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Abstract We present a randomized distributed algorithm
that in radio networks with collision detection broadcasts a
single message in O(D + log6 n) rounds, with high proba-
bility. This time complexity is most interesting because of its
optimal additive dependence on the network diameter D. It
improves over the currently best knownO(D log n

D + log2 n)

algorithms, due to Czumaj and Rytter (Broadcasting algo-
rithms in radio networks with unknown topology. In: Pro-
ceedings of the symposium on foundations of computer sci-
ence, pp 492–501, 2003), and Kowalski and Pelc (Broad-
casting in undirected ad hoc radio networks. In: Proceedings
of the ACM SIGACT-SIGOPS symposium on principles of
distributed computing, pp 73–82, 2003). These algorithms
where designed for the model without collision detection
and are optimal in that model. However, as explicitly stated
by Peleg in his 2007 survey on broadcast in radio networks,
it had remained an open question whether the bound can be
improved with collision detection. We also study distributed
algorithms for broadcasting k messages from a single source
to all nodes. This problem is a natural and important gen-
eralization of the single-message broadcast problem, but is
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in fact considerably more challenging and less understood.
We show the following results: If the network topology is
known to all nodes, then a k-message broadcast can be per-
formed in O(D + k log n + log2 n) rounds, with high prob-
ability. If the topology is not known, but collision detection
is available, then a k-message broadcast can be performed in
O(D + k log n + log6 n) rounds, with high probability. The
first bound is optimal and the second is optimal modulo the
additive O(log6 n) term.

Keywords Wireless networks · Radio networks ·
Broadcast · Collision detection · Random linear
network coding

1 Introduction

The classical information dissemination problem in radio
networks is the problem of broadcasting a single message
to all nodes of the network (single-message broadcast).
This problem and its generalizations have received extensive
attention.

A characteristic of radio networks is that multiple mes-
sages that arrive at a node simultaneously interfere (col-
lide) with one another and none of them is received suc-
cessfully. Regarding whether nodes can distinguish such a
collision from complete silence, the model is usually divided
into two categories of with and without collision detection.
Throughout studies of problems in radio networks, it has
been observed that many problems can be solved faster in
the model with collision detection [21]. Despite this trend, it
had remained unclear whether this is also the case for broad-
cast or not [20]. We show that single-message broadcast
can be indeed solved faster, in simply diameter plus poly-
logarithmic time, if collision detection is available. Even
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though our work is theoretical, we remark that most prac-
tical radio networks can detect collisions.

Broadcasting k messages from one node to all nodes is a
natural and important generalization of the single-message
broadcast problem. Usually, this generalization involves new
and significantly different challenges, mainly because the
dissemination of different messages can interfere with each
other.We show how to overcome these challenges and obtain
an (almost) optimal k-message broadcast algorithm.

1.1 Model and problem statements

We work in the radio network model with collision detec-
tion [5]: a synchronous undirected network G = (V, E)

where in each round, each node either transmits a packet
with B bits or listens. As a standard assumption, to ensure
that each packet can contain a constant number of ids, we
assume that B = Ω(log n). Each node v receives a packet
from its neighbors only if it listens in that round and exactly
one of its neighbors is transmitting. If two or more neighbors
of v transmit, then v only detects the collision, which is mod-
eled as v receiving a special symbol � indicating a collision.
We explain that some of our results hold even in the model
without collision detection, where if two or more neighbors
of v transmit, then v does not receive anything.

The single-message broadcast problem is defined as fol-
lows: A single source node has a single message of length
at most Θ(B) bits and the goal is to deliver this message
to all nodes in the network. The k-message single-source
broadcast problem is defined similarly, with the difference
that the source has k messages which need to be delivered to
all other nodes. We focus on randomized solutions to these
problems where we require that the message(s) are delivered
to all nodes with high probability.1 In the unknown topology
setting (which is our default setting), we assume2 that nodes
know a polynomial upper bound on n and a constant factor
upper bound on diameter D. In the known topology setting,
similar to [8], we assume that nodes know the whole graph.

1.2 Our results

Our main results are as follows:

Theorem 1 In radio networks with unknown topology and
with collision detection, there is a randomized distributed
algorithm that broadcasts a single message in O(D+log6 n)

rounds, with high probability.

1 We use the phrase “high probability” to indicate a probability at least
1 − 1

nc , for a constant c ≥ 1, and where n is the network size.
2 It is easy to see that the latter assumption can be removed without any
change in our time-bounds, by finding a 2-approximation of D in time
O(D), using the beep waves tool of [11].

Theorem 2 In radio networks with known topology (even
without collisiondetection), there is a randomizeddistributed
algorithm that broadcasts k messages in O(D + k log n +
log2 n) rounds, with high probability.

Theorem 3 In radio networks with unknown topology and
with collision detection, there is a randomized distributed
algorithm that broadcasts k messages in O(D + k log n +
log6 n) rounds, with high probability.

About Theorem 1, we remark that prior to this work, the
best known solution for single-message broadcast was the
O(D log n/D + log2 n) algorithms presented independently
by Czumaj and Rytter [7], and Kowalski and Pelc [16], for
the model without collision detection. In that model, these
bounds are optimal [1,18]. As Peleg points out in [20],
prior to this work, it was unclear whether these upper
bounds can be improved in the model with collision detec-
tion. Theorem 1 answers this question by showing that a
better upper bound is indeed achievable. We remark that
the bound of Theorem 1 is within an additive poly-log
of the Ω(D + log2 n) lower bound, that follows from the
Ω(log2 n) lower bound of [1] and the obvious lower bound
of Ω(D).

About Theorems 2 and 3, we remark that these two
results use random linear network coding (RLNC). More-
over, we note that even in the strong model of central-
ized algorithms with full topology knowledge, with colli-
sion detection, and with network coding, k-message broad-
cast has a lower bound of Ω(D + k log n + log2 n) rounds.
This lower bound follows from the Ω(k log n) throughput-
based lower bound of [2] for a k-message broadcast,
the Ω(log2 n) lower bound of [1] for a single message
broadcast, and the trivial Ω(D) lower bound. Thus, the
complexity of Theorem 2 is optimal and the complexity
of Theorem 3 is optimal modulo the additive O(log6 n)

term.
When looking at the issue from a practical angle, Theo-

rems 1 and 3 have an interesting message: they show that one
can replace the (expensive and not-completely-reasonable)
assumption of all nodes knowing the full topology of the net-
work, with (the considerably more reasonable and usually-
available) collision detection, and still perform single ormul-
tiple broadcast tasks almost in the same time.

To achieve the above three results, we present three new
technical elements, which each can be interesting on their
own:

(A) The first element is a distributed construction of a
gathering-spanning-tree (GST) with round complexity
of O(D log4 n). GSTs were first introduced by [8] to
obtain broadcast algorithms with an additive O(D)

diameter dependence in the known topology setting [8,
9,19]. The only known construction of GST prior to
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Randomized broadcast in radio networks 409

this work was the centralized algorithm of Gasieniec
et al. [8], which has step-complexity of O(n2) opera-
tions and requires the full knowledge of the graph. We
use our new GST construction to prove Theorem 1.
For this we first decompose the graph appropriately,
then we construct a GST for every part in parallel and
lastly we use this setup to broadcast the (single) message
efficiently.

(B) The second element is a novel transmission schedule
atop GST for solving multiple message broadcast prob-
lems. We contend this schedule to be the right general-
ization of [8] for multiple messages. Such a generaliza-
tion was also attempted in [19] but its correctness was
disproved [22].

(C) The third element is backwards analysis, an new way
to analyze the progress of messages during a multi-
message radio network broadcast. Backward analysis
shows that a message spreads quickly even when other
messages that are spread at the same time cause colli-
sions. A priori it is not clear that information dissem-
ination remains efficient in the presence of these col-
lisions, which only arise in the multi-message setting.
Insights from the backwards analysis were crucial in the
design of our multi-message transmission schedule and
also enable us to apply the projection analysis of Hae-
upler [12] for analyzing random linear network coding
to prove Theorems 2 and 3.

1.3 Related work

Designing distributed broadcast algorithms for radio net-
works has received extensive attention, starting with the pio-
neering work of Bar-Yehuda, Goldreich and Itai (BGI) [3].
Here, we present a brief review of the results that directly
relate to this paper.

Single-message broadcast Peleg [20] provides a compre-
hensive survey of the known results about single-message
broadcast. BGI [3] present the Decay protocol which broad-
casts a single message in O(D log n + log2 n) rounds. The
best known distributed algorithms for single-message broad-
cast for the setting where the topology is unknown are the
O(D log n

D + log2 n) algorithms presented independently by
Czumaj and Rytter [7], and Kowalski and Pelc [16]. These
algorithms can be viewed as clever optimizations of the
Decay protocol [3]. Moreover, similar to the Decay protocol,
these two algorithms are presented for themodel without col-
lision detection and are optimal in that model [1,18]. Prior to
this work, no better algorithm was known for the model with
collision detection. If the topology of the network is known,
then the algorithm of Gasieniec et al. [8] achieves the optimal
O(D+log2 n) time complexity. Kowalski and Pelc [17] gave

an explicit deterministic broadcast protocol which achieves
the same time complexity.

