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Abstract A set of robots arbitrarily placed on different
nodes of an anonymous ring have to meet at one common
node and there remain. This problem is known in the lit-
erature as the gathering. Anonymous and oblivious robots
operate in Look–Compute–Move cycles; in one cycle, a robot
takes a snapshot of the current configuration (Look), decides
whether to stay idle or to move to one of its neighbors (Com-
pute), and in the latter case makes the computed move instan-
taneously (Move). Cycles are asynchronous among robots.
Moreover, each robot is empowered by the so called multi-
plicity detection capability, that is, it is able to detect during its
Look operation whether a node is empty, or occupied by one
robot, or occupied by an undefined number of robots greater
than one. The described problem has been extensively stud-
ied during the last years. However, the known solutions work
only for specific initial configurations and leave some open
cases. In this paper, we provide an algorithm which solvesthe
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general problem but for few marginal and specific cases, and
is able to detect all the ungatherable configurations. It is worth
noting that our new algorithm makes use of some previous
techniques and unifies them with new strategies in order to
deal with any initial configuration, even those left open by
previous works.
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1 Introduction

We study one of the most fundamental problems of self-
organization of mobile entities, known in the literature as
the gathering problem (see e.g., [9,13,18] and references
therein). In particular, we consider oblivious robots initially
located at different nodes of an anonymous ring that have to
gather at a common node and there remain. Neither nodes
nor links are labeled. Initially, each node of the ring is either
occupied by one robot or empty. Robots operate in Look–
Compute–Move cycles. In each cycle, a robot takes a snap-
shot of the current global configuration (Look), then, based
on the perceived configuration, takes a decision to stay idle
or to move to one of its adjacent nodes (Compute), and in
the latter case it moves to this neighbor (Move), eventually.
When a robot changes its position from a node to an adjacent
one, we say that it performed a move. If x robots make a
move synchronously, it equals to perform x moves. Indeed,
Look–Compute–Move cycles are performed asynchronously
for each robot. This means that the time between Look, Com-
pute, and Move operations is finite but unbounded, and it
is decided by the adversary for each robot. Hence, robots
may move based on significantly outdated perceptions. We
consider a minimalist variant of the Look–Compute–Move
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model which has very weak hypothesis. Neither nodes nor
edges of the graph are labeled and no local memory is avail-
able on nodes. Robots are anonymous, uniform (i.e. they all
execute the same algorithm), oblivious (memoryless) and
have no common sense of orientation. We assume that moves
are instantaneous, and hence any robot performing a Look
operation sees all other robots on nodes and not on edges.
Note that, in a discrete asynchronous environment this does
not constitute a limitation to the model. In fact, an algo-
rithm cannot take advantages from seeing robots on the edges
as the adversary can decide to perform the Look operations
only when the robots are on the nodes. On the other hand,
if an algorithm takes advantage from the assumption that
the robots always occupy nodes, the same algorithm can be
applied by adding the rule that if a robot sees another robot
on an edge, it just don’t move (i.e. it waits until all the robots
occupy only nodes).

Robots are empowered by the so-called multiplicity detec-
tion capability [19]. That is, a robot is able to perceive
whether a node of the network is empty, occupied by a sin-
gle robot or by more than one (i.e., a multiplicity occurs),
but not the exact number. Without multiplicity detection, the
gathering has been shown to be impossible on rings [24].

1.1 Related work

The problem of gathering mobile entities on graphs [2,
14,24] or open spaces [6,13,26] has been extensively
studied in the last decades. When only two robots are
involved, the problem is usually referred to as the rendezvous
problem [1,5,7,14,27]. Under the Look–Compute–Move
model, many problems have been addressed, like the graph
exploration, the perpetual graph exploration [4,12,16,17],
and the perpetual graph searching [3,12] while the ren-
dezvous problem has been proved to be unsolvable on
rings [24].

Concerning the gathering, different types of robot dis-
posals on rings (configurations) have required different
approaches. In particular, periodicity and symmetry argu-
ments have been exploited. A configuration is called peri-
odic if it is invariable under non-trivial (i.e., non-complete)
rotation. A configuration is called symmetric if the ring has a
geometrical axis of symmetry, that reflects single robots into
single robots, multiplicities into multiplicities, and empty
nodes into empty nodes. A symmetric configuration with an
axis of symmetry has an edge–edge symmetry if the axis goes
through two edges; it has a node–edge symmetry if the axis
goes through one node and one edge; it has a node–node
symmetry if the axis goes through two nodes; it has a robot-
on-axis symmetry if there is at least one node on the axis
of symmetry occupied by a robot. In [24], it is proved that
the gathering is not solvable for periodic configurations, for
those with edge–edge symmetry, and if the multiplicity detec-

tion capability is removed. Then all configurations with an
odd number of robots, and all the asymmetric configurations
with an even number of robots have been solved by different
algorithms. In [23], the attention has been devoted to the sym-
metric cases with an even number of robots, and the problem
was solved when the number of robots is greater than 18.
These results left open the gatherable symmetric cases of an
even number of robots between 4 and 18. Most of the cases
with 4 robots have been solved in [25]. The cases left open
in [25], referred to as the set SP4, are symmetric configura-
tions of type node–edge with 4 robots and the odd interval
cut by the axis bigger than the even one, with an interval
being a maximal set of empty consecutive nodes. In general,
configurations inSP4 are ungatherable as outlined in [23] for
configurations of 4 robots on a five nodes ring. Actually, spe-
cific configurations in SP4 could be gatherable but requiring
suitable strategies difficult to be generalized. The main diffi-
culty faced when dealing with configurations in SP4 comes
from the fact that among the two intervals cut by the axis,
the odd one is bigger than the even one. Intuitively, the mid-
dle node of the odd interval is the only possible candidate to
finalize the gathering, and this has been also proved in [15].
Hence, when robots move towards such a node to make a
multiplicity, it may happen that only one of the two sym-
metric robots allowed to move makes the movement. The
subsequent configuration contains now two intervals of even
size corresponding to those intervals originally cut by the
axis of symmetry. Possibly, they can be of the same size and
hence they may induce different symmetries with respect to
the original one.

Finally, the case of 6 robots with an initial axis of symme-
try of type node–edge, or node–node has been solved in [9].

Besides the cases left open, a unified algorithm that han-
dles all the above cases is also missing.

Other interesting gathering results on rings concern the
case of the so called local weak multiplicity detection. That
is, a robot is able to perceive the multiplicity only if it is part
of it. On this respect, our assumption in the rest of the paper
concerns the global weak multiplicity detection. Whereas,
the strong version would provide the exact number of robots
on a node.

Using the local weak assumption, not all the cases have
been addressed so far. In [20], it has been proposed an algo-
rithm for aperiodic and asymmetric configurations with the
number of robots k strictly smaller than

⌊ n
2

⌋
, with n being

the number of nodes composing the ring. In [21], the case
where k is odd and strictly smaller than n−3 has been solved.
In [22], an algorithm for the case where n is odd, k is even, and
10 ≤ k ≤ n − 5 is provided. Recently, the case of asymmet-
ric configurations has been fully characterized in [12]. The
remaining cases are still open and a unified algorithm like the
one we are proposing here for the global weak assumption is
not known.

123



Gathering on rings 257

Without any multiplicity detection, in [8,11] the grid and
the tree topologies have been fully characterized.

1.2 Our results

From the literature, we know that the configurations which
are periodic, have an edge–edge symmetry, or contain only
2 robots cannot achieve the gathering. We denote the set of
such configurations as NG (Not-Gatherable). Moreover, let
I be the set of any possible initial configuration (i.e those
configurations without multiplicities).

In this paper, we present a new distributed algorithm
that achieves the gathering for any initial configuration in
I\(NG∪SP4) by using the multiplicity detection. We denote
the set of such configurations as A (Admissible). Our algo-
rithm introduces a new approach and for some special cases
makes use of previous ones. In particular, existing algorithms
are used as subroutines for solving the basic gatherable cases
with 4 or 6 robots from [25] and [9], respectively. Also, we
exploit the following property.

Property 1 [24] Let C be a symmetric configuration with an
odd number of robots, without multiplicities. Let C ′ be the
configuration resulting from C by moving the unique robot
on the axis to any of its adjacent nodes. Then C ′ is either
asymmetric or still symmetric but aperiodic. Moreover, by
repeating this procedure a finite number of times, eventu-
ally the configuration becomes asymmetric (with possibly
one multiplicity).

For all the other gatherable configurations but the possible
ones inSP4, we design a new approach that has been suitably
unified with the mentioned subroutines. Our result answers to
the posed conjectures concerning the gathering, hence clos-
ing all the cases left open, and providing a general approach
that can be applied to all the initial configurations in A. In
particular, the case of symmetric and gatherable configura-
tions with and even number of robots between 8 and 18 has
been solved. Moreover, the algorithm that solves such case is
also able to solve the known gatherable cases by introducing
new techniques without colliding with the used subroutines.
The main result of this paper can be stated as follows.

Theorem 1 There exists a distributed algorithm for gather-
ing any configuration in A. The algorithm also allows robots
to recognize whether a configuration is in NG ∪ SP4.

1.3 Structure of the paper

In the next section we formally define the model, give the
notation used in the paper, prove some preliminary results
and give an overview of our new algorithm. In Sect. 3, we
formally describe our algorithm and prove its correctness.
In Sect. 4 we conclude the paper and outline some possible

future research directions. The “Appendix” provides graph-
ical representations of the algorithm.

2 Definitions and preliminaries

We consider an n-nodes anonymous ring without orientation.
Initially, k nodes of the ring are occupied by k robots. During
a Look operation, a robot perceives the relative locations on
the ring of multiplicities and single robots.

The global status of the system can be defined by the
current disposal of the robots plus their status, that is, whether
they are performing the Look, the Compute, or the Move
operation or they are simply inactive.

