where a link may lose a package.
There, a message is sent repeatedly, possibly many times,
until an acknowledgement from the receiver tells the sender
that the message arrived. The data link protocol overcomes
the danger of duplications by simply numbering the mes-
sages modulo some small number. That is, the first message
is sent repeatedly with an attached “sequence number” zero,
until the first acknowledgement arrives. All the repetitions of
the second message have as attachments the sequence num-
ber 1, etc. The receiver then takes just one of the copies of
the first message, one of the copies of the second, etc. A self-
stabilized implementation of this idea in a shared memory
model appears in [3] using (basically, to play the role of the
sequence number) an additional shared variable called the
“toggle”, which can take one of three values.2 When u reads
that the toggle of v changes, u can emulate the arrival of
a message. In terms of time complexity, this protocol takes

2 That protocol, called “the strict discipline” in [3], actually provides
a stronger property (emulating a coarser grained atomicity), not used
here.

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 259

a constant time, and hence sending (an emulated) message
still takes a constant time (in terms of complexity only) as
required to emulate the notion of ideal time complexity of
[15,16]. Note that the memory is not increased.

2.3 Wave&Echo

We use the well known Wave&Echo (PIF) tool. For details,
the readers are referred to [19,61]. For completeness, we
remind the reader of the overview of Wave&Echo when per-
formed over a rooted tree. It is started by the tree root, and
every node who receives the wave message forwards it to its
children. The wave can carry a command for the nodes. A
leaf receiving the wave, computes the command, and sends
the output to its parent. This is called an echo. A parent, all of
whose children echoed, computes the command itself (pos-
sibly using the outputs sent by the children) and then sends
the echo (with its own output) to its parent. TheWave&Echo
terminates at the rootwhen all the children of the root echoed,
and when the root executed the command too.

In this paper, the Wave&Echo activations carry various
commands. Let us describe first two of these commands, so
that they will also help clarify the notion of Wave&Echo and
its application. The first example is the command to sum up
values residing at the nodes. The echo of a leaf includes its
value. The echo of a parent includes the sum of its own value
and the sums sent by its children. Another example is the
counting of the nodes. This is the same as the sum operation
above, except that the initial value at a node is 1. Similarly to
summing up, the operation performed by the wave can also
be a logical OR.

2.4 Proof labeling schemes

In [44,52,53], the authors consider a framework for main-
taining a distributed proof that the network satisfies some
given predicate Ψ , e.g., that H(G) is an MST. We are given
a predicateΨ and a graph familyF (in this paper, ifΨ andF
are omitted, then Ψ is MST andF (orF(n)) is all connected
undirected weighted graphs with n nodes). A proof labeling
scheme (also referred to as a verification algorithm) includes
the following two components.

– A marker algorithm M that generates a label M(v) for
every node v in every graph G ∈ F .

– A verifier, that is a distributed algorithm V , initiated at
each node of a labeled graph G ∈ F , i.e., a graph whose
nodes v have labels L(v) (not necessarily correct labels
assigned by a marker). The verifier at each node is initi-
ated separately, and at an arbitrary time, and runs forever.
The verifier may raise an alarm at some node v by out-
putting “no” at v.

Intuitively, if the verifier at v raises an alarm, then it detected
a fault. That is, for any graph G ∈ F ,

– IfG satisfies the predicateΨ and if the label at each node
v is M(v) (i.e., the label assigned to v by the marker
algorithmM) then no node raises an alarm. In this case,
we say that the verifier accepts the labels.

– IfG does not satisfy the predicateΨ , then for any assign-
ment of labels to the nodes of G, after some finite time
t , there exists a node v that raises an alarm. In this case,
we say that the verifier rejects the labels.

Note that the first property above concerns only the labels
produced by themarker algorithmM, while the secondmust
hold even if the labels are assigned by some adversary. We
evaluate a proof labeling scheme (M,V) by the following
complexity measures.

– The memory size: the maximum number of bits stored in
the memory of a single node v, taken over all the nodes v

in all graphs G ∈ F(n) that satisfy the predicate Ψ (and
over all the executions); this includes: (1) the bits used
for encoding the identity ID(v), (2) the marker memory:
the number of bits used for constructing and encoding the
labels, and (3) the verifier memory: the number of bits
used during the operation of the verifier.3

– The (ideal) detection time: the maximum, taken over all
the graphs G ∈ F(n) that do not satisfy the predicate Ψ

and over all the labels given to nodes of G by adversaries
(and over all the executions), of the time t required for
some node to raise an alarm (the time is counted from
the starting time, when the verifier has been initiated at
all the nodes).

– The detection distance: for a faulty node v, this is the
(hop) distance to the closest node u raising an alarm
within the detection time after the fault occurs. The detec-
tion distance of the scheme is the maximum, taken over
all the graphs having at most f faults, and over all the
faulty nodes v (and over all the executions), of the detec-
tion distance of v.

– The (ideal) construction-time: the maximum, taken over
all the graphs G ∈ F(n) that satisfy the predicate Ψ

(and over all the executions), of the time required for

3 Note that we do not include the number of bits needed for storing the
component c(v) at each node v. Recall that for simplicity, we assume
here that each component contains a single pointer, and therefore, the
size of each component is O(log n) bits. Hence, for our purposes,
including the size of a component in the memory complexity would
not increase the asymptotical size of the memory, anyways. However,
in the general case, if multiple pointers can be included in a compo-
nent, then the number of bits needed for encoding a component would
potentially be as large as O(Δ log n). Since, in this case, the verification
scheme has no control over the size of the component, we decided to
exclude this part from the definition of the memory complexity.

123

260 A. Korman et al.

the marker M to assign labels to all nodes of G. Unless
mentioned otherwise, we measure construction-time in
synchronous networks only.

In our terms, the definitions of [52,53] allowed only detection
time complexity 1. Because of that, the verifier of [52,53] at
a node v, could only consult the neighbours of v. Whenever
we use such a scheme, we refer to it as a 1-proof labeling
scheme, to emphasize its running time. Note that a 1-proof
labeling scheme is trivially self-stabilizing (in some sense,
this is because they “silently stabilize” [31], and “snap sta-
bilize” [18]). Also, in [52,53], if f faults occurred, then the
detection distance was f .

2.5 Generalizing the complexities to a computation

In Sect. 2.4, we defined the memory size, the detection
time and the detection distance complexities of a verification
algorithm. When considering a (self-stabilizing) computa-
tion algorithm, we extend the notion of the memory size
to include also the bits needed for encoding the component
c(v) at each node. Recall the definition of a component c(v)

in general and the special case of c(v) for MST are given in
Sect. 2 (recall, from Sect. 2.4, that the size of the component
was excluded from the definition of memory size for verifi-
cation because, there, the designer of the verification scheme
has no control over the nodes’ components).

The notions of detection time and the detection distance
can be carried to the very common class of self-stabilizing
computation algorithms that use fault detection (examples for
such algorithms are algorithms that have silent stabilization
[31]). Informally, algorithms in this class first compute an
output. After that, all the nodes are required to stay in some
output state where they (1) output the computation result
forever (unless a fault occurs); and (2) check repeatedly until
they discover a fault. In such a case, they recompute and enter
an output state again. Let us term such algorithms detection
based self-stabilizing algorithms. We define the detection
time for such algorithms to be the time from a fault until
the detection. However, we only define the detection time
(and the detection distance) for faults that occur after all the
nodes are in their output states (intuitively, in the other cases,
stabilization has not been reached yet anyhow). The detection
distance is the distance from a node where a fault occurred
to the closest node that detected a fault.

2.6 Some examples of 1-proof labeling schemes

As a warm-up exercise, let us begin by describing several
simple 1-proof labeling schemes, which will be useful later
in this paper. The first two examples are taken from [53] and
are explained there in more details. The reader familiar with
proof labeling schemes may skip this subsection.

Example 1 A spanning tree (Example SP) Let fspan denote
thepredicate such that any input graphG satisfies fspan(G) =
1 if H(G) is a spanning tree of G, and fspan(G) = 0 other-
wise. We now describe an efficient 1-proof labeling scheme
(M,V) for the predicate fspan and the family of all graphs.
Let us first describe the marker M operating on a “correct
instance”, i.e., a graph G where T = H(G) is indeed a span-
ning tree ofG. If there exists a node u whose component does
not encode a pointer to any of its adjacent edges (observe that
there can be at most one such node), we root T at u. Other-
wise, there must be two nodes v and w whose components
point at each other. In this case, we root T arbitrarily at either
v orw. Note that after rooting T , the component at each non-
root node v points at v’s parent. The label given by M to a
node v is composed of two parts. The first part encodes the
identity ID(r) of the root r of T , and the second part of
the label of v encodes the distance (assuming all weights of
edges are 1) between v and r in T .

Given a labeled graph, the verifier V operates at a node
v as follows: first, it checks that the first part of the label
of v agrees with the first part of the labels of v’s neigh-
bours, i.e., that v agrees with its neighbours on the identity
of the root. Second, let d(v) denote the number encoded in
the second part of v’s label. If d(v) = 0 then V verifies that
ID(v) = ID(r) (recall that ID(r) is encoded in the first part
of v’s label). Otherwise, if d(v) �= 0 then the verifier checks
that d(v) = d(u) + 1, where u is the node pointed at by the
component at v. If at least one of these conditions fails, the
verifier V raises an alarm at v. It is easy to get convinced that
(M,V) is indeed a 1-proof labeling scheme for the predi-
cate fspan with memory size O(log n) and construction time
O(n).

Remark Observe that in case T = H(G) is indeed a (rooted)
spanning tree ofG, we can easily let each node v knowwhich
of its neighbours in G are its children in T and which is its
parent. Moreover, this can be done using one unit of time
and label size O(log n) bits. To see this, for each node v,
we simply add to its label its identity ID(v) and the identity
ID(u) of its parent u. The verifier at v first verifies that ID(v)

is indeed encoded in the right place of its label. It then looks
at the label of its parent u, and checks that v’s candidate
for being the identity of u is indeed ID(u). Assume now
that these two conditions are satisfied at each node. Then, to
identify a child w in T , node v should only look at the labels
of its neighbours in G and see which of them encoded ID(v)

in the designated place of its label.

Example 2 Knowing the number of nodes (Example NumK)
Denote by fsi ze the boolean predicate such that fsi ze(G) = 1
if and only if one designated part of the label L(v) at each
node v encodes the number of nodes in G (informally, when
fsi ze is satisfied, we say that each node ‘knows’ the number

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 261

of nodes in G). Let us denote the part of the label of v that is
supposed to hold this number by L ′(v).

In [53], the authors give a 1-proof labeling scheme (M,V)

for fsi ze with memory size O(log n). The idea behind their
scheme is simple. First, the verifier checks that L ′(u) =
L ′(v) for every two adjacent nodes u and v (if this holds
at each node then all nodes must hold the same candidate for
being the number of nodes). Second, the marker constructs
a spanning tree T rooted at some node r (and verifies that
this is indeed a spanning tree using the Example SP above).
Third, the number of nodes in T is aggregated upwards along
T towards its root r , by keeping at the label M(v) of each
node v, the number of nodes n(v) in the subtree of T hang-
ing down from v. This again is easily verified by checking
at each node v that n(v) = 1 + ∑

u∈Child(v) n(u), where
Child(v) is the set of children of v. Finally, the root veri-
fies that n(r) = L ′(r). It is straightforward that (M,V) is
indeed a 1-proof labeling scheme for the predicate fsi ze with
memory size O(log n) and construction time O(n).

Example 3 An upper bound on the diameter of a tree (Exam-
ple EDIAM) Consider a tree T rooted at r , and let h denote
the height of T . Denote by fheight the boolean predicate such
that fheight(T) = 1 if and only if one designated part of the
label L(v) at each node v encodes the same value x , where
h ≤ x (informally, when fheight is satisfied, we say that each
node ‘knows’ an upper bound of 2x on the diameter D of T).
Let us denote the part of the label of v that is supposed to
hold this number by L ′(v). We sketch a simple 1-proof label-
ing scheme (M,V) for fheight . First, the verifier checks that
L ′(u) = L ′(v) for every two adjacent nodes u and v (if this
holds at each node then all nodes must hold the same value
x). Second, similarly to the proof labeling scheme for fspan
given in Example SP above, the label in each node v contains
the distance d(v) in the tree from v to the root. Each non-root
node verifies that the distance written at its parent is one less
than the distance written at itself, and the root verifies that
the distance written at itself is 0. Finally, each node v verifies
also that x ≥ d(v). If no node raises an alarm then x is an
upper bound on the height. On the other hand, if the value x
is the same at all nodes and x is an upper bound on the height
then no node raises an alarm. Hence the scheme is a 1-proof
labeling scheme for the predicate fheight with memory size
O(log n) and construction time O(n).

3 Overview of the MST verification scheme and the
intuition behind it

The final MST construction algorithm makes use of sev-
eral modules. The main technical contribution of this paper
is the module that verifies that the collection of nodes’
components is indeed an MST. This module in itself is

composed of multiple modules. Some of those, we think
may be useful by themselves. To help the reader avoid get-
ting lost in the descriptions of all the various modules, we
present, in this section, an overview of the MST verification
part.

Given a graph G and a subgraph that is represented
distributively at the nodes of G, we wish to produce a self-
stabilizing proof labeling scheme that verifies whether the
subgraph is an MST of G. By first employing the (self-
stabilizing) 1-proof labeling scheme mentioned in Example
SP, we may assume that the subgraph is a rooted spanning
tree of G (otherwise, at least one node would raise an alarm).
Hence, from now on, we focus on a spanning tree T =
(V (G), E(T)) of a weighted graph G = (V (G), E(G)),
rooted at some node r(T), and aim at verifying the minimal-
ity of T .

3.1 Background and difficulties

From a high-level perspective, the proof labeling scheme
proves that T could have been computed by an algorithm
that is similar to that of GHS, the algorithm of Gallager,
Humblet, and Spira’s described in [38]. This leads to a sim-
ple idea: when T is a tree computed by such an algorithm, T
is an MST. Let us first recall a few terms from [38]. A frag-
ment F denotes a connected subgraph of T (we simply refer
it to a subtree). Given a fragment F , an edge (v, u) ∈ E(G)

whose one endpoint v is in F , while the other endpoint u is
not, is called outgoing from F . Such an edge of minimum
weight is called a minimum outgoing edge from F . A frag-
ment containing a single node is called a singleton. Recall
thatGHS startswhen each node is a fragment by itself. Essen-
tially, fragments merge over their minimum outgoing edges
to form larger fragments. That is, each node belongs to one
fragment F1, then to a larger fragment F2 that contains F1,
etc. This is repeated until one fragment spans the network.
A tree constructed in that way is an MST. Note that in GHS,
the collection of fragments is a laminar family, that is, for
any two fragments F and F ′ in the collection, if F ∩ F ′ �= ∅
then either F ⊆ F ′ or F ′ ⊆ F (see, e.g. [42]). Moreover,
each fragment has a level; in the case of v above, F2’s level
is higher than that of F1. This organizes the fragments in
a hierarchy H, which is a tree whose nodes are fragments,
where fragment F1 is a descendant in H of F2 if F2 con-
tains F1. GHS manages to ensure that each node belongs to
at most one fragment at each level, and that the total number
of levels is O(log n). Hence, the hierarchy H has O(log n)

height.
The marker algorithm in our proof labeling scheme per-

forms, in some sense, a reverse operation. If T is an MST,
the marker “slices” it back into fragments. Then, the proof
labeling scheme computes for each node v:

123

262 A. Korman et al.

• The (unique) name of each of the fragments Fj that v

belongs to,
• the level of Fj , and
• the weight of Fj ’s minimum outgoing edge.

Note that each node participates in O(log n) fragments,
and the above “piece of information” per fragment requires
O(log n) bits. Hence, this is really too much information
to store in one node. As we shall see later, the verifica-
tion scheme distributes this information and then brings
it to the node without violating the memory size bound
O(log n). For now, it suffices to know that given these pieces
of information and the corresponding pieces of informa-
tion of their neighbours, the nodes can verify that T could
have been constructed by an algorithm similar to GHS. That
way, they verify that T is an MST. Indeed, the 1-proof
labeling schemes for MST verification given in [52,53] fol-
low this idea employing memory size of O(log2 n) bits
(there, each node keeps O(log n) pieces, each of O(log n)

bits).
The current paper allows each node to hold only O(log n)

memory bits. Hence, a node has room for only a con-
stant number of such pieces of information at a time.
One immediate idea is to store some of v’s pieces in
some other nodes. Whenever v needs a piece, some algo-
rithm should move it towards v. Moving pieces would cost
time, hence, realizing some time versus memory size trade-
off.

Unfortunately, the total (over all the nodes) number of
pieces in the schemes of [52,53] is Ω(n log n). Any way one
would assign these pieces to nodes would result in the mem-
ory of some single node needing to store Ω(log n) pieces,
and hence, Ω(log2 n) bits. Thus, one technical step we used
here is to reduce the total number of pieces to O(n), so that
we could store at each node just a constant number of such
pieces.However, eachnode still needs to useΩ(log n)pieces.
That is, some pieces may be required by many nodes. Thus,
we needed to solve also a combinatorial problem: locate each
piece “close” to each of the nodes needing it, while storing
only a constant number of pieces per node.

The solution of this combinatorial problem would have
sufficed to construct the desired scheme in the LOCAL
model [59]. There, node v can “see” the storage of nearby
nodes. However, in the congestion aware model, one actually
needs to move pieces from node to node, while not violating
the O(log n) memory per node constraint. This is difficult,
since, at the same time v needs to see its own pieces, other
nodes need to see their own ones.

3.2 A very high level overview

Going back to GHS, one may notice that its correctness fol-
lows from the combination of two properties:

• P1 (Well-forming) The existence of a hierarchy tree H
of fragments, satisfying the following:

– Each fragment F ∈ H has a unique selected outgoing
edge (except when F is the whole tree T).

– A (non-singleton) fragment is obtained by merging
its children fragments inH through their selected out-
going edges.

• P2 (Minimality) The selected outgoing edge of each
fragment is its minimal outgoing edge.

In our proof labeling scheme, we verify the aforementioned
two properties separately. In Sect. 5, we show how to verify
the first property, namely, property well-forming. This turns
out to be a much easier task than verifying the second prop-
erty. Indeed, the well-forming property can be verified using
a 1-proof labeling scheme, while still obeying the O(log n)

bits per node memory constraint. Moreover, the techniques
we use for verifying the well-forming are rather similar to the
ones described in [53]. The more difficult verification task,
namely, verifying theMinimality property P2, is described in
Sect. 6. This verification scheme requires us to come up with
several new techniques which may be considered as contri-
butions by themselves. We now describe the intuition behind
these verifications.

3.3 Verifying the well-forming property
(described in detail in Sects. 4 and 5)

We want to show that T could have been produced by an
algorithm similar to GHS. Crucially, since we care about the
memory size, we had to come up with a new MST construc-
tion algorithm that is similar to GHS but uses only O(log n)

memory bits per node and runs in time O(n). This MST con-
struction algorithm, called SYNC_MST, can be considered as
a synchronous variant of GHS and is described in Sect. 4.

Intuitively, for a correct instance (the case T is an MST),
the marker algorithm M produces a hierarchy of frag-
ments H by following the new MST construction algorithm
described in Sect. 4. Let � = O(log n) be the height of H.
For a fixed level j ∈ [0, �], it is easy to represent the parti-
tion of the tree into fragments of level j using just one bit
per node. That is, the root r ′ of each fragment F ′ of level j
has 1 in this bit, while the nodes in F ′\{r ′} have 0 in this bit.
Note these nodes in F ′\{r ′} are the nodes below r ′ (further
away from the root of T), until (and not including) reach-
ing additional nodes whose corresponding bit is 1. Hence, to
represent the whole hierarchy, it is enough to attach a string
of length � + 1-bits at each node v. The string at a node v

indicates, for each level j ∈ [0, �], whether v is the root of
the fragment of level j containing v (if one exists).

Next, still for correct instances, we would like to represent
the selected outgoing edges distributively. That is, each node

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 263

v should be able to detect, for each fragment F containing
v, whether v is an endpoint of the selected edge of F . If v is,
it should also know which of v’s edges is the selected edge.
This representation is used later for verifying the two items
of the well-forming property specified above. For this pur-
pose, first, we add another string of �+1 entries at each node
v, one entry per level j . This entry specifies, first, whether
there exists a level j fragment Fj (v) containing v. If Fj (v)

does exist, the entry specifies whether v is incident to the
corresponding selected edge. Note, storing the information
at v specifying the pointers to all the selected edges of the
fragments containing it, may require O(log2 n) bits of mem-
ory at v. This is because there may be O(log n) fragments
containing v; each of those may select an edge at v leading to
an arbitrary neighbour of v in the tree T ; if v has many neigh-
bours, each edge may cost O(log n) bits to encode. The trick
is to distribute the information regarding v’s selected edges
among v’s children in T (recall that v can look at the data
structures of v’s children).

The strings mentioned in the previous paragraphs are sup-
posed to define a hierarchy and selected outgoing edges
from the fragments of the hierarchy. However, on incor-
rect instances, if corrupted, the strings may not represent
the required. For example, the strings may represent more
than one selected edges for some fragment. Hence, we need
also to attach proof labels for verifying the hierarchy and the
corresponding selected edges represented by those strings.
Fortunately, for proving the well-forming property only, it is
not required to verify that the represented hierarchy (and the
corresponding selected edges) actually follows theMST con-
struction algorithm (which is the case for correct instances).
In Sect. 5, we present 1-proof labeling schemes to show that
the above strings represent some hierarchy with correspond-
ing selected edges, and that the well-forming property does
hold for that hierarchy.