Multi-message broadcast The complexity of multi-message
broadcast (with bounded packet size) is less understood. In
the model without collision detection, the following results
are known. The earliest work on multi-message broadcast
problem is by BarYehuda et al. [4], which broadcasts k
messages in O((n + (k + D) log n) logΔ) rounds, where
Δ is the maximum node degree. Chlebus et al. [6] present
a deterministic algorithm that broadcasts k messages in
O(k log3 n + n log4 n) rounds. Khabbazian and Kowalski
[15] and Ghaffari and Haeupler [10] give randomized algo-
rithm that reduce the dependency on k to O(k log n) using
coding techniques. Ghaffari et al. [2] give an Ω(k log n)

lower bound which shows that this throughput is optimal
and furthermore studywhether coding is necessary to achieve
this throughput. The randomized algorithms of [15] and [10]
broadcast kmessages in O(k logΔ+(D+log n) log n logΔ)

rounds and O(k logΔ + (D + log n) log n logΔ) rounds
respectively. Again, prior to this work, no better algorithm
was known for the model with collision detection.

2 Single-message broadcast

We first recall the definition of a GST [8], in Sect. 2.1. Then,
in Sect. 2.2, we present a distributed algorithm with time
complexity O(D log4 n) for constructing aGST, in radio net-
works with unknown topology (even without collision detec-
tion). In Sect. 2.3, we then show that this algorithm can be
used to broadcast a single message in O(D+ log6 n) rounds,
in radio network with unknown topology but with collision
detection.

2.1 Gathering spanning trees (GST)

Ranked BFS Consider a BFS tree T in graph G, rooted
at source node s. Also, suppose that in this tree, we have
assigned to each node v a level number �(v), which is equal
to the distance of v from s. We rank the nodes of T using the
following inductive ranking rule: Each leaf of T gets rank 1.
Then, consider node v and suppose that all children of v in
T are already ranked. Let r be the maximum rank of these
children. If v has exactly one child with rank r , then node v

gets rank r . If v has two or more children with rank r , then
v gets rank r + 1. As shown in [8], one can easily see that in
each ranked BFS, the largest rank is at most �log2 n�.

Gathering spanning tree (GST) [8] A ranked BFS-tree T is
called aGSTof graphG if and only if the following collision-
freeness property is satisfied:
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Fig. 1 Gathering spanning tree

In graphG, any node of rank r on level l of T is adjacent
to at most one node of rank r at level l−1 of T . In other
words, if there are two nodes u1 and u2 with rank r on
level l of T , and their parents in T are respectively v1
and v2 �= v1 (on level l − 1 of T ), and v1 and v2 have
rank r as well, then there is no edge between v1 and u2
or between v2 and u1.

Fast stretches in a GST In a GST T , for each path in T from
a node v to a node u that is a descendant of v in T , we call this
path a fast stretch if all the nodes on the path have the same
rank. Note that a fast stretch might be just a single node.

Distributed GST In a distributed construction of a GST, each
node umust learn the following four items3: (1) its level �(u),
(2) its own rank r(u), (3) the id of its parent v, and (4) the
rank of its parent r(v).

Figure 1 presents an example of a GST. The black edges
present the graph G and the thicker green edges present a
rank labeled BFS tree T of G. On the left side, we see a
rank-labeled BFS tree, but this tree is not a GST because of
the violation of the collision-freeness property indicated by
the red dashed arrow. On the right side, we see another rank-
labeled BFS of the same graph G, which is a GST. In this
GST, the green edges that are coated with wide blue lines
indicate the fast stretches. Each node that is not incident on
any of these blue-coated edges forms a trivial fast-stretch
made of just a single node.

Broadcast atop GST In [8], Gasieniec et al. presented an
algorithm to broadcast a single message in O(D + log2 n)

rounds, atop a GST. A high-level explanation is as follows:
with a careful timing, the message can be sent through the
fast stretches without any collision. That is, we can (almost
simultaneously) send themessage through different stretches

3 From (2) and (4), any node u can easily infers whether it is the first
node in a fast stretch and whether its parent is in that stretch as well.

such that in each fast stretch, the message gets broadcast
from the start of the stretch to the end of the stretch in a time
asymptotically equivalent to the length of the stretch. On the
other hand, since the largest rank in the tree T is at most
�log2 n� and because on each path from the source to any
node v, the ranks are non-increasing, we get that the path
from the source to each node v is made of at most �log2 n�
distinct fast stretches. By using the Decay protocol4 [3] on
each of the (at most) �log2 n� connections between the fast
stretches, we get a broadcast algorithmwith time complexity
O(D + log2 n). We refer the reader to [8] for the details of
this broadcast algorithm. We remark that we will use [8]
simply as a black-box that broadcasts a single-message in
time O(D + log2 n) on top of the GSTs we construct.

2.2 Distributed GST construction

In this subsection, we present the following result:

Theorem 4 In the radio networks (even without collision
detection), there exists a distributed GST construction algo-
rithm with time complexity O(D log4 n) rounds.

We show a GST construction with round-complexity of
O(D log5 n) in Sects. 2.2.1–2.2.3. We later improve this to
O(D log4 n) rounds, in Sect. 2.2.4.

2.2.1 Black-box tools

Before starting the construction, we first present two black-
box tools which we use in our construction.

Decay protocol [3] Rounds are divided into phases of log n
rounds, and in the i th round of each phase, each node v trans-
mits with probability 2−i (if it has a message for transmis-
sion).

4 The Decay protocol is a standard technique for coping with collisions
in radio networks. We present a short recap on it in Sect. 2.2.1.
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Randomized broadcast in radio networks 411

Lemma 1 [3] For each node v, if at least one neighbor of
v has a message for transmission, then in each phase of the
Decay protocol, node v receives at least one message with
probability at least 1

8 . Moreover, in Θ(log n) such phases, v
receives at least one message, with high probability.

Recruiting protocol The protocol consists of Θ(log2 n)

recruiting iterations, each having 2 + Θ(log n) rounds
as follows:

– In the first round of the j th recruiting iteration, each

red node transmits its id with probability 2−� j
Θ(log n)

�.
– Then, we run a phase of the Decay protocol, consist-
ing of Θ(log n) rounds, from the side of blue node.
In this phase, each not-recruited blue node u that
received a message of a red node v tries to transmit
u.id and v.id (together in one packet).

– After that, the red nodes repeat the exact transmis-
sions of thefirst roundof this iteration,with newcon-
tents as follows: (1) if in the previous Decay phase,
a red node v received its own id from exactly one
blue node u, then v broadcasts v.id, (2) if the red
node v received its own id from two or more blue
nodes, then v broadcasts a special message �. (3)
Otherwise, v transmits an empty message.

– Next, if a blue node u received its own id or the
special message � in the last round, then we say u
is recruited by red node v, where v is the red node
such that u received v.id in the first round. Note that
each red node v knowswhether it recruited zero, one
or at least two blue nodes.

Recruiting protocol This tool can be abstracted by the guar-
antees that it provides, which we present in Lemma 2.

Lemma 2 Consider a bipartite graphHwhere nodes on one
side are called red and nodes on the other side are called
blue. The recruiting protocol achieves the following three
properties, w.h.p., in Θ(log3 n) rounds: (a) for each blue
node u, we assign an adjacent red node v to u. In this case,
we say u is recruited by v (then called parent of u), (b) each
red node v knows whether it recruited zero, one, or at least
two blue nodes, (c) each recruited blue node u knowswhether
its parent v recruited zero, one, or at least two blue nodes.

Proof of Lemma 2 We show that each blue node is recruited
with high probability. The other parts follow easily from the
description of the algorithm.

Consider an arbitrary blue node u. It is easy to see that
there are Θ(log n) iterations such that in the first round of
each of these iterations, u receives the message of a red node.
This is because, for each j th iteration where j is such that

2 j ∈ [ d(u) · log n
2 , 2d(u) · log n], and where d(u) denotes

the degree of u in H, node u receives a message in the first
round of iteration j with constant probability. A Chernoff
bound then shows that in Θ(log n) of these iterations, in the
first round, u receives the message of a red node.

Consider one such recruiting iteration, and suppose that in
the relatedfirst round,u receives themessage of red node v. In
theΘ(log n) rounds of theDecay phase of that iteration, from
the properties of theDecay protocol,we get thatwith constant
probability, the red node v either receives the message of u or
it receives at least two messages from blue nodes. Moreover,
if v receives a message from a blue node w, then w had
received the message of node v in the first round of this
iteration. This is because, since v transmitted in that round,
w could not have received from any other red node v′ and
since w is transmitting in the decay, we know that it has
received the message of one red node. Thus, we conclude
that with constant probability, the red node v receives either
themessage of u or at least twomessages from blue nodes. In
either case, u gets recruited. Note that u received themessage
of v in the last roundof the iteration simply because this round
is an exact repetition of the transmission of the first round of
this iteration, where u received a message from u.