If an algorithm allows at least two robots to move con-
currently, then there might be a so called pending move.
This occurs when, due to the asynchrony, one of the robots
allowed to move performs its entire Look–Compute–Move
cycle while one of the others does not perform the Move
phase, i.e. its move is pending. Clearly, all the other robots
performing their cycle are not aware whether there is a pend-
ing move, that is they cannot deduce the global status from
their view.

The current disposal of the robots, referred to as a config-
uration, can be described in terms of the view of a robot r .
An interval is a maximal set of empty consecutive nodes.
We denote a configuration seen by r as a tuple Q(r) =
(q0, q1, . . . , q j ), j ≤ k − 1, that represents the sequence of
the intervals sizes read by r traversing the ring in one direc-
tion, starting from r . Abusing the notation, for any 0 ≤ i ≤ j ,
we refer by qi not only to the size of the i th interval but also
to the interval itself. Unless differently specified, we refer to
Q(r) as the lexicographical minimum view among the two
possibilities. For instance, in the configuration of Fig. 1a, we
have that Q(x) = (1, 2, 1, 3, 1, 2). A multiplicity is repre-
sented as qi = −1 for some 0 ≤ i ≤ j , regardless the number
of robots in the multiplicity. For instance, in the configura-
tion of Fig. 1b, Q(x) = (1,−1, 0, 1, 0,−1, 1, 1, 3, 1). In
case a configuration contains two consecutive multiplicities
the view is represented as a sequence (. . . ,−1, 0,−1, . . .),
where 0 represents the length of the interval between the
two multiplicities. Given a generic configuration C =
(q0, q1, . . . , q j ), let C = (q0, q j , q j−1, . . . , q1), and let Ci

be the configuration obtained by reading C starting from
qi , that is Ci = (qi , q(i+1)mod j+1, . . . , q(i+ j)mod j+1). For
instance, in the configuration of Fig. 1a, we have that if
C = Q(y) = (1, 3, 1, 2, 1, 2), then C = (1, 2, 1, 2, 1, 3)

and C3 = (2, 1, 2, 1, 3, 1). The above definitions imply:

Property 2 Given a configuration C,

(i) there exists 0 < i ≤ j such that C = Ci iff C is
periodic;
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(a) (b)

Fig. 1 a The intervals between robots y, z and y′, z′ are the supermins,
while the supermin configuration view is (1, 2, 1, 2, 1, 3). b Black nodes
represent multiplicities

(ii) there exists 0 ≤ i ≤ j such that C = (Ci ) iff C is
symmetric;

(iii) C is aperiodic and symmetric iff there exists only one
axis of symmetry.

The next definition represents the key feature for our algo-
rithm since it has a twofold advantage. In fact, based on it, a
robot can distinguish if the perceived configuration (during
the Look phase) is gatherable and if it is one of the robots
allowed to move (during the Compute phase).

Definition 1 Given a configuration C = (q0, q1, . . . , q j )

such that qi ≥ 0, for each 0 ≤ i ≤ j , the view defined as
C SM = min{Ci , (Ci ), | 0 ≤ i ≤ j} is called the super-
min configuration view. An interval is called supermin if it
belongs to the set IC = {qi | Ci = C SM or (Ci ) = C SM , 0 ≤
i ≤ j}.

For instance, in the configuration of Fig. 1a, C SM =
Q(z) = (1, 2, 1, 2, 1, 3). The next lemma, based on Defini-
tion 1, is exploited to detect possible symmetry or periodicity
features of a configuration.

Lemma 1 Given a configuration C = (q0, q1, . . . , q j ) with
qi ≥ 0, for each 0 ≤ i ≤ j :

1. |IC | = 1 if and only if C is either asymmetric and ape-
riodic or it admits only one axis of symmetry passing
through the supermin;

2. |IC | = 2 if and only if C is either aperiodic and symmetric
with the axis not passing through any supermin or it is
periodic with period n

2 ;
3. |IC | > 2 if and only if C is periodic, with period at most

n
3 .

Proof 1.⇒) If |IC | = 1 and C is symmetric, then the state-
ment holds as otherwise there exists another interval of the
same size of supermin to which the supermin is reflected with
respect to the axis. Moreover, the same should hold for every
neighboring interval of the supermin and so forth. Since by
hypothesis, the supermin is unique, there must exist at least

two intervals of different sizes that are reflected by the sup-
posed symmetry, and hence C results asymmetric.

If |IC | = 1 and C is asymmetric then it must be aperiodic,
as otherwise there exists 0 < i ≤ j such that C = Ci and
this implies more than one copy of the supermin.

1.⇐) If C is asymmetric and aperiodic, then Ci �= (Ci ),
Ci �= C� and Ci �= (C�), for each i and � �= i and hence
a unique supermin must exist. If C admits only one axis of
symmetry traversing the supermin, then there exists a unique
0 ≤ i ≤ j such that C SM = Ci = (Ci ) as otherwise Prop-
erty 2 would imply the existence of other axes of symmetry,
one for each supermin.

2.⇒) If |IC | = 2 and C is asymmetric, then by Property 2,
it is periodic and the period must be of n

2 .
If |IC | = 2 and C is aperiodic and symmetric, the axis of

symmetry cannot pass through both the supermins. In fact,
if it does, C SM = (C SM ) = (C SM ) j/2 = ((C SM ) j/2) that

implies (C SM )	 j/4
 = (C SM )� j/4�, i.e., there exists another
axis of symmetry orthogonal to the first one that reflects the
supermin into the other supermin. Hence, C would be peri-
odic.

If |IC | = 2 and C is periodic and symmetric, then by
Property 2 there exist an i such that C SM = (C SM )i . If
i �= j/2, then there exists an i ′ �= i such that C SM

i = (C SM )i ′
which implies that |IC | > 2, a contradiction. Therefore, the
period is n

2 .
2.⇐) If C is aperiodic and symmetric with the unique axis

not passing through any supermin, then each supermin must
be reflected by the axis to another one. Moreover, there can-
not be more than 2 supermins, as by definition of supermin,
these imply other axes of symmetry, i.e., by Property 2, C is
periodic. If C is periodic with period n

2 , then any supermin
has an exact copy after n

2 nodes, and there cannot be other
supermins, as otherwise the period would be smaller.

3.⇒) If |IC | > 2, then there are at least 3 supermins, and
hence C has a period of at most n

3 .
3.⇐) If C has a period of at most n

3 , then a supermin is
repeated at least 3 times in C . �

2.1 A first look to the algorithm

The lemma above already provides useful information for a
robot when it wakes up. In fact, during the Look operation,
it can easily compute |IC |. In order to recognize whether
the current configuration belongs to NG ∪ SP4, it is enough
to check whether at least one of the following conditions
holds: k = 2; the configuration belongs to the set SP4; the
configuration admits an edge–edge axis of symmetry; the
configuration is periodic. In the next section, we will show
that all the other configurations are gatherable. From now
on, we assume that the initial configurations do not belong
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to NG ∪ SP4 and we will show that the algorithm does not
generate configurations in NG ∪ SP4.

The main strategy allows only movements that affect the
supermin. In fact, if there is only one supermin (i.e. |Ic| = 1),
and the configuration allows its reduction, the subsequent
configuration still has only one supermin (the same as before
but reduced), or a multiplicity is created. In general, such a
strategy, applied to asymmetric configurations or to symmet-
ric ones with the axis passing through the supermin, leads to
create a configuration with one multiplicity. The node with
the multiplicity will constitute the place where the gathering
will be easily finalized by collecting the closest robots to the
multiplicity until no robots are left out.

For gatherable configurations with |IC | = 2, our algo-
rithm requires more phases before creating the final mul-
tiplicity where the gathering terminates. In this case, there
are two supermins that can be reduced. If both are reduced
simultaneously, then the configuration is still symmetric and
gatherable. Possibly, it contains two symmetric multiplici-
ties. Actually, this is the status that we want to reach even
when only one of the two supermins is reduced. In gen-
eral, the algorithm tries to preserve the original symmetry
or to create a gatherable symmetric configuration from an
asymmetric one. It is worth to remark that in all symmet-
ric configurations with an even number of robots, the algo-
rithm allows the movement of two symmetric robots. Then
it may happen that, after one move, the obtained configu-
ration is either symmetric or it is asymmetric with a possi-
ble pending move. In fact, if only one robot among the two
allowed to move performs its movement, it is possible that
its symmetric one either has not yet started its Look phase,
or it is taking more time. If there might be a pending move,
then the algorithm forces it before any other decision. Note
that, pending moves can only occur from symmetric config-
urations where two symmetric robots are allowed to move.
Due to the asynchrony of the system, we cannot ensure that
both symmetric robots perform their moves simultaneously.
However, we will show that from asymmetric configurations
with a possible pending move (i.e., at one allowed move
from a possible symmetry) our algorithm provides the mean
to recognize whether this may have occurred and allows to
move only the robot that can (re-)establish the symmetry. In
so doing, asymmetric configurations cannot produce pend-
ing moves as the algorithm allows the movement of only
one robot. In fact, either we perform the possible pending
move or we reduce the unique supermin by deterministi-
cally distinguishing among the two robots delimiting it, until
one multiplicity is created. Finally, all the other robots will
join the multiplicity one-by-one. In some cases, from asym-
metric configurations at one “allowed” move from symmetry
(i.e., with a possible pending move), robots must guess which
move would have been realized from the symmetric configu-
ration, and force it in order to avoid unexpected behaviors. By

doing this correctly, the algorithm brings the configuration
to have two symmetric multiplicities as above, eventually.
From here, a new phase that collects all the other robots but
few of them into the multiplicities starts. The robots that in
this phase remain out of the multiplicities are used as com-
pass for the other robots in order to keep trace of the direction
where the final gathering will be accomplished. In practice,
they serve as guards of the original axis of symmetry. In this
phase, still symmetric configurations may become asymmet-
ric at one move from symmetry, and each time this happens,
the algorithm re-establishes the original symmetry. Once the
desired symmetric configuration with two multiplicities and
few single robots is achieved, a new phase starts and moves
the two multiplicities to join each other. The node where the
multiplicities join represents the final gathering location.