3.4 Verifying the minimality property
(described in detail in Sects. 6, 7 and 8)

A crucial point in the scheme is letting each node v know,
for each of its incident edges (v, u) ∈ E and for each level j ,
whether u and v share the same level j fragment. Intuitively,
this is needed in order to identify outgoing edges. For that
purpose, we assign each fragment a unique identifier, and
v compares the identifier of its own level j fragment to the
identifier of u’s level j fragment.

Consider the number of bits required to represent the iden-
tifiers of all the fragments that a node v participates in. There
exists a method to assign unique identifiers such that this
total number is only O(log n) [34,54]. Unfortunately, we
did not manage to use that method here. Indeed, there exists
a marker algorithm that assigns identifiers according to that
method. However, we could not find a low space and short

timemethod for the verifier to verify that the given identifiers
of the fragments were indeed assigned in that way (in partic-
ular, we could not verify efficiently that the given identifiers
are indeed unique).

Hence, we assign identifiers according to another method
that appears more memory wasteful, where the identity
ID(F) of a fragment F is composed of the (unique) iden-
tity of its root together with its level. We also need each node
v to know the weight ω(F) of the minimum outgoing edge
of each fragment F containing v. To summarize, the piece
of information I(F) required in each node v per fragment F
containing v is ID(F) ◦ ω(F). Thus, I(F) can be encoded
using O(log n) bits. Again, note that since a node may par-
ticipate in � = Θ(log n) fragments, the total number of bits
used for storing all the I(F) for all fragments F containing v

would thus beΘ(log2 n). Had no additional steps been taken,
this would have violated the O(log n) memory constraint.

Luckily, the total number of bits needed globally for rep-
resenting the pieces I(F) of all the fragments F is only
O(n log n), since there are at most 2n fragments, and I(F)

of a fragment F is of size O(log n) bits. The difficulty results
from the fact that multiple nodes need replicas of the same
information (e.g., all the nodes in a fragment need the ID of
the fragment). If a node does not store this information itself,
it is not clear how to bring all the many pieces of informa-
tion to each node who needs them, in a short time (in spite
of congestion) and while having only a constant number of
such pieces at a node at each given point in time.

To allow some node v to check whether its neighbour u
belongs to v’s level j fragment Fj (v) for some level j , the
verifier at v needs first to reconstruct the piece of information
I(Fj (v)). Intuitively, we had to distribute the information,
so that I(F) is placed “not too far” from every node in
F . To compare I(Fj (v)) with a neighbour u, node v must
also obtain I(Fj (u)) from u. This requires some mechanism
to synchronize the reconstructions in neighbouring nodes.
Furthermore, the verifier must be able to overcome difficul-
ties resulting from faults, which can corrupt the information
stored, as well as the reconstruction and the synchronization
mechanisms.

The above distribution of the I’s is described in Sect. 6.
The distributed algorithm for the “fragment by fragment”
reconstruction (and synchronization) is described in Sect. 7.
The required verifications for validating the I’s and compar-
ing the information of neighbouring nodes are described in
Sect. 8.

3.4.1 Distribution of the pieces of information
(described in detail in Sect. 6)

At a very high level description, each node v stores per-
manently I(F) for a constant number of fragments F .
Using that, I(F) is “rotated” so that each node in F “sees”

123

264 A. Korman et al.

I(F) in O(log n) time. We term the mechanism that per-
forms this rotation a train. A first idea would have been
to have a separate train for each fragment F that would
“carry” the piece I(F) and would allow all nodes in F
to see it. However, we did not manage to do that effi-
ciently in terms of time and of space. That is, one train
passing a node could delay the other trains that “wish” to
pass it. Since neighbouring nodes may share only a sub-
set of their fragments, it is not clear how to pipeline the
trains. Hence, those delays could accumulate. Moreover, as
detailed later, each train utilizes some (often more than con-
stant) memory per node. Hence, a train per fragment would
have prevented us from obtaining an O(log n)memory solu-
tion.

A more refined idea would have been to partition the tree
into connected parts, such that each part P intersects O(|P|)
fragments. Using such a partition, we could have allocated
the O(|P|) pieces (of these O(|P|) fragments), so that each
node of P would have been assigned only a constant number
of such pieces, costing O(log n) bits per node. Moreover,
just one train per part P could have sufficed to rotate those
pieces among the nodes of P . Each node in P would have
seen all the pieces I(F) for fragments F containing it in
O(|P|) time. Hence, this would have been time efficient too,
had P been small.

Unfortunately, we did not manage to construct the above
partition. However, we managed to obtain a similar con-
struction: we construct two partitions of T , called Top and
Bottom. We also partitioned the fragments into two kinds:
top and bottom fragments. Now, each part P of partition
Top intersects with O(|P|) top fragments (plus any num-
ber of bottom fragments). Each part P of partition Bottom
intersects with O(|P|) bottom fragments (plus top fragments
that we do not count here). For each part inTop (respectively
Bottom), we shall distribute the information regarding the
O(|P|) top (respectively, bottom) fragments it intersects
with, so that each node would hold at most a constant num-
ber of such pieces of information. Essentially, the pieces of
information regarding the corresponding fragments are put
in the nodes of the part (permanently) according to a DFS
(Depth First Search) order starting at the root of the part. For
any node v, the two parts containing it encode together the
information regarding all fragments containing v. Thus, to
deliver all relevant information, it suffices to utilize one train
per part (and hence, each node participates in two trains only).
Furthermore, the partitions are made so that the diameter of
each part is O(log n), which allows each train to quickly pass
in all nodes, and hence to deliver the relevant information in
short time.

The distributed implementation of this distribution of
pieces of information, and, in particular, the distributed con-
struction of the two partitions required us to come up with
a new multi-wave primitive, enabling an efficient (in O(n)

time) parallel (i.e., pipelined) executions of Wave&Echo
operations on all fragments of Hierarchy HM.

3.4.2 Viewing the pieces of information (described in detail
in Sect. 7)

Consider a node v and a fragment Fj (v) of level j contain-
ing it. Recall that the information I(Fj (v)) should reside
in some node of a part P to which v belongs. To allow v

to compare I(Fj (v)) to I(Fj (u)) for a neighbour u, both
these pieces must somehow be “brought” to v. The process
handling this task contains several components. The first
component is called the train which is responsible for mov-
ing the pieces of information through P’s nodes, such that
each node does not hold more than O(log n) bits at a time,
and such that in short time, each node in P “sees” all pieces,
and in some prescribed order. Essentially, a train is composed
of two ingredients. The first ingredient called convergecast
pipelines the pieces of information in a DFS order towards
the root of the part (recall, the pieces of information of the
corresponding fragments are initially located according to
a DFS order). The second ingredient broadcasts the pieces
from the root of the part to all nodes in the part. Since the
number of pieces is O(log n) and the diameter of the part
is O(log n), the synchronous environment guarantees that
each piece of information is delivered to all nodes of a part
in O(log n) time. On the other hand, in the asynchronous
environment some delays may occur, and the delivery time
becomes O(log2 n). These time bounds are also required to
self-stabilize the trains, by known art, see, e.g. [18,21].

Unfortunately, delivering the necessary pieces of informa-
tion at each node is not enough, since I(Fj (v)) may arrive
at v at a different time than I(Fj (u)) arrives at u. Recall that
u and its neighbour v need to have these pieces simultane-
ously in order to compare them (to know whether the edge
e = (u, v) is outgoing from Fj (v)).

Further complications arise from the fact that the neigh-
bours of a node v may belong to different parts, so different
trains pass there. Note that v may have many neighbours,
and we would not want to synchronize so many trains. More-
over, had we delayed the train at v for synchronization, the
delays would have accumulated, or even would have caused
deadlocks. Hence, we do not delay these trains. Instead, v

repeatedly samples a piece from its train, and synchronizes
the comparison of this piecewith pieces sampled by its neigh-
bours, while both trains advance without waiting. Perhaps
not surprisingly, this synchronization turns out to be easier
in synchronous networks, than in asynchronous ones. Our
synchronization mechanism guarantees that each node can
compare all pieces I(Fj (v)) with I(Fj (u)) for all neigh-
bours u and levels j in a short time. Specifically, O(log2 n)

time in synchronous environments and O(Δ log3 n) time in
asynchronous ones.

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 265

3.4.3 Local verifications (described in detail in Sect. 8)

So far, with respect to verifying the Minimality property, we
have not discussed issues of faults that may complicate the
verification. Recall the verification process must detect if the
tree is not anMST. Informally, this must hold despite the fact
that the train processes, the partitions, and also, the pieces of
information carried by the trains may be corrupted by an
adversary. For example, the adversary may change or erase
some (or even all) of such pieces corresponding to existing
fragments. Moreover, even correct pieces that correspond to
existing fragments may not arrive at a node in the case that
the adversary corrupted the partitions or the trainmechanism.

In Sect. 8, we explain how the verifier does overcome
such undesirable phenomena, if they occur. Intuitively, what
is detected is not necessarily the fact that a train is cor-
rupted (for example). Instead, what is detected is the state
that some part is incorrect (either the tree is not an MST, or
the train is corrupted, or . . . etc.). Specifically, we show that
if an MST is not represented in the network, this is detected
in time O(log2 n) for synchronous environments and time
O(Δ log3 n) for asynchronous ones. Note that for a verifier,
the ability to detect while assuming any initial configura-
tion means that the verifier is self-stabilizing, since the sole
purpose of the verifier is to detect.

Verifying that some two partitions exist is easy. However,
verifying that the givenpartitions are as described inSect. 6.1,
rather than being two arbitrary partitions generated by an
adversary seems difficult. Fortunately, this verification turns
out to be unnecessary.

First, as mentioned, it is a known art to self-stabilize the
train process. After trains stabilize, we verify that the set of
pieces stored in a part (and delivered by the train) includes
all the (possibly corrupted) pieces of the form I(Fj (v)), for
every v in the part and for every j such that v belongs to a level
j fragment. Essentially, this is done by verifying at the root
r(P) of a part P , that (1) the information regarding fragments
arrives at it in a cyclic order (the order in which pieces of
information are supposed to be stored in correct instances),
and (2) the levels of pieces arriving at r(P) comply with the
levels of fragments to which r(P) belongs to, as indicated
by r(P)’s data-structure. Next, we verify that the time in
which each node obtains all the pieces it needs is short. This
is guaranteed by the correct train operation, as long as the
diameter of parts is O(log n), and the number of pieces stored
permanently at the nodes of the part is O(log n). Verifying
these two properties is accomplished using a 1-proof labeling
scheme of size O(log n), similarly to the schemes described
inExamples 2 and 3 (SP andEDIAM, mentioned in Sect. 2.6).

Finally, if up to this point, no node raised an alarm, then
for each node v, the (possibly corrupted) pieces of informa-
tion corresponding to v’s fragments reach v in the prescribed
time bounds. Now, by the train synchronization process, each

node can compare its pieces of information with the ones of
its neighbours. Hence, using similar arguments as was used
in the O(log2 n)-memory bits verification scheme of [53],
nodes can now detect the case that either one of the pieces of
information is corrupted or that T is not an MST.

4 A synchronous MST construction in O(log n)
bits memory size and O(n) time

In this section, we describe an MST construction algorithm,
called SYNC_MST, that is both linear in its running time
and memory optimal, that is, it runs in O(n) time and has
O(log n) memory size. We note that this algorithm is not
self-stabilizing and its correct operation assumes a synchro-
nous environment. The algorithm will be useful later for two
purposes. The first is for distributively assigning the labels
of the MST proof labeling scheme, as described in the next
section. The second purpose is to be used as a module in the
self-stabilizing MST construction algorithm.

As mentioned, the algorithm of Gallager, Humblet, and
Spira (GHS) [38] constructs anMST in O(n log n) time. This
has been improved byAwerbuch to linear time, using a some-
what involved algorithm. Both algorithms are also efficient
in terms of the number of messages they send. The MST
construction algorithm described in this section is, basically,
a simplification of the GHS algorithm. There are two rea-
sons for why we can simplify that algorithm, and even get a
better time complexity. The first reason is that our algorithm
is synchronous, whereas GHS (as well as the algorithm by
Awerbuch) is designed for asynchronous environments. Our
second aid is the fact that we do not care about saving mes-
sages (anyhow, we use a shared memory model), while the
above mentioned algorithms strive to have an optimal mes-
sage complexity. Before describing our MST construction
algorithm, we recall the main features of the GHS algorithm.

4.1 Recalling the MST algorithm of Gallager, Humblet,
and Spira (GHS)

For full details of GHS, please refer to [38]. GHS uses con-
nected subgraphs of the final MST, called fragments. Each
node in a fragment, except for the fragment’s root, has a
pointer to its parent in the fragment. When the algorithm
starts, every node is the root of the singleton fragment includ-
ing only itself. Each fragment is associatedwith its level (zero
for a singleton fragment) and the identity of its root (this
is a slight difference from the description in [38], where a
fragment is said to be rooted at an edge). Each fragment F
searches for its minimum outgoing edge emin(F) = (v, u).
Using the selected edges, fragments are merged to produce
larger fragments of larger levels. That is, two or more frag-
ments of some level j , possibly togetherwith some fragments

123

266 A. Korman et al.

of levels lower than j , aremerged to create a fragment of level
j +1. Eventually, there remains only one fragment spanning
the graph which is an MST.

In more details, each fragment sends an offer (over
emin(F)) to merge with the other fragment F ′, to which the
other endpoint u belongs. If F ′ is of a higher level, then F
is connected to F ′. That is, the edges in F are reoriented so
that F is now rooted in the endpoint v of emin(F), which
becomes a child of the other endpoint u.

If the level of F ′ is lower, then F waits until the level of F ′
grows (see below, the description of “test” messages). The
interesting case is when F and F ′ are of the same level j .
If emin(F) = emin(F ′), then F and F ′ merge to become one
fragment, rooted at, say, the highest ID node between u and
v. The level of the merged fragment is set to j + 1.

The remaining case, that (w.l.o.g.) w(emin(F)) > w

(emin(F ′)) does not need a special treatment. When F sends
F ′ an offer to merge, F ′ may have sent such an offer to some
F ′′ overw(emin(F ′)). Similarly, F ′′ may have sent an offer to
some F ′′′ (over w(emin(F ′′))), etc. No cycle can be created
in this chain of offers (because of the chain of decreasing
weights w(emin(F)) > w(emin(F ′)) > w(emin(F ′′)) . . .).
Hence, unless the chain ends with some fragment of a higher
level (recall that treating the case that a fragment’s minimum
edge leads to a higher level fragment was already discussed),
some two fragments in the above chain merge, increasing
their level by one. This case (for the fragments of the chain,
excluding the two merging fragments) now reduces to the
case (discussed previously) that a fragment F makes an offer
to a fragment of a higher level.

The above describes the behavior of fragments. To imple-
ment it by nodes, recall that every fragment always has a
root. The root conducts Wave&Echo over the fragment to
ask nodes to find their own candidate edges for the mini-
mum outgoing edge. On receiving the wave (called “find”),
each node v selects its minimum edge (v, u) that does not
belong yet to the fragment, and has not been “tested” yet
(initially, no edge was “tested”). Node v sends a “test” mes-
sage to u, to find out whether u belongs to v’s fragment. The
“test” includes the ID of v’s fragment’s root r and its level
j . If the level of u’s fragment is at least j then u answers.
In particular, if u’s level is j and u’s fragment root is r then
u sends a “reject” to v, causing v to conclude that (v, u) is
not outgoing and cannot be a candidate (node u does not
answer, until its level reaches j , thus, possibly, causing v’s
fragment to wait). In the convergingwave (called “found”) of
the above “find” broadcast, each node v passes to its parent
only the candidate edge with the minimum weight (among
its own candidate and the candidates it received from its chil-
dren). Node v also remembers a pointer to whoever sent it the
above candidate. These pointers form a route from F ′s root
to the endpoint of emin(F). The root then sends a message
“change-root”, instructing all the nodes on this route (includ-

ing itself) to reverse their parent pointers. Hence, F becomes
rooted at the endpoint of emin(F), who now can send an offer
to “connect” over emin(F).

4.2 Algorithm SYNC_MST: a synchronous linear time
version with optimal memory size

The algorithm we now describe is synchronous and assumes
that all the nodes wake up simultaneously at round 0. How-
ever, to keep it easy for readers who are familiar with
GHS, we tried to keep it as similar to GHS as possi-
ble.

Initially, each node is a root of a fragment of level 0 that
contains only itself. During the execution of SYNC_MST, a
node who is not a root keeps a pointer to its parent. The col-
lection of these pointers (together with all the nodes) defines
a forest at all times. Each node also keeps an estimate of
the ID and the level of the root of its fragment. As we shall
see later, the ID estimate is not always accurate. The level
estimate is a lower bound on the actual level. We use the
levels for convenience of comparing the algorithm to that
of GHS (and for the convenience of the proof). The levels
actually can be computed from the round number, or from
the counting procedure defined below. More specifically, the
algorithm is performed in synchronous phases. Phase i starts
at round 11 · 2i . Each root r(F) of a fragment F (that is, a
node whose parent pointer is null) starts the phase by setting
its level to i and then counting the number of nodes in its
fragment.

The counting process, called Count_Size, is defined
later, but for now it suffices to say that it consumes precisely
2i+2 − 1 rounds. If the diameter of the fragment is small,
then some waiting time is added to keep the precise timing.
On the other hand, if the number of nodes in the fragment is
too large, Count_Size may terminate before all the nodes
in the fragment are counted. Specifically, we guarantee that
if the counting process succeeds to count all nodes in the
fragment F then the precise number of these nodes is known
to the root r(F) at the end of the counting procedure. On the
other hand, if the counting process does not count all nodes,
then the number of nodes in the fragment is at least 2i+1, and
at the end of the Count_Size process, the root r(F) learns
this fact. Moreover, in such a case, as a consequence, r(F)

changes its level to i + 1.

Definition 1 A root r(F) is active in phase i if and only if
|F | ≤ 2i+1 − 1, where |F | denotes the number of nodes in
F . Note that if r(F) is active then its level is i . In particular,
all the roots are active in phase (and level) 0. A fragment is
active when its root is active.

Comment 1 When constructing the marker algorithm in
later sections, we use the fragments constructed by algo-
rithm SYNC_MST. More specifically, we refer only to the

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 267

active fragments. As is easy to observe below in the current
section, an active fragment is a specific set of nodes that does
not change. This is because when the fragment merges with
others (or when others join it), it is no longer the same frag-
ment. In particular, when the new set of nodes will be active,
it will be in a higher phase.

Procedure Find_Min_Out_Edge: Consider the root r(F)

of fragment F , who is active in phase i . At round (11+4)·2i ,
each such root r(F) instructs the nodes in F to search for
the minimum outgoing edge of F . This procedure, called
Find_Min_Out_Edge, could havebeen combinedwith the
counting, but we describe it as a separate stage for the sake of
simplicity. The method is the same as that of GHS algorithm,
except that we achieve an exact timing obtained by not saving
in messages. The search is performed over exactly the same
set of nodeswhichhas just been counted.This is implemented
by a Wave operation initiated by r(F), carrying r(F)’s ID
and level. At precisely round (11+ 6) · 2i , each node v who
has received the wave, finds the minimum outgoing edge
emanating from it. That is, v looks at each of its neighbours
u to see whether u belongs to a different fragment of some
other root r(F ′) �= r(F). We now describe how v identifies
this.

Let us note here two differences from GHS. First, node v

tests all of its emanating edges at the same time, rather than
testing them one by one (as is done in GHS). Moreover, it
does not reject any edge, and will test all its edges in the next
searches too. Intuitively, the above mentioned one by one
process was used in GHS in order to save messages. We do
not try to save messages, and the simultaneous testing allows
us to keep an exact timing on which we rely heavily. Second,
in GHS, node u’s estimate of its level may be lower than
that of node v. In GHS, v then needs to wait for u to reach
v’s level, before v knows whether edge (v, u) is outgoing.
The main reason this action is useful in GHS is to save on
message complexity. Here, again, we do not intend to save
messages.

Recall that the root of v’s fragment F is active at phase i ,
hence, |F | < 2i+1 (we shall show that no additional nodes
joined F after the counting). Hence, at round (11 + 6) · 2i ,
all the nodes in F have already received the wave, and
set their ID estimates to ID(r(F)). The big gain from
that is that at round (11 + 6) · 2i , the IDs of the roots
of u and v are different if and only if the edge (v, u) is
outgoing at v. The minimum outgoing edge in the frag-
ment of r(F) is then computed during the convergecast,
using the standard Wave&Echo technique. Thus, Procedure
Find_Min_Out_Edge (composed of the aforementioned
Wave&Echo) lasts at most 2(2i+1 − 1) round units, hence
(having been started at round (11 + 4) · 2i), it is completed
by round (11 + 8) · 2i − 1.

Merging and reorienting edges: Let (w, x) be the chosen
minimum outgoing edge from the fragment F , such thatw ∈
F . Later, we refer to it as the candidate edge. At round (11+
8) · 2i , an active root r(F) of F starts the process of re-
orienting the edges in F towards w (for a more thorough
description of the root transfer refer to [38]). This takes at
most 2(2i − 1) rounds.