Now inΘ(log2 n) recruiting iterations, there areΘ(log n)

iterations where in their first round, u receives the message
of a red node. Since in each such iteration u is recruited with
a constant probability, we get that after the full run of the
Recruiting protocol, u is recruited with high probability. 	


2.2.2 GST construction outline

We first construct a BFS-tree of G and assign to each node
v a level �(v) that is equal to the distance of v from the
source. This can be done in O(D log2 n) rounds, as fol-
lows: Rounds are divided into D epochs each consisting of
Θ(log n) phases of the Decay protocol (thus, each epoch has
Θ(log2 n) rounds). In each epoch, a node v participates in the
decays if and only if it is the source or it has received a mes-
sage by the end of the last epoch. During these rounds, each
node relays the first message it received. The epoch in which
a node v receives a message for the first time determines the
BFS level �(v) of node v.

Now that we have a BFS-tree, we build the GST on top of
this BFS layering, level by level, and from the largest level
towards the source. For this, the problem boils down to the
following scenario: Consider level l of layering and assume
that the GST is already built for levels j ≥ l. Consider the
bipartite graph H induced on the nodes of level l − 1 and
level l, ignoring the (possible) edges inside each level. The
core of the problem is to design an algorithm to construct
the part of GST between levels l − 1 and l, i.e., the part
that is H .
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Let us call the nodes on level l − 1 red nodes, and the
nodes on level l blue nodes. To construct the part of GST
that is in H , we assign a red parent v to each blue node u,
from amongst the red neighbors of u in H . In this case, v is
known as u’s parent and u is a child of v. This assignment,
along with the rankings of blue nodes, leads to a ranking for
the red nodes. More precisely, let v be a red node and let
i be the maximum rank of blue node children of v in the
assignment. Node v gets rank i if it has only one child with
rank i , and v gets rank i + 1 if it has more than one child
with rank i .

To have a GST, these assignments should be collision-
free. That is, if there exist blue nodes u1 and u2 and their
respective parents v1 and v2, all four with rank i , then H
must have no edge between v1 and u2, or between v2 and
u1. Mathematically, if we letM be the set of edges between
blue nodes u of rank i and their respective red parents v with
rank i , then M should be an induced matching of graph H .
We refer to the problem of finding such an assignment as the
bipartite assignment problem.

More precisely, in the bipartite assignment problem, we
should achieve the following six properties: (1) For each blue
node u, we should assign a red neighbor v as its parent, (2)
we should rank the red nodes as follows: for each red node
v, suppose i is the maximum rank of the children of v. Then,
v should get rank i if v has exactly one blue child of rank i ,
and v should receive rank of i + 1 if v has two or more blue
children of rank i , (3) the assignment should be collision-
free, (4) each red node must know its rank and (5) each blue
node u should know the id of its parent and (6) each blue
node u should know the rank of its parent.

The bipartite assignment problem is the core of the GST
construction and once we have a solution for it, repeating
the solution level by level from the largest level to source
constructs a GST. In the next subsection, we explain how to
solve this problem in O(log5 n) rounds.

2.2.3 The bipartite assignment algorithm

Consider bipartite graph H as explained. We solve the bipar-
tite assignment problem (defined above) in H in a rank by
rank basis, starting with the largest possible rank �log n� (of
blue nodes), and going down in ranks until reaching rank 1.
We spend Θ(log4 n) rounds on each rank. Let us consider
the case of a bipartite assignment for blue nodes of rank i
in graph H , assuming that ranks greater than i are already
solved.

We first identify the red neighbors of the blue nodes with
rank i . This is done by using Θ(log n) phases of the Decay
protocol where blue nodes of rank i transmit. This identi-
fies the desired red nodes as every such red node receives
at least one message with high probability and no other red
node receives any message. From now on, throughout the

procedure for rank i , only these red nodes are active. Now
the algorithm is divided into Θ(log n) epochs. Each epoch
consists of three stages as follows:

Stage I Call a blue node u of rank i a loner if u has exactly
one active red neighbor. We first detect the loner blue
nodes. For this, in one round, each active red node trans-
mits a message. Only loner blue nodes receive a message
and each other blue node receives a collision. We then
use Θ(log n) phases of the Decay protocol, where each
blue loner tries transmitting. This with high probability
informs all red nodes that are connected to at least one
loner blue node. We call these red nodes loner-parents.

Stage II This stage is divided into three parts, and each red
node is active in only one of the parts. Loner-parents,
which we identified in the stage I, are active only in part
1. Each other active red node randomly and uniformly
decides to be eitherbriskor lazy,which respectivelymean
it is active in part 2 or in part 3. These parts are as follows:

Part 1 Loner-parents use a recruiting protocol. During
this recruiting protocol, each blue neighbor of each
red loner-parent get recruited with high probability.
These assignments are permanent. All the blue nodes
that are recruited become inactive for the rest of the
assignment problem.

Part 2 Brisk red nodes run a Recruiting protocol. Then,
each blue node that is not the only recruited child
of its parent considers its parent as its permanent
GST parent and becomes inactive permanently (for
theGSTconstruction). The other recruited blue nodes
become inactive only for the remainder of this epoch,
but these assignments are temporary and the related
nodes restart in the next epoch, ignoring their tempo-
rary assignments.

Part 3 We repeat the procedure of part 2, but this time
with lazy red nodes and with the active blue nodes
that did not get recruited in parts 1 or 2.

Stage III Let us say that a red node ismarked if it was a loner-
parent or if it recruited zero or strictly more than one blue
nodes in parts 2 or 3. Each marked red node becomes
inactive after this epoch. Thus, the only red nodes that
remain active after this epoch are those that do not have
any loner neighbor and recruited exactly one child in
part 2 or 3 of the stage II. Each marked red node knows
whether it recruited zero, one, or at least two children (in
stage II). We use this knowledge to rank these marked
red nodes giving them rank of i if they recruited exactly
one blue child and rank of i + 1 if they recruited more
than one blue child. Blue children of marked red nodes
also know that their parents are marked and they can also
compute the rank of their parents (refer to property (c) of
Lemma 2).
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Fig. 2 Parts 1, 2, and 3 of the stage II of the first epoch of the assignment algorithm, and the graph remaining after the first epoch

Before inactivating the marked red nodes, we do one
simple thing: marked red nodes run Θ(log n) phases of
the Decay protocol sending their id and rank. Each blue
node of any rank strictly lower than i that receives a red
node id considers the first red node that it heard from as
its permanent GST parent, records the id and rank of that
red parent, and then, becomes inactive for the rest of the
assignment problem.

After running the bipartite assignment algorithm for all
the ranks, if a red node v has no child, then v is a leaf and in
the GST, v gets rank 1.

Figure 2 shows an example of assignments during an
epoch (the first epoch). The green arrows in the leftmost
part indicate the loner blue nodes at the start of the epoch.
The loner parent red nodes are indicated by a number 1 next
to them, meaning they are active in part 1. Brisk and lazy
red nodes are respectively indicated by numbers 2 and 3,
next to them. The smaller nodes present the (temporarily
or permanently) deactivated nodes. The green dashed lines
show the permanent assignments and the (thicker) orange
dashed lines show the temporary assignments. After the end
of epoch, nodes with temporary assignment are re-activated.
The graph remaining after the first epoch is presented on the
right side of the Fig. 2, by solid blue lines.

Analysis In Lemma 3, we prove that in each of the Θ(log n)

epochs except the first one, we reduce the size of the assign-
ment problem for rank i by at least a constant factor, with
at least a positive constant probability. Here, by size of the
assignment problem, we mean the number of the active red
nodes with a blue neighbor of rank i . A standard Chernoff
bound then shows that in Θ(log n) epochs, each blue node
of rank i has a parent. It is clear that the parents are ranked
according to the ranking rules of GST and nodes know their
own rank, the id of their parents, and the rank of their par-
ents. We show in Lemma 4 that with high probability, the
assignment is collision-free.

Lemma 3 In each epoch j ′ ≤ 2, with a probability at least
1/7, the number of remaining active red nodes for the next
epoch goes down with a factor at least 8/7.