3 Gathering algorithm

The algorithm works in five phases that depend on the config-
uration perceived by the robots, see Fig. 2. First, it starts from
a configuration without multiplicities and performs phase
multiplicity–creation whose aim is to create one mul-
tiplicity, where all the robots will eventually gather, or a
symmetric configuration with two multiplicities. In the for-
mer case, phase convergence is performed to gather all the
robots into the multiplicity. In the latter case, phases col-

lect and then multiplicity–convergence are performed
in order to first collect all the robots but few into the two mul-
tiplicities and then to join the two multiplicities into a single
one. After that, phase convergence is performed. Special
cases of seven nodes and six robots are considered separately
in phase seven-nodes. It will be clarified later that the loops
appearing in Fig. 2 can be traversed only a finite number of
times and the algorithm terminates in phase convergence.

In the next subsections, we describe each phase and prove
the correctness. We also show how robots interchange from
one phase to another until the final gathering is achieved. For
each phase, we distinguish a set of types of configuration
and list them in the related subsection. In order to identify
the correct phase, a robot computes the following parameters
of a configuration C = (q0, q1, . . . , q j ).

1. Number of nodes in the ring, n(C);
2. Number of multiplicities, m(C);
3. Number of nodes occupied or number of robots in the

case without multiplicities, ω(C);
4. Distance between single robots and multiplicities;
5. If C is symmetric and, in the affirmative case, if the sym-

metry is allowed.

We provide the pseudo-code of the procedures performed by
the robot in each phase. Such procedures take as input the
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MULTIPLICITY-CREATION

start

end

COLLECT

CONVERGENCESEVEN-NODES

MULT.-CONVERGENCE

Fig. 2 Phases interchanges

configuration view and the type of configuration (denoted as
CT). The way how a robot can identify the type of configu-
ration by computing the above parameters will be described
later (see Sect. 3.7). Section 3.8 proves the correctness of the
entire algorithm.

3.1 Examples of execution

By referring to Fig. 3, we provide some more details on pos-
sible executions of our gathering algorithm.

From the initial configuration of Fig. 3a, Property 1 is
exploited instead of reducing the supermins, since the con-
figuration is symmetric with a robot on the axis. This choice
has been made for simplifying the algorithm in the successive
phases. In the example, the robot on the axis chooses to move
to its left side, obtaining the configuration of Fig. 3b. Such
a configuration is asymmetric and it has only one supermin.
Moreover, the robots can recognize that there are no pend-
ing moves. Therefore, the unique supermin is reduced until
a multiplicity is created (phase multiplicity–creation).
In the specific case, the configuration of Fig. 3c is obtained.
From this point on, all the robots join the unique multiplicity
one-by-one, until achieving the gathering as in Fig. 3d (phase
convergence).

The initial configuration of Fig. 3e is asymmetric but it
can be possibly obtained from a symmetric configuration
with two supermins, by reducing one of them. We will show
that this situation can be detected by the robots by computing
the possible symmetric configuration. Therefore, differently
from what shown in the previous example of Fig. 3b where the
unique supermin is reduced, the possible original symmetry
is (re-)established by performing the possible pending move.
The obtained configuration is given in Fig. 3f, still remaining
in phase multiplicity–creation. This kind of move will

be performed until two symmetric multiplicities are created
as in Fig. 3g. At this point, phase collect is performed, in
order to gather the other robots (but few) into the two multi-
plicities. In Fig. 3h, only two robots have been left out from
the multiplicities and they have served during phase collect

to keep trace of the direction where to move. Afterward, in
phase multiplicity–convergence, the two multiplicities
are joined into a single multiplicity as shown in Fig. 3h. Then,
phase convergence moves the two remaining single robots
into the multiplicity, accomplishing the gathering task.

3.2 Phase multiplicity–creation

In this phase, the main idea is to reduce the supermin by
enlarging the largest interval adjacent to it as follows.

Definition 2 Let Q(r) = (q0, q1, . . . , q j ) be a supermin
configuration view, then robot r performs reduction if its
movement leads to configuration (q0 − 1, q1, . . . , q j + 1).

The pseudo-code of reduction is given in Fig. 4. The
procedure checks whether the robot perceives the supermin
configuration view by comparing the configuration C per-
ceived by the robot with C SM . Note that, in asymmetric con-
figurations, the robot that perceived C SM is the one among
the two robots at the extremities of the supermin allowed to
move. In fact, the robot on the other extremity would per-
ceive configuration C and, by definition of C SM , we have
C SM = C < C , as the configuration is asymmetric. Then,
the procedure moves the robot towards the supermin (see
the move that leads from configuration in Fig. 3b to that
in Fig. 3c). In symmetric configurations, the test at line 1
returns true for both robots adjacent to the unique supermin
or for the two symmetric robots that perceive C SM in case
that |IC | = 2.

It is worth to note that, from a symmetric configuration,
always two robots can perform the reduction. If only one of
them does it, the obtained configuration will contain exactly
one supermin (see e.g. Fig. 3e). However, the original axis of
symmetry can be preserved (like in the example of Fig. 3e,
f). In fact, if the perceived configuration contains only one
supermin and it is not symmetric, the robots are able to under-
stand whether there might be a pending move to re-establish
the original symmetry or not. In doing so, the robots can dis-
tinguish between asymmetric configurations with a possible
pending move from those where no pending moves are pos-
sible. In the first case, the original symmetry is re-established
(even though the starting configuration was not symmetric as
for configuration in Fig. 3e), while in the second case there
is only one supermin which is reduced (as for configuration
in Fig. 3b).

This constitutes one of the main results of the paper and
it is obtained by exploiting the following lemma.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Two examples of possible executions of the gathering algorithm. Black nodes represent multiplicities

Fig. 4 Procedure reduction

Lemma 2 Let C ∈ A and let C ′ be the configuration
obtained from C after a reduction performed by only one
robot. If C is asymmetric then C ′ is at least at two moves
from a symmetric configuration; if C is symmetric then C ′ is
at least at two moves from any other symmetric configuration
with an axis of symmetry different from that of C.

Before formally prove the lemma we better provide some
hints concerning the rationale behind it. Intuitively, if C is
asymmetric then there is only one supermin configuration
view C SM = (q0, q1, . . . , q j ). Therefore, when reduc-

tion is performed, we obtain a configuration with view
C ′ = (q0 − 1, q1, . . . , q j + 1) and, since q0 is the unique
smallest interval in C , then q0−1 is the smallest interval in C ′
(i.e. q0−1 < qi , for each 0 ≤ i ≤ j). From Lemma 1 follows
that a possible axis of symmetry can only pass through such
unique interval. However, the two intervals adjacent to it are
necessarily different as q1 ≤ q j < q j + 1. This implies that
C ′ is asymmetric. To show that C ′ is at two moves from any
symmetric configuration, we formally prove that the super-
min view of C ′ differs from any other views of C ′ by at least
two units (lexicographically). In fact, C SM differs from any
other views of C by at least one unit and in C ′ the view has
been reduced by one unit. If C is symmetric, similar argu-

ments can be applied as formally shown in the following
proof.

Proof By Lemma 1, two cases may arise: there exists only
one supermin in C or the configuration is symmetric and
contains exactly two supermins.

In the former case, by Lemma 1, it is enough to show
that C ′ requires more than one move to create another super-
min different from that of C . Let us consider the supermin
configuration view C SM = (q0, q1, . . . , q j ). For the sake
of simplicity, let us assume that, for each i = 1, 2, . . . , j ,
(C SM )i < ((C SM )i ). The case where, for some i , (C SM )i >

((C SM )i ) is similar. The case that (C SM )i = ((C SM )i ) can-
not occur as, otherwise, there exists an axis of symmetry
passing through qi , but by Lemma 1, the possible axis of sym-
metry can only pass through q0, as |IC | = 1. By definition of
supermin, for each (C SM )i , i = 1, 2, . . . , j , there exists ki ∈
{0, 1, . . . , j} such that: q� = q(i+�)mod j+1, for each � < ki ;
and qki < q(i+ki )mod j+1. Note that (i + ki )mod j +1 �= 0 as
otherwise the hypothesis of minimality of q0 is contradicted.
Moreover, ki �= j as otherwise

∑ j
�=0 q� = ∑ki

�=0 q� <
∑ki

�=0 q(i+�)mod j+1 = ∑ j
�=0 q(i+�)mod j+1, that is a con-

tradiction. From C ′, the supermin configuration view is
C ′SM = (q ′

0, q ′
1, . . . , q ′

j ) = (q0 − 1, q1, . . . , q j + 1) and we
have that, for each i = 1, 2, . . . , j , two cases may arise: if
ki > 0, then q ′

0 = q0 − 1 < qi = q ′
i and q ′

ki
= qki <

q(i+ki )mod j+1 = q ′
(i+ki )mod j+1; if ki = 0, then q ′

0 =
q0 − 1 < qi − 1 = q ′

i − 1. In any case, C ′SM differs from
(C ′SM )i by two units. It follows that C ′ is at least two
moves from any symmetric configuration with the axis dif-
ferent from that passing through the supermin. In fact, in
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order to obtain another axis of symmetry by performing only
one move on C ′, (C ′SM )i has to differ from C ′SM by at
most one unit. This is enough to show the statement for the
case of symmetric configurations with exactly one super-
min. Regarding the asymmetric case, it remains to show that
C ′ is at least two moves from any symmetric configuration
with the axis passing through the supermin. In an asymmet-
ric configuration C SM = (q0, q1, . . . , q j ) there exists a qk ,
1 ≤ k ≤ j

2 , such that q� = q( j+1−�)mod j+1, for each � < k,
and qk < q j+1−k . From C ′, the supermin configuration view
is C ′SM = (q ′

0, q ′
1, . . . , q ′

j ) = (q0 − 1, q1, . . . , q j + 1) and
two cases may arise: if k > 1, then q ′

1 = q1 = q j <

q j + 1 = q ′
j and q ′

k = qk < q j−1−k = q ′
j−1−k ; if k = 1,

then q ′
1 = q1 < q j = q ′

j − 1. It follows that C ′ is at least
two moves from any symmetric configuration with the axis
passing through the supermin.