Node w then conducts a handshake with x , referred
to as the pivot of F . This takes a constant time, but, to
keep the total numbers simple, we pad this time to 2i .
One case is that w is, at that time exactly, a pivot of
the fragment of x , and also ID(x) < ID(w). In this
case, node x will become the child of w. In every other
case, w hooks upon the other endpoint x (sets its parent
pointer to point at x). The hooking is performed exactly at
round (11 + 11) · 2i − 1, ending phase i . Since the next
phase starts at round 22 · 2i there is no overlap between
phases.

Procedure Count_Size: To complete the description of a
phase, it is left to describe the counting process, namely, Pro-
cedure Count_Size. To count, a root starts a Wave&Echo,
attaching a time-to-live = 2i+1 − 1 counter to its broadcast
message. A child c of a node y accepts the wave only if
the time-to-live is above zero. Child c then copies the wave
broadcast message, decrementing the time-to-live (by 1). If,
after decrementing, the value of time-to-live is zero, then c is
a leaf who needs to start the echo. The number of the nodes
(who copied the broadcast message) is now counted during
the echo in the standard way. Finally, if the count covers the
whole graph, this can be easily detected at the time of the
echo. The algorithm then terminates.

To sum up, phase i of the MST construction algorithm is
composed of the following components.

Phase i

• Starts at round 11 · 2i ;
• Root r(F) of each fragment F initiates Procedure
Count_Size. At the end of the procedure, we have:
|F | ≤ 2i+1 − 1 iff (1) r(F) is active and (2) all nodes
in F have their ID estimates set to ID(r(F));

• At round (11 + 4) · 2i , each active root r(F) initiates
Procedure Find_Min_Out_Edge;

• At round (11 + 8) · 2i , merge fragments and re-orient
edges in the newly created fragments.

The proof that the collection of parent pointers forms a
forest (or a tree) at all times is the same as in GHS. Let us
now analyze the round complexity. Observe that each phase
i takes O(2i) time. Hence, the linear time complexity of the
algorithm follows from the lemma below.

123

268 A. Korman et al.

Lemma 1 The size of a fragment F in phase i (and in level
i) is at least 2i . Moreover, |F | < 2i+1 if and only if r(F) is
active by round (11 + 4) · 2i .

Proof Let us first prove the second part of the lemma. Before
deciding whether to be active, a root r(F) of level i counts
the number of nodes in its fragment, by employing Procedure
Count_Size. If the count amounts to 2i+1 or more, then
the level of r(F) is set to i + 1. Otherwise, we have |F | ≤
2i+1 − 1 and the root of F becomes active. Since Procedure
Count_Size is terminated by round (11+4)·2i , the second
part of the lemma follows.Toprove thefirst part of the lemma,
we need to show that the size of a level i fragment is at least
2i . We prove this by induction on i .

Intuitively, the induction says that each fragment at the
beginning of phase i −1 is of size at least 2i−1. During phase
i−1, by the second part of the lemma, at time (11+4) ·2i−1,
all the non-active fragments are already of size at least 2i

and are also of level i (as a result of the count). As for active
fragments, each such fragment is combined to at least one
other fragment, so the resulting size is at least 2 · 2i−1 = 2i .

In more details, note that the claim holds for phase i = 0.
For a larger phase i , assume that the lemma holds for phases
up to i − 1 including. Consider a root r(F) of a fragment F
of level i . It was a root also at level i − 1. First, assume that
at phase i − 1, some other root r(F1) hooked upon r(F)’s
tree. To do so, r(F1) had to be active at phase i − 1. By the
induction hypothesis (the first part of the lemma), the size of
fragment F1, as well as the size of fragment of F at that point
in time, was at least 2i−1. The claim, in this case, follows.

Now, assume that no other fragment hooked upon frag-
ment F in phase i − 1. Note that F at level i − 1 does not
span the graph (otherwise, no root would reach level i , by
the second part of the inductive hypothesis, and since the
counting process on trees is a known art and is known to be
correct). Hence, it has a minimum outgoing edge e = (w, x),
where w ∈ F and x belongs to some other fragment Fx . We
claim that the search process Find_Min_Out_Edge does
find that edge e. Recall that in the fragment of an active root,
the counting reaches all the nodes in the fragment. Hence,
each of them knows the ID of its root r(F) at the time the
search in its fragment starts. Moreover, since a hooking is
performed only at times of the form (11 + 11) · 2 j − 1, no
new nodes (or fragments) join until the last time step of the
phase (which is after the search, because of what we estab-
lished about the size of the fragment).

We claim that either (a) edge e = (w, x) was not the
minimumoutgoing edge of x’s fragment Fx , or, alternatively,
(b) the root rx of x’s fragment Fx had level i at that time, or
(c) ID(x) > ID(w). Assume the contrary. By the inductive
hypothesis, node rx is at least at level i−1. Sincewe assumed
that (b) does not hold, rx is exactly at level i −1. This means
(by the correctness of the counting) that rx is active at phase

i−1. Similarly, this also means that the size of Fx is less than
2i . Hence, and by the induction hypothesis, the counting, the
searching, the root transfer, and the handshake end in x’s
fragment at the same time they end in w’s fragment (these
processes use known art, and we shall not prove them here).
Then x hooks upon w, contrary to our assumption.

We have just established that the conditions for w to hook
upon x hold. Hence, w hooks upon x . Similarly to the previ-
ous case, the size of w’s fragment, as well as the size of x’s
fragments at that point in time is at least 2i−1. Thus, the size
of the combined fragment is at least 2i . This concludes the
proof of the first part of the lemma. �
Corollary 1 The synchronous MST construction algorithm
computes an MST in time O(n).

Implementing the algorithm in the sharedmemorymodelwith
O(log n) memory: Each node v keeps its fragment level and
root ID. Node v also remembers whether v is in the stage of
counting the number of nodes, or searching for the minimum
outgoing edge. It also needs to remember whether it is in
the wave stage, or has already sent the echo. Node v needs
to remember the candidate (for being emin(F)) edge that v

computed in the echo (“found”) stage of the convergecast. If
this candidate was reported by a child, then v also remem-
bers a pointer to that child. Clearly, all the above variables
combined need O(log n) bits of memory.

At a first glimpse itmay look as if a nodemust also remem-
ber the list of pointers to its children. The list is used for (1)
sending the wave (e.g., the “find” message of the search,
using GHS terms) to all the children, and (2) knowing when
all the children answered the echo (e.g., the “found” of the
search). Note that a node does not need to store this list itself.
Node v can look at each neighbour u to seewhether the neigh-
bour is v’s child (for that purpose, if u is a child of v, then
u stores v’s ID as u’s Parent_ID). Clearly, this can be
implemented using O(log n) bits per node.

To implement (1), nodev posts itswavebroadcastmessage
(e.g., the “find”) so that every neighbour can read it. However,
only its children actually do. To allow the implementation of
(2), a precaution is taken before the above posting. Node
v first posts a request for its children to reset their ECHO
variables, and performs the posting of “find” only when it
sees that ECHO has been reset for every neighbour w whose
parent pointer points at v.

To implement (2), node v further reads its neighbours
repeatedly. It knows all its children echoed thewave in an iter-
ation when it has just finished rereading all its neighbours,
and every node u pointing at v (as its parent) also sets its
ECHO variable to some candidate edge (or to some default
value if it has no candidate edge).

Observation 1 The space required by the linear time syn-
chronous algorithm is O(log n) bits per node.

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 269

The theorem below follows from Observation 1 and Corol-
lary 1.

Theorem 1 The synchronous algorithm SYNC_MST com-
putes an MST in time O(n) and memory size O(log n).

5 Representing and verifying a hierarchy

We are now ready to describe our proof labeling scheme
(M,D) for MST. The goal of this section is to construct
some part of the marker M, and the corresponding part of
the verifier D, which are relatively easy to construct. The
techniques used in this section bear similarity to the tech-
niques presented in [53]. Hence, we only expose the main
ideas behind this part of the proof labeling scheme, leaving
out some of the technicalities. Nevertheless, since the notion
of proof labeling schemes can sometimes be confusing, this
section may help the reader to get accustomed to the notion
and the difficulties that may arise.

As a warm up, we first note that using the 1-proof label-
ing scheme described in Example SP, we may assume that
H(G) ≡ T is a spanning tree of G rooted at some node r ,
and that each node knowswhich of its neighbours inG are its
children in T and which is its parent. Moreover, using the 1-
proof labeling scheme described in Example NumK, we may
also assume that each node knows n. The 1-proof labeling
schemes described in Examples SP and NumK use O(log n)

memory size and can be constructed using O(n) time. Hence,
using themdoes not violate the desired complexity constrains
of our scheme. Thus, from now on, let us fix a spanning tree
T = (V (G), E(T)) of a graph G = (V (G), E(G)), rooted
at some node r(T). The goal of the rest of the verification
scheme is to verify that T is in fact, minimal. Before we
continue, we need a few definitions.

Definition 2 A hierarchy H for T is a collection of frag-
ments of T satisfying the following two properties.

1. T ∈ H and, for every v ∈ V (G), there is an Fv ∈ H
such such V (Fv) = {v} and E(Fv) = ∅.

2. For any two fragments F and F ′ in H, if F ∩ F ′ �= ∅
then either F ⊆ F ′ or F ′ ⊆ F . (That is, the collection of
fragments is a laminar family).

Please recall (Definition 1 and Comment 1) that when we
construct a hierarchy according to Definition 2, the frag-
ments referred to are the active fragments constructed in
SYNC_MST.

The root of a fragment F is the node in F closest to the root
of T . For a fragment F ∈ H, letH(F) denote the collection
of fragments inHwhich are strictly contained in F . Observe
that a hierarchy H can be viewed as a rooted tree, whose

root is the fragment T , and whose leaves are the singleton
fragments inH. A child of a non-singleton fragment F ∈ H
is a fragment F ′ ∈ H(F) such that no other fragment F ′′ ∈
H(F) satisfies F ′′ ⊃ F ′. Note that the rooted tree induced by
a hierarchy is unique (if the children are unordered). To avoid
confusion with tree T , we use the name hierarchy-tree (or,
sometimes even just hierarchy) for the above mentioned tree
induced by a hierarchy.We associate a level, denoted lev(F),
with each fragment F ∈ H. It is defined as the height of the
node corresponding to F in the hierarchy-tree induced byH,
i.e., the maximal number of fragments on a simple path in
H connecting F to a singleton fragment. In particular, the
level of a singleton fragment is 0. The level of the fragment
T is called the height of the hierarchy, and is denoted by �.
Figure 1 depicts a hierarchy H of a tree T .

Definition 3 Given a hierarchy H for a spanning tree T , a
functionχ : H\{T } −→ E(T) is called a candidate function
ofH if it satisfies E(F) = {χ(F ′)|F ′ ∈ H(F)} for every F ∈
H (less formally, F is precisely the union of the candidate
edges χ(F ′) of all fragments F ′ of H strictly contained in
F).

The proof of the following lemma is similar, e.g., to the
proof of [38].

Lemma 2 Let T be a spanning tree of a graph G. If there
exists a candidate function χ for a hierarchy H for T , such
that for every F ∈ H, the candidate edge χ(F) is a minimum
outgoing edge from F, then T is an MST of G.

Proof We prove the claim that each fragment F ∈ H is a
subtree of an MST of G, by induction on the level lev(F)

of fragment F . Note that the claim obviously holds for any
fragment F with lev(F) = 0 since F is a singleton fragment.

Now consider a fragment F with lev(F) = k under the
inductive assumption that the claim holds for every fragment
F ′ with lev(F ′) < k. Let F1, F2, . . . , Fa be the child frag-
ments of F in H. Since for each i ∈ [1, a], fragment Fi
satisfies lev(Fi) < k, the induction hypothesis implies that
Fi is a subtree of the MST. It also follows from the facts that
E(F) = {χ(F ′)|F ′ ∈ H(F)} and E(Fi) = {χ(F ′)|F ′ ∈
H(Fi)} for each i ∈ [1, a] that the fragment F is obtained
by connecting F1, F2, . . . , Fa with their minimum outgoing
edges. In the case that a fragment F ′ is a fragment of an
MST (as is the case here for F1, F2, . . . , Fa , by the induc-
tion hypothesis), it is known that the union of E(F ′) with
the minimum outgoing edge of F ′ is a fragment of the MST
(the “safe edge” theorem) (see e.g., [33]). Thus, fragment F ,
which is obtained by connecting fragments F1, F2, . . . , Fa
with theirminimumoutgoing edges, is a subgraph of anMST.

�
Informally, suppose that we are given distributed struc-

tures that are claimed to be a tree T , a “legal” hierarchy H

123

270 A. Korman et al.

a b c d e

f g h i

j k l m n

o p q r

2

3
4

6

7

8

10

11

12

14

15

16
17

18

20

21
22

22

a b c d e

f g h i

2

6
10

11

12 1518

21

j k l m n

o p q r

3
4

7

8

14
16

1720

22

a b c

f g

2

6
1218

21

d e

h i
10

11

15

21

j k

o p

4

8

16
20

l m n

q r

3 7
141720

c

f g
6

12

18
a b2

18

j k
4

16

o p8

16
m n

r

7
1417

l

q

3
17

a 2

b2 g
f 6

6

c

12
h

10 d

10
e

15

i11 j 4

k4

o 8
p8

l

3 q
3 m

7 r

7 n14

level

4

3

2

1

0

Fig. 1 A hierarchy H of a tree T . The root node of H represents T
(where non-tree edges are omitted). Each fragment that is not a leaf frag-
ment is a parent, in the hierarchy, of the fragments that were merged to

form it. The broken arrow from each fragment is the outgoing edge of
the fragment that is used to form a higher level (parent) fragment

for the tree, and a “legal” candidate function for the hier-
archy. The goal obtained in the current section is to verify
the following properties of these structures. First, verify that
this indeed is a hierarchy for T of height � ≤ �log n� and
a candidate function χ for H. Moreover, verify that each
node v “knows” to which levels of fragments v belongs and
which of its neighbours in T share the same given fragment
(note that this section does not guarantee that knowledge
for neighbours in G who are not neighbours in T). In addi-
tion, each node is verified to “know” whether it is adjacent
to a candidate edge of any of the fragments it belongs to.
Put more formally, this section establishes the following
lemma.

Lemma 3 There exists a 1-proof labeling scheme with mem-
ory size O(log n) and construction time O(n) that verifies the
following:

• H(G) ≡ T is a spanning tree of G rooted at some node
r, and each node knows n.

• The cartesian product of the data-structures indeed
implies a hierarchy H for T of height � ≤ �log n� and
a candidate function χ for H. Furthermore, the data-
structure at each node v allows it to know,

– Whether v belongs to a fragment Fj (v) of level j in
H for each 0 ≤ j ≤ �, and if so:

• Whether v is the root of Fj (v).
• Whether v is an endpoint of the (unique) candi-
date edge of Fj (v), and if so, which of the edges
adjacent to v is the candidate edge.

– Given the data-structure of a node u which is a neigh-
bour of v in G, i.e., (v, u) ∈ E(G), node v can find
out whether they are neighbours in T as well, i.e.,
whether (u, v) ∈ E(T), and if so, for each 1 ≤ j ≤ �,
whether u belongs to Fj (v).

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 271

5.1 Hierarchy HM and candidate function χM

On a correct instance, i.e., when T is indeed an MST, the
marker M first constructs a particular hierarchy HM over
T and a candidate function χM for that hierarchy. Hierar-
chy HM and candidate function χM are designed so that
indeed each candidate of a fragment is a minimum outgoing
edge from that fragment. The marker then encodes hierarchy
HM and candidate function χM in one designated part of
the labels using O(log n) bits per node. Note, however, that
these bits of information may be corrupted by the adversary.
Wewill therefore need to employ another procedure that ver-
ifies that indeed a hierarchy H and a candidate function χ

are represented by the cartesian product of the encodings
of all nodes. By Lemma 2, it is not necessary that the ver-
ifier checks that H is, in fact, the particular hierarchy HM
constructed by the marker, or that the candidate function χ

is χM. However, as is clear from the same lemma, we do
need to show that H and candidate function χ satisfy that
indeed each candidate of a fragment is a minimum outgo-
ing edge from that fragment. This task is the main technical
difficulty of the paper, and is left for the following sec-
tions.

The hierarchy HM and Candidate function χM built by
the marker algorithm are based on SYNC_MST, the new
MST construction algorithm described in Sect. 4. Since we
assume that the MST is unique, Algorithm SYNC_MST will
in fact construct the given MST. (Recall that we describe
here the labels assigned by the marker to a correct instance,
where the given subgraph T is indeed an MST). The hier-
archy and candidate function we define for T follow the
merging of active fragments in algorithm SYNC_MST. More
precisely, the nodes inHM are the active fragments defined
during the execution of SYNC_MST. Recall from Sect. 4,
that an active fragment F joins some fragment H of T ,
through its minimal outgoing edge e (it is possible that at
the time F joins H , H itself was an active fragment that
joined F through its own minimal outgoing edge that is
also e). Note that with time, some other fragments join
the resulted connected component, until, at some point, the
resulted connected component becomes an active fragment
F ′. In the hierarchy tree HM, fragment F is defined as
the child of F ′, and the candidate edge of F is e, i.e.,
χ(F) = e.

As proved in Lemma 1, after performing the algorithm
for level i , the size of every fragment is at least 2i . Thus, in
particular, the height of the hierarchy H is at most �log n�.
The candidate function χM chosen by the marker for HM
is defined by the minimum outgoing edges selected by the
algorithm, i.e., for each F ∈ HM, the candidate edge
χ(F) is the selected edge of F . Thus, under χM, each
candidate of a fragment is, actually, a minimum outgoing
edge.

5.2 Representing a hierarchy distributively and
verifying it locally

Representing a hierarchy: Let � ≤ �log n�. Given a hier-
archy of fragments H of height � over the rooted tree
T = H(G), we now describe howwe represent it in a distrib-
uted manner. Each node v keeps a string named Roots(v)

of length � + 1, where each entry in that string is either “1”,
“0”, or “*”. To be consistent with the levels, we enumerate
the entries of each string from left to right, starting at posi-
tion 0, and ending at position �. Fix i ∈ [0, �]. Informally, the
i’th entry of Roots(v), namely, Rootsi (v), is interpreted
as follows.

• Rootsi (v) = 1 indicates that v is the root of the level i
fragment it belongs to.

• Rootsi (v) = 0 indicates that v is not the root of the
level i fragment it belongs to.

• Rootsi (v) = ∗ indicates that there is no level i fragment
that v belongs to.

See Table 2 for an example of Roots strings of nodes cor-
responding to Fig. 1.

Verifying a hierarchy: Observe, the Roots strings assigned
for a correct instance satisfy the following.
The Roots strings (RS) conditions:

• (RS0) The prefix of the Roots string at every node is
in [1,*]∗ and its suffix is in [0,*]∗, (*because each node
is a root of a level 0 fragment and continues being a root
in its fragment until some level when it stops (if it does
stop); when the node stops being a root, it never becomes
a root again*)

• (RS1) the length of eachRoots string is �+1, (*because
there cannot be more than � + 1 levels *)

• (RS2) the Roots string of the root r of T contains only
“1”s and “*”s, and its �’th entry is “1”, (*because a zero
in the i th position would have meant that r is not the root
of its fragment of level i ; the second part follows from
the fact that the whole tree is a fragment of level � and r
is its root *)

• (RS3) the first entry (at position 0) of everyRoots string
is “1”, (*because every node v is the root of a singleton
fragment of level 0 containing only node v *),

• (RS4) the �’th entry of every non-root node is “0”,
(*because only r is the root of a fragment of level �,
since that fragment is the whole tree *)

• (RS5) if the j’th entry of Roots(v) is “0” for some node
v and j ∈ [0, �], then the j’th entry of the Roots string
of v’s parent in T is not “*”. (*because node v belongs
to a fragment F of level j , but is not F’s root; hence, v’s
parent belongs to F of level j too *)

123

272 A. Korman et al.

Table 2 Roots, EndP, Parents and Or-EndP for Fig. 1

0 1 2 3 4

Roots

a 1 0 0 0 0

b 1 1 0 0 0

c 1 0 0 0 0

d 1 * 0 0 0

e 1 * 0 0 0

f 1 0 0 0 0

g 1 1 1 1 0

h 1 * 1 0 0

i 1 * 0 0 0

j 1 0 0 0 0

k 1 1 1 0 0

l 1 1 1 1 1

m 1 1 0 0 0

n 1 0 0 0 0

o 1 0 0 0 0

p 1 1 0 0 0

q 1 0 0 0 0

r 1 0 0 0 0

EndP

a up none none none none

b down up none none none

c up none none none none

d up * none none none

e up * none none none

f up down none none none

g down none down up none

h down * up none none

i up * none none none

j up none none none none

k down down up none none

l down down down down none

m down up none none none

n up none none none none

o up none none none none

p down up none none none

q up none none none none

r up none none none none

Parents

a 1 0 0 0 0

b 0 1 0 0 0

c 0 0 0 0 0

d 1 0 0 0 0

e 0 0 0 0 0

f 1 0 0 0 0

g 0 0 0 1 0

h 0 0 1 0 0

Table 2 continued

0 1 2 3 4

i 0 0 0 0 0

j 1 0 0 0 0

k 0 0 1 0 0

l 0 0 0 0 0

m 0 1 0 0 0

n 0 0 0 0 0

o 1 0 0 0 0

p 0 1 0 0 0

q 1 0 0 0 0

r 1 0 0 0 0

Or-EndP

a 1 0 0 0 0

b 1 1 0 0 0

c 1 0 0 0 0

d 1 0 0 0 0

e 1 0 0 0 0

f 1 1 0 0 0

g 1 1 1 1 0

h 1 0 1 0 0

i 1 0 0 0 0

j 1 0 0 0 0

k 1 1 1 0 0

l 1 1 1 1 0

m 1 1 0 0 0

n 1 0 0 0 0

o 1 0 0 0 0

p 1 1 0 0 0

q 1 0 0 0 0

r 1 0 0 0 0

It is easy to see that for any assignment of Roots strings
I obeying rules RS1–RS5 there exists a unique hierarchy
whose distributed representation is I. Hence, we say that an
assignment of Roots strings to the nodes of T is legal if the
strings obey the fiveRoots strings conditions above, namely
RS1–RS5. For a given legal assignment of Roots strings I,
we refer to its induced hierarchy as the Roots-hierarchy of
I. Recall that at this point, we may assume that each node v

knows the value of n, and that each node knows whether it
is the root of T . Hence, verifying that a given assignment of
Roots strings is a legal one can be done locally, by letting
each node look at its own string and the string of its parent
only.