Proof Consider epoch j ′ ≥ 2 and let η be the number of
active red nodes at the start of this epoch. We show that the
expected number of red nodes that remain active at the end
of this epoch is at most 3η

4 . This is enough for the proof
because with this, and by Markov’s inequality, we get that
with probability at least 1/7, the number of active remaining
red nodes at the end of this epoch is at most 7η

8 .
Each red node remains active after epoch j ′ only if it gets

a temporary assignment, i.e., if it is not a loner-parent and
it recruits exactly one child during parts 2 and 3 of Stage II.
Thus, the expected number of red nodes that remain active is
at most equal to the expected of number of brisk red nodes
(those that act in part 2) plus the number of blue nodes that
are active in part 3. The expected number of brisk red nodes is
at most η

2 . To complete the proof, we show that the expected
number of blue nodes that remain active for part 3 (after the
assignments of part 2) is at most η

4 .
After each epoch, the only red nodes that remain active are

those that have a temporary assignment, i.e., those that each
have recruited exactly one child and that child is not a loner.
Moreover, the only active remaining blue nodes are those
blue nodes temporarily matched to the remaining red nodes.
Thus, after each epoch, the number of remaining active red
nodes and the number of remaining active blue nodes are
equal. From this, we can conclude that since j ′ ≥ 2, at the
start of epoch j ′, the number of active blue nodes is at most η.

Using Lemma 2, we infer that in part 1 of stage II, each
blue neighbor of a loner-parent is w.h.p. recruited by a red
loner-parent. Thus, in particular, each loner is recruited with
high probability. Hence, at the start of part 2 of stage II, each
remaining active blue node has at least 2 red node neighbors.
Since each non-loner-parent red node is active in part 2 of
stage II with probability 1/2, and because in part 2 of stage
II each active blue node that has an active red node neighbor
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Fig. 3 Collision-freeness proof

gets recruited with high probability (by Lemma 2), each blue
node remains active after part 2 of stage II with probability at
most 1/4. We know that because of the previous paragraph,
the number of active remaining blue nodes at the start of part
2 of stage II is at most η. Hence, the expected number of
blue nodes remaining active after part 2 is at most η

4 . This
completes the proof of the lemma. 	

Lemma 4 With high probability, the bipartite assignment
algorithm creates a collision-free assignment.

Proof We show that if there exist blue nodes u1 and u2 (u1 �=
u2) and their respective red parents v1 and v2 (v1 �= v2), all
four with rank i , then with high probability, H must not have
any edge between u2 and v1, or between u1 and v2. For the
sake of contradiction, and without loss of generality, suppose
that there is an edge between u2 and v1. Figure 3 shows the
configuration of these four nodes. Since v2 and u2 have rank
i , blue node u2 must have been a loner when v2 recruited it.
Thus, v2 recruited u2 after v1 became inactive. Hence, in the
epoch that v1 recruited u1, u2 was active. Therefore, using
Lemma 2 we get that in the part 1 of the epoch in which v1
recruited u1, u2 must have been w.h.p. recruited by either
v1 or some other loner-parent. Since v2 �= v1 recruited u2,
we get that v2 must have been that other loner parent. This
means that at that time, v2 had a loner child ( �=u2) and thus,
v2 has recruited more than one child of rank i . This means
that v2 must have had rank i + 1 which contradicts with the
assumption that v2 has rank i . 	


2.2.4 Pipelining the GST construction

Note that in the algorithm described in Sect. 2.2.3 where
we are working on the assignment problem between levels
l − 1 and l, once we are done with the assignment problem
of ranks i and i − 1, nodes of level l − 1 that receive rank
i are already determined, i.e., no other node in level l − 1
will receive rank i . Thus, we can solve the two problems
of rank i − 2 assignment between levels l − 1 and l and
rank i assignments between levels l − 2 and l − 1, essen-
tially simultaneously, by interleaving them in even and odd
rounds. Using the same idea, it is easy to see that one can
pipe-line the assignment problems of different ranks between
different levels. Then, the assignment problem between lev-
els l−1 and l starts afterΘ((D−l) log4 n) rounds. Thus, the
assignment problem of largest possible rank between levels
0 and 1 starts after Θ(D log4 n) rounds. The largest rank is
at most �log n�. Since each rank takes Θ(log4 n) rounds, the

whole GST construction problem finishes after Θ(D log4 n)

rounds.

2.3 Unknown topology single-message broadcast in
O(D + log6 n) rounds

Theorem 1 (Restated) In radio networks with unknown
topology and with collision detection, there is a random-
ized distributed algorithm that broadcasts a single message
in O(D + log6 n) rounds, with high probability.

Proof We first use a wave of collisions to get a BFS layering
in time D. That is, the source transmits in all rounds [1, D],
and each node v transmits in all rounds [r, D] where r is
such that v receives a message or a collision in round r − 1.
For each node v, the round r − 1 in which v receives the
first message or collision determines distance of v from the
source.

Having this BFS layering, we decompose the graph into
O(log4 n) rings, each consisting of D′ = D/log4 n consec-
utive layers of the BFS layering.

Then, we compute a gathering spanning tree for each of
the rings in O(D′ log4 n) = O(D) rounds. Note that com-
putation of a GST for each ring only depends on D′ which
is the number of BFS layers that the ring contains, and that
given the BFS-layering, the computation of the GSTs of all
rings is performed in parallel.

Having these GSTs, broadcasting the message inside each
ring takes O(D′ + log2 n) rounds, using [8]. Finally, we use
O(log2 n) rounds of the Decay protocol [3] to propagate the
message from the outer boundary of one ring to the inner
boundary of the next ring. Since there are O(log4 n) rings,
the whole broadcast takes

(
O(D′ + log2 n) + O(log2 n)

) ·
O(log4 n) = O(D + log6 n) rounds. 	


3 Multi-message broadcast

In this section, we show the following two results:

Theorem 2 (Restated) In radio network with known topol-
ogy (even without collision detection), there is a random-
ized distributed algorithm that broadcasts k messages in
O(D + k log n + log2 n) rounds, with high probability.

Theorem 3 (Restated) In radio networks with unknown
topology and with collision detection, there is a random-
ized distributed algorithm that broadcasts k messages in
O(D + k log n + log6 n) rounds, with high probability.

In Sects. 3.1–3.3.3, we present and analyze the algorithm
that achieves Theorem2.We remark that the O(D+k log n+
log2 n) round-complexity of Theorem 2 is optimal, given the
Ω(k log n) lower bound of [2] for k-message broadcast, the
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Ω(log2 n) lower bound of [1] for single message broadcast,
and the trivial Ω(D) lower bound.

Furthermore, it is easy to combine the known topology
algorithm of Theorem 2 with the ideas of the proof of Theo-
rem 1 (i.e., breaking the graph into rings of radius � D

log4 n
�)

and the standard technique of grouping messages and pipe-
lining the groups, to prove Theorem 3.We present the details
of this part in Sect. 3.4.

3.1 Challenges in broadcasting multiple messages

Given the known transmission schedules for broadcasting a
single message in optimal O(D + log2 n) time on top of a
GST, it is intriguing to try to use the same transmission sched-
ule to solve the multi-message broadcast problem. However,
since we cannot disjoin the spreading process of different
messages, this approach faces two challenges:

Firstly, when a node v has already learned multiple mes-
sages and is triggered by the schedule to transmit, v needs
to decide which message to forward. Choosing one mes-
sage over the others can slow down the progress of those
other messages. Fortunately, random linear network coding
(RLNC) [14] provides a general technique for making such
decisions: Instead of deciding on one specificmessagewhen-
ever v is triggered to send, it transmits a random linear combi-
nation of all packets it has received. It has been shown that this
is the universal optimal strategy, that is, this succeeds with
high probability as soon as it was possible (in hindsight) to
send k messages to each of the receivers [13]. There are fur-
thermore indications that network codingmight be necessary
for obtaining an asymptotically optimal throughput perfor-
mance [2]. Our multi-message broadcast utilizes RLNC and
uses recent advances in analyzing RLNC performance [12]
for the proofs. Even though RLNC and its analysis need to
be carefully tailored to the radio broadcast setting here, this
already gives us a good plan to remedy the first issue.

The second issue is subtle but turns out to be more prob-
lematic: When proving progress of messages, all known
single-message schedules and their analyses (e.g., those
of [8]) rely crucially on the fact that the nodes that do not
have the (single) message remain silent and cause no colli-
sions. In a multi-message setting it becomes a necessity that
we make progress for a message while allowing other nodes
that do not have this message to transmit (in order to make
progress on other messages).

Trying to understand and resolve this problem prompted
us to define the property of a transmission schedule being
multi-message viable (MMV):

Definition 1 We say that a transmission schedule broadcasts
one message in a multi-message viable (MMV) way in T
rounds with probability 1−δ if the following holds: Suppose
that we use this transmission schedule but nodes that do not

have the message but are scheduled to transmit send “noise”.
Then, the message is broadcast to all nodes in T rounds with
probability 1 − δ.

Intuitively, this notion captures the viewpoint where we
focus on onemessage and the transmissions of the other mes-
sages are regarded as noise, possibly harming the progress
of the message in consideration. We later see that this notion
is enough to prove that a schedule works well with RLNC.