Regarding the case of symmetric configurations with
exactly two supermins, we use similar arguments as above.
Let us consider the supermin configuration view C SM =
(q0, q1, . . . , q j ) and let us assume that h is the index such

that C SM = ((C SM )h). By definition, for each (C SM )i ,
i ∈ {1, 2, . . . , j}\{h}, there exists ki ∈ {0, 1, . . . , j}
such that: q� = q(i+�)mod j+1, for each � < ki , and
qki < q(i+ki )mod j+1. As above we are assuming that

(C SM )i < ((C SM )i ) and we can show that ki �= j ,
ki �= ( j + h)mod j + 1, (ki + i)mod j + 1 �= 0, and
(ki + i)mod j +1 �= h. From C ′, the supermin configuration
view is C ′SM = (q ′

0, q ′
1, . . . , q ′

j ) = (q0 − 1, q1, . . . , q j + 1)

and we have that, for each i ∈ {1, 2, . . . , j}\{h} two cases
may arise: if ki > 0, then q ′

0 = q0 − 1 < qi = q ′
i and

q ′
ki

= qki < q(i+ki )mod j+1 = q ′
(i+ki )mod j+1; if ki = 0, then

q ′
0 = q0 − 1 < qi − 1 = q ′

i − 1. In any case, C ′SM differs
from (C ′SM )i by two units. Similar arguments to the ones
used for the asymmetric case can show that C ′ is at least
two moves from any symmetric configuration with the axis
passing through the supermin. �

It follows that a robot can deduce C from C ′ by enlarging
the supermin of C ′. This equals to reduce the largest adja-
cent interval (i.e., by performing the reduction backwards)
hence deducing the possible original axis of symmetry and
then performing the possible pending reduction (See e.g.
the example of Fig. 3e).

Procedure symmetric in Fig. 5 exploits Property 2 to
check whether a configuration C is symmetric, periodic,
or symmetric of type edge–edge. In detail, it first checks
whether C is symmetric (lines 3–4), then if it is periodic
(lines 5–6) and finally if the symmetry is of type edge–edge
(lines 7–8). The last case occurs when there exists an i such
that the axis of symmetry passes through an even qi , and also
n is even.

Procedure check_reduction in Fig. 6 checks whether
an asymmetric configuration C can be obtained from some

Fig. 5 Algorithm to test if a configuration is in an allowed symmetry,
that is, it is symmetric, aperiodic and the axis of symmetry does not
pass through two edges

allowed symmetric configuration Ĉ by performing reduc-

tion. Procedure pending_reduction in Fig. 7 performs the
pending reduction.

At line 1, Procedure check_reduction looks for the
index k such that qk is the supermin, as it is the only
candidate for being the interval that has been reduced by
a possible reduction. Then, at lines 2–6, it computes
the configuration Ĉ before the possible reduction. This
is done by enlarging qk and reducing the largest interval
among q(k−1)mod j+1 and q(k+1)mod j+1. If q(k−1)mod j+1 =
q(k+1)mod j+1 or symmetric returns false on Ĉ , then C can-
not be obtained by performing a reduction from an allowed
symmetric configuration and the procedure returns (false,
∅) (see lines 8 and 11). If symmetric returns true on Ĉ
(line 9), then C can be obtained by performing reduc-

tion on Ĉ and hence the procedure returns (true, Ĉ) at
line 10.

Procedure pending_reduction uses check_reduction

to check whether C can be obtained by performing reduc-

tion on a configuration Ĉ (lines 1 and 2). At line 2 the pro-
cedure checks whether the robot is at the extremity of one

of the two supermins of Ĉ (min{Ĉ, (Ĉ j )} = Ĉ SM ) and if it
has not yet performed reduction (min{C, (C j )} �= C SM ).
In the affirmative case, the robot has to move towards the
supermin (line 3).

In general, it is not always possible to perform reduc-

tion as it may cause infinite computations. For instance, this
can occur when there exists only one supermin of size 0
and the configuration is symmetric. In fact, by Lemma 1 the
axis of symmetry passes through the edge between the two
robots r and r ′ delimiting the supermin. Therefore, apply-
ing reduction may consist in moving synchronously r and
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Fig. 6 Algorithm to test if a
configuration is at one move
from reduction

Fig. 7 Procedure pending_reduction

r ′ in opposite directions hence swapping their positions infi-
nitely many times. Another case where it is not clear whether
reduction can be applied occurs in symmetric configura-
tions with two supermins of size zero divided by one interval
of even size. These two cases will be managed separately
by means of two alternative moves. However, we will show
that a robot is always able to understand that there might
be a pending move also for the other moves allowed by our
algorithm from symmetric configurations.

One of the alternative moves is based on the following
definition.

Definition 3 Given a configuration C = (q0, q1, . . . , q j ),
the view defined as C ASM = min{Ci , (Ci )|Ci �= (Ci ) and Ci

�= C SM and (Ci ) �= C SM , 0 ≤ i ≤ j} is called the alter-
native supermin configuration view, and its first interval is
called alternative supermin.

When it is not possible to perform reduction, we either
reduce the alternative supermin or we perform the xn move
that is defined in the following.

Definition 4 Let C be a configuration where n(C) is odd,
there are more than six robots, and there are no multiplicities:

– If C is symmetric with only one supermin of size zero or
with two supermins of size zero divided by one interval
of even size, xn corresponds to moving towards the axis

the two symmetric robots closest to the axis of symmetry
that are divided by an odd interval;1

– If C is asymmetric and it has been possibly obtained by
applying xn from a symmetric configuration C ′ (that is,
from C ′ only one of the two robots on the above case has
moved), then xn on C corresponds to moving the second
closest robot towards the axis of C ′.

Each time a robot wakes up, it needs to find out which kind
of configuration it is perceiving, and, if it is allowed to move,
it needs to compute the right move to be performed. We
need to distinguish among several types of configurations,
requiring different strategies and moves. In this phase, as
there are no multiplicities, a robot must distinguish among
the following configurations:

W1 Symmetric configurations with an odd number of
robots;

W2 Configurations with four robots;
W3 Configurations with six robots;
W4 Symmetric configurations with an even number of

robots greater than six, only one supermin of size zero or
with two supermins of size zero divided by one inter-
val of even size (possibly of size zero) with no other
intervals of size zero;

W5 Symmetric configurations with an even number of
robots greater than six, only one supermin of size zero or
with two supermins of size zero divided by one interval
of even size (possibly of size zero), and other intervals
of size zero;

W6 Asymmetric configurations with an even number of
robots greater than six and:

(a) only one interval of size zero, and it is in between two
intervals of equal size;

1 Such an odd interval always exists. In fact, if the axis of symmetry
passes through two even intervals the configuration has an edge–edge
symmetry which is ungatherable.
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Fig. 8 Phase
multiplicity–creation

W1 W7 W4 W6 W3 W5W2

(b) only two intervals of size zero, with only one in
between two intervals of equal size;

(c) only two intervals of size zero, with one even interval
in between;

(d) only three intervals of size zero, with only two of
them separated by an even interval;

(e) only three consecutive intervals of size zero;
(f) only four intervals of size zero, with only three of

them consecutive;

W7 Remaining configurations in A.

For each configuration type, our algorithm checks whether
the robot perceiving the configuration C is allowed to move
and eventually, performs the move. The moves that the robots
can perform according to the perceived configurations are
implemented by Procedure multiplicity–creation given
in Fig. 9. Such moves induce the state diagram of Fig. 8 as
long as they do not create multiplicities. In the following we
describe the moves in detail assuming that a robot r perceives
a configuration C = Q(r) = (q0, q1, . . . , q j ).

From configurations in W1 (see lines 1–2), only the robot
on the axis can move in one of the two directions, arbitrar-
ily (see e.g. the example in Fig. 3a, b). Note that the robot
on the axis is the unique robot that perceives a view C such
that C = (C j ). After this move either the configuration con-
tains one multiplicity or it belongs to W1 or W7. With this
respect, a graphical description of the possible transitions
from W1 to the reachable configuration type can be found in
“Appendix 1”. Configurations in W7 will be described later
in this section and the configurations with multiplicities will
be described within the other phases. Regarding configura-
tions in W1, from Property 1, we know that the number of
times that the obtained configuration remains in W1 after this
move is bounded.

When the configuration is in W2 or in W3 (see lines 4–8), a
modified version of algorithms in [25] and [9] are performed,
respectively. In particular, both the algorithms are able to
manage symmetric configurations and to check whether in an
asymmetric configuration there is a possible pending move.
If the configuration is not symmetric and there are no pending
moves, then reduction is performed. The resulting config-
uration is still in W2 or in W3 or at least one multiplicity is
created. Similarly to the case of W1, a graphical description
of the possible transitions from W3 to the reachable con-
figuration type can be found in “Appendix 1”.2 From the

2 Actually the graphical descriptions contained in “Appendix 1” can be
exploited by the reader for all configuration types and hence from now
on we do not point again to such appendix.

correctness of algorithms in [25] and [9] and from the fact
that performing reduction results in reducing the supermin,
it follows that eventually at least one multiplicity is created.
In the rest of the paper the two procedures in [25] and [9] are
denoted as gather-four-nodes and gather-six-nodes,
respectively. We assume that they return true if the configu-
ration is not symmetric and there are no pending moves, and
apply the corresponding algorithms otherwise.