Identifying tree-neighbours in the same fragment: Obvi-
ously, for correct instances, the marker produces a legal
assignment of Roots strings. For a general instance, if the
verifier at some node finds that the assignment of Roots

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 273

is not legal then it raises an alarm. Thus, (if no node raises
an alarm), we may assume that hierarchy Roots-hierarchy
exists, and that each node knows (by looking at its own label
and the labels of its neighbours in the tree T), for every level
0 ≤ j ≤ �,

1. whether it belongs to a fragment Fj of level j , and if so:
2. which of its neighbours in T belongs to Fj .

5.3 Representing and verifying a candidate function for
the Roots-hierarchy

Having discussed the proof labeling for the hierarchy, we
now describe the proof labeling scheme for the candidate
function. Consider now a correct instance G and the hier-
archy HM produced by the marker algorithm. Recall the
candidate function χM is given by the selected outgoing
edges, which are precisely the minimum outgoing edges of
the corresponding fragments, as identified by the construc-
tion algorithm SYNC_MST. We would like to represent this
candidate function χM distributively, and to verify that this
representation indeed forms a candidate function. Moreover,
we would make sure that each node v is able to know, for
each fragment F containing it, whether it is an endpoint of
the selected edge of F , and if so, which of its edges is the
selected edge.

Representing a candidate function: Given a correct instance,
and its corresponding legal assignment of Roots strings, we
augment it by adding, for each node v, an additional string of
� + 1 entries named EndP(v). Intuitively, EndP(v) is used
by the marker algorithm to mark the levels of the fragments
for which v is the endpoint of the minimum outgoing edge.
Moreover, in a sense, EndP(v) also is a part of the marking
of the specific edge of v that is the minimum outgoing edge
in that level (in the case that v is indeed the endpoint). Let us
now give the specific definition of that marking.

Each entry in EndP(v) is one of four symbols, namely,
“up”, “down”, “none” and “*”. The entries of EndP(v) are
defined as follows. Fix an integer j ∈ [0, �] and a node v.
If v does not belong to a fragment of level j in HM, then
the j’th entry in EndP(v) is “*”. Consider now j ∈ [0, �]
such that v does belong to a fragment F ∈ HM of level j .
If v is not an endpoint of the candidate χM(F) of F , then
the j’th entry of EndP(v) is “none”. Otherwise, node v is
an endpoint of χM(F), i.e., χM(F) = (v, u) (for some u
that is not in F). Consider two cases. If u is v’s parent in T
then the j’th entry of EndP(v) is set to “up”. If, on the other
hand, u is a child of v in T , then the j’th entry of EndP(v)

is set to “down”. See Table 1 for an example of EndP strings
of nodes corresponding to Fig. 1.

Consider now a node v that belongs to a level j fragment
F ∈ HM. By inspecting its own label, node v can find out

whether it is an endpoint of a candidate of F (recall, from
the previous subsection, that it also knows whether or not it
belongs to a level j fragment). Moreover, in this case, we
would like v to actually be able to identify in one time unit,
which of its incident (tree) edges is the candidate. Obviously,
if the j’th entry in EndP(v) is “up”, then the candidate e is
the edge leading from v to its parent in T . Intuitively, in
the case that the entry is “down”, we would like to store
this information in v’s children to save space in v (since v

may be the endpoint of minimum outgoing edges for several
fragments of several levels, and may not have enough space
to represent all of them). Hence, we attach to each node x
another string called Parents(x), composed also of � + 1
bits. For j ∈ [0, �], the j’th bit in Parents(x) is “1” if
and only if (y, x) is the candidate of the level j fragment
that contains y (if one exists), where y is the parent of x .
See Table 1 for an example of Parents strings of nodes
corresponding to Fig. 1. Now, to identify u, node v needs
only to inspect the Parents strings of its children. In either
of the above cases for the EndP(v) entry (“up” or “down”),
we call e the induced candidate of F .

Verifying a candidate function: Given a legal assignment
of Roots strings, we say that assignments of EndP and
Parents strings are legal if the following conditions hold:

• (EPS0) If the j’th entry of Parents(v) is “1” and u is
the parent of v, then the j’th entry ofEndP(u) is “down”,
(* because if v indicates the minimum outgoing edge of
u’s fragment (of level j) leads from u to v, then v’s parent
u indicates this edge leads to one of u’s children *)

• (EPS1) for each fragment F of level 0 ≤ j < � in the
Roots-hierarchy, there exists precisely one node v ∈ F
whose j’th entry in EndP(v) is either “up” or “down”,
(*because only one node v in each fragment F of level j
is the endpoint of the outgoing edge of F *)

• (EPS2) for each node v, if the j’th entry in EndP(v)

string is “down” then there exists precisely one child
u of v such that the j’th entry in Parents(u) is “1”,
(*because the j’th entry in EndP(v) being “down” indi-
cates its minimum outgoing edge leads to one of v’s
children (only one, since there is only one minimum
outgoing edge of the fragment F of level j contain-
ing v); to remember which child, we mark this child u by
Parents(u) = 1 *)

• (EPS3) for each node v, and for each 0 ≤ j < �, if the
j’th entry in EndP(v) string is “up” then:

1. the j’th entry of v’s Roots-string is “1”, (*because
node v belongs to a different fragment Fv of level j
than the level j fragment of v’s parent; hence, v is
the highest (closest to the root of the whole tree) in
Fv , that is, v is Fv’s root *)

123

274 A. Korman et al.

2. for every i > j , the i’th entry of v’s Roots-string is
not “1”, (*because fragment Fv of v in level j merges
with the fragment (of level j) of v’s parent; hence, v
is not the highest in its fragments of levels i > j*)

• (EPS4) if the j’th entry in Parents(v) is “1” then:

1. the j’th entry of v’s Roots-string is not “0”,
(*because node v is not in the fragments of level j of
v’s parent (see EPS2); hence, either v is the root of
its fragment of level j (see EPS3, part 1), or v does
not belong to a fragment of level j *)

2. for every i > j , the i’th entry of v’s Roots-string is
not “1”, (*See EPS3 part 2 *)

• (EPS5) for every non-root node v, there exists an index
integer j ∈ [0, �], such that either the j’th entry in
Parents(v) is 1 or the j’th entry in EndP(v) is “up”.
(*because every node is the root of a fragment of level 0;
at some level, v’s fragment merges with the fragment of
v’s parent *)

Lemma 4 Consider a Roots-hierarchyH given by a legal
assignment of Roots strings. The conditions EPS1–EPS5
above imply that legal assignments of EndP and Parents
strings (with respect to H) induce a candidate function χ :
H\{T } −→ E(T).

Proof Condition EPS1 implies that for each fragment F �=
T , there is precisely one node “suspected” as an endpoint of
the induced candidate of F . Condition EPS2 together with
the previous one implies that there is precisely one induced
candidate edgeχ(F) for each fragment F �= T . That is, these
two conditions induce a function χ : H\{T } −→ E(T). Our
goal now is to show that χ is, in fact, a candidate function.
That is, we need to show that for every fragment F ∈ H, we
have E(F) = {χ(F ′)|F ′ ∈ H(F)} (recall,H(F) denotes the
set of fragments inH which are strictly contained in F).

It follows by the second items in Conditions EPS3 and
EPS4, that for every fragment F ∈ H, we have

E(F) ⊇ {χ(F ′)|F ′ ∈ H(F)} (1)

In particular, we have E(T) ⊇ {χ(F ′)|F ′ ∈ H(T)}. Now,
by Condition EPS5, we get that each edge of T is an induced
candidate of some fragment. That is, we have:

E(T) = {χ(F ′)|F ′ ∈ H(T)} (2)

The first items in Conditions EPS3 and EPS4 imply that for
every fragment F ∈ H\{T }, the edge χ(F) is outgoing from
F . This fact, together with part (2) in the definition of a
hierarchy, implies that for every fragment F ∈ H,

{χ(F ′)|F ′ /∈ H(F)}
⋂

E(F) = ∅. (3)

Equations (1), (2), and (3) imply that for every fragment
F ∈ H, E(F) = {χ(F ′)|F ′ ∈ H(F)}. In other words, χ is
a candidate function for H, as desired. �
Comment 2 Condition EPS0 is not required in order to
prove the above lemma. If the labels were assigned by our
MST construction algorithm, condition EPS0 holds too. Even
though adding the condition seems redundant, we decided to
add it because we believe it makes the reading more intuitive.

Now, to verify that assignments of EndP and Parents
strings are legal with respect to a given legal assignment
of Roots strings, we need to verify the five conditions
above. Conditions EPS2–EPS5 can be verified easily, in 1
unit of time, while the first condition EPS1 needs addi-
tional information at each node to be verified in 1 unit of
time. Specifically, verifying the rule amounts to verifying
that exactly one of the nodes in a fragment of level i has its
i’th position inEndP equal to 1. This is easy to do in a scheme
that is very similar to Example NumK in Sect. 2.6. Hence, we
omit this simple description (nevertheless, it is demonstrated
in Table 2 in the example of the Or_EndP strings of nodes
corresponding to Fig. 1; that is, the i-th bit of Or_EndP of a
node v is set to 1 if and only if the subtree of the fragment of
level i rooted at v contains a node incident to the minimum
outgoing edge from the fragment).

5.4 The distributed marker algorithm

Anaturalmethod for assigning the labels of the 1-proof label-
ing scheme described above (composed of the representation
ofHM and χM, and the strings Roots, Parents, EndP,
and Or_EndP), is to follow the construction algorithm of
the MST, namely SYNC_MST (see Sect. 4), which, in partic-
ular, constructs the hierarchyHM and the candidate function
χM. Recall that the complexity of SYNC_MST is O(n) time
and O(log n) bits of memory per node.

Essentially, assigning the labels is performed by adding
some set of actions to SYNC_MST. These actions do not
change the values of any of the variables of the original
algorithm. Also, we do not change the algorithm’s flow of
control, except for adding these actions. Since each action is
just a new assignment to a new variable (of logarithmic size),
the addition of these actions cannot violate the correctness
of SYNC_MST, nor change its time and memory complexi-
ties (except by a constant factor). We note that adding these
actions on top of SYNC_MST is not complicated, and can be
realized using standard techniques. Hence, we omit it here.
Hence, we obtain the following.

Lemma 5 There exists a distributedmarker algorithmassign-
ing the labels of the 1-proof labeling scheme described in
Sect. 5, running in O(n) time and using O(log n) bits of
memory per node.

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 275

The lemma above together with Lemma 4 establishes
Lemma 3.

6 Distributing pieces of information

In the previous section, we described the verification that (1)
a tree exists, (2) it is decomposed into a hierarchy of frag-
ments, and (3) edges emanating from the fragments compose
a candidate function (so that the tree is the collection of these
edges). That verified the well-forming property. It is left to
verify the Minimality property. That is, it is left to show that
each edge of the candidate function is the minimum out-
going edge of some fragment in the hierarchy. The current
section describes a part of the marker algorithm responsible
for marking the nodes for this verification.

Informally, to perform the verification, each node must
possess some information regarding each of the fragments
F containing it. The information regarding a fragment F
contains the weight of the selected edge of the fragment as
well as the fragment identity, hence, it can be encoded using
O(log n) bits (The fragment identity is needed to identify
the set OF of outgoing edges from F , and the weight of the
selected edge is needed for comparing it to the weight of the
other edges ofOF ; this is howwedetect that the selected edge
is indeed the minimum). However, as mentioned, each node
participates in O(log n) fragments, and hence, cannot hold at
the same time all the information relevant for its fragments.
Instead, we distribute this information among the nodes of
the fragments, in a way that will allow us later to deliver this
information efficiently to all nodes of the fragment. In this
section, we show how to distribute the information regarding
the fragments. In the next section, we explain how to exploit
this distribution of information so that during the verifica-
tion phase, relevant information can be delivered to nodes
relatively fast and without violating the O(log n) memory
size.

The piece of information ID(F): As mentioned in Sect. 3.4,
a crucial point in the scheme is letting each node v know, for
each of its incident edges (v, u) ∈ E and for each level j ,
whether u and v share the same level j fragment (Note, in
the particular case where u is also a neighbour of v in T , this
information can be extracted by v using u’s data-structure,
see Lemma 3). Intuitively, this is needed in order to identify
outgoing edges. For that purpose, we assign each fragment
a unique identifier, and v compares the identifier of its own
level j fragment with the identifier of u’s level j fragment.
The identifier of a fragment F is ID(F) := ID(r(F)) ◦
lev(F), where ID(r(F)) is the unique identity of the root
r(F) of F , and lev(F) is F’s level. We also need each node
v to know the weight ω(F) of the minimum outgoing edge
of each fragment F containing v. To summarize, the piece

of information I(F) required in each node v per fragment F
containing v is I(F) := ID(F) ◦ ω(F). Thus, I(F) can be
encoded using O(log n) bits.

At a very high level description, each node v stores per-
manently I(F) for a constant number of fragments F . Using
that, I(F) is “rotated” so that each node in F “sees” I(F)

in O(log n) time. We term the mechanism that performs this
rotation a train. A crucial point is having each node partici-
pate in only few trains. Indeed, one train passing a node could
delay the other trains that “wish” to pass it. Furthermore, each
train utilizes some (often more than constant) memory per
node. Hence, many trains passing at a node would have vio-
lated the O(log n)memory constraint. In our solution, we let
each node participate in two trains.

Let us recall briefly the motivation for two trains rather
than one. As explained in Sect. 3.4.1, oneway to involve only
one train passing each node would have been to partition the
nodes, such that each fragment would have intersected only
one part of the partition. Then, one train could have passed
carrying the pieces of information for all the nodes in the part.
Unfortunately, we could not construct such a partition where
the parts were small. A small size of each part is needed in
order to ensure that a node sees all the pieces (thewhole train)
in a short time.

Hence, we construct two partitions of the tree. Each par-
tition is composed of a collection of node-disjoint subtrees
called parts. For each partition, the collection of parts cov-
ers all nodes. Hence, each node belongs to precisely two
parts, one part per partition. For each part, we distribute the
information regarding some of the fragments it intersects,
so that each node holds at most a constant number of such
pieces of information. Conversely, the information regard-
ing a fragment is distributed to nodes of one of the two parts
intersecting it. Furthermore, for any node v, the two parts cor-
responding to it encode together the information regarding all
fragments containing v. Thus, to deliver all relevant informa-
tion, it suffices to utilize one train per part (and hence, each
node participates in two trains only). Furthermore, the parti-
tions are made so that the diameter of each part is O(log n),
which allows each train to pass in all nodes in short time,
and hence to deliver the relevant information quickly. The
mechanism of trains and their synchronization is described
in the next section. The remaining of this current section is
dedicated to the construction of the two partitions, and to
explaining how the information regarding fragments is dis-
tributed over the parts of the two partitions.

6.1 The two partitions

Consider a correct instance, and fix the corresponding hier-
archy treeH = HM. We now describe two partitions of the
nodes in T , called Top and Bottom (the distributed algo-
rithm that constructs the partitions is described later). We

123

276 A. Korman et al.

also partition the fragments into two kinds, namely, top and
bottom fragments.

Top and bottom fragments: Define the top fragments to be
precisely those fragments whose number of nodes is at least
log n. Observe that the top fragments correspond to a subtree
of the hierarchy tree H. Name that subtree TTop. All other
fragments are called bottom. See the left side of Fig. 2 for an
illustration of the top fragments and the subtree TTop.

6.1.1 Partition Top

Let us first describe partition Top. We first need to define
three new types of fragments.

Red, blue, and large fragments: A leaf fragment in subtree
TTop is colored red. A fragment not in TTop which is a sibling
in H of a fragment in TTop is colored blue (equivalently,
a blue fragment is a fragment not in TTop, whose parent
fragment inH is a non-red fragment in TTop). The following
observation is immediate.

Observation 2 The collection of red and blue fragments
forms a partition P ′ of the nodes of T . See Fig. 2 for an
illustration of partition P ′.

To emphasize the fact that each non-blue child fragment of an
internal fragment inTTop contains at least log n nodes,we call
internal fragments in TTop large. Note, the large fragments
are precisely the (strict) ancestors of the red fragments inH.
Since the ancestry relation inH corresponds to an inclusion
relation between the corresponding (active) fragments in T ,
we obtain the following observation.

Observation 3 Each large fragment Flarge is composed of at
least one red fragment Fred as well as one or more blue ones,

and does not contain any additional nodes (of course, the part
may contain also the edges connecting those fragments).

Partition P ′′: Our goal now is to partition the nodes to parts
such that each part contains precisely one red fragment and
possibly several blue ones, and no additional nodes. Such
a partition exists, since it is just a coarsening of the parti-
tion P ′ of the nodes to red and blue fragments. Moreover,
the construction of some such a partition is trivial, follow-
ing Observation 3 and the fact that the tree is a connected
graph. The following procedure produces such a partition
P ′′ that has an additional property defined below (a less for-
mal description of the procedure is as follows: let pink parts
be either red fragments, or the results of a merge between a
red fragment and any number of blue ones. Now repeat the
following as long as there are unmerged blue fragments: con-
sider a blue fragment Fblue who has a sibling pink fragment
and, moreover touches that sibling; merge Fblue with one of
its sibling pink fragments it touches).

Procedure merge

1. Initialize the set P̃ of parts to include precisely the set of
red parts (* P̃ is not yet a partition *)

2. Repeat while there are blue fragments not merged into
parts of P̃
(a) Let Flarge be a top fragment that contains a node u

that is not in any part of P̃ , where all the nodes of
every child fragment of Flarge belong to parts of P̃ .

(b) Let Fblue be the blue fragment containing u (Note
that we have u ∈ Fblue ⊂ Flarge). Let P̃ ∈ P̃ be
some part that touches Fblue.

Fig. 2 On the left: the top
fragments and TTop; On the
right: partition P ′ (above) and
partition P ′′ (below) F1 F2

F3 F4

Partition

1 2

Partition
3 4

TTOP

red redblue blue

F1

F2 F3

F4

large large

large

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 277

(c) Merge Fblue with one such P̃ (This also removes
P̃ from P̃ and inserts, instead, the merged part
Fblue

⋃
P̃

3. When the procedure terminates, P ′′ ← P̃ .

See Fig. 2 for an illustration of partition P ′′. It is easy to
see (e.g., by induction on the order of merging in the above
procedure) that partition P ′′ is constructed in the following
way: let Fred be the red fragment in a part P̃ . Then all the
nodes in P̃ belong to ancestor fragments of Fred . This leads
to the following observation.

Claim 1 Each part P ∈ P ′′ intersects at most one level j
top fragment, for every j .

The property captured in the above claim is very useful.
As can be seen later, this propertymeans that the train in each
part P̃ needs to carry only one piece of information for each
level.

Partition Top: We would like to pass a train in each part P
of P ′′. Unfortunately, the diameter of P may be too large.
In such a case, we partition P further to neighbourhoods,
such that each neighbourhood is a subtree of T of size at
least log n and of diameter O(log n). The resulted partition
is called Top. The lemma below follows.

Lemma 6 For every part P in partition Top, the following
holds.

• |P| ≥ log n,

• D(P) = O(log n), where D(P) is the diameter of P.
• P intersects at most one level j top fragment, for every

j (in particular, it intersects at most � = �log n� top
fragments).

6.1.2 Partition Bottom

The bottom fragments are precisely those with less than log n
nodes. The parts of the second partition Bottom are the fol-
lowing: (1) the blue fragments, and (2) the children fragments
in HM of the red fragments. By Observation 2, this collec-
tion of fragments is indeed a partition. Observe that each
part of Bottom is a bottom fragment. Thus, the size, and
hence the diameter, of each part P of Bottom, is less than
log n. Figure 3 illustrates the bottom fragments and partition
Bottom. Observe also that a part P ∈ Bottom contains all
of P’s descendant fragments in H (recall, P is a fragment,
and the collection of fragments are a laminar family), and
does not intersect other bottom fragments. Hence, we get the
following.

Lemma 7 For every part P of partition Bottom, the fol-
lowing holds:

• |P| < log n, and
• P intersects at most 2|P| < 2 log n bottom fragments.