Unfortunately proving that a schedule is MMV is not
straightforward and it is a priori not clear whether the already
existing schedules are MMV. The easiest example to see this
is the well-known Decay protocol of [3]: in the classical
implementation of the Decay protocol, if a node is sched-
uled to transmit but it does not have the message, then this
node remains silent. The Decay protocol broadcasts a single
message in O(D log n + log2 n) rounds, with high probabil-
ity [3]. This follows almost directly from a simple progress
lemma which shows that in O(log n) rounds of the proto-
col, a node receives the message with constant probability if
at least one of its neighbors already has the message. How-
ever, if the nodes that do not have the message are allowed to
send noise when the schedule prompts them to transmit, then
this key progress lemma of [3] does not hold anymore. Sur-
prisingly, even though the progress lemma breaks, it is still
true that one message is spread quickly in this case (when
nodes that do not have themessage are noising),meaning that
the Decay protocol broadcasts in time O(D log n + log2 n)

rounds, w.h.p., in an MMV way:
Before formally proving this fact, first let us recall the

details of the transmission schedule of the Decay protocol:

Transmission schedule of the decay protocol in anMMV
framework For each round r , for each node v at distance
lv from source, if r ≡ lv +1 mod 3, then v is prompted
to transmit with probability 2−((r−lv−1)/3 mod �log n�). If
v is prompted but does not have the message, it sends
“noise”.

Lemma 5 The Decay protocol broadcasts one message in
an MMV way in O(D log n + log2 n) rounds, w.h.p.

To prove this lemma,we need to go away from the analysis
approach in [3] which chooses a shortest path from source s
to node v and shows that the broadcast message makes fast
progresses along this path when moving forwards in time.
Insteadweusewhatwe callbackwards analysis: In a nutshell,
we move backwards in time and find a sequence of collision-
free transmissions from s to v, where hops of this sequence
are unraveled backwards (fromv to s).Meanwhile unraveling
this sequence, each of these transmission can be the broadcast
message or just “noise”, depending onwhether the sender has
received the broadcast message or not. Once we reach s, it
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means the transmissions in the sequence indeed where the
broadcast message.

Proof of Lemma 5 Fix an arbitrary node v. Let T = λ(D
log n+log2 n) for a large enough constant λ. For each integer
t , we say node “u is transmission-connected to v by back-
wards time t” if there is a timely sequence of transmissions
u = w1, w2, . . . w� = v where for each i ∈ [1, � − 1], wi

transmits in a round ri ∈ [T − t, T ], we have ri < ri+1,
and in round ri where wi transmits, wi+1 receives a mes-
sage from wi . We emphasize that these transmission do not
consider where the transmitted message is just “noise” or it
is the actual message of the broadcast problem. If node wi

has received the message of broadcast by the end of round
ri − 1, then the transmission of wi in round ti is the actual
message of the broadcast; otherwise, it is noise. Let St (v),
or simply St , be the set of all nodes that are transmission-
connected to v by backwards time t . For each backwards
time t , define potential Φ(t) = minu∈St distG(s, u). We
claim that “for each two backwards times t, t ′ > t such
that t ′ − t = 3�log n�, if Φ(t) ≥ 1, with probability at
least 1/(2e), we have Φ(t ′) ≤ Φ(t)− 1”. A Chernoff bound
then shows that with high probability Φ(T ) = 0 meaning
s ∈ ST . This shows that, with high probability, there exists a
sequence of collision-free transmissions (andmessage recep-
tions) which starts in source s and ends in node v by time T ,
proving that, with high probability, v receives the message
of s by time T .

To prove the claim, consider two times t, t ′ > t such that
t ′ − t = 3�log n� and Φ(t) ≥ 1. Let u∗ be a node u in St that
minimizes distG(s, u). We show that in round interval [T −
t ′, T−t], with probability at least 1/8, u∗ receives at least one
message (be it noise or the actual broadcast message) from
a neighbor u′ such that dist (s, u′) = dist (s, u∗) − 1. Let k
be the number of neighbors u′ of u∗ such that dist (s, u′) =
dist (s, u∗) − 1. Consider the round r∗ ∈ [T − t ′, T − t]
such that (r∗ − dist (s, u∗))/3 ≡ �k� mod �log n�. In that
rounds, the only neighbors of u∗ that can transmit are those
neighbors u′ that have dist (s, u′) = dist (s, u∗) − 1. The
probability that u∗ receives a message from one of them is

k
2−�k� (1 − 1

2−�k� )
k−1 ≥ 1

8 . This proves the claim.
A union bound over all nodes v shows that with high prob-

ability, all nodes receives the message by round O(D log n+
log2 n). 	


Unfortunately, in contrast to the transmission schedule of
the Decay protocol, the GST based schedule of [8] appears
to be not MMV. In Sect. 3.2, we present a new transmission
schedule for GSTs and again use our backwards analysis
to show that this schedule is MMV. Lastly, we show that if
one combines RLNC with this new schedule, then the MMV
property almost directly translates into having a high broad-
cast throughput, leading to the optimal broadcast time of
O(D + k log n + log2 n) rounds for k messages.

3.2 A multi-message transmission schedule atop GST

In this section, we present our transmission schedule for
GSTs and show that it is MMV. Later we use this sched-
ule along with random linear network coding to achieve our
optimal multi-message algorithm.

3.2.1 The schedule

Suppose we have a GST T for graph G. For each node u,
let lu be the distance of u from source s in graph G (that
is, the BFS level of u). Also, let ru be the rank of u in GST
T . We first construct a virtual directed graph G ′, from graph
G, as follows: we add a directed edge from every node u
with rank r that is the first node of a fast stretch to every
descendant of u in T that has rank r (thus, to all nodes
in that fast stretch). We call this a fast edge. We use the
notation du to denote the length of the shortest (directed)
path from s to u in G ′, and we call this virtual-distance.
Given graph G, GST T , and the respective virtual graph G ′
(and the related virtual-distances), our schedule is defined as
follows:

Multi-message viable GST schedule: In round t , each
node u at BFS-level l of G with rank r in GST T and
virtual-distance d in the virtual graphG ′ does as follows:
(a) if t ≡ 2(l + 3r) (mod 6�log2 n�), then u transmits;
(b) if t ≡ 1+ 2d (mod 6)), then u transmits with prob-
ability 2−((t−1−2d)/6 mod �log2 n�); otherwise, u listens.

Note that the case (a) only happens in even rounds and
case (b) happens only in odd rounds. As in [8], we call the
transmissions triggered by case (a) fast transmissions and the
transmissions triggered by case (b) slow transmissions.

We remark that this schedule uses fast transmissions
exactly as in [8,19] to pipeline the messages along the fast
stretches of GST. We see in Lemma 8 that these fast trans-
missions are collision-free. The crucial difference with the
schedule in [8,19] lies in defining the slow transmissionswith
respect to the virtual-distance in graph G ′ (instead of levels
in G). This change results in slow transmissions not trying
to push messages away from the source, but instead trying
to push messages towards entry points of fast stretches (even
if this leads to the message going back towards the source).
While this modification seems minor, it is crucial for allow-
ing the backwards analysis technique to show that the new
schedule is efficient and MMV.

3.2.2 The analysis

The rest of this section is dedicated to prove that the newly
defined schedule is MMV:
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Lemma 6 TheMMV-GST schedule of Sect. 3.2.1 broadcasts
onemessage in anMMVway, in O(D+log n ·(log n+log 1

δ
))

rounds, with probability 1 − δ.

Before diving directly into the proof of Lemma 6we show
a few helpful invariants.

Lemma 7 In virtual graph G ′, for each node u, we have
du ≤ 2�log2 n�.
Proof Consider the path from u to s in T . On this path, the
rank never decreases, thus increases at most �log2 n� times.
Furthermore, every stretch on which the rank stays the same
corresponds to a directed link in G ′. Using this, we get the
path of length at most 2�log2 n� from s to u in G ′. 	

Lemma 8 There are no collisions between any two fast
transmissions.

Proof Since fast and slow transmission happen during even
and odd rounds, respectively, it is clear that collisions can
only happen between two slow or two fast transmissions. To
see that two fast transmission do not collide, we note that
in round t , only nodes with a level l ≡ t/2 (mod 3) have
transmissions. This is because a fast transmission in round
t happens only if t ≡ 2l + 6r ≡ 2l (mod 6). Since nodes
whose levels differ by at least 3 can not share a neighbor,
we get that collisions can only be caused by transmissions of
nodes within the same level. Furthermore, two nodes within
the same level are only performing a fast transmission if
their ranks r and r ′ are equivalent modulo �log2 n�. By defi-
nition of GST, this implies that their ranks are equal and the
collision-freeness property of GST then guarantees that two
such nodes do not share a neighbor in the next level. This
shows that there are indeed no collisions between any two
fast transmissions. 	

Proposition 1 If node u with level l is the beginning of a
fast stretch in GST T and u sends a message at time t in a
fast transmission round, then any node v with level l ′ > l
on the same fast stretch receives this message by time t ′ =
t + 2(l ′ − l).

Lemma 9 For any node u with virtual-distance du, if there is
at least one node v connected to u in G with virtual-distance
dv = du − 1, then during each interval of 6�log2 n� rounds,
with probability at least 1

8 , node u receives a message from
one node with virtual-distance du − 1.