When the configuration is in W7 (see lines 31–34) and
it is symmetric, then the algorithm performs reduction on
two symmetric robots that lead to another symmetric config-
uration in W7 (a limited number of times as above), or to a
configuration with at least one multiplicity, or to an asymmet-
ric configuration with a pending move. In this latter case, by
Lemma 2 the algorithm recognizes that the configuration is at
one “allowed” move from symmetry and performs the pend-
ing move (even though it was not pending, indeed). When
the configuration is asymmetric without any possible pend-
ing move, again reduction is performed. By performing the
described movements, at least one multiplicity is created.

Configurations in W4–W6 correspond to the cases where
reduction is not allowed to be performed. In fact, if the
configuration is symmetric and there is only one supermin
of size zero, then reduction may result in swapping the
robots at the extremities of the supermin, hence obtaining
infinitely many times the same configuration. Similarly, if
the configuration is symmetric and there are two symmetric
supermins of size zero divided by one interval of even size,
then reduction would produce two multiplicities divided
by the interval of even size and we won’t be able to join such
multiplicities afterwards.

From W4 (see lines 10–13), the algorithm performs xn,
hence leading to configurations in W4, W6 or to configura-
tions with one multiplicity on the axis. Note that, in these
configurations, the axis always crosses the middle node of
the interval delimited by the robots that perform xn. There-
fore, if the configuration is again in W 4, such robots keep
on moving in the same direction and will eventually gather
at the node crossed by the axis. Move xn is implemented by
finding out the odd interval crossed by the axis of symme-
try. The two robots at the extremities of such interval are the
only ones that read a configuration C such that either C = C
with q0 odd, or C j = (C j ) with q j odd, depending on the
orientation of the view.

From W5 (see lines 14–15), the algorithm performs
reduction with respect to the alternative supermin instead
of the supermin, according to Definition 3. Note that, as in
this case the alternative supermin has size zero, we obtain at
least one multiplicity.
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Fig. 9 Procedure
multiplicity–creation

The asymmetric configurations in W6 (see lines 17–29)
are either asymmetric starting configurations or are obtained
from the symmetric configurations in W4 after performing
xn. In these cases, the algorithm checks whether the con-
figuration is obtained after an xn move. This is realized by
moving backward the robot closest to the other pole of the
axis of symmetry that is assumed to pass through: The super-
min in case (a); The only interval of size zero adjacent to two
intervals of equal size in case (b); The even intervals men-
tioned in cases (c) and (d); the only interval of size zero in
between other two intervals of size 0 in cases (e) and (f). If
a backwards xn produces a symmetric configuration, then
the symmetric xn is performed, otherwise, reduction is
performed. In the former case, the configuration is either in

W 4 or it has one multiplicity on the axis, in the latter case,
reduction creates a multiplicity.

Lemma 2, shows that performing reduction on only one
robot of a configuration C does not create a symmetric con-
figuration. Moreover, if C ′ is the configuration obtained, then
C ′ cannot be obtained by applying any other move on a differ-
ent symmetric configuration. The same holds if C belongs to
W 5 where we apply reduction on the alternative supermin.
In fact, performing such a move on only one robot creates
a configuration with exactly one multiplicity which adjacent
intervals differ by at least one unit. The next two lemmas
show that this also holds for xn. In detail, the first lemma
shows that a configuration C in W 6 can be obtained only if
C is in W 4 or it is asymmetric, and the second one shows
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that there is only one configuration in W 4 that generates C
by performing xn on only one robot.

Lemma 3 Let C be a symmetric configuration in W 7 and let
C ′ be the configuration obtained from C after a reduction

move performed by only one robot. Then, C ′ does not belong
to W 6.

Proof If C ′ contains multiplicities, then it does not belong
to W 6. Therefore, let us assume that C ′ does not contain
multiplicities.

Any configuration with more than one interval of size zero
cannot be obtained after a reduction move performed by
only one robot. In fact, a standard move would reduce at
least one of the existing intervals of size zero, hence creating
a multiplicity. Therefore, C ′ cannot belong to cases (b)–(f)
of W 6.

If C ′ belongs to case (a) of W 6, then, the supermin is
the only interval of size zero. However, such a configuration
cannot be obtained by a reduction move as the two intervals
adjacent to the supermin have equal size. �
Lemma 4 Let C be a configuration in W 4 and let C ′ be the
configuration obtained from C after an xn move performed
by only one robot. Then C ′ is asymmetric and it cannot be
obtained after an xn move performed by only one robot from
a configuration C ′′ �= C in W 4.

Proof If C belongs to W 4, then it has either a unique super-
min or two symmetric supermins given by the intervals of
size zero. After performing xn by only one robot, the new
configuration C ′ can have: (i) one supermin corresponding to
one interval of size zero of C , (ii) one supermin correspond-
ing to the interval reduced by the performed move, or (iii)
two supermins corresponding to the only interval of size zero
of C and to the interval reduced by the performed move, (iv)
two supermins corresponding to one of the two intervals of
size zero of C and to the interval reduced by the performed
move.

In case (i), by Lemma 1, if C ′ is symmetric then the axis
must cross the supermin. However, the two opposite views
from such a supermin must be different as otherwise one of
them corresponds to a view in C which is smaller than the
supermin configuration view C SM , a contradiction.

In case (ii), the interval reduced by the performed move
must be of size zero in C ′. Hence, like in case (i), the axis
must cross the unique supermin. However, the two intervals
adjacent to such supermin are different as only one of them
has been modified by the performed move.

In case (iii), the two intervals adjacent to the supermin of
C ′ corresponding to the only interval of size zero of C must
have the same size since the axis of C crosses the interval of
size zero and there are more than four robots. However, the
two intervals adjacent to the one reduced by the performed

move are different as only one of them has been modified, a
contradiction.

In case (iv), the axis must cross the only interval of size
zero which is not a supermin and therefore C must contain
exactly six robots, a contradiction.

To show that C ′ cannot be obtained by performing xn by
only one robot from a configuration C ′′ �= C in W 4, note
that C ′ belongs to W 6. We hence analyze each of the cases
(a)–(f) of W 6. As there are more than six robots, xn does
not enlarge the intervals of size zero. It follows that C ′′ has
at most the same number of intervals of size zero of C ′.

In case (a), the only possible axis of symmetry of C ′′ must
pass through the only interval of size zero. It follows that the
xn performed by only one robot from C ′′ leads to reduce one
of the two adjacent intervals to that on the axis of symmetry,
antipodal to the interval of size zero. This is exactly what
happens from C , and hence C ′′ cannot be different from C .

Similar arguments apply in other cases but the possible
axis passes through: the unique interval of size zero between
two intervals of equal size in case (b); the even interval
between the two intervals of size zero in cases (c) and (d);
the middle interval of size zero of the three consecutive ones
in cases (e) and (f). �

The next lemma states that multiplicity–creation

eventually terminates with at least one multiplicity and hence
one of the other phases starts.

Lemma 5 Phase multiplicity–creation terminates with
either one or two symmetric multiplicities after a finite num-
ber of moves.

Proof From the description provided before this lemma, it
follows that the graph in Fig. 8 models the execution of phase
multiplicity–creation. We now show that all the cycles
are traversed a finite number of times. This implies that even-
tually either one or two symmetric multiplicities are created.

From Property 1, and results in [25], and [9] follows that
the self-loops in W1, W2, and W3, respectively, are traversed
a finite number of times.

The self-loop in W7 is traversed by performing reduc-

tion or pending_reduction. Each time such moves are per-
formed, the supermin decreases until, after a finite number
of moves, it either creates a multiplicity or leads to configu-
rations in W4 or W6. The number of moves is at most two
times the size of the initial supermin for symmetric configu-
rations with the axis not passing through the supermin and it
is the size of the initial supermin otherwise.

The self-loop in W4 and the cycle between W4 and W6
are traversed by performing xn. Each time this happens, the
interval between the two symmetric robots closest to the axis
of symmetry (excluding those adjacent to the supermin) is
reduced until creating a multiplicity on the axis. The number
of moves performed equals the initial size of such an interval.

�
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If multiplicity–creation leads to a configuration with
two symmetric multiplicities or at one move from a symmet-
ric configuration with two multiplicities, then phases col-

lect or multiplicity–convergence start. If it leads to a
configuration with only one multiplicity which is not at one
move from a symmetric configuration with two multiplic-
ities, then phase convergence starts. Special cases on a
seven nodes ring are addressed by phase seven-nodes.

3.3 Phase collect

In this phase, all the robots but four gather to the two symmet-
ric multiplicities created in the previous phase. The rationale
behind invoking this phase before joining the two multiplici-
ties resides in making easy to the robots to recognize in which
phase they are. In fact, anticipating the merging of the two
multiplicities may lead to configurations with new axes of
symmetry or at one step from other axes of symmetry with
respect to the original one.

This phase can start only if the initial configuration is sym-
metric or at one step from specific symmetric configurations.

Before proceeding with the description of this phase, we
need to distinguish among the two poles of an axis of symme-
try in the case that there are two, three or four multiplicities.
The cases of three and four multiplicities are handled in the
successive phases. We call one of the poles north accord-
ing to the following definition which is needed also in the
successive phases.