6.1.3 Representations of the partitions

In Sect. 6.3, we show that the above partitions Top and
Bottom can be constructed by a distributed algorithm that

Fig. 3 The bottom fragments
and partition Bottom

red blue blue red

F2 F3

F5

F6 F7 F8

F5
F2

F3 F8

Partition Bottom

F6

F7

123

278 A. Korman et al.

usesO(log n)memory and linear time. Each part P of each of
the two partitions is represented by encoding in a designated
part of the label of each node in P , the identity ID(r(P))

of the root of P (the highest node of part P). Recall that a
node participates in only two parts (one of each partition), so
this consumes O(log n) bits per node. Obviously, given this
representation, the root of a part can identify itself as such
by simply comparing the corresponding part of its label with
its identity. In addition, by consulting the data-structure of
a tree neighbour u, each node v can detect whether u and v

belong to the same part (in each of the two partitions).
A delicate and interesting point is that the verifier does not

need to verify directly that the partitions Top or Bottom
were constructed as explained here. This is explained in
Sect. 8.

6.2 Distributing the information of fragments

Fix a part P of partition Top (respectively, Bottom). Recall
that P is a subtree of T rooted at r(P). Let F1, F2, . . . , Fk
be the top (resp., bottom) fragments intersecting P , for some
integer k. By Lemma 6 (resp., Lemma 7), we know that k ≤
min{2|P|, 2 log n}. Assumew.l.o.g., that the indices are such
that the level of Fi is, at least, the level of Fi−1, for each
1 < i ≤ k.

The information concerning part P is defined as I(P) =
I(F1) ◦I(F2)◦, · · · , ◦I(Fk). We distribute this information
over the nodes of P as follows. We break I(P) into |P| pairs
of pieces. Specifically, for i such that 1 ≤ i ≤ �k/2� ≤ |P|,
the i’th pair, termed Pc(i), contains I(F2i−1) ◦ I(F2i) (for
odd k, Pc(�k/2�) = I(Fk)).

The process of storing the pieces permanently at nodes
of a part of the partition is referred to as the initialization
of the trains. The distributed algorithm that implements the
initialization of the trains using O(log n) memory size and
linear time is described next. It is supposed to reach the same
result of the following non-distributed algorithm (given just
in order to define the result of the distributed one).

This non-distributed algorithm is simply the classical
Depth First Search (DFS) plus the following operation in
every node visited for the first time. Consider a DFS traver-
sal over P that starts at r(P) and let dfs(i) denote the i’th
node visited in this traversal. For each i , 1 ≤ i ≤ �k/2�,
dfs(i) stores permanently the i’th pair of I(P), namely,
Pc(i).

6.3 Distributed implementation

Before describing the distributed construction of the two par-
titions, namely Top and Bottom, we need to describe a tool
we use for efficiently executing several waves&echoes oper-
ations in parallel. This Multi_Wave primitive (described
below) performs a Wave&Echo in every fragment in H

of level j , for j = 0, 1, 2, . . . , �. Moreover, the i + 1th
Wave&Echo is supposed to start after the i th Wave&Echo
terminates. Furthermore, all this is obtained in time O(n).

6.3.1 The Multi_Wave primitive

We shall use this primitive only after the Roots string is
already set, so that every node knows for each level, whether
it is the root of a fragment of that level. Let us first present a
slightly inefficient way to perform this. The root of the whole
tree starts � + 1 consecutive waves and echoes, each for the
whole final tree (By consecutive we mean that the j + 1th
wave starts when the j th wave terminates). Let the level j
wave be called WaveI1 (T, j) since it carries some instruction
I1, is sent over the whole tree T , and carries the information
that it is meant for level j . A root v j of a fragment F j of level
j , receiving WaveI1 (T, j), then starts its own Wave&Echo
WaveI2 (F j , j) over its own fragment only. (Here, I2 is some
instruction possibly different than I1). A node who is not a
root of a level j fragment can echo WaveI1 (T, j) as soon as
all its children in the final tree (if it has any) echoed. A root v j

echoes WaveI1 (T, j) only after its own wave WaveI2 (F j , j)
terminated (and, of course, after it also received the echoes
of WaveI1 (T, j) from all its children). The following obser-
vation follows immediately from the known semantics of
Wave&Echo.

Observation 4 Consider a fragment F j of level j rooted at
some v j . The wave initiation by v j starts after all the waves
involving its descendant fragments terminated (at the roots
of the corresponding fragments).

The ideal time complexity of performing the above col-
lection of � waves is Θ(n log n). In the case that the size of a
level j fragment F j is 2 j ≤ |F j | < 2 j+1, we can achieve the
semantics of Observation 4 somewhat more time efficiently.
The primitive that achieves this is termed a Multi_Wave.
When invoking it, one needs to specify which instructions
it carries. Informally, the idea is that the roots R0 of level
0 fragments perform the wave (for level 0) in parallel, each
in its own fragment of level 0 (a single node). Recall that a
fragment F1 of level 1 contains multiple fragments of level
zero. The roots of these fragments of level zero report the
termination of the level 0 wave to the root of F1. Next, the
roots R1 of level 1 fragments perform the wave (for level 1)
in parallel, each in its own fragment of level 1. The termi-
nations are reported to level 2 fragment roots, etc., until the
Multi_Wave terminates.

The Multi_Wave is started at the root of the final tree
T by a wave termed Multi_Wave(T, I1, I2). Each node
v who receives Multi_Wave(T, I1, I2) acts also as if v

has initiated a WaveI2(F0, 0) on a tree containing only
itself. Ensuring the termination and the semantics for level

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 279

WaveI2(F0, 0) is trivial. We now define the actions of lev-
els higher than zero in an inductive manner. Every node v

who received (and forwarded to its children if it has any)
Multi_Wave(T, I1, I2), simulates the case that it received
(and forwarded to its children) WaveI2(F j , j) for every
level j . However, v is not free yet to echo WaveI2(F j , j)
until an additional condition holds as follows: When some
wave WaveI2(F j , j) terminates at the root v j of F j ,
this root initiates an informing wave WaveFree−I2(F j , j)
to notify the nodes in F j that the wave of level j in
their subtree terminated, and thus they are free to echo
WaveI2(F j+1, j + 1). That is, a leaf of a F j+1 fragment
can echo WaveI2(F j+1, j + 1) immediately when receiving
WaveFree−I2(F j , j), and a non-leaf of WaveI2(F j+1, j +
1) may echo WaveI2(F j+1, j + 1) when it receives echoes
from all its children in F j+1.

Specifically, the convergecast is performed to the contain-
ing level j + 1 fragment as follows: a leaf of a level j + 1
fragment who receives WaveFree−I2(F j , j) sends a mes-
sage Ready(j + 1, I2) to its parent. A parent node sends
message Ready(j + 1, I2) if it is not a root of a level j + 1
fragment, and only after receiving Ready(j+1, I2) from all
its children.When a root of a level j+1 fragment receives the
Ready(j + 1, I2) message from all of its children, it starts
WaveFree−I2(F j+1, j + 1). The Multi_Wave terminates
at the root of the final tree when the wave for level � termi-
nates at that root. The informing wave WaveFree−I2(F j , j)
itself needs no echo.

Observation 5 The efficient implementation of the multi-
wave simulates the multiple waves analyzed in Observation
4. That is, it obtains the same result for the instructions I1
and I2 in every node.

Proof Consider an alternative algorithm (forMulti_Wave)
in which, when a root of fragment F j+1 receives
Multi_Wave(T, I1, I2), it starts awaveWave−Ready(j+
1, I2). Assume further, that the Ready(j + 1, I2) messages
are sent as echoes of Wave− Ready(j + 1, I2). Moreover,
assume that an echo Ready(j + 1, I2) is sent by a node
only after it received WaveFree−I2(F j , j). The claim for
such an alternative algorithm would follow from Observa-
tion 4 and the known properties of Wave&Echo. Now, it is
easy to verify that theMulti_Wavedescribed simulates that
alternative algorithm. That is, (1) Multi_Wave(T, I1, I2)
is sent by a node v j+1 who belongs to a fragment of level
j+1 to its child u in the same fragment exactlywhen it would
have sent the imaginary Wave − Ready(j + 1, I2). This is
easy to show by induction on the order of events. Moreover,
at that time, the child u knows the information carried by
Wave−Ready(j + 1, I2) since it knows (from its Roots)

which fragments it shares with its parent (and for each one of
them we simulate the case u now receives Wave−Ready).

�

Observation 6 The ideal time complexity of performing a
multi-wave on the hierarch HM is O(n).

Proof The wave started by the root consumes O(n) time.
Recall that hierarchy HM corresponds to active fragments
during the construction of theMSTby algorithmSYNC_MST.
Hence, Lemma 1 implies that in hierarchy HM, the size of
a level j fragment F j satisfies 2 j ≤ |F j | < 2 j+1. Thus,
each wave started by a root of a fragment F j of level j takes
O(2 j) time, and starts at time O(2 j) after the initiation of
the multi-wave. �

6.3.2 Distributed construction of partition P ′

The construction of partition P ′ is performed in several
stages. Each of the tasks below is performed using the
Multi_Wave primitive. This is rather straightforward,
given that the usage of Wave&Echo as a primitive is very
well studied. Below, we give some hints and overview.

First, we need to identify red fragments. It is easy to count
the nodes in a fragment using Wave&Echo to know which
fragment has more than log n nodes. However, a large frag-
ment that properly contains a red fragment is not red itself.
Hence, the count is performed first in fragments lower in
the hierarchy, and only then in fragments that are higher.
Recall that the Multi_Wave primitive indeed completes
first waves in fragments that are lower in the hierarchy, before
moving to fragments that are higher. Hence, one execution of
the Multi_Wave primitive allows to identify red fragment.
At the end of this execution, the roots of fragments know
whether they are the roots of red fragments or not. A similar
technique can be applied to identify blue fragments.

A second task is to identify a large fragment Flarge that
is not red, but has a child fragment who is red. It is an easy
exercise to perform the construction using theMulti_Wave
primitive.

The third task is that of identifying the blue fragments.
A fourth task is to let each node in a blue fragment, and
each node in a red fragment, know the color of their frag-
ments. Again, designing these tasks is an easy exercise given
the example of the first task above, and the Multi_Wave
primitive.

6.3.3 Constructing partition P ′′

It is rather straightforward to useWaves&Echos to implement
procedureMerge to generate partitionP ′′. The red fragments
use Waves&Echos to annex roots of sibling blue fragments.
They become pink parts (in the terminology of paragraph
6.1.1. Then this is repeated in the parent fragment, etc. Since
this process goes from a lower level fragment to higher and
higher levels, the Multi_Wave primitive handles this well.

123

280 A. Korman et al.

6.3.4 Constructing partition Top

Upon receiving the echoes for the Multi_Wave primitive
constructing partition P ′′, the root of the final tree instructs
(by yet another Wave) each PART_LEADER of P ′′ to start
partitioning its part into parts of partition Top. That is, each
part of P ′′ is partitioned into subtrees, each of diameter
O(log n) and of sizeΩ(log n). This task is described in [55].
When it is completed, each part of Top is rooted at its high-
est node. Moreover, every node in that part is marked by the
name of its part leader, in its variable called Top − Root
(Since Top is a partition, each node belongs only to one part;
hence, this does not violate the O(log n) bits constraint).

6.3.5 Constructing partition Bottom

Recall that the parts of the second partition Bottom are (1)
the blue fragments and (2) the child fragments of red frag-
ments. Let us term the latter green fragments. We already
established that members and roots of blue fragments know
that they aremembers and roots of blue fragments. The green
fragments are notified in a similar way the blue ones were.
That is, the root of the final tree starts aWave&Echo instruct-
ing the roots of the red fragments to notify child fragments
that they are green.

Claim 2 The two partitions Top and Bottom described in
Sect. 6.1 can be assigned in time O(n) and memory size
O(log n).

6.3.6 Initializing the trains information

First we describe a primitive that a root of a part P uses
for storing I(F) of one given fragment F ∈ P . This is a
well known distributed algorithm, so we do not describe it in
detail. We use a distributed Depth First Search (DFS), see,
e.g. [7,20,43]. Initially, all the nodes in a part P are marked
Vacant(P). When the root of the part wants to store the
I(F) of some fragment F , it sends this I(F) (with a token)
to perform aDFS traversal of part P . The first time that token
reaches a node marked Vacant(P), it sets Vacant(P) to
false and storesI(F) in that node. It is left to describe how
the root of a part gets I(F) for each F whose I(F) should
reside in that part.

6.3.7 Storing I in partition Top

Apart P ′′ in partitionP ′′ contains precisely one red fragment
Fred . Hence, we call such fragments red-centered. Consider a
part P in partition Top that was created from a red-centered
part P ′′ ∈ P ′′. Recall that such a part P should store only
the I of top fragments it intersects. Since each such top frag-
ment is an ancestor fragment of Fred , we let part P store

the I of all ancestor fragments of Fred . Hence, the set of
I stored at P includes the I of all fragments P intersects,
but may include more I’s (of fragments intersecting P ′′ but
not P). Nevertheless, note that, for every j , these other I’s
correspond to at most one fragment in level j . This follows
simply from the fact that Fred intersects at most one level j
fragment (see Claim 1). Recall also that the root of the part
knows it is a root of a part (by comparing its Top − Root
variable with its identity), and every node knows which part
it belongs to (again, using its Top− Root variable) as well
as who are its parent and children in the part (The latter
information a node can deduce by reading each tree neigh-
bour).

The root of the final tree T starts a Multi_Wave over
T . Fix a level j . The j th wave of the multi-wave, which
we term Send_Anc_Info(T, j), signals the root of every
top fragment F j of level j to obtain the information I(F j)

and to send it to the roots of the parts of partition Top
intersecting F j . Consider a root v j of such a fragment F j

who receives the signal of Send_Anc_Info(T, j). First, to
obtain I(F j), node v j must find the weight of e, the mini-
mum outgoing edge of F j . Recall that the endpoint u ∈ F j

of e = (u, v) can identify it is the endpoint using the j’th
position in EndPu , and can identify which of its incident
edges is e. So, node v j starts another Wave&Echo bringing
the weight of e to v j (Note that v j is the root of a sin-
gle fragment in level j , though it may be the root of other
fragments in other levels; hence, at the time of the wave of
level j , it handles the piece of only one fragment, namely,
F j ; hence, not congestion arises). When this wave termi-
nates, v j sets I(F j) = (ID(v j), ω(e)) and starts another
Wave&Echo, called Anc_Info(F j , j), conveying I(F j)

to roots of the parts of partition Top intersecting F j . To
implement this, v j , the root of F j , first broadcasts I(F j)

to the nodes of F j . At this point, each node in F j knows
I(F j). Next, our goal is to deliver I(F j) to the roots of
parts in partition Top intersecting F j . However, note that
since F j is a subtree, and all parts are subtrees, the roots
of the parts of partition Top intersecting F j are all con-
tained in F j , except maybe the root u j of the part containing
v j . So, by now, all roots of parts in partition Top intersect-
ing F j , except maybe u j , already know I(F j). To inform
u j it suffices to deliver I(F j) up the tree, from v j to u j .
Since, all roots of parts in Top, and u j in particular, know
they are roots, this procedure is trivial. Finally, to complete
the wave at level j , a root of a Top part receiving I(F j)

stores it in its part as described at top of this section (that
is, storing each piece at a node in the part, following a DFS
order).

Note, that since the diameter of a part in Top is of
length O(log n), the wave of level j can be implemented
in O(|F j | + log n) = O(2 j + log n) time. Altogether, the
Multi_Wave over T is completed by time

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 281

O

⎛

⎝
log n∑

j=1

2 j + log n

⎞

⎠ = O(n).

6.3.8 Storing I in partition Bottom

Recall that a part in partition Bottom is a fragment of size
O(log n). The root of such a part P collects theIof fragments
in P of each level i by issuing a Wave&Echo for level i . The
weight of theminimumoutgoing edge of each fragment Fi of
level i is then collected by the root of Fi . This ensures that
the I(Fi) for each fragment Fi of level i in the fragment
arrives at Fi ’s root. Finally, the Wave&Echo collects the Is
from the roots of the fragments in the Bottom part to the
root of the part. It is easy to see the following.

Claim 3 The initializationof the trains informationdescribed
in Sect. 6.3 can be done in time O(n) and memory size
O(log n).

The next corollary that summarizes this section follows from
Lemma 5 and Claims 2 and 3.

Corollary 2 The marker algorithmM can be implemented
using memory size O(log n) and O(n) time.

7 Viewing distributed information

We now turn to the verifier algorithm of part of the proof
labeling scheme that verifies the Minimality property.

Consider a node v and a fragment Fj (v) of level j con-
taining it. Recall that I(Fj (v)) should reside permanently in
some node of a part P to which v belongs. This informa-
tion should be compared at v with the information I(Fj (u))

regarding a neighbour u of v, hence both these pieces must
somehow be “brought” to v. The process handling this task
contains several components. The first is called a “train” and
is responsible for moving the pieces’ pairs Pc(i) through
P’s nodes, such that each node does not hold more than
O(log n) bits at a time, and such that in short time, each node
in P “sees” all pieces, and in their correct order (By short
time, we mean O(log n) time in synchronous networks, and
O(log2 n) time asynchronous networks).

Unfortunately, this is not enough, since I(Fj (v)) may
arrive at v at a different time than I(Fj (u)) arrives at u,
hence some synchronization must be applied. Further diffi-
culties arise from the fact that the neighbours of a node v

may belong to different parts, so different trains pass there.
Note that v may have many neighbours, and we would not
want to synchronize so many trains.

A first idea to obtain synchronization would have been to
utilize delays of trains. However, delaying trains at differ-
ent nodes could accumulate, or could even cause deadlocks.

Hence, we avoid delaying trains almost completely. Instead,
each node v repeatedly samples a piece from its train, and
synchronizes the comparison of this piece with pieces sam-
pled by its neighbours, while both trains advance without
waiting. Perhaps not surprisingly, this synchronization turns
out to be easier in synchronous networks, than in asynchro-
nous ones.

This process presented belowassumes that no fault occurs.
The detection of faults is described later.

7.1 The trains

For simplicity, we split the task of a train into two subtasks,
each performed repeatedly—the first, convergecast, moves
(copies of) the pieces one at a time pipelined from their per-
manent locations to r(P), the root of part P , according to the
DFS order (Recall, dfs(i) stores permanently the i’th piece
of I(P)).

Definition 4 A cycle is a consecutive delivery of the k pairs
of pieces Pc(1),Pc(2), . . . ,Pc(k) to r(P).

Since we are concerned with at most k ≤ 2 log n pairs of
pieces, each cycle can be performed in O(log n) time. The
second subtask, broadcast, broadcasts each piece from r(P)

to all other nodes in P (pipelined). This subtask can be
performed in D(P) = O(log n) time, where D(P) is the
diameter of P . We now describe these two subtasks (and
their stabilization) in detail.

Consider a part P (recall, a part is a subtree). The
(pipelined) broadcast in P is the simpler subtask. Each node
contains a broadcast buffer for the current broadcast piece,
and the node’s children (in the part) copy the piece to their
own broadcast buffer. When all these children of a node
acknowledge the reception of the piece, the node can copy the
next piece into its broadcast buffer. Obviously, this process
guarantees that the broadcast of each piece is performed in
D(P) = O(log n) time, where D(P) is the diameter of P .

We now describe the convergecast subtask. Informally,
this is a recursive process that is similar to a distributed DFS.
The subtask starts at the root. Each node v which has woken-
up, first wakes-up its first child (that is, signals the first child
to start). When the first child u1 finishes (delivering to v all
the pieces of information in u1’s subtree), then v wakes-up
the next child, and so forth.

Each node holds two buffers of O(log n) bits each for
two pieces of the train, besides its own piece (that it holds
permanently). The node uses one of these buffers, called the
incoming car, to read a piece from one of its children, while
the other buffer, called the outgoing car is used to let its
parent (if it has one) read the piece held by the node. A
node v �= r(P) participates in the following simple pro-
cedure whenever signaled by its parent to wake-up. Let
u1, u2, . . . , ud denote the children of v in P (if any exists),

123

282 A. Korman et al.

ordered according to their corresponding port-numbers at v

(i.e., for i < j , child ui is visited before u j in the DFS tour).
Train Convergecast Protocol (performed at each node v �=
r(P))
(*Using two buffers: incoming car and outgoing car *)

1. Copy v’s (permanent) piece into v’s outgoing car
2. For i = 1 to d (*d is the number of v’s children*)

(a) Signal ui to start performing the train algorithm;
(*wake-up ui*)

(b) Repeat until v receives a signal “finished” from ui
(i) Copy the piece from the outgoing car of ui to v’s

incoming car
(ii) Wait until v’s outgoing car is read by its parent

(*to accomplish that, v reads the incoming car
of its parent and compares it with its outgoing
car *)

(iii) Move the piece from the incoming car to outgo-
ing car (and, subsequently, empty the content of
the incoming car);

3. Report “finished” to parent;

The trainConvergecast protocol of the root r(P) is slightly
different. Instead of waiting for its parent to read each piece,
it waits for the train Broadcast protocol (at the root) to read
the piece to its own buffer. Instead of reporting “finished” to
its parent, it generates a new start to its first child.

Theorem 2 Let t0 be some time when the root r = r(P)

of P initiated the “For” loop of the train Convergecast
protocol. Each node in P sees the pieces in the cycle
{Pc(1),Pc(2), . . . ,Pc(φ(P))} in O(log n) time after t0 in
synchronous networks and in O(log2 n) time after t0 in asyn-
chronous networks.

Proof First observe that the train broadcast in a leaf node of
the part who received a piece from its parent, does not need
to pass that piece to any further children. Hence the train
process does not incur a deadlock.