Proof Let x be the number of neighbors of u with virtual-
distance du−1.Note thatwithin any span of 6�log2 n� rounds
there is a round in which all nodes in level du − 1 send a
message independently with probability p between 1

x and
1
2x while all nodes with virtual-distance du and du + 1 (and
thus also all other neighbors of u) are silent. The probability

that u receives a message from any particular neighbor in
this round is at least 1

2x (1 − 1
x )x−1 > 1

8x . These events are
mutually exclusive. Hence, the total probability for at least
one neighbor successfully transmitting to u during this round
is at least 1

8 . 	


Proof of Lemma 6 For a large enough constant λ let T =
λ(D+2�log2 n�(log n+ log 1

δ
)). We claim that for any node

v, the probability that node v does not receive the message
in T rounds is at most δ.

Fix an arbitrary node v. To prove the claim, we use back-
wards analysis to view the process of dissemination of the
message. In this method, we go back in time, from round T
to round 1, and we find a sequence of collision-free trans-
missions from source node s to node v. Since we are moving
back in time, we find this sequence starting from v and going
backwards till reaching s.

For each t , we say node u is transmission-connected to
v by backwards time t” if there is a sequence of trans-
missions u = w1, w2, . . . w� = v where for each i ∈
[1, � − 1], wi transmits in a round ri ∈ [T − t, T ], we
have ri < ri+1, and in round ri , wi+1 receives a mes-
sage from wi . Let St be the set of all nodes that are
transmission-connected to v by backwards time t . More-
over, we then define the potential of v at backwards time
t to be Φ(t) = minu∈St du�log2 n� + lu . Note that Φ(0) ≤
2�log2 n�2 + D. This is because the level of v in G is at
most D, and the virtual-distance du is at most 2�log2 n�.
To prove the claim, we show that with probability at least

1 − 2−(log 1
δ
+2 log n), we have Φ(T ) = 0. For this, moving

backwards in time, we show that in every 8�log2 n� interval
of consecutive rounds, this potential decreases with proba-
bility at least 1

16 by at least �log2 n� − 1. For a backwards
time t , let node u be the node in St that minimizes the poten-
tial of v. The proof is now divided into two cases as fol-
lows:

Case (A) Suppose u has at least one G-neighbor that
has a lower virtual-distance. In this case, Lemma 9 guar-
antees that with probability at least 1

8 during the rounds in
[T − t − 6�log2 n�, T − t], there is a collision-free trans-
mission from a node u′ with du′ = du − 1 to u. Since u′
and u are neighbors their levels lu and lu′ differ at most
by one, thus a successful transmission decreases the poten-
tial by at least (du�log2 n� + lu) − (du′ �log2 n� + lu′) =
(du − du′)�log2 n� − (lu − lu′) ≥ �log2 n� − 1. Thus, if u
has a neighbor with a virtual-distance lower than du then
with probability at least 1

16 the potential decreases by at least�log2 n�−1within any 8�log2 n� rounds whenmoving back-
wards in time.

Case (B) Suppose u does not have a G-neighbor with
a lower virtual-distance. Note that this can only happen if
u = s or if there is one directed edge in G ′ representing
a fast stretch, originating from a node u′ one level lower
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than u in G ′ and going into u. First observe that the starting
node of any fast stretch initiates a “transmission wave” every
6�log2 n� rounds by creating a new coded packet and send-
ing it as a fast transmission. This packet gets then pipe-lined
through the fast stretchwith one progress every fast transmis-
sion round (that is, once in every two rounds) until it reaches
the end of the stretch. Thus, for any node on a fast stretch,
there is a new wave arriving every 6�log2 n� rounds. Thus,
at a time t ′ ∈ [T − t − 6�log2 n�, T − t], a fast transmis-
sion wave arrives in u and leads to an extended sequence of
collision-free transmissions. In particular, if the wave origi-
nated from u′ during the rounds [T − t ′ −2�log2 n�, T − t ′],
then there is a sequence of transmissions from u′ to v in
round interval [T − t − 8�log2 n�, T − t], and otherwise
the wave propagated for �log2 n� steps and there is a node
u′′ between u′ and u on the fast stretch with a sequence of
transmissions to v starting at time T − t − 8�log2 n�. Thus,
in both cases, the potential drops by at least �log2 n� − 1.
In the first case the potential drop comes from the fact
that du′ = du − 1 and lu′ < lu , while in the second
case we have du′′ ≤ du′ + 1 = du and lu′′ ≤ lu −
�log2 n�.

The above argument shows that when moving backwards
in time, in every 8�log2 n� consecutive rounds, with prob-
ability at least 1

8 , the potential of v decreases by at least
�log2 n� − 1 > �log2 n�/2, until reaching zero. When the
potential reaches zero, it means that there is a sequence of
successful and collision-free transmissions from s to v.

Hence, the expected time for such a sequence to appear
is thus a constant times the initial potential of v, Φμ(0) ≤
2�log2 n�2 + D. A Chernoff bound furthermore shows that
the probability of not finding such a sequence is exponen-
tially concentrated around this mean. In particular, after
T = λ(D + 2�log2 n�(log n + log 1

δ
)) rounds, we expect at

least λ′(2D/�log2 n�+4�log2 n�+2 log 1
δ
) sets of 8�log2 n�

consecutive rounds in which the potential of v drops at least
by �log2 n�/2, for a constant λ′. Furthermore, the probability
that there are less than 2D/�log2 n�+4�log2 n� such rounds
is exponentially small in the expectation, that is, at most

2−(2�log2 n�+log 1
δ
) < δ/n. A union bound over all choices

of node v then completes the proof. 	


3.3 Optimal multi-message broadcast algorithms

We achieve our optimal multi-message broadcast algorithms
by combining random linear network coding with the multi-
message GST Schedule that we presented in Sect. 3.2. In
Sect. 3.3.1 we first recall on the exact working of random
linear network coding and in Sect. 3.3.2 we explain how to
integrate it with our MMV GST Schedule. In Sect. 3.3.3 we
combine the analysis technique from [12] with the proof that
our schedule is MMV to obtain Theorem 2, i.e., our multi-

message result for the known topology setting. In Sect. 3.4
we then discuss how this algorithm can be extended to the
unknown topology setting to obtain Theorem 3.

3.3.1 Random linear network coding

In random linear network coding [14] the k messages are
regarded as bit-vectors m1, . . . ,mk ∈ F

l
2 over F2, the finite

field of order two. Instead of putting onemessage in plaintext
into a packet nodes transmitt coded packets. Each network
coded packet p consists of a linear combination of messages,
that is, the vector

∑k
i=1 αimi ∈ F

l
2. One should think of the

coefficient vector α = (α1, . . . , αk) ∈ F
k
2 being transmitted

with each message.5

Because of linearity, a node that has a number of these
packets can create a packet of this form for any coefficient
combination that is spanned by the coefficient vectors of the
packets that it has received by that time. Also, if a node has
a set of k packets with linearly independent coefficient vec-
tors, then this node can reconstruct all the k messages using
Gaussian elimination. In RLNC, every node u stores all its
received packets to maintain the subspace that is spanned by
them. Whenever u decides to generate a new coded packet,
it chooses a random coefficient vector from this subspace
by taking a random linear combination of the packets stored.
Once the subspace spanned by the coefficient vectors in pack-
ets received by u is the full space F

k
2, then u decodes and

reconstructs all the messages.

3.3.2 Combining the MMV GST schedule with random
linear network coding

It is now easy to combine random linear network coding with
our new GST Schedule:

Multi-message broadcast algorithmWhenever inMMV
schedule of Sect. 3.2, a node u is prompted to transmit,
u transmits a packet determined as follows: (a) if this is
a slow transmission, or if this is a fast transmission and u
is the first node on a fast stretch, then u transmits a new
coded packet, that is, a packet that is created using net-
work coding by combining the messages u has received
earlier, (b) if this is a fast transmission but node u is an
intermediate node in a fast stretch, then u simply relays
the packet it received in the previous fast transmission
round (if any).

5 In many applications the size of a message is large compared to the k
bit coefficient vector which allows sending the coefficient vector with
each message with negligible overhead. In our setting, increasing the
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3.3.3 Analyzing the multi-message broadcast algorithm

In this section we prove Theorem 2 by analyzing the perfor-
mance of the multi-message broadcast algorithm presented
in Sect. 3.3. The analysis combines the proof for the MMV
property of the newGST Schedule with the projection analy-
sis from [12].

The following definition and proposition are taken from
[12] and form a simple and clean platform for analyzing
random linear network coding:

Definition 2 [12, Definition 4.1] A node v is infected by a
coefficient vector μ ∈ F

k
2 if v has received a packet with a

coefficient vector c ∈ F
k
2 that is not orthogonal to μ, that is,

〈μ, c〉 �= 0.