Definition 5 In a symmetric configuration not in NG with
two, three or four multiplicities, if the axis is of type node–
edge, node–node, or robot–robot, then we call one node
north as follows:

node–edge axis case: the north is the middle node of the
odd interval crossed by the axis;

node–node axis case: let us consider the two sub-rings which
are crossed by the axis and between two symmetric mul-
tiplicities. The north is the middle node of the smallest
sub-ring, if the two sub-rings have different sizes. If the
two sub-rings have the same size, then the north is
the middle node of the interval crossed by the axis from
which by reading all the configuration, one obtains the
lexicographically largest string;

robot–robot axis case: as for the previous case, let us con-
sider the two sub-rings which are crossed by the axis and
between two symmetric multiplicities. The north is the
middle node of the smallest sub-ring, if the two sub-rings
have different sizes. If the two sub-rings have the same
size, then the north is the node occupied by the robot
crossed by the axis from which by reading all the config-
uration, one obtains the lexicographically smallest string.

The other node or edge cut by the axis is called south.

In the cases with a robot-node or robot-edge symmetry
(i.e. when the number of robots is odd) the algorithm does
not generate configurations with more than one multiplic-
ity. Therefore, in such cases, the definitions of north and
south are not needed.

We assume that in symmetric configurations with multi-
plicities, a robot reads a configuration starting from the north-
ern interval between the two adjacent ones. For instance,
robots x and z of Fig. 1b, read (1,−1, 0, 1, 0,−1, 1, 1, 3, 1)

and (1, 0,−1, 1, 1, 3, 1, 1,−1, 0), respectively. We also
assume that if the robot belongs to a multiplicity the first
interval q0 is equal to −1. For instance, robots y in Fig. 1b,
read (−1, 0, 1, 0,−1, 1, 1, 3, 1, 1).

In asymmetric configurations with one multiplicity, the
proper reading of a robot is defined as follows. Let us con-
sider the configuration read by a robot in an arbitrary order
C = (q0, q1, . . . , qi , . . . , q j ), where qi = −1. The robot
first verifies whether there is another symmetric multiplic-
ity to be created by checking whether the configuration
C ′ defined as C ′ = (q0, q1, . . . , qi−1 − 1, 0, . . . , q j ) if
qi−1 > qi+1 or C ′ = (q0, q1, . . . , 0, qi+1 − 1, . . . , q j ) if
qi−1 < qi+1 is symmetric. In the affirmative case, the robot
chooses the proper reading between C and (C j ) according

to the minimal one between C ′ and (C ′
j ) (see Fig. 10). Oth-

erwise, and in the case that qi−1 = qi+1, it chooses the one
towards the multiplicity, that is C if

∑i−1
�=0 q� ≤ ∑ j

�=i+1 q�

and (C j ) otherwise (see Fig. 11).
In asymmetric configurations with two multiplicities,

in order to provide a robot with a proper reading, we
need to recognize the north of a symmetric configuration
from which the current configuration has been potentially
obtained. In doing so, a robot will read the configuration
starting from the northern interval among its adjacent ones.
To this aim, the robot looks for an interval or a robot which
is at the same distance from the two multiplicities. If there
exists an interval of even size at the same distance from the
two multiplicities, then the middle edge of such interval is
identified as south and the node at distance 	 n

2 
 from both
the extremities of the south is identified as the north (see
Fig. 12a). In any other case, we compare the sizes of the two
sub-rings between the two multiplicities. If they are different,
we consider the configuration obtained by removing all the
single robots adjacent to the multiplicities. Then, the middle
robot, or the middle node of the middle interval of the small-
est sub-ring is identified as the north (see Fig. 12b). If they
are equal, the algorithm ensures that there always exists an
odd size interval or a robot at the same distance from the two
multiplicities. Therefore, we lexicographically compare the
configurations read by such interval (robot, resp.) with that
read from the node at distance n

2 from the middle of this inter-
val (from the robot, resp.) and consider the largest (smallest,
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x x

(a) (b)

Fig. 10 Let us assume that robot x in a reads the configuration C =
(4,−1, 2, 1, 2, 0, 3, 1), where qi = −1 for i = 1. Then, it computes
C ′ = (3, 0, 2, 1, 2, 0, 3, 1) represented in b. Since C ′ is symmetric and
(C ′

j ) < C ′, then x sets as proper reading (C j ) = (1, 2, 0, 2, 1, 2,−1, 4)

(a) (b)

Fig. 11 Let us assume that robot x in a reads the configuration C =
(4,−1, 2, 1, 2, 1, 2, 1), where qi = −1 for i = 1. Then, it computes
C ′ = (3, 0, 2, 1, 2, 1, 2, 1) represented in b. Since C ′ is asymmetric,
then x computes

∑i−1
�=0 q� = 4 and

∑ j
�=i+1 q� = 9 and chooses C as

proper reading because
∑i−1

�=0 q� ≤ ∑ j
�=i+1 q�

resp.) as the north (south, resp.) and the other as south
(north, resp.). See Fig. 12c for an example.

In order to keep trace of the possible axis of symmetry
that determines the final gathering node, we also introduce
the concept of guards, identified by two single robots placed
on specific nodes of the configurations handled in this phase.
The guards are also exploited by robots to understand when
phase collect (Fig. 13) has terminated.

Definition 6 Given a configuration with two multiplicities
and at most six nodes occupied, two single robots are called
guards if:

– they occupy the north and the south;
– they occupy the extremities of the interval containing the

south.

We remind that by construction, when the configuration
contains two multiplicities, the north and the south poles are
always well defined since the configuration is either symmet-
ric or at one allowed move from symmetry. Hence, on such
configurations with at most six nodes occupied the guards
can be always detected. The limit of six nodes occupied has
been set because it determines the moment when the robots

x y

z
m1 m2

x

y

x

(a) (b) (c)

Fig. 12 Identifying north and south in asymmetric configurations
with two multiplicities. a Since the interval between x and y is even
and the distance between m1 and x is equal to that between m2 and
y, then the middle edge of the interval between x and y is identified
as the south and the node z is identified as north. b Since the sub-
ring on the bottom of the two multiplicities is smaller that the one on
top of them, then node x (in the middle of the smallest sub-ring) is
identified as north. c The two sub-rings on the top and bottom of
the two multiplicities have the same size. Therefore, we compare the
readings from nodes y and x which are Cy = (1, 2,−1, 4, 4,−1, 1, 2)

and Cx = (4,−1, 1, 2, 1, 2,−1, 4), respectively. As Cy < Cx , then we
choose y as north and x as south

COLL-A-1 COLL-S-2 COLL-A-2

Fig. 13 Phase collect

exit from phase collect and enter phase multiplicity–
convergence, and they never come back.

Phase collect is performed if one of the next configura-
tions occurs:

Coll-a-1 Asymmetric configurations with more than six
nodes occupied, one multiplicity at more than one move
from the symmetry passing through the multiplicity and
at one move from the symmetry existing before perform-
ing reduction or reducing the alternative supermin;

Coll-s-2 Symmetric configurations with two multiplicities
and

(a) more than six nodes occupied;
(b) six nodes occupied and more than one single robot

at distance greater than zero from any multiplicity on
the northern side;

(c) six nodes occupied and more than two single robots
at distance greater than zero from any multiplicity on
the southern side;

Coll-a-2 Asymmetric configurations with two multiplicities
and

(a) more than six nodes occupied;
(b) six nodes occupied and at least one single robot which

is not a guard at distance greater than zero from any
multiplicity.
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Fig. 14 Procedure collect

The pseudo-code of procedure collect is given in
Fig. 14.

When the configuration is in Coll-a-1, the algorithm
(lines 1–10) first checks whether the current configuration
is at one move from the symmetric configuration existing
before performing reduction or reducing the alternative
supermin. If this condition is verified, it moves the robot
that re-establishes the previous axis of symmetry, leading
to a symmetric configuration which contains two multiplic-
ities. Note that, the original configuration was at more than
one move from the symmetry passing through the multiplic-
ity. After this move, a configuration in Coll-s-2 is obtained.
Then, the algorithm generates only configurations in Coll-
s-2 or in Coll-a-2.

When the configuration is in Coll-s-2, we need to distin-
guish among the types of symmetry.

In node–node and node–edge symmetries (lines 12–16),
we consider the two symmetric robots which are the closest
ones to the multiplicities among those in the nodes between
the multiplicities and thenorth. The algorithm moves these
two robots symmetrically (generating again configurations
in Coll-s-2 or in Coll-a-2 if the symmetric robots move

synchronously or not, respectively) until they join the two
multiplicities. This operation is iteratively performed by all
the robots between the multiplicities and the north. The
last two robots are allowed to join the multiplicities only if
there are more than six nodes occupied. Otherwise, these
two robots are moved until they become adjacent to the mul-
tiplicities. Then, the robots between the multiplicities and the
south (but the guards), perform the same operation, starting
by the two symmetric robots closest to the multiplicities.

In robot–robot symmetric configurations (lines 17–21),
the behavior is similar but it is realized by first collecting the
robots on the south and then those on the north, but for
the guards.

In both cases, the algorithm eventually leads to a symmet-
ric configuration with six nodes occupied by two multiplici-
ties, two guards and two robots adjacent to the multiplicities.
The next lemma shows that this phase eventually terminates
in the described symmetric configuration.
Lemma 6 Phase collect terminates after a finite number
of moves by reaching a symmetric configuration with six
nodes occupied by two multiplicities, two guards and two
single robots adjacent to the multiplicities.
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Proof From the above description, it follows that the graph
in Fig. 13 models the execution of phase collect. We now
show that all the cycles are traversed a finite number of times
until one of the configurations in the statement is created.

There are only two cycles in the graph: the self-loop in
Coll-s-2 and the bidirectional edge between Coll-s-2 and
Coll-a-2. Each time that one of these two cycles is tra-
versed, either the distance between a multiplicity and a robot
or the number of single robots is decreased until six nodes
are occupied by two multiplicities, two guards and two robots
adjacent to the multiplicities. In fact, if at least one of the sin-
gle robots which is not a guard is at distance greater than zero
from any multiplicity, then the algorithm makes move it (and
possibly its symmetric one) until this situation does not occur
anymore, hence reducing the distance between single robots
and multiplicities. �

3.4 Phase multiplicity–convergence

This phase starts from a configuration of the type given in
Lemma 6 and it aims to move the two multiplicities and the
two single robots which are not the guards to the north.
In so doing, all the robots but one, two, three or four, are
gathered in the north node. The non gathered robots are
the guards that might be one or two on the southern side, and
those not yet entered the final multiplicity but adjacent to it
(and these also might be one or two).