Asmentioned before, once the root sees a piece, the broad-
cast protocol guarantees that this piece is delivered to all
nodes in the part in D(P) = O(log n) time. Let τ ′ denote
the maximal time period between two consecutive times that
the broadcast protocol at the root reads the buffer of the con-
vergecast protocol to take a new piece (a piece is actually
taken only if the convergecast has managed to bring there a
new piece, after the broadcast process took the previous one).
Now, denote τ = max{1, τ ′}.
Observation 7 In synchronous networks, we have τ = 1. In
asynchronous networks, we have τ ≤ D(P) = O(log n).

The first part of the observation is immediate. To see why
the second part of the observation holds, note that by the

definition of time, it takes O(D(P)) for a chain of events
that transfer a piece to a distance of D(P), in the case that all
the buffers on the way are free; note that there is no deadlock
and no congestion for information flowing down the tree,
away from the root; this can be seen easily by induction
on the distance of a broadcast piece from the furthest leaf;
clearly, if the distance is zero, the piece is consumed, so there
is already a room for a new piece; the rest of the induction is
also trivial.

We shall measure the time in phases, where each phase
consists of τ time units. Let us start counting the time after
time t0, that is, we say that phase 0 starts at time t0. Our goal
now is to show that (for either synchronous or asynchronous
networks), for each 1 ≤ i < φ(P), piece Pc(i) arrives at the
root within O(log n) phases.

We say that a node v is holding a piece at a given time
if either (1) v keeps the piece permanently, or (2) at the
given time, the piece resides in either v’s incoming car or
its outgoing car. Consider now phase t . For each i , where
1 ≤ i ≤ φ(P), if the root r held Pc(i) at some time between
t0 and the beginning of the phase t , then we say that i is
not t-relevant. Otherwise, i is t-relevant. For any t-relevant
i , where 1 ≤ i ≤ φ(P), let dt (i) denote the smallest DFS
number of a node v holdingPc(i) at the beginning of phase t .
That is, dt (i) = min{dfs(u)| u holds Pc(i) at time t}.
For any i that is not t-relevant, let dt (i) = 0. The following
observation is immediate.

Observation 8 At any time t,

– For any 1 ≤ i ≤ φ(P), we have dt (i) ≥ dt+1(i) (in other
words, dt (i) cannot increase with the phase).

– For any 1 ≤ i < φ(P), we have dt (i) ≤ dt (i + 1).

Informally, the following lemma gives a bound for the
delay of a piece as a result of processing previous pieces.

Lemma 8 Let x and i be two integers such that 1 ≤ i ≤
x ≤ φ(P). Then, dt (x) ≤ i − 1 for t ≥ 3x − i .

To prove the lemma, first observe that the condition holds for
the equality case, that is, the case where i = x . Indeed, for
each 1 ≤ x ≤ φ(P), the node holding Pc(x) permanently is
at distance at most x−1 from the root. Hence, d0(x) ≤ x−1.
Now, the condition follows since, by Observation 8, dt (x)
cannot increase with the phase.

We now prove the lemma using a double induction. The
first induction is on x . The basis of the induction, i.e., the
case x = 1, is trivial, since it reduces to the equality case
i = x = 1.

Assume by induction that the condition holds for x − 1
and any i , such that 1 ≤ i ≤ x − 1 ≤ φ(P). We now prove
that the condition holds for x and any 1 ≤ i ≤ x . This is
done using a reverse induction on i .

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 283

The basis of this (second) induction, i.e., the case i = x ,
is an equality case and hence, it is already known to satisfy
the desired condition. Now assume by induction, that the
condition holds for x and i , where 2 ≤ i ≤ x , and let us
show that it holds also for x and i − 1.

Let us first consider the case i = 2. By the (first) induction
hypothesis (applied with values x − 1 and i = 1), we know
that

dt ′(x − 1) ≤ 0 where t ′ = 3x − 4.

Thus, at phase t ′ = 3x−4, piece Pc(x−1) is not t ′-relevant.
That is, at that time, piece Pc(x −1) is either in the outgoing
car of the root r(P) or in the root’s incoming car. In the
first case, the incoming car of the root is already empty at
t ′. Otherwise, recall that, by definition, the broadcast process
at the root consumes a piece from r(P)’s outgoing car every
phase (if there is a newpiece there it has not takenyet).Hence,
the outgoing car at r(P) is consumed by phase t ′ +1. By that
phase, the root notices the piece is consumed, deliverers the
content of its incoming car (namely, piece Pc(x − 1)) to its
outgoing car, and empties its incoming car.

On the other hand, by the second induction hypothesis,
d(x) ≤ 1 at the beginning of phase 3x − 2 = t ′ + 2. That is,
Pc(x) is at some child v of the root. By the second part of
Observation 8, node v is the child the root reads next, and,
moreover no piece other than Pc(x) is at the outgoing car of
v. If at the beginning of phase t ′ + 2, piece Pc(x) is at the
outgoing car of v, then the piece reaches the incoming car of
the root already at phase t ′ + 2. Otherwise, by at most phase
t ′ + 3, node r(P) has a copy of Pc(x) in its incoming car.
Thismeans that dt ′′(x) ≤ 0, where t ′′ = t ′+3 ≤ 3x−(i−1),
as desired.

Now consider the case that 2 < i . By the second induction
hypothesis, we have dt ′(x) ≤ i − 1, where t ′ = 3x − i . If
dt ′(x) ≤ i − 2 at the beginning of phase t ′ then we are done.
Otherwise, let v be the node holding Pc(x) at the beginning
of phase t ′ such that the distance (on the tree) of v from r is
i − 1. Let u be v’s parent. Our goal now is to show that u
holds Pc(x) by phase t ′ +1. The (first) induction hypothesis
implies that the condition holds for the pair x − 1 and i − 2.
That is,

dt ′−1(x − 1) ≤ i − 3.

Thus, Pc(x − 1) has already been copied to u’s parent w.
The only reason Pc(x − 1) may be stuck at u (perhaps at
both the incoming and outgoing cars of u) at phase t ′ − 1, is
that u has not observed yet that its parent w actually already
copied Pc(x − 1). This is observed by u by phase t ′ (when
u observes this, it empties the content of its incoming car).
Thus, by phase t ′ +1, node u has a copy of Pc(x), as desired.
This concludes the proof of the lemma.

The theorem now follows from the lemma and from the
fact that φ(P) = O(log n). �

Recognizing membership to arriving fragments: Consider
now the case that a piece containing I(F) carried by the
broadcast wave arrives at some node v. Abusing notations,
we refer to this event by saying that fragment F arrives at v.
Recall that v does not have enough memory to remember the
identifiers of all the fragments containing it. Thus, a mech-
anism for letting v know whether the arriving fragment F
contains v must be employed. Note that the level j of F can
be extracted from I(F), and recall that it is already ensured
that v knows whether it is contained in some level j frag-
ment. Obviously, if v is not contained in a level j fragment
then v /∈ F . If Fj (v) does exist, we now explain how to let
v know whether F = Fj (v).

Consider first a train in a part P ∈ Top. Here, P inter-
sects at most one level j top fragment, for each level j
(see Lemma 6). Thus, this train carries at most one level
j fragment Fj . Hence, Fj = Fj (v) if and only if Fj (v)

exists.
Now consider a train in a part P ∈ Bottom. In this

case, part P may intersect several bottom fragments of the
same level. To allow a node v to detect whether a frag-
ment Fj arriving at v corresponds to fragment Fj (v), we
slightly refine the above mentioned train broadcast mech-
anism as follows. During the broadcast wave, we attach a
flag to each I(F), which can be either “on” or “off”, where
initially, the flag is “off”. Recall that I(F) contains the iden-
tity ID(r(F)) of the root r(F) of F . When the broadcast
wave reaches this root r(F) (or, when it starts in r(F) in
the case that r(F) = r(P)), node r(F) changes the flag
to “on”. In contrast, before transmitting the broadcast wave
from a leaf u of F to u’s children in T (that do not belong
to F), node u sets the flag to ”off”. That way, a fragment
F arriving at a node v contains v if and only if the corre-
sponding flag is set to “on”. (Recall that the data structure
lets each node know whether it is a leaf of a level j frag-
ment). This process allows each node v to detect whether
F = Fj (v).

To avoid delaying the train beyond a constant time, each
node multiplexes the two trains passing via it. That is,
it passes one piece of one train, then one piece of the
other.

7.2 Sampling and synchronizing

Fix a partition (either Top or Bottom), and a part P of the
partition. Node u ∈ P maintains two variables: Ask(u) and
Show(u), each for holding one piece I(F). In Ask(u), node
u keeps I(Fj (u)) for some j , until u compares the piece
I(Fj (u))with the piece I(Fj (v)), for each of its neighbours
v. Let E(u, v, j) denote the event that node u holds I(Fj (u))

123

284 A. Korman et al.

in Ask(u) and sees I(Fj (v)) in Show(v) (For simplicity of
presentation, we consider here the case that both u and v do
belong to some fragments of level j ; otherwise, storing and
comparing the information for a non-existing fragments is
trivial). For any point in time t , let C(t) denote the minimal
time interval C(t) = [t, x(t)] in which every event of the
type E(u, v, j) occurred. For the scheme to function, it is
crucial that C(t) exists for every time t . Moreover, to have a
fast scheme, we must ensure that maxt |C(t)| is small.

Recall that the train (that corresponds to P) brings the
pieces I(F) in a cyclic order. When u has done comparing
I(Fj (u)) with I(Fj (v)) for each of its neighbours v, node
u waits until it receives (by the train) the first piece I(F)

following I(Fj (u)) in the cyclic order, such that F contains
u (recall that u can identify this F). Let us denote the level
of this next fragment F by j ′, i.e., F = Fj ′(u). Node u then
removes I(Fj (u)) from Ask(u) and stores I(Fj ′(u)) there
instead, and so forth. Each node u also stores some piece
I(Fi (u)) at Show(u) to be seen by its neighbours. (Note
that the value at Show(u) may be different than the one at
Ask(u)).

Let us explain the comparing mechanism. Assume that
everything functions correctly. In particular, assume that
the partitions and the distribution of the information are as
described above, and the trains function correctly as well.
Let us first focus our attention on the simpler and seemingly
more efficient synchronous case.

7.2.1 The comparing mechanism in synchronous networks

Fix a node v. In a synchronous network, node v seesShow(u)

in every pulse, for each neighbour u. Let every node u
store in Show(u) each piece that arrives in the train (each
time, replacing the previous content of Show(u)). Hence,
by Theorem 2, given a level j , node v sees I(Fj (u)) (if
such exists) within O(log n) time. Put differently, if v waits
some O(log n) time (while I(Fj (v)) is in Ask(v)), node v

sees I(Fj (u)) in Show(u) for each neighbour u (We do not
assume that u keeps track of which neighbours v has already
seenI(Fj (u)); node v simplywaits sufficient time—to allow
one cycle of the train,while looking at its neighbours, looking
for their I for level j). Subsequently, node v waits another
O(log n) rounds until the train brings it I(Fj ′(v)) and stores
it in Ask(v), and so forth. In other words, we have just estab-
lished that event E(v, u, j ′) occurswithin O(log n) time after
v stores I(Fj ′(v)) in Ask(v), which happens O(log n) time
after event E(v, u, j), and so forth. The time for at most
log n+ 1 such events to occur (one per level j) is O(log2 n).

Lemma 9 In a synchronous environment, for each node v

and its neighbour u, all events of type E(v, u, j) (for all
levels j) occur within time O(log2 n).

7.2.2 The comparing mechanism in asynchronous networks

In an asynchronous network, without some additional kind
of a handshake, node u cannot be sure that the piece in
Show(u) was actually seen by its neighbours (Intuitively,
this is needed, so that u can replace the piece with the next
one). Moreover, it is not easy to perform such handshakes
with all of u’s neighbours, since u does not have enough
memory to keep track on which of its neighbours v has seen
the piece and which has not yet. First, let us describe a sim-
ple, but somewhat inefficient handshake solution. A more
efficient one is presented later.

Each node v, holding some piece I(Fj (v)) in Ask(v),
selects a neighbour u and acts as a “client”: that is, node v

writes in its register Want the pair (ID(u), j). Node v then
looks repeatedly at Show(u) until it sees I(Fj (u)) there.
At the same time, each node u also has a second role—that
of a “server”. That is, each node rotates these two roles: it
performs one atomic action as a server and one as a client.
Acting as a server, u selects a client to serve (in a round
robin order). If the client has written some (ID(w), i) in the
client’s Want, for w �= u, then u chooses another client. On
the other hand, if the client wrote (ID(u), j) in the client’s
Want, then u waits until it receives by the train I(Fj (u))

and stores it in Show(u). A trivial handshake then suffices
for u to know that this value has been read by the client.
Node u, in its role as a server, can then move to serve its
next neighbour, and node v, in its role as a client, can move
on to the next server. In particular, if the client v has already
received service from all its neighbours for I(Fj (v)), then v

waits until the train brings it the next piece I(Fj ′(v)) that v
needs to compare.

Consider now the time a client v waits to see I(Fj (u))

for one of its neighbours u. Before serving v, the server u
may serve O(Δ) neighbours. By Theorem 2 (applied for the
asynchronous setting), each service takes O(log2 n) time.
In addition, the client needs services from Δ servers, and
for O(log n) values of j . The total time for all the required
events to happen in this simple handshake mechanism is,
thus, O(Δ2 log3 n).

Let us now describe themore efficient asynchronous com-
parison mechanism that requires only O(Δ log3 n) time.
Before dwelling into the details of the comparison mech-
anism, let us first describe a difference in the way we employ
the train. Recall that in the simple solution above (as well as
in the synchronous case), the movement of trains was inde-
pendent from the actions of the comparison mechanism, and
hence, by Theorem 2, each train finishes a cycle in O(log2 n)

time. In contrast, a train here may be delayed by the nodes it
passes, in a way to be described. Crucially, as we show later,
the delay at each node is at most some constant time c, and
hence, the time a train finishes a cycle remains asymptotically
the same, namely, O(log2 n).

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 285

u

I(F3(u)) ; 3

Show(u)Ask(v)

Want(v)
v

Fig. 4 Node v receives the next piece (for j = 3) to compare

v

I(F3(u)) ; 3

Ask(v)

Want(v)

Show(u)

I(F3(v)) ; 3

u

w

Fig. 5 First case, E(v, u, 3) occurred the first time v reads I(F3(u)).
Next, v may look at its next neighbor, w

v u

I(F6(u)) ; 6

Ask(v)

Want(v)

Show(u)

Fig. 6 Second case, E(v, u, 3) does not occur immediately

As before, node v, holding I(Fj (v)) in Ask(v) chooses a
server u among v’s neighbours and reads Show(u). Another
small, but crucial addition to the actions taken in the simple
procedure, is the following: if, when reading Show(u), node
v reads I(Fj (u)), then E(v, u, j) occurred, and v moves on
to read another neighbour. This is illustrated in Figs. 4 and 5.

Only in the case that I(Fj (u)) is not at Show(u) at that
time (see Fig. 6), node v sets Want(v) ← (ID(u), j) (see
Fig. 7). In this case,we say that v files a request for j at u. This
request stays filed until the value of Show(u) is the desired

v

I(F6(u)) ; 6

Ask(v)

Want(v)

Show(u)

I(F3(v)) ; 3

u

w

u,j

Fig. 7 Node v files a request at u for j = 3

v

I(F7(u)) ; 7

Ask(v)

Want(v)

Show(u)

I(F3(v)) ; 3

u

w

Fig. 8 The trains at v and at u do not stop

v

I(F3(u)) ; 3

Ask(v)

Want(v)

Show(u)

I(F3(v)) ; 3

u

w

u,j

Fig. 9 The server u received the requested piece at last

one and E(v, u, j) occurs; note that the trains do not wait
meanwhile; see Figs. 8 and 9. Similarly to the synchronized
setting, in the case that v has just finished seeing I(Fj (u)) in
every neighbour u, node v first waits until it gets by the train,
the next piece I(Fj ′(v)) in the cycle, and then puts I(Fj ′(v))

as the new content of Ask(v).
Now consider any node u in its role as a server. It reads all

the clients (Recall that the ideal time complexity assumes this
can be performed in one time unit). When node u receives

123

286 A. Korman et al.

I(Fj (u)) from the train, it puts this value in Show(u). It
now delays the train as long as it sees any client v whose
Want(v) = (ID(u), j). In particular, node u keepsI(Fj (u))

in Show(u) during this delay time period. If u has not read
any neighbour v such that Want(v) = (ID(u), j), then u
stops delaying the train, waits for receiving the next piece
I(Fj ′(u)) from the train, and uses it to replace the content of
Show(u).

We define the Ask cycle of a node v. This is the time
interval starting at the time a client v replaces the content
of Ask(v) from I(Fjmax (v)) to I(Fjmin(v)), and until (and
excluding) the time v does that again. Here, jmax is the high-
est level of a piece in that train, such that Fjmax (v) exists, and
jmin is the smallest level of a piece in that train, such that
Fjmin(v) exists.

Lemma 10 The total length of a Ask cycle of a node v is
O(Δ log3 n).

Proof Fix a node u and let t1u be some time that u starts
storing I(Fj (u)) in Show(u), for some level j ; moreover,
I(Fj (u)) is stored there until some time t2u when u replaces
the content of Show(u) again.

Recall, node u delays the train and keeps I(Fj (u)) in
Show(u) as long as it sees any client v such that Want(v) =
(ID(u), j); when it sees that no such neighbour v exists, it
stops delaying the train and waits for the train to deliver it
the next piece I(Fj ′(u)) to be used for replacing the con-
tent of Show(u). We now claim that the delay time period
at node u is at most some constant time. To prove that,
we first show that there exists a constant c such that no
client v has Want(v) = (ID(u), j) in the time interval
[t1u + c, t2u]. Indeed, for each neighbour v of u, let tv be
the first time after t1u that v reads the value of Show(u).
Clearly, there exists a constant c (independent of u and v)
such that tv ∈ [t1u , t1u + c]. Right at time tv , the content of
Want(v) stops being (ID(u), j) (if it were before), since
I(Fj (u)) is the value of Show(u) during the whole time
interval [t1u , t2u]. Moreover, during the time interval [tv, t2u],
node v does not file a request for j at u, since again, whenever
it reads Show(u) during that time interval, it sees I(Fj (u)).
Hence, no client v has Want(v) = (ID(u), j) in the time
interval [t1u + c, t2u]. Now, from time t1u + c, it takes at most
some constant time to let u observe that none of its neigh-
bours v has Want(v) = (ID(u), j). This establishes the fact
that the delay of the train at each node is at most some con-
stant. Hence, as mentioned before, the time the train finishes
a cycle is O(log2 n) (It is also easy to get convinces that this
delay does not prevent the train from being self-stabilizing).

Next, consider the time that some node v starts holding
I(Fj (v)) in Ask(v). Consider a neighbour u of v. The time
it takes for v until it sees I(Fj (u)) in Show(u) is O(log2 n).
Hence, a client v waits O(log2 n) for each request v files at
a server u for a value j . The total time that v waits for a

service of j at all the servers is then O(Δ log2 n). From that
time, v needs to wait additional O(log2 n) time to receive
from the train the next pieceI(Fj ′(v)) (to replace the content
of Ask(v)). Summing this over the O(log n) pieces in the
cycle, we conclude that the total time of an Ask cycle of v

is O(Δ log3 n). �

Lemma 11 If (1) two partitions are indeed represented, such
that each part of each partition is of diameter O(log n), and
the number of pieces in a part is O(log n), and (2) the trains
operate correctly, then the following holds.

– In a synchronous network, maxt |C(t)| = O(log2 n).
– In anasynchronousnetwork,maxt |C(t)| = O(Δ log3 n).

8 Local verifications

In this section, we describe the measures taken in order to
make the verifier self-stabilizing. That is, the train processes,
the partitions, and also, the pieces of information carried by
the train may be corrupted by an adversary. To stress this
point and avoid confusion, a piece of information of the form
z ◦ j ◦ ω, carried by a train, is termed the claimed informa-
tion Î(F) of a fragment F whose root ID is z, whose level is
j , and whose minimum outgoing edge is ω. Note that such
a fragment F may not even exist, if the information is cor-
rupted. Conversely, the adversary may also erase some (or
even all) of such pieces corresponding to existing fragments.
Finally, even correct pieces that correspond to existing frag-
ments may not arrive at a node in the case that the adversary
corrupted the partitions or the train mechanism. Below we
explain how the verifier does detect such undesirable phe-
nomena, if they occur. Note that for a verifier, the ability to
detect with assuming any initial configuration means that the
verifier is self-stabilizing, since the sole purpose of the ver-
ifier is to detect. We show, in this section, that if an MST
is not represented in the network, this is detected. Since the
detection time (the stabilization time of the verifier) is sublin-
ear, we still consider this detection as local, though some of
the locality was traded for improving the memory size when
compared with the results of [52,53].

Verifying that some two partitions exist is easy. It is suffi-
cient to (1) let each node verify that its label contains the two
bits corresponding to the two partitions; and (2) to have the
root r(T) of the tree verify that the value of each of its own
two bits is 1 (Observe that if these two conditions hold then
(1) r(T) is a root of one part in each of the two partitions;
and (2) for a node v �= r(T), if one of these two bits in v is
zero, then v belongs to the same part in the corresponding
partition as its parent). Note that this module of the algorithm
self-stabilizes trivially in zero time.

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 287

It seems difficult to verify that the given partitions are as
described in Sect. 6.1, rather than being two arbitrary parti-
tions generated by an adversary. Fortunately, this verification
turns out to be unnecessary (As we shall see, if the compo-
nents at the nodes do not describe an MST, no adversarial
partitioning can cause the verifier to accept this as represent-
ing an MST; if partitions are represented, we just need to
verify that a part is not too large for the time complexity).