Proposition 2 [12, Lemma 4.2]) If a node v is infected by a
coefficient vectorμ and after that, a node u receives a packet
from node v, then u gets infected by μ with probability at
least 1/2. Furthermore, if a node v is infected by all the 2k

coefficient vectors inFk
2, thenv candecodeall the k messages.

With these tools we can proceed to prove Theorem 2:

Proof of Theorem 2 For a large enough constant λ let T =
λ(D + k�log2 n� + 2�log2 n�2). We claim that for any node
v and any fixed non-zero vector μ ∈ F

k
2, the probability

that node v is not infected by μ in T rounds is at most
2−(k+2 log n). The proof of this claim is almost identical to
the proof of Lemma 6, except that we are want a failure
probability δ = O(2−k) and also, we must consider whether
each transmission is successful with respect to μ or not. For
completeness, we repeat the proof with all details, starting
with the next paragraph. Once we have the claim proven, we
can conclude via a union bound over all the 2k coefficient
vectors in F

k
2 that by round T , with high probability, v is

infected by all the coefficient vectors in Fk
2. That is, by round

T, v can decode all the k messages. Using another union
bound over all the choices of node v then we get that, with
high probability, all nodes have received all the messages by
round T .

Fix a node v and a non-zero vector μ ∈ F
k
2. To prove

the claim, we use backwards analysis to view the process of
infection spreading of vector μ. In this method, we go back
in time, from round T to round 1, and we find a sequence
of collision-free transmissions from source node s to node

Footnote 5 continued
packet size to k bits could be too much. Fortunately, the overhead com-
ing from the coefficient vector can be avoided: In the known topol-
ogy setting, nodes can compute the coefficients offline efficiently and
in a consistent manner [14]. In the unknown topology scenario, using
generations—that is, dividing messages into groups of size log n and
then doing network coding only inside each group—keeps the coeffi-
cient overhead to O(log n) bits, which is negligible even in our stringent
setting (see Sect. 3.4).

v such that all the transmissions in this chain are successful
with respect to vector μ. Since we are moving back in time,
we find this sequence starting from v and going backwards
till reaching s.

For each t , we say node u is transmission-connected to v

by backwards time t” if there is a sequence of transmissions
u = w1, w2, . . . w� = v where for each i ∈ [1, � − 1], wi

transmits in a round ri ∈ [T − t, T ], we have ri < ri+1,
and in round ri , wi+1 receives a message from wi . Let St be
the set of all nodes that are transmission-connected to v by
backwards time t . Moreover, we then define the potential of
v with respect to vectorμ at backwards time t to beΦμ(t) =
minu∈St du�log2 n�+ lu . Note thatΦμ(0) ≤ 2�log2 n�2+D.
This is because the level of v in G is at most D, and the
virtual-distance du is at most 2�log2 n�. To prove the claim,
we show that with probability at least 1 − 2−(k+2 log n), we
have Φμ(T ) = 0. For this, moving backwards in time, we
show that in every 8�log2 n� interval of consecutive rounds,
this potential decreases with probability at least 1

16 by at least�log2 n�−1. For a backwards time t , let node u be the node in
St that minimizes the potential of v. The proof is now divided
into two cases as follows:

Case (A) Suppose u has at least one G-neighbor that has
a lower virtual-distance. In this case, Lemma 9 guarantees
that with probability at least 1

8 during the rounds in [T −
t − 6�log2 n�, T − t], there is a collision-free transmission
from a node u′ with du′ = du − 1 to u, and is successful
with respect to μ, with probability 1/2. Since u′ and u are
neighbors their levels lu and lu′ differ at most by one, thus
a successful transmission decreases the potential by at least
(du�log2 n�+lu)−(du′ �log2 n�+lu′) = (du−du′)�log2 n�−
(lu − lu′) ≥ �log2 n� − 1. Thus, if u has a neighbor with a
virtual-distance lower than du then with probability at least
1
16 the potential decreases by at least �log2 n�−1 within any
8�log2 n� rounds when moving backwards in time.

Case (B) Suppose u does not have a G-neighbor with
a lower virtual-distance. Note that this can only happen if
u = s or if there is one directed edge in G ′ representing a
fast stretch, originating from a node u′ one level below u in
G ′ and going into u. First observe that the starting node of any
fast stretch initiates a “transmission wave” every 6�log2 n�
rounds by creating a new coded packet and sending it as a fast
transmission. This packet gets then pipe-lined through the
fast stretch with one progress every fast transmission round
(that is, once in every two rounds) until it reaches the end
of the stretch. Thus, for any node on a fast stretch, there is a
newwave arriving every 6�log2 n� rounds.Moreover, each of
these waves is successful with respect to μ with probability
at least 1/2. Thus, at a time t ′ ∈ [T − t −6�log2 n�, T − t], a
fast transmission wave arrives in u, and with probability 1/2
leads to an extended sequence of collision-free transmissions
that are successful with respect toμ. In particular, if the wave
originated from u′ during the rounds [T −t ′−2�log2 n�, T −
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t ′], then there is a sequence of transmissions from u′ to v in
round interval [T − t − 8�log2 n�, T − t], and otherwise
the wave propagated for �log2 n� steps and there is a node
u′′ between u′ and u on the fast stretch with a sequence of
transmissions to v starting at time T − t − 8�log2 n�. Thus,
in both cases, the potential drops by at least �log2 n� − 1.
In the first case the potential drop comes from the fact that
du′ = du − 1 and lu′ < lu , while in the second case we have
du′′ ≤ du′ + 1 = du and lu′′ ≤ lu − �log2 n�.

The above argument shows that when moving backwards
in time, in every 8�log2 n� consecutive rounds, with prob-
ability at least 1

16 , the potential of v decreases by at least
�log2 n� − 1 > �log2 n�/2, until reaching zero. When the
potential reaches zero, it means that there is a sequence
of successful and collision-free transmissions from s to v.
Hence, the expected time for such a sequence to appear is
thus a constant times the initial potential of v,Φμ(0) ≤
2�log2 n�2 + D. A Chernoff bound furthermore shows that
the probability of not finding such a sequence is exponen-
tially concentrated around this mean. In particular, after
T = λ(D + k�log2 n� + 2�log2 n�) rounds, we expect at
least λ′(2D/�log2 n�+4�log2 n�+ k) sets of 8�log2 n� con-
secutive rounds in which the potential of v drops at least
by �log2 n�/2, for a constant λ′. Furthermore, the probabil-
ity that there are less than (2D/�log2 n� + 4�log2 n� such
rounds is exponentially small in the expectation, that is, at
most 2−(2�log2 n�+k). This completes the proof of Theorem 2.

	


3.4 Extending the multi-message broadcast to the unknown
topology setting

To achieve Theorem 3, the key idea is to combine the multi-
message broadcast of known topology presented in Sects. 3.2
and 3.3 with the idea presented in Sect. 2.3, that is, decom-
posing the graph into rings ofwidth D′ = D

log4 n
layers around

the source node using collision detection and then creating
one GST for each ring. Here, we present the smaller details
that are needed for filling out this outline, to get Theorem 3.

Recall that our multi-message broadcast algorithm works
on top of a GST of graph G. In Sect. 2, we presented an
O(D log4 n) distributed GST construction for the unknown
topology setting. Refer to Sect. 2.1 for definition of GST and
what nodes need to learn in a distributed GST construction.
We will use this distributed construction again. However,
we first need to enhance it by adding one more element to
what nodes learn about GST: In the multi-message broadcast
schedule that we presented in Sect. 3.2, each node u also
needs to know the virtual-distance du which indicates the
directed distance from source s to node u in the virtual graph
G ′ (refer to Sect. 3.2 for definition of G ′ and the virtual-
distance). In the setting with known topology, GST T and

the respective virtual-distance du are computed by each node
locally without any need for communication between the
nodes. In the next lemma, we show that nodes can easily
learn these virtual-distances in the unknown topology setting,
without changing the asymptotic time complexity of theGST
construction.

Lemma 10 In the radio networks (even without collision
detection), there exists a distributed algorithm that, in
O(D log4 n) rounds, constructs a GST and moreover, each
node u also learns its virtual-distance du from the source.

Proof First, we construct a GST in O(D log4 n) rounds
using the construction of Theorem 4. We now explain that in
O(D log2 n+ log3 n) further rounds, nodes can compute the
virtual-distance labels.6

Recall from Lemma 7 that for each node u, we know
that du ∈ [1, 2�log n�]. We compute the virtual-distances
in a recursive manner based on the value of du : Consider
a d ∈ [1, 2�2 log n� − 1] and suppose that all the nodes u
that have a distance label du ≤ d have already learned their
distance du . We explain how to identify the nodes u that have
du = d + 1, in O(D log n + log2 n) rounds.