Phase multiplicity–convergence is performed if one
of the next configurations occurs:

Mc-s-x Symmetric configurations with

(a) two multiplicities with more than seven nodes and
exactly four nodes occupied

(b) two multiplicities, two guards and two single robots
adjacent to the multiplicities (six nodes occupied over-
all);

(c) three multiplicities or two multiplicities and exactly five
nodes occupied;

(d) four multiplicities;

Mc-a-x Asymmetric configurations with

(a) two multiplicities, more than seven nodes and less than
six nodes occupied;

(b) two multiplicities, six nodes occupied and no single
robots but the guards at distance greater than zero from
any multiplicity;

(c) three multiplicities;

Mc-a-1 Asymmetric configurations with more than seven
nodes, five nodes occupied, one multiplicity at more than one
move from the symmetry passing through the multiplicity
and at one move from a symmetry allowed by algorithm
in [9].

The pseudo-code of Procedure multiplicity–
convergence is given in Fig. 15.

From Mc-s-x, if there are two multiplicities, the algorithm
moves them towards north if exactly four nodes are occu-
pied (line 2), or if exactly six nodes are occupied with one
single robot adjacent to the northern side of each multiplicity
(second condition of line 11). If exactly six nodes are occu-
pied with one single robot adjacent to the southern side of
each multiplicity (first condition of line 11), the algorithm
moves towards north the two symmetric robots adjacent to
the multiplicities, making such robots joining the multiplici-
ties. These operations lead to configurations in Mc-s-x (with
the northern side reduced), or in Mc-a-x.

The configurations in Mc-s-x with three multiplicities or
two multiplicities and exactly five nodes occupied can occur
only when the three multiplicities are consecutive, or there
are three consecutive nodes occupied with one single robot
in the middle of two multiplicities (line 5). In both cases,
the middle robot/multiplicity is crossed by the axis. In these
cases, the algorithm moves the two external multiplicities
towards the middle robot/multiplicity leading to a symmetric
configuration with only one multiplicity crossed by the axis
or to an asymmetric configuration with two multiplicities, at
one move from the symmetry passing through one of the two
multiplicities.

If the configuration is in Mc-s-x and it has four multiplic-
ities (line 8), the algorithm moves the southern multiplicities
towards the two symmetric northern ones, hence obtaining a
configuration still in Mc-s-x with four multiplicities (but with
less robots to move upwards), or in Mc-s-x with two multi-
plicities (but with a largest southern side), or to an asymmetric
configuration in Mc-a-x with two or three multiplicities.

From Mc-a-x (lines 13–24), the algorithm allows only
moves towards north that can re-establish the symmetry.
This may require more than one move, hence motivating the
self-loop in Fig. 15. Note that, unless the configuration is
made of just six robots, there will always be at least two
multiplicities. The case of six robots, instead, may lead to a
configuration in W3 or in Mc-a-x. From Mc-a-1, the algo-
rithm applies the technique from [9] (line 26, see “From
multiplicity–convergence to multiplicity–creation

of Appendix 2” for more details).

Lemma 7 Phase multiplicity–convergence terminates
after a finite number of moves with a configuration composed
of one multiplicity and between one and four single robots.

Proof From the above description, it follows that the graph
in Fig. 16 models the execution of phase multiplicity–
convergence and that all the cycles are indeed traversed
a finite number of times until a configuration as described in
the statement is achieved. In fact, for each described config-
uration, a set of robots is allowed to move towards north,
reducing the northern part, or enlarging the southern part, or
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Fig. 15 Procedure
multiplicity–convergence

MC-A-1 MC-S-x MC-A-x

Fig. 16 Phase multiplicity–convergence

decreasing the number of robots that have to move towards
north. The only exception is given by the six robots case,
which however is guaranteed to converge to the desired sym-
metric configuration by means of the arguments in [9]. �

3.5 Phase convergence

In this phase, we achieve the gathering by moving all the sin-
gle robots towards the unique multiplicity obtained in phase
multiplicity–creation, or multiplicity–convergence.
To this aim, we need to extend the definition of move xn to
the case of configurations with multiplicities.

Definition 7 Let C be a configuration with one multiplicity:

– If C is symmetric, xn corresponds to moving towards the
multiplicity the two symmetric robots closest to the mul-
tiplicity;

– If C is asymmetric and it has been possibly obtained by
applying xn from a symmetric configuration C ′ (that is,
from C ′ only one of the two robots on the above cases has
moved), then xn on C corresponds to moving the second
closest robot towards the multiplicity;

– If C is asymmetric and it cannot be obtained by applying
xn from a symmetric configuration, then xn corresponds
to moving the robot lexicographically closest to the mul-
tiplicity towards it.

Phase convergence is performed if one of the next con-
figurations occurs:

Conv-a-s Asymmetric configurations with one multiplic-
ity at one xn move from configurations also achievable
when the algorithm for gathering six robots is applied.
Such configurations are described in Fig. 17 and formally,
they are: (−1, q1, q1−1, 0, q4, q4+2), (−1, q1, q2, q1−
2, 0, q5), and (−1, q1, q2, q1 − 1, 0, q5, 0).

Conv-s-1 Symmetric configurations with one multiplicity
but those on rings of seven nodes with five nodes occu-
pied;

Conv-a-1 Asymmetric configurations with one multiplicity,
but configurations with five nodes occupied on a ring of
seven nodes;
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(a) (b)

(c)

Fig. 17 The 3 special types of configurations. A white (grey, black,
respectively) circle represents an empty node (a node with one robot,
a multiplicity, resp.). A dashed (plain, resp.) arc indicates an arbitrary
sequence of empty nodes (two consecutive nodes, resp.). If during the
convergence phase a robot should move towards the multiplicity, as

indicated by the arrow, then the resulting configuration is at one move
from a symmetric configuration with two multiplicities achievable when
the algorithm for gathering six robots is applied. The symmetric con-
figurations arise when, in each shown configuration, the two adjacent
robots join into a multiplicity

(a) at one xn move from the symmetry passing through
the multiplicity and different from the configurations
in Conv-a-s;

(b) at more than one move from any symmetry.

The general idea is to gather all the remaining single
robots to the only multiplicity by performing xn. How-
ever there might occur some exceptions that must be care-
fully considered. In fact, whenever the gathering leads to
configurations with only five nodes occupied, these might
be “confused” with configurations in phase multiplicity–
convergence obtainable when initially there are only six
robots. In order to address such occurrences, we avoid these
situations. In particular, the algorithm does not perform an xn

move whenever it leads to configurations at one move from
a symmetric configuration with two multiplicities achiev-
able when the algorithm for gathering six robots is applied
(shown in Fig. 17). These are the configurations in Conv-a-
s: in this case we perform another move. That is, we allow
again an xn move, but without considering the original robot
which was supposed to move. In practice, this equals to
move the first robot on the other side of the one planned
to move with respect to the multiplicity. It is worth to note
that the configurations in Conv-a-s are the only ones to take
care of. The other two possible configurations are shown
in Fig. 18. After the xn move, they lead to a configura-
tion at one move from a symmetric configuration with two
multiplicities, but, in this case, the algorithm in [9] would
never generate it and then there is no possible misclassifica-
tion.

It must be observed that the above method applied from
Conv-a-s decreases the number of moves required to move
the single robots to the only multiplicity.

From Conv-s-1, the algorithm allows by an xn move
the two closest single robots to the multiplicity (or the only
remaining one) to move towards the multiplicity. If both make
synchronously the move, then the obtained configuration is
still in Conv-s-1, but with one move less before the final
gathering. If only one robot performs the allowed move, then
the configuration is in Conv-a-1. From Conv-a-1 a, either
there is only one single robot left, which will be the only one
allowed to move towards the multiplicity until the gathering
is completed, or there are at least two single robots, each of
which has no other robots in between itself and the multi-
plicity. If the farthest among those two robots re-build the
symmetry by one move towards the multiplicity, then it will
be the only one allowed to move and the obtained configu-
ration is in Conv-s-1, otherwise the other single robot is the
only one allowed to move towards the multiplicity and the
obtained configuration might either remain in Conv-a-1 or
move to Conv-s-1. Also from Conv-a-1 b, the xn move is
performed.

In any case, the number of moves to reach the final gather-
ing is reduced. The pseudo-code of Procedure convergence

is given in Fig. 19.

Lemma 8 Phase convergence terminates after a finite
number of moves finalizing the gathering or in a configu-
ration in Coll-a-1.
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(a) (b)

Fig. 18 The two other special asymmetric configurations. After the moves indicated by the arrows the resulting configuration is at one move from
a symmetric configuration with two multiplicities, but this symmetric configuration is never generated by the algorithm in [9]

Fig. 19 Procedure
convergence

CONV-S-1 CONV-A-1 CONV-A-s

Fig. 20 Phase convergence

Proof From the above description, it follows that the graph
in Fig. 20 models the execution of phase convergence and
that all the cycles are indeed traversed a finite number of times
until the gathering is completed. In fact, for each described
configuration, one or two robots are allowed to move towards
the multiplicity, reducing the number of moves necessary for
each single robot to reach the multiplicity. Eventually the
gathering is necessarily accomplished. The only exception
occurs when a configuration in Conv-a-1 b with more than
six nodes occupied leads, after a xn, to a configuration in
Coll-a-1 (that is a configuration with one multiplicity at one
reduction move from the symmetry). However, this may
happen only once as from Coll-a-1 the algorithm achieves
configurations with only one multiplicity only if less than six
nodes are occupied (for more details, see “From conver-

gence to collect of Appendix 2”). �

3.6 Phase seven-nodes

In [9], it has been shown that some configurations with six
robots on a ring of seven nodes require special arguments.
This phase copes with such cases and it is performed if one
of the next configurations occurs:

7N-2 Configurations with two multiplicities on a ring of
seven nodes;

7N-1 Configurations with one multiplicity and five nodes
occupied on a ring of seven nodes.