First, for the given partitions, it is a known art to self-
stabilize the train process. That is, the broadcast part of the
train is a standard flooding, for which the self-stabilization
has been heavily studied, see, in particular, [18,22]. For
the convergecast, first, note that pieces are sent up the tree.
Hence, they cannot cycle, and cannot get “stuck”. Moreover,
it is easy to get convinced that only pieces that are already in
some buffer (either incomming, or outgoing, or permanent)
can be sent. Finally, notice that the order of the starting of the
nodes is exactly the DFS order. The stabilization of the DFS
process is well understood [21]. It is actually easier here,
since this is performed on a tree (recall that another part of
the verifier verifies that there are no cycles in the tree).

Finally, composing such self-stabilizing primitives in a
self-stabilizing manner is also a known art, see e.g. [32,47,
50,62]. In our context, once the DFS part stabilizes, it is easy
to see the pieces flow up the tree stabilizes too. This leads to
the following observation.

Observation 9 Starting at a time that is O(log n) after the
faults in synchronous networks, and O(log2 n) time in asyn-
chronous networks, the trains start delivering only pieces
that are stored permanently at nodes in the part.

After the trains stabilize (in the sense described in Observa-
tion 9), what we want to ensure at this point is that the set of
pieces stored in a part (and delivered by the train) includes
all the (possibly corrupted) pieces of the form I(Fj (v)), for
every v in the part and for every j such that v belongs to a
level j fragment. Addressing this, we shall show that the ver-
ifier at each node rejects if it does not obtain all the required
pieces eventually, whether the partitions are correct or not.
Informally, this is done as follows. Recall that each node v

knows the set J (v) of levels j for which there exists a frag-
ment of level j containing it, namely, Fj (v).Using adelimiter
(stored at v), we partition J (v) to JTop(v) and JBottom(v);
where JTop(v) (respectively, JBottom(v)) is the set of levels
j ∈ J (v) such that Fj (v) is top (resp., bottom).
Node v “expects” to receive the claimed information

Î(Fj (v)) for j ∈ JTop(v) (respectively, j ∈ JBottom(v))
from the train of the part in Top (respectively, Bottom) it
belongs to.

Let us now consider the part PTop ∈ Top containing v.
In correct instances, by the way the train operates, it follows
that the levels of fragments arriving at v should arrive in a
strictly increasing order and in a cyclical manner, that is,

j1 < j2 < j3 < · · · < ja, j1 < j2 < · · · ja, j1 · · · (observe
that ja = �). Consider the case that the verifier at v receives
two consecutive pieces z1 ◦ j1 ◦ ω1 and z2 ◦ j2 ◦ ω2 such
that j2 ≤ j1. The verifier at v then “assumes” that the event
S of the arrival of the second piece z2 ◦ j2 ◦ ω2 starts a
new cycle of the train. Let the set of pieces arriving at v

between two consecutive such S events be named a cycle
set. To be “accepted” by the verifier at v, the set of levels
of the fragments arriving at v in each cycle set must contain
JTop(v). It is trivial to verify this in two cycles after the
faults cease (The discussion above is based implicitly on the
assumption that each node receives pieces infinitely often;
this is guaranteed by the correctness of the train mechanism,
assuming that at least one piece is indeed stored permanently
in PTop; verifying this assumption is done easily by the root
r(PTop) of PTop, simply by verifying that r(PTop) itself does
contain a piece). Verifying the reception of all the pieces in a
part inBottom is handled very similarly, and is thus omitted.
Hence, we can sum up the above discussion as follows:

Claim 4 If the verifier accepts then each node v receives
Î(Fj (v)), for every level j ∈ J (v) (in the time stated
in Lemma 11), and conversely, if a node does not receive
Î(Fj (v)) (in the time stated in Lemma 11) then the verifier
has rejected.

Let p(v) denote the parent of v in T . Recall, that by compar-
ing the data structure of a neighbour u in T , node v can know
whether u and v belong to the same fragment of level j , for
each j . In particular, this is true for u being the parent of v in
T . Consider an event E(v, p(v), j). In case p(v) belongs to
the same level j fragment as v, node v compares Î(Fj (v))

with Î(Fj (p(v))), and verifies that these pieces are equal
(otherwise, it rejects). By transitivity, if no node rejects, it
follows that for every fragment F ∈ H, we have that Î(F)

is of the form z ◦ j ◦ ω, and all nodes in F agree on this. By
verifying at the root rF of F that ID(rF) = z, we obtain the
following.

Claim 5 If the verifier accepts then:

– The claimed identifiers of the fragments are compatible
with the given hierarchyH. In particular, this guarantees
that the identifiers of fragments are indeed unique.

– For every F ∈ H, all the nodes in F agree on the
claimed weight of the minimum outgoing edge of frag-
ment F, denoted ω̂(F), and on the identifier of fragment
F, namely, ID(F).

So far, we have shown that each node does receive the nec-
essary information needed for the verifier. Now, finally, we
show how to use this information to detect whether this is an
MST. Basically, we verify that ω̂(F) is indeed the minimum
outgoing edge ω(F) of F and that this minimum is indeed

123

288 A. Korman et al.

the candidate edge of F , for every F ∈ H. Consider a time
when E(v, u, j) occurs. Node v rejects if any of the checks
below is not valid.

– C1: If v is the endpoint of the candidate edge e = (v, u)

of Fj (v) then v checks that u does not belong to Fj (v),
i.e., that ID(Fj (v)) �= ID(Fj (u)), and that ω̂(Fj (v)) =
ω(e) (recall, it is already ensured that v knows whether
it is an endpoint, and if so, which of its edges is the
candidate);

– C2: If ID(Fj (v)) �= ID(Fj (u)) then v verifies that
ω̂(Fj (v)) ≤ ω((v, u)).

The following lemma now follows from C1, C2 and
Lemma 2.

Lemma 12 – If by some time t, the events E(v, u, j)
occurred for each node v and each neighbour u of v

in G and for each level j , and the verifier did not reject,
then T is an MST of G.

– If T is not an MST, then in the time stated in Lemma 11
after the faults cease, the verifier rejects.

We are now ready for the following theorem, summarizing
Sects. 4–8.

Theorem 3 The scheme described in Sects. 4–8 is a cor-
rect proof labeling scheme for MST. Its memory complexity
is O(log n) bits. Its detection time complexity is O(log2 n)

in synchronous networks and O(Δ log3 n) in asynchronous
ones. Its detection distance is O(f log n) if f faults occurred.
Its construction time is O(n).

Proof The correctness and the specified detection time com-
plexity follow from Lemma 12 and Claim 4. The space taken
by pieces of I stored permanently at nodes (and rotated by
the trains) was already shown to be O(log n) bits. In addition,
a node needs some additional O(log n) bits of memory for
the actions described in Sect. 8. Similarly, the data-structure
at each node and the corresponding 1-proof labeling schemes
(that are used to verify it) consume additional O(log n) bits.
Finally, for each train, a node needs a constant number of
counters and variables, each of logarithmic size. This estab-
lishes the required memory size of the scheme.

To show the detection distance, let network G1 contain
faults. Consider a (not necessarily connected) subgraph U
containing every faulty node v, every neighbour u of v, and
the parts, both of Bottom and of Top of v and u. First,
we claim that no node outside of U will raise an alarm. To
see that, assume (by way of contradiction) that some node
w outside U does raise an alarm. Now, consider a different
network G2 with the same sets of nodes and of edges as
G1. The state of every node in G2\U is exactly the (correct)
state of the same node in G1. The states of the nodes in U

are chosen so that to complete the global configuration to
be correct (Clearly, the configuration can be completed in
such a way). Hence, no node should raise an alarm (since
we have shown that our scheme is correct). However, node
w in G2 receives exactly the same information it receives in
G1, since it receives only information from nodes in the parts
to which it or its neighbours belong. Hence, w will raise an
alarm. A contradiction. The detection distance complexity
now follows from the fact that the radius of U is O(f log n)

(Informally, this proof also says that non-faulty nodes out-
side of U are not contaminated by the faulty nodes, since
the verification algorithm sends information about the faulty
nodes only within U).

The construction time complexity required for the more
complex part of the proof labeling scheme, that is, the proof
scheme described in Sects. 6–8, is dominated by the con-
struction time of the MST algorithm SYNC_MST. This time
is shown to be O(n) in Theorem 1. The construction time
required for the simpler 1-proof labeling scheme described
in Sect. 5 is shown to be linear in Lemma 3. �

9 Verification of time lower bound

We now show that any proof labeling scheme for MST that
uses optimalmemorymust use at least logarithmic time com-
plexity, even when restricted to synchronous networks. The
lower bound is derived below from the relatively complex
lower bound for 1-proof labeling schemes forMSTpresented
in [52], by a not-too-difficult reduction from that problem.
We prove the lower bound on the specific kind of networks
used in [52]. These networks are a family of weighted graphs
termed (h, μ)-hypertrees (The name may be misleading; a
(h, μ)-hypertree is neither a tree nor a part of a hyper graph;
the name comes from them being a combination of (h, μ)-
trees (see also [40,49]) and hypercubes). We do no describe
these hypertrees here, since we use them, basically, as black
boxes. That is, all we need here is to know certain properties
(stated below) of these graphs (We also need to know the
lower bound of [52]).

The following two properties of this family were observed
in [52]. First, all (h, μ)-hypertrees are identical if one consid-
ers them as unweighted. In particular, two homologous nodes
in any two (h, μ)-hypertrees have the same identities. More-
over, the components assigned to two homologous graphs in
[52] are the same. Hence, the (unweighted) subgraphs H(G)

induced by the components of any two (h, μ)-hypertrees are
the same. The second property that was observed is that this
subgraph H(G) is in fact a (rooted) spanning tree of G, the
corresponding (h, μ)-hypertree. Another easy observation
that can be obtained by following the recursive construc-
tion of an (h, μ)-hypertree (see Section 4 of [52]), is that
each node in an (h, μ)-hypertree G is adjacent to at most

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 289

u

=v

v

x2 x3 x4=ux1

1 1 22

73
9

73
9

1
23

1
23

ω=37

Weight=37

ω=37ω=1ω=1

Fig. 10 Transforming an edge of G (the upper part) to a path of G ′
(the lower part) for τ = 1 and the case that the component of u points
at v. The component of v points at v’s port 1

Fig. 11 The case that the component of u points at u’s port 3 that does
not lead to v, and the component of v points at v’s port 1 that does not
lead to u (Note that only a part of the graph is presented here)

one edge which is not in the tree H(G), and that the root of
H(G) is adjacent only to edges in H(G).

Fix an integer τ . Given a (h, μ)-hypertreeG, we transform
G into a new graph G ′ according to the following procedure
(see Figs. 10, 11). We replace every edge (u, v) in G where
ID(u) < ID(v)with a simple path P(u, v) containing 2τ +2
consecutive nodes, i.e., P(u, v) = (x1, x2 . . . , x2τ+2), where
x1 = u, and x2τ+2 = v. For i = 2, . . . , 2τ + 1, the port
number at xi of the port leading to xi−1 (respectively, xi+1)

is 1 (resp., 2). The port-number at x1 (respectively, x2τ+2) of
the port leading to x2 (resp., x2τ+1) is the same as the port-
number of the port leading from u (resp., v) to v (resp., u)

in G. The weight of the edge (x2τ+1, x2τ+2) is the weight of
(u, v), that is, ω(x2τ+1, x2τ+2) = ω(u, v), and the weight of
all other edges in P(u, v) is 1. The identities of the nodes in
the resulted graph are given according to a DFS traversal on
G ′. We now describe the component of each node in G ′. Let
(u, v) be an edge in G and let P(u, v) = (x1, x2 . . . , x2τ+2)

be the correspondingpath inG ′,where x1 = u and x2τ+2 = v

(here we do not assume necessarily that ID(u) < ID(v)).
Consider first the case that in the graph G, the edge (u, v)

belongs to the tree H(G). Assume without loss of generality
that the component of u in G points at v. For each i =
1, 2, . . . , 2τ +1, we let the component at xi point at xi+1 (the
component at x2τ+2 is the same as the component of v in G).
Consider now the case that (u, v) does not belong to H(G).
In this case, for i = 2, 3, . . . , τ + 1, τ + 2, τ + 3, . . . , 2τ +
1, we let the component at xi point at xi−1 (similarly, the
component at x2τ+2 is the same as the component of v in G).

By this construction ofG ′, we get that the subgraph H(G ′)
induced by the components of G ′ is a spanning tree of G ′,
and it is an MST of G ′ if and only if H(G) is an MST of
G. Let F(h, μ, τ) be the family of all weighted graphs G ′
obtained by transforming every (h, μ)-hypertree G into G ′
using the method explained above.

Lemma 13 If there exists a proof labeling scheme for MST
on the family F(h, μ, τ) with memory complexity � and
detection time τ then there exists a 1-proof labeling scheme
(a proof labeling scheme in the sense of [52]) for the MST
predicate on the family of (h, μ)-hypertrees with label size
O(τ�).

Proof Let (M′,V ′) be a proof labeling scheme for MST and
the family F(h, μ, τ) with memory complexity � and detec-
tion time τ . We describe now a 1-proof labeling scheme
(M,V) for the MST predicate on the family of (h, μ)-
hypertrees. Let G be an (h, μ)-hypertree that satisfies the
MST predicate. We first describe the labels assigned by the
markerM to the nodes on G. In this lemma, we are not con-
cerned with the time needed for actually assigning the labels
using a distributed algorithm, hence, we describe the marker
M as a centralized algorithm and not as a distributed one.
(We note that this is consistent with the model of [52] that
considers only centralized marker algorithms).

The markerM transforms G to G ′. Observe that G ′ must
also satisfy the MST predicate. M labels the nodes of G ′
using themarkerM′. Note that any label given by themarker
M′ uses at most � bits. Given a node u ∈ G, let e1(u) be the
edge not in the tree H(G) that is adjacent to u (if one exists)
and let e2(u) be the edge in H(G) leading from u to its parent
in H(G) (if one exists). Let P1(u) = (w1, w2 . . . , w2τ+2) be
the path in G ′ corresponding to e1(u). If u is not the root of
H(G) then e2(u) exists and let P2(u) = (y1, y2 . . . , y2τ+2)

be the path in G ′ corresponding to e2(u), where y1 = u
and y2τ+2 is the parent of u. For the root r of H(G), let
P2(r) be simply (r). If u is not the root of H(G) then for
each i ∈ {1, 2, . . . , 2τ + 1}, the markerM copies the labels
M′(yi) and M′(wi) into the i’th field in the label M(u)

(Note that the labelsM′(wi) are copied in the labels given by
M to both end-nodes of e1(u)). If r is the root of H(G) then
e2(r) does not exist and actually, also e1(r) does not exist,
as r is not adjacent to any edge not in H(G). The markerM
simply copies the label M′(r ′) into the label M(r), where
r ′ is the corresponding node of r in G ′.

123

290 A. Korman et al.

In themodel of proof labeling schemes in [52], the verifier
V at a node u ∈ G can look at the labels of all nodes v such
that (u, v) is an edge of G. In particular, it sees the labels
assigned by M′ to all nodes in G ′ at distance at most 2τ
from its corresponding node u′ in G ′. Let Bτ (u′) be the set
of nodes at distance atmost τ from u′ inG ′.We let the verifier
V at u simulate the operations of the verifier V ′ at each node
in Bτ (u′)–this can be achieved as the information in the 1-
neighbourhood of u (in G) contains the information in the
τ -neighbourhood ofG ′ of any node in Bτ (u′). Finally, we let
V(u) = 1 if and only if V ′(x) = 1 for all x ∈ Bτ (u′). It can
be easily observed that (M,V) is indeed a 1-proof labeling
scheme for the family of (h, μ)-hypertrees. Moreover, each
label assigned by the marker M uses O(τ�) bits (Note that
the model in [52] restricts only the sizes of the labels and not
the memory size used by the verifier). This completes the
proof of the lemma. �

Corollary 3 Fix a positive integer τ = O(log n). The mem-
ory complexity of any proof labeling scheme for F(n) with

detection time τ is Ω(
log2 n

τ
) = Ω(log n) (Recall F(n) rep-

resents all connected undirected weighted graphs).

Proof In [52] we showed that the label size of any proof
labeling scheme for the MST predicate and the family of
(log n, n)-hypertrees is Ω(log2 n) bits. The claim now fol-
lows by combining the previous lemma together with the fact
that the number of nodes in a graph G ′ ∈ F(log n, n, τ) is
polynomial in n. �

10 The self-stabilizing MST construction algorithm

We use a transformer that inputs a non-self-stabilizing algo-
rithm and outputs a self-stabilizing one. For simplicity, we
first explain how to use the transformer proposed in the sem-
inal paper of Awerbuch and Varghese [13] (which utilizes
the transformer of its companion paper [11] as a black box).
This already yields a self-stabilizing MST algorithm with
O(n) time and O(log n) memory per node. Later, we refine
that transformer somewhat to add the property that the ver-
ification time is of O(log2 n) in a synchronous network, or
O(min{Δ log3 n, n}) in an asynchronous one. We then also
establish the property that if f faults occur, then each fault
is detected within its O(f log n) neighbourhood.

The Resynchronizer of [13] inputs a non-stabilizing syn-
chronous input/output algorithm4 �whose running time and
memory size are some T� and S�, respectively. Another
input it gets is D̂, which is an upper bound on the actual
diameter D of the network. It then yields a self-stabilizing

4 An input/output algorithm is one whose correctness requirement can
be specified as a relation between its input and its output.

versionwhosememory size is O(S�+log n) andwhose time
complexity is O(T� + D̂).

For our purposes, to have the Resynchronizer yield our
desired result, we first need to come up with such a bound D̂
on the diameter (Recall that we do not assume that D, or even
n, are known). Second, the result of the Resynchronizer of
[13] is a synchronous algorithm, while we want an algorithm
that can be executed in an asynchronous network. Let us
describe how we bridge these two gaps.

We use known self-stabilizing protocols [1,26] to com-
pute D, the diameter of the network, in time O(n), using
O(log n) bits of memory per node. We use this computed D
as the desired D̂. Note that at the time that [13] was written,
the only algorithm for computing a good bound (of n) on
the diameter with a bounded memory had time complexity
Θ(n2) [3].

To bridge the second gap, of converting the resulting
self-stabilizing algorithm for an asynchronous network, we
use a self-stabilizing synchronizer that transforms algorithms
designed for synchronous networks to function correctly in
asynchronous ones. Such a synchronizer was not known
at the time that [13] was written, but several are available
now. The synchronizer of [9,10] was first described as if it
needs unbounded memory. However, as is stated in [9], this
synchronizer is meant to be coupled with a reset protocol
to bound the memory. That is, to have a memory size of
O(log n) and time O(n), it is sufficient to use a reset pro-
tocol with these complexities. We use the reset protocol of
[11]. Similarly, this reset protocol is meant to be coupled
with a self-stabilizing spanning tree construction algorithm.
The complexities of the resulting reset protocol are domi-
nated by those of the spanning tree construction. We plug
in some spanning tree algorithm with the desired properties
(such as [1,26]) whose memory size and time complexities
are the desiredO(log n) andO(n) in asynchronous networks,
respectively (It is easy to improve the time to O(D) in syn-
chronous networks). This yields the desired reset protocol,
and, hence, the desired synchronizer protocol.5

Let us sum up the treatment of the first two gaps: thanks
to some new modules developed after [13], one can now use
the following version of the main result of [13].

Theorem 4 EnhancedAwerbuch–VargheseTheorem, (EAV):
Assume we are given a distributed algorithm � to compute
an input/output relation. Whether � is synchronous or asyn-
chronous, let T� and S� denote �’s time complexity and
memory size, respectively, when executed in synchronous
networks. The enhanced Resynchronizer compiler produces
an asynchronous (respectively, synchronous) self-stabilizing

5 An alternative synchronizer can be based on the one of [17], again,
coupled with some additional known components, such as a module to
compute n.

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 291

algorithm whose memory size is O(S� + log n) and whose
time complexity is O(T� + n) (resp., O(T� + D)).

The EAV theorem differs from the result in [13] by (1)
addressing also asynchronous algorithms, and (2) basing the
time complexity on the actual values of n and D of the
network rather than on an a-priori bound D̂ that may be arbi-
trarily larger than D or n.

Recall from Theorem 1 that in synchronous networks,
algorithm SYNC_MST constructs an MST in O(n) time and
using O(log n) memory bits per node. Hence, plugging in
algorithm SYNC_MST as � yields the following theorem.

Theorem 5 There exists a self-stabilizing MST construction
algorithm that can operate in an asynchronous environment,
runs in O(n) time and uses O(log n) bits of memory per
node.

10.1 Obtaining fast verification

The Resynchronizer compiler performs iterations forever.
Essentially, the first iteration is used to compute the result of
�, by executing � plus some additional components needed
for the self-stabilization. Each of the later iterations is used to
check that the above result is correct. For that, theResynchro-
nizer executes a checker. If the result is not correct, then the
checker in at least one node “raises an alarm”. This, in effect,
signals the Resynchronizer to drop back to the first iteration.
Let us term such a node a detecting node. Our refinement just
replaces the checker, interfacingwith the originalResynchro-
nizer by supplying such a detecting node.