Let Sd be the set of nodes u that have received virtual-
distance label du = d. Moreover, let Fd ⊆ Sd be the set of
nodes in Sd that are the first nodes in a fast stretch. Recall
from Sect. 2.1 that since in construction of GST, each node u
knows its own rank and the rank of its parent v, node u knows
whether u is the first node in a fast stretch or its parent v is
in the same fast stretch as well. We divide the O(D log n +
log2 n) rounds of recursion of virtual-distance d+1 into two
stages, with respectively O(D log n) and O(log2 n) rounds,
as follows:

In the first stage, we identify all the nodes that are on the
fast stretches starting at nodes of Fd , and we give all of them
virtual-distance label d + 1. In order to this, we divide this
stage between the �log2 n� possible rank values and spend
2D rounds on each rank. That is, we first in 2D rounds solve
the problem for fast stretches of rank 1 nodes, then in 2D
rounds solve the problem fast stretches of rank 2 nodes, etc.
For each rank r ∈ [1, �log2 n�], we spend 2D rounds, in two
epochs each made of D rounds, as follows:

The D rounds of the first epoch are as follows: in the �th
round, each node that is in Fd , has rank r , and BFS-layer �

transmits. Each node u that has not received a virtual-distance
label before, has BFS-layer � + 1, rank r , and receives a
message from its parents gets virtual-distance du = d + 1.
These D rounds identify the second nodes (those next to the
first nodes) in fast stretches of rank r , which must receive
virtual-distance d + 1.

6 Even though faster solutions for this step are possible, since the time
complexity will be dominated by that of the GST construction, we only
present the slightly less-efficient but cleaner O(D log2 n+ log3 n) solu-
tion.
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The D rounds of the second epoch are as follows: for each
� ∈ [1, D − 1], if � = 1, then let S∗ be the set of nodes that
received virtual-distance label d + 1 in the first epoch, and if
� ≥ 1, then let S∗ be the set of nodes that received virtual-
distance label d+1 in the (�−1)th round of the second epoch.
Then, in the �th round, each node u that has not received a
virtual-distance label before, has BFS-layer � + 1, rank r ,
and receives a message from its parent gets virtual-distance
du = d + 1.

Note that because of collision-freeness property of GST,
all the nodes of fast-stretches of rank r that start in a node in
Fd will be identified and will receive distance label d + 1.
After performing the above two epochs for all the ranks r ∈
�log n�, we are done with the first stage. Note that the first
stage thus takes D log n rounds, 2D rounds for each rank
r ∈ �log n�.

The second stage is as follows: All nodes in Sd perform
Θ(log n)phases of theDecayprotocol for a total ofΘ(log2 n)

rounds. Each node u that has not received a virtual-distance
label before but receives a message in these rounds sets its
virtual-distance label du = d + 1. 	


Now we use this enhanced distributed GST construction
to get a multi-message algorithm for the unknown topology
with collision detection.

Proof of Theorem 3 As in the proof of Theorem 1, we first
use a wave of collisions to get a BFS-layering of the graph.
We decompose the graph into rings, each consisting of
D′ = D

log4
consecutive BFS-layers, centered around the

source node 7. Then, we use the enhanced GST construction
presented in Lemma 10 to construct a GST (with the addition
of nodes knowing their virtual-distance labels) for each ring,
all in time O(D′ log4 n) = O(D) rounds, by parallelizing
the constructions of different rings.

Suppose that we are done with the construction of the
GSTs of the rings. First, let us assume that the coefficient
vectors of linear network coding, which consist of at most k
bits, fit inside one packet; we later explain how to reduce this
overhead to O(log n).

Let k′ = D
log3 n

. Divide the messages into batches, each

consisting of at most k′ messages. Inside each ring, we
can broadcast one batch of messages in O(D′ + k′ log n +
log2 n) = O( D

log4
+ log2 n) rounds, simply using the algo-

rithm of Sect. 3.3 on top of the GST of this ring. To deliver
a batch of messages from one ring to another, we simply
use forward error correction (FEC).8 Consider the outer

7 In fact, if D = O(log6), then just one ring and thus just one GST is
enough.
8 Here, FEC can be viewed as a simplified form of network coding as
there is no intermediate node in this scenario. That is, the nodes on the
outer boundary of one ring transmit and the nodes on the inner boundary
of the next ring receive.

boundary of the j th ring and the inner boundary of the
( j + 1)th ring, and consider a batch of messages that is
already delivered to all nodes in the outer boundary of the
j th ring. Then, each of these outer boundary nodes cre-
ates Θ(k′) packets using an FEC code such that if a node
w receives Θ(k′) of these packets, then w can decode all
the k′ messages of the batch in consideration. To deliver
these FEC coded packets, we use Θ(k′) phases of the Decay
protocol, where the nodes in the outer boundary of the
j th ring transmit. It follows from Lemma 1 and a simple
Chernoff bound that after Θ(k′) = Ω(log n) phases of the
Decay protocol, each node on the inner boundary of the
( j + 1)th ring has with high probability received at least
Θ(k′) FEC coded packets related to the batch in consid-
eration. Thus, these inner boundary nodes of the j th ring
can decode all the messages of this batch. Hence, we con-
clude that in time O(D′ + k′ log n+ log2 n)+O(k′ log n) =
O( D

log4 n
+ log2 n), with high probability, one batches of

messages moves from the inner boundary of the j th ring
to the inner boundary of the ( j + 1)th ring. That is, in
each O( D

log4 n
), one batch of messages moves one ring for-

ward.
Having the above, it is enough to pipeline the batches of

messages over the rings. That is, the first batch starts in the
first ring, andmoves one ring forward, in each epochmade of
O( D

log4
+ log2 n) rounds. When the first batch is in the third

ring (and is starting to be broadcasted there), the first ring
starts working on the second batch. Note that at each time,
nodes in each ring work on at most one batch. This way, the
first batch arrives at the end of the last ring by the end of round
O( D

log4
+ log2 n) · log4 n = O(D + log6 n). Moreover, after

that, in every interval of O( D
log4

+log2 n) consecutive rounds,

onenewbatch arrives at the endof the last ring. Since there are
k
k′ batches, we get that we are done with the broadcast of all
messages by the end of round O(D+log6 n)+( k

k′ )·O( D
log4

+
log2 n) = O(D + log6 n) + (

k log3

D′ ) · O( D
log4

+ log2 n) =
O(D + k log n + log6 n).

Lastly, we explain how to reduces the overhead coming
from including the coefficient vector into RLNC coded pack-
ets from k bits to O(log n) bits. This is done by grouping all
packets into batches of O(log n) messages and only coding
together messages within a batch. This happens only in the
transmissions within a ring leaving the process of broadcast-
ing the messages between the boundaries of two consequent
rings the same as above, which was fine as the coding over-
head of FEC is only a constant.

Inside each ring, we do the following: Consider the j th

ring, for a j ∈ [1,Θ(log4)], and the GST of that ring.
For each node u in this ring, define height of u as hu =
du�log2 n� + lu , where du is the virtual-distance of u in
this ring and lu is the (normalized) BFS layers of u for
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this ring (that is, the BFS layer of u in the BFS layering
of original graph G minus j · D′). Note that this definition
of height exactly matches the potential function defined in
the proof of Theorem 2. Moreover, note that for each node
u, we have hu ≤ 2�log n�2 + D′ = O(D′ + 2 log2 n). Fix
W = Θ(log2 n). Based on the height, we decompose the j th

ring into strips as follows: all nodes u in the j th ring that
have hu ∈ [( j ′ − 1) · W, j ′ · W ] are in the strip number j ′.

Now, to reduce the header overhead caused by coding
to O(log n), instead of dividing the messages into batches
of k′ = D

log3 n
, we divide them into smaller batches each

consisting of k′′ = Θ(log n) messages. Thus, the RLNC
coefficient vectors of each batch areΘ(log n) bits and hence,
fit inside one packet for any packet size B = Ω(log n). Now
we use the transmission schedule of Sect. 3.2 but with coding
the packets only inside one batch and one strip. That is, we
run the schedule of Sect. 3.2 in steps consisting of Θ(log2 n)

rounds. If a node has not received all the messages of one
batch at the end of one step, then it ignores all the packets it
received in this step (that is, it empties its buffer) and restarts
in the next step. Following the proof ofTheorem2,we see that
in each step ofΘ(log2 n) rounds, each batch moves one strip
forward, with high probability. That is, for each particular
batch, in each Θ(log2 n) rounds, the height of the nodes that
have received all the messages of this batch increases by at
least Θ(log2 n), with high probability. Since the maximum
height in the ring is O(D′ +2 log2 n), we get that in O(D′ +
2 log2 n) rounds, the first batch moves from the start of the
ring to the end of the ring. After this, in each Θ(log2 n)

further rounds, another batch of messages arrives at the end
layer of the ring. From the above, by combiningwith the pipe-
lining argument between different rings, we get that the very
first batch reaches the outer boundary of the last ring after
O(D+ log6 n) rounds. After that, in each Θ(log2 n) rounds,
one newbatchmade ofΘ(log n)messages arrives at the outer
boundary of the last ring.Hence, afterO(D+k log n+log6 n)

rounds, all batches are broadcast to all nodes of the graph.
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