All the above configurations can occur only when there are
six robots on a ring of seven nodes. In fact, for 7N-2 there
cannot be initially more than six robots on a ring of seven
nodes, and no strategy leads to have two multiplicities apart
from the case of six robots. For 7N-1, it may only happen
starting from six single robots. In these cases, the algorithm
for six robots from [9] is used.

3.7 Selecting the type of configuration

In this section, we show how to recognize the type of con-
figurations among those described above.
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We first show that all the above types are pairwise disjoint
and that they cover all the possible configurations achieved
by the algorithm. Let CTP = {W1, W2, . . . , W7, Coll-a-1,
Coll-a-2, Coll-s-2, Mc-s-x, Mc-a-x, Mc-a-1, Conv-a-
s, Conv-a-1, Conv-s-1, 7N-2, 7N-1} be the set of all the
possible configuration types above.

The configurations in W 1–W 7 cover all the possible ini-
tial configurations in A, as by hypothesis, any initial con-
figuration has no multiplicities. From there, all the config-
urations in phases collect, multiplicity–convergence,
convergence, and seven-nodes can be generated by the
algorithm. In the detailed description of each phase, it has
been shown that the allowed moves always lead to configu-
rations in CTP. Therefore, the following corollary to Lem-
mas 5–8 holds.

Corollary 1 All the possible configurations achieved by the
algorithm belong to CTP.

Lemma 9 Configuration types in CTP are pairwise disjoint.

Proof We compare only the configuration types with the
same number of multiplicities and degree of symmetry.

The only configuration types with no multiplicities are
W 1–W 7 and they are clearly pairwise disjoint.

The symmetric configuration types with one multiplicity
are in Conv-s-1 and 7N-1 which are disjoint as they differ
for the number of nodes or the number of nodes occupied.

The symmetric configuration types with two multiplicities
are Coll-s-2 a, Coll-s-2 b, Coll-s-2 c, Mc-s-a, Mc-s-b,
and 7N-2 which are disjoint as they differ for the number
of nodes or the number of nodes occupied, or the distance
between the single robots and the multiplicities. In fact, con-
figurations in Coll-s-2 a are the only ones with more than
six nodes occupied. Configurations in Coll-s-2 b are the
only ones with six nodes occupied and more than one robot
on the north side at distance grater than zero from any mul-
tiplicity. This means that in total there is at least one robot
on the northern side that must be moved towards its closest
multiplicity. This is different from the configurations in Mc-
s-b where there are no robots on the northern side at distance
greater than zero that must be moved towards the multiplic-
ities as the only robot in such kind of position might only
be a guard. Configurations in Coll-s-2 c are the only ones
with six nodes occupied and more than two robots at dis-
tance grater than zero from the multiplicities. Configurations
in Mc-s-a are the only ones with only four nodes occupied
on a ring of more than seven nodes. Contrary, configurations
in 7N-2 are the only ones with either four or three nodes
occupied on a ring of seven nodes.

The asymmetric configuration types with one multiplicity
are in Conv-a-s, 7N-1, Coll-a-1, Mc-a-1, Conv-a-1 a, and
Conv-a-1 b. Configurations in Conv-a-s are well specified
and cannot belong to any other set. Configurations in 7N-1

are the only ones with five nodes occupied on a ring of seven
nodes. Configurations in Coll-a-1 are the only ones with
six nodes occupied at more than one move from the sym-
metry passing through the multiplicity but at one pending
reduction or xn move from an allowed symmetry. Simi-
larly, configurations in Mc-a-1 are the only ones with five
nodes occupied on a ring of more than seven nodes at more
than one move from the symmetry passing through the mul-
tiplicity but at one pending move according to the algorithm
in [9]. Configurations in Conv-a-1 a are the only ones at one
xn move from the symmetry passing through the multiplic-
ity, while configurations in Conv-a-1 b are the only ones at
more than one move from any allowed symmetry.

The asymmetric configuration types with two multiplic-
ities are in Coll-a-2 a, Coll-a-2 b, Mc-a-a, Mc-a-b, and
7N-2 which are disjoint as they differ for the number of nodes
or the number of nodes occupied, or the distances between
the single robots and the multiplicities. In fact, configura-
tions in Coll-a-2 a are the only ones with more than six
nodes occupied. Configurations in Coll-a-2 b are the only
ones with exactly six nodes occupied and at least one sin-
gle robot -not identified as a guard- at distance greater than
zero from any multiplicity, whereas configurations in Mc-a-
b are the only ones with exactly six nodes occupied and no
single robots -not identified as a guard- at distance greater
than zero from any multiplicity. Configurations in Mc-a-a
are the only ones with rings of more than seven nodes and
less than six nodes occupied. Configurations in 7N-2 are the
only ones with rings of seven nodes and less than five nodes
occupied.

The remaining configurations can be either asymmetric
with three multiplicities, i.e, Mc-a-c, or symmetric config-
urations with three or four multiplicities, i.e., Mc-s-c and
Mc-s-d. �

By the proof of the lemmas above, it follows that, in order
to distinguish among the configuration types, it is sufficient
to compute, given a configuration C = (q0, q1, . . . , q j ), the
following parameters:

1. Number of nodes in the ring, n(C);
2. Number of multiplicities, m(C);
3. Number of nodes occupied or number of robots in the

case without multiplicities, ω(C);
4. Distance between single robots and multiplicities;
5. If C is symmetric and in the affirmative case, if the sym-

metry is allowed;
6. If C belongs to Conv-a-s;
7. If C is at one move from one of the symmetries allowed

by the algorithm.

Parameters 1–3 can be computed by formulas n(C) =∑
qi ≥0(qi + 1), m(C) = |{i | qi = −1, 0 ≤ i ≤ j}|, and

ω(C) = j + 1 − m(C), respectively. The distance between
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single robots and multiplicities is easily computed by sum-
ming the intervals between a single robot and a multiplic-
ity. The symmetry of a configuration is computed by proce-
dure symmetric(C). If C belongs to Conv-a-s can be easily
checked by comparing all the intervals of Ci and (Ci ), for
each i ∈ {0, 1, . . . , j} to the configurations in Conv-a-s.
To understand whether C is at one move from a symmetry
allowed by the algorithm, it is sufficient to simulate such
move backwards and checking whether the obtained config-
uration is symmetric. As an example, to check whether C is at
one move from reduction, Procedure check_reduction

is used.

3.8 The complete algorithm

In this section, we show how the above phases interact and
how the algorithm can switch from one phase to another.
We show that starting from any initial configuration among
W1–W7, we necessarily end up with configurations in either
Conv-a-1 or Conv-s-1 (possibly passing through phases
collect and multiplicity–convergence), hence finaliz-
ing the gathering.

By Lemmas 5–8, it follows that the interactions between
the phases are those given in the graph of Fig. 2. In what
follows we show how the edges of such graph are traversed.
“Appendix 1” shows in a graphical way all such interactions
among configuration types.

The starting configuration can only belong to W1–W7. By
Lemma 5, it follows that after a finite number of moves any
other phase can be reached. Moreover, once reached a con-
figuration with at least one multiplicity, the algorithm never
goes back to configurations without multiplicities, but in the
case of six robots. In this latter case in fact, the configurations
can swap between those in W3 and those in Mc-a-1 or in Mc-
s-x a. However, the number of times that this cycle can be
traversed is finite as each time thenorth interval is reduced,
until creating one single multiplicity on the final gathering
node (that is, when the system moves to convergence).
For more details, see “From multiplicity–convergence

to multiplicity–creation of Appendix 2”.
By Lemma 6, phase collect terminates after a finite num-

ber of moves in a configuration belonging to phase mul-

tiplicity–convergence. In particular, this phase can only
terminate with a configuration in Mc-s-x b. In fact, Lemma 6
states that this phase leads to a symmetric configuration with
six nodes occupied by two multiplicities, two guards and
two single robots adjacent to the multiplicities which defines
exactly the configuration type Mc-s-x b.

By Lemma 7, multiplicity–convergence terminates
after a finite number of moves in a configuration in phase
convergence. In particular, the algorithm can only move
from configurations in Mc-s-x a, Mc-s-x c, Mc-a-x a, and
Mc-a-1, to configurations in Conv-s-1 and Conv-a-1. In

fact, Lemma 7 states that this phase leads to a configuration
with one multiplicity and between one and four single robots
and, from any other configuration type in multiplicity–
convergence, the algorithm leads to a configuration with
two multiplicities, eventually. This implies that the last con-
figuration before leaving this phase is in Mc-s-x a, Mc-s-x c,
Mc-a-x a, or Mc-a-1. The configuration achieved cannot be
in Conv-a-s because this configuration type can be obtained
only from a configuration in W3 or in Conv-a-1.

From [9], phase seven-nodes terminate in configurations
in convergence.

Finally, from configurations in convergence, the algo-
rithm terminates the gathering with the only exception of the
case where a configuration in Conv-a-1 b can lead, after a
xn, to a configuration in Coll-a-1 (that is a configuration
with one multiplicity at one reduction move from the sym-
metry). Note that this case can occur only when there are
more than six nodes occupied. As the transition from phase
multiplicity–convergence to phase convergence can
occur only when there are at most six nodes occupied, it fol-
lows that the edge between convergence