We should mention that the original design in [13] is
alreadymodular in allowing such a replacement of a checker.
In fact, two alternative such checkers are studied in [13]. The
first kind of a checker is � itself. That is, if � is deter-
ministic, then, if executed again, it must compute the same
result again (this is adjusted later in [13] to accommodate
randomized protocols). This checker functions by compar-
ing the result computed by � in each “non-first” iteration to
the result it has computed before. If they differ, then a fault
is detected. The second kind of a checker is a local checker
of the kinds studied in [3,11] or even one that can be derived
from local proofs [52,53]. That is, a checker whose time
complexity is exactly 1. When using this kind of a checker
the Resynchronizer uses one iteration to execute �, then the
Resynchronizer executes the checker repeatedly until a fault
is detected. It was argued in [13] that the usage of such a
checker (of time complexity exactly 1) is easy, since such
a checker self-stabilizes trivially. We stress that it was later
shown that such a checker (whose time complexity is 1) must
useΩ(log2 n) bits [53]. Hence, plugging such a checker into
the Resynchronizer compiler cannot yield an optimal mem-
ory self-stabilizing algorithm.

The door was left open in [13] for additional checkers.
It was in this context that they posed the open problem of
whether MST has a checker which is faster than MST com-
putation, and still uses small memory (Recall that Theorem
3 answers the open problem in the affirmative).

We use a self-stabilizing verifier (of a proof labeling
scheme) as a checker. That is, if a fault occurs, then the
checker detects it, at least in one node, regardless of the initial
configuration. Such nodes where the fault is detected serve
as the detecting nodes used above by the Resynchrnonizer.
The following theorem differs from the EAV theorem by stat-
ing that the final protocol (resulting from the transformation)
also enjoys the good properties of the self-stabilizing veri-
fier. I.e., if the self-stabilizing verifier has a good detection
time and good detection distance, then, the detection time
and distance of the resulting protocols are good too.

Theorem 6 Suppose we are given the following:

– A distributed algorithm � to compute an input/output
relation R. Whether � is synchronous or asynchronous,
let T� and S� denote �’s time complexity and memory
size, when executed in synchronous networks.

– Anasynchronous (respectively, synchronous) proof label-
ing scheme �′ for verifying R with memory size S�′ ,
whose verifier self-stabilizes with verification time and
detection distance t�′ and d�′ , and whose construction
time (of the marker) is T�′ .

Then, the enhanced Resynchronizer produces an asynchro-
nous (resp., synchronous) self-stabilizing algorithm whose
memory and time complexities are O(S� + S�′ + log n) and
O(T� +T�′ + t�′ +n) (resp., O(T� +T�′ + t�′ + D)), and
whose verification time and detection distance are t�′ and
d�′ .

Proof The proof relies heavily on the Resynchronizer com-
piler given by the EAV theorem (Theorem 4). This Resyn-
chronizer receives as input the following algorithm �′′,
which is not assumed to be neither self-stabilizing nor asyn-
chronous. Specifically, algorithm �′′ first constructs the
relation R using algorithm � and, subsequently, executes
the marker algorithm of the proof labeling scheme �′.

The resulted Resynchronizer (when executing together
with the algorithm �′′ it transforms) is a detection based
self-stabilizing algorithm (see the explanation of the detec-
tion time and distance in Sect. 2.5). It executes algorithm
�′′ for a set amount of time (here, counting the time using
the self-stabilizing synchronizer) and then puts all the nodes
in an output state, where it uses the self-stabilizing verifier
of the proof labeling scheme �′ to check (Recall, in con-
trast to the marker algorithm, the verifier algorithm of �′
is assumed to be self-stabilizing). The detection time and
the detection distance of the combined algorithm thus follow

123

292 A. Korman et al.

Fig. 12 Structure of the
self-stabilizing (synchronous or
asynchronous) MST
construction algorithm obtained
by the enhanced resynchronizer

Fig. 13 Algorithm SYNC_MST,
mainly consisting of algorithms
Count_Size and
Find_Min_Out_Edge,
induces the hierarchy of a MST.
From the hierarchy the
proof-labeling-scheme, mainly
consisting of the trains and the
construction of partitions
Bottom and Top, produces a
marker and a verifier

directly from the detection time and the detection distance
of the proof labeling scheme �′. This concludes the proof of
the theorem. �

Now, as algorithm �, we can plugged in Theorem 6 the
MST construction algorithm SYNC_MST, that uses optimal
memory size and runs in O(n) time. Furthermore, two pos-
sible proof labeling schemes that can be plugged in Theorem
6 as �′ are the schemes of [52,53]. Both these schemes use
O(log2 n) memory size. Since their detection time is 1, they
stabilize trivially. The corresponding distributed markers are
simplifiedversions of themarker of the proof labeling scheme
given of the current paper, and hence their construction time
is O(n). Hence, plugging either one of these schemes as �′
yields the following.

Corollary 4 There exists a self-stabilizing MST algorithm
with O(log2 n) memory size and O(n) time. Moreover, its
detection time is 1 and its detection distance is f + 1.

Finally, by plugging to the Resynchronizer given in Theorem
6, the construction algorithm SYNC_MST as � and our opti-
mal memory proof labeling scheme mentioned in Theorem
3 as �′, we obtain the following.

Theorem 7 There exists a self-stabilizing MST algorithm
that uses optimal O(log n) memory size and O(n) time.
Moreover, its detection time complexity is O(log2 n) in syn-
chronous networks and O(Δ log3 n) in asynchronous ones.
Furthermore, its detection distance is O(f log n).

10.2 Combining self-stabilizing algorithms

The algorithm in this paper is composed of multiple modules
(Figs. 12, 13). Someof themare self-stabilizing, and someare
not. When composing self-stabilizing algorithms together,
the result may not be self-stabilizing, so one should take care
[32]. We have claimed the stabilization of composite pro-
grams throughout this paper. For the sake of completeness,

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 293

let us go over all the components here once again, to recall
that their composition self-stabilizes in spite of the compo-
sition.

Themain composition is that of the transformer algorithm
of Awerbuch and Varghese [13] together with a checking
scheme. The way to perform this composition, as well as its
correctness, have been established in [64] (as well as in [13]).
See Theorem 6.1 in [13] and Theorem 9.3.2 in [64].

A synchronizer uses, as an input, the number of nodes and
the value of the diameter computed by other algorithms. Here
the correctness follows easily from the “fair combination”
principle of [32,62]. That is, the algorithms computing these
values do not use inputs from the other algorithms in the
composition. Moreover, their outputs stabilize to the correct
values at some points (from their respective proofs, that do
not depend on assumptions in other algorithms). From that
time on, their values are correct.

The tree construction itself is not supposed to be self-
stabilizing for the transformer scheme of [13]. This is also the
case with the marker algorithm, since the MST construction
algorithm and the marker together constructs a data structure
to be verified (Recall that verifying the MST alone is costly
[51]; hence the idea is to construct a “redundant” represen-
tation of the MST, containing the MST plus the proof labels,
such that verifying this redundant data structure is easier).

It is left to argue that the verifier on its own self-stabilizes,
in spite of the fact that it is composed of several components.
Recall that the output of the verifier is a logical AND of
several verifiers. That is, if either the verifier for the scheme
for the well-forming property (Sects. 4, 5) or the verifier for
the scheme for the Minimality property (Sects. 6, 7, and 8)
outputs “no”, then the combined (composed together) verifier
outputs no. Hence, the different schemes do not interfere
with each other. If all of them are self-stabilizing, then the
composition is self-stabilizing. In particular, the scheme for
verifying the well-forming property runs in one time unit
repeatedly. As observed by [13], such a verifier is necessarily
self-stabilizing. It is then left to show that the verifier for the
Minimality property self-stabilizes.

Note that Sect. 6 describes a part of the marker, devoted
to the scheme for verifying the Minimality property. Recall
that the marker is not required to self-stabilize. Section 7
describes the trains process which is composed of two parts:
the convergecast of the information to a part’s root, and its
broadcast from the root. The second process (the broadcast)
inputs (at the root) the results of the first process, but not
vice versa. Hence, clearly, the composition self-stabilizes as
above (that is, after the first process eventually stabilizes, the
second process will eventually stabilize too). The pieces of
information carried by the train are then used by each node
to compare information with its neighbours (in Sect. 7.2) and
by the part root (in Sect. 5). Again, the flow of information
between modules is one way. That is, from the train process

to the computations by each node and by the root. After
the trains stabilizes, so does the rest, eventually (The later
computations also input the output of the module computing
the number n of nodes in the network; again, the flow of
information is only unidirectional, and hence the verifier does
stabilize after the n computation stabilizes).

Comment 3 Using later synchronizers: As explained in
Sect. 10, for simplicity of the presentation we prefer using the
synchronizer and the reset protocols built in the scheme of
[13], since the proof of their composition is already covered
in [13,64]. For those who prefer using the later synchronizers
and reset protocols we mentioned, e.g., [10], the composition
would remain self-stabilizing even if we use those. The cor-
rection of this statement has essentially been established in
those synchronizers papers. That is, they presented synchro-
nizers such that they can take any algorithm intended to run
over a synchronous network, compose with it, and have it run
correctly (and in a self-stabilizing manner) in an asynchro-
nous network. The same holds also for self-stabilizing reset
protocols.

For the sake of completeness, let us recall, nevertheless,
why this composition is correct. For the synchronizer towork,
it needs a certain output from the algorithm. This output is
TRIVIAL. That is, a SYNCHRONOUS algorithm at a node
at a pulse acts as follows. It receives messages from ALL the
neighbours (or at least a statement that no message is going
to arrive from a specific neighbour), and then processes a
message from each neighbour. Then it is ready for the next
pulse.

Thus, the synchronizer needs to know (1) when did the
algorithm receive messages from all the neighbours. For
this purpose, the synchronizer receives the messages on the
algorithm’s behalf, and when it receives all of them (or notifi-
cations that no messages will be sent), it passes all of them to
the algorithm together, which, in turn, processes all of these
messages together. The algorithm needs then to tell the syn-
chronizer that it has finished processing the messages. If this
processing generates messages to be sent to neighbours, the
algorithm needs to give these new messages to the synchro-
nizer to send them on the algorithm’s behalf (This is done so
that if there is a neighbour u to which the node does not send
a message in the current pulse, the synchronizer will send a
“dummy” message, saying that no message will arrive).

The analysis of the synchronizers (in the papers that pre-
sented self-stabilizing synchronizers, e.g., [10]) were based
on the rather obvious observation regarding the correctness
of this trivial information for any “reasonable” algorithm,
starting from the second round. That is, it is not assumed
that the computation or the messages are correct. What
is assumed by the synchronizers is just the fact that the
algorithm computed already the messages from the previous
round (and is giving the synchronzer the resulting messages).

123

294 A. Korman et al.

Obviously, this assumption holds for our algorithm too, sowe
can rely on the results of the papers where the synchronizers
were designed.

References

1. Afek, Y., Bremler-Barr, A.: Self-stabilizing unidirectional network
algorithms by power supply. Chic. J. Theor. Comput. Sci. (1998)

2. Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing
protocols for general networks. In: WDAG (renamed DISC), pp.
15–28 (1991)

3. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and
its application to self-stabilization. Theor. Comput. Sci. 186(1–2),
199–229 (1997)

4. Aggarwal, S., Kutten, S.: Time optimal self-stabilizing spanning
tree algorithms. In: FSTTCS, pp. 400–410 (1993)

5. Antonoiu, G., Srimani, P.: Distributed self-stabilizing algorithm
for minimum spanning tree construction. Euro-Par 1300, 480–487
(1997)

6. Arora, A., Gouda, M.G.: Distributed reset. IEEE Trans. Comput.
43(9), 1026–1038 (1994)

7. Awerbuch, B.: A new distributed depth first search algorithm. Inf.
Process. Lett. 20(3), 147–150 (1985)

8. Awerbuch, B.: Optimal distributed algorithms forminimumweight
spanning tree, counting, leader election and related problems. In:
STOC, pp. 230–240 (1987)

9. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese,
G.: Time optimal self-stabilizing synchronization. In: STOC, pp.
652–661 (1993)

10. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Vargh-
ese, G.: A time-optimal self-stabilizing synchronizer using a phase
clock. IEEE Trans. Dependable Secure Comput. 4(3), 180–190
(2007)

11. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by
local checking and correction. In: FOCS, pp. 268–277 (1991)

12. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-
stabilization by local checking and global reset. In: WDAG, pp.
326–339 (1994)

13. Awerbuch, B., Varghese, G.: Distributed program checking: a par-
adigm for building self-stabilizing distributed protocols. In: FOCS,
pp. 258–267 (1991)

14. Azar,Y.,Kutten, S., Patt-Shamir, B.:Distributed error confinement.
ACM Trans. Algorithms 6(3), 48 (2010)

15. Blin, L., Dolev, S., Potop-Butucaru, M.G., Rovedakis, S.: Fast
self-stabilizingminimum spanning tree construction. In: DISC, pp.
480–494 (2010)

16. Blin, L., Potop-Butucaru, M., Rovedakis, S., Tixeuil, S.: A new
self-stabilizingminimum spanning tree constructionwith loop-free
property. In: DISC, pp. 407–422 (2009)

17. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-
stabilization. In: PODC, pp. 150–159 (2004)

18. Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilization and
PIF in tree networks. Distrib. Comput. 20(1), 3–19 (2007)

19. Chang, E.J.H.: Echo algorithms: depth parallel operations on gen-
eral graphs. IEEE Trans. Softw. Eng. 8(4), 391–401 (1982)

20. Chlamtac, I., Kutten, S.: Tree-based broadcasting inmultihop radio
networks. IEEE Trans. Comput. 36(10), 1209–1223 (1987)

21. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Inf.
Process. Lett. 49(6), 297–301 (1994)

22. Cournier, A., Petit, F., Villain, V., Datta, A.K.: Self-stabilizing
PIF algorithm in arbitrary rooted networks. In: ICDCS, pp. 91–
98 (2001)

23. Dalal, Y.K.: A distributed algorithm for constructingminimal span-
ning trees. IEEE Trans. Softw. Eng. 13(3), 398–405 (1987)

24. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D.,
Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verifica-
tion and hardness of distributed approximation. SIAM J. Comput.
41(5), 1235–1265 (2012)

25. Datta, A.K., Larmore, L.L., Pinigantim, H.: Self-stabilizing leader
election in dynamic networks. In: SSS, pp. 35–49 (2010)

26. Datta,A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader elec-
tion in optimal space. In: SSS, pp. 109–123 (2008)

27. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed con-
trol. CACM 17(11), 643–644 (1974)

28. Dixon, B., Rauch, M., Tarjan, R.E.: Verification and sensitivity
analysis of minimum spanning trees in linear time. SIAM J. Com-
put. 21(6), 1184–1192 (1992)

29. Dixon, B., Tarjan, R.E.: Optimal parallel verification of minimum
spanning trees in logarithmic time. Algorithmica 17(1), 11–18
(1997)

30. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
31. Dolev, S., Gouda, M., Schneider, M.: Requirements for silent sta-

bilization. Acta Inform. 36(6), 447–462 (1999)
32. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic sys-

tems assuming only read/write atomicity. Distrib. Comput. 7(1),
3–16 (1994)

33. Even, S.: Graph Algorithms. Computer Science Press, Rockville
(1979)

34. Fraigniaud, P., Gavoille, C.L.: Routing in trees. In: ICALP, pp.
757–772 (2001)

35. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision.
In: FOCS, pp. 708–717 (2011)

36. Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized dis-
tributed decision. In: DISC, pp. 371–385 (2012)

37. Fraigniaud, P., Halldorsson, M.M., Korman, A.: On the impact of
identifiers on local decision. In: OPODIS, pp. 224–238 (2012)

38. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm
for minimum-weight spanning trees. ACM Trans. Program. Lang.
Syst. 5(1), 66–77 (1983)

39. Garay, J., Kutten, S., Peleg, D.: A sub-linear time distributed algo-
rithm for minimum-weight spanning trees. In: FOCS, pp. 659–668
(1993)

40. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in
graphs. J. Algorithms 53(1), 85–112 (2004)

41. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-
containing self-stabilizing algorithms. In: PODC, pp. 45–54 (1996)

42. Goemans, M.X.: Minimum bounded degree spanning trees. In:
FOCS, pp. 273–282 (2006)

43. Goldreich, O., Shrira, L.: Electing a leader in a ring with link fail-
ures. Acta Inform. 24(1), 79–91 (1987)

44. Göös, M., Suomela, J.: Locally checkable proofs. In: PODC, pp.
159–168 (2011)

45. Gupta, S.K.S., Srimani, P.K.: Self-stabilizing multicast protocols
for ad hoc networks. J. Parallel Distrib. Comput. 63(1), 87–96
(2003)

46. Higham, L., Liang, Z.: Self-stabilizing minimum spanning tree
construction on message passing networks. In: DISC, pp. 194–208
(2001)

47. Israeli, A., Jalfon, M.: Token management schemes and random
walks yield self stabilizing mutual exclusion. In: PODC, pp. 119–
132 (1990)

48. Jayaram, G.M., Varghese, G.: The fault span of crash failures.
JACM 47(2), 244–293 (2000)

49. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for
flow and connectivity. SIAM J. Comput. 34, 23–40 (2004)

50. Katz, S., Perry, K.J.: Self-stabilizing extensions for message-
passing systems. Distrib. Comput. 7(1), 17–26 (1993)

123

Fast and compact self-stabilizing verification, computation, and fault detection of an MST 295

51. Kor, L., Korman, A., Peleg, D.: Tight bounds for distributed MST
verification. In: STACS, pp. 69–80 (2011)

52. Korman, A., Kutten, S.: Distributed verification of minimum span-
ning trees. Distrib. Comput. 20(4), 253–266 (2007)

53. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib.
Comput. 22(4), 215–233 (2010)

54. Korman, A., Peleg, D.: Compact separator decomposition for
dynamic trees and applications. Distrib. Comput. 21(2), 141–161
(2008)

55. Kutten, S., Peleg, D.: Fast distributed construction of k-dominating
sets and applications. In: PODC, pp. 238–249 (1995)

56. Lotker, Z., Patt-Shamir, B., Peleg,D.: DistributedMST for constant
diameter graphs. Distrib. Comput. 18(6), 453–460 (2006)

57. McQuillan, J., Richer, I., Rosen, E.: The new routing algorithm for
the ARPANET. IEEE Trans. Commun. 28(5), 711–719 (1980)

58. Naor, M., Stockmeyer, L.: What can be computed locally? In:
STOC, pp. 184–193 (1993)

59. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach.
SIAM, Philadelphia (2000)

60. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time
complexity of distributedminimum-weight spanning tree construc-
tion. SIAM J. Comput. 30(5), 1427–1442 (2000)

61. Segall, A.: Distributed network protocols. IEEE Trans. Inf. Theory
29(1), 23–34 (1983)

62. Stomp, F.A.: Structured design of self stabilizing programs. In:
Proceedings IEEE 2nd Israeli Symposium on Theory of Computer
Systems, pp. 167–176 (1993)

63. Tarjan, R.E.: Applications of path compression on balanced trees.
JACM 26(4), 690–715 (1979)

64. Varghese, G.: Self-stabilization by local checking and correction.
PhDdissertation, Laboratory forComputer Science,Massachusetts
Institute of Technology (1992)

123

	Fast and compact self-stabilizing verification, computation, and fault detection of an MST
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.3 Our results
	1.4 Outline

	2 Preliminaries
	2.1 Some general definitions
	2.2 Using protocols designed for message passing
	2.3 Wave&Echo
	2.4 Proof labeling schemes
	2.5 Generalizing the complexities to a computation
	2.6 Some examples of 1-proof labeling schemes

	3 Overview of the MST verification scheme and the intuition behind it
	3.1 Background and difficulties
	3.2 A very high level overview
	3.3 Verifying the well-forming property (described in detail in Sects. 4 and 5)
	3.4 Verifying the minimality property (described in detail in Sects. 6, 7 and 8)
	3.4.1 Distribution of the pieces of information (described in detail in Sect. 6)
	3.4.2 Viewing the pieces of information (described in detail in Sect. 7)
	3.4.3 Local verifications (described in detail in Sect. 8)

	4 A synchronous MST construction in O(logn) bits memory size and O(n) time
	4.1 Recalling the MST algorithm of Gallager, Humblet, and Spira (GHS)
	4.2 Algorithm SYNC_MST: a synchronous linear time version with optimal memory size

	5 Representing and verifying a hierarchy
	5.1 Hierarchy calHcalM and candidate function χcalM
	5.2 Representing a hierarchy distributively and verifying it locally
	5.3 Representing and verifying a candidate function for the Roots-hierarchy
	5.4 The distributed marker algorithm

	6 Distributing pieces of information
	6.1 The two partitions
	6.1.1 Partition Top
	6.1.2 Partition Bottom
	6.1.3 Representations of the partitions

	6.2 Distributing the information of fragments
	6.3 Distributed implementation
	6.3.1 The Multi_Wave primitive
	6.3.2 Distributed construction of partition calP'
	6.3.3 Constructing partition calP''
	6.3.4 Constructing partition Top
	6.3.5 Constructing partition Bottom
	6.3.6 Initializing the trains information
	6.3.7 Storing I in partition Top
	6.3.8 Storing I in partition Bottom

	7 Viewing distributed information
	7.1 The trains
	7.2 Sampling and synchronizing
	7.2.1 The comparing mechanism in synchronous networks
	7.2.2 The comparing mechanism in asynchronous networks

	8 Local verifications
	9 Verification of time lower bound
	10 The self-stabilizing MST construction algorithm
	10.1 Obtaining fast verification
	10.2 Combining self-stabilizing algorithms

	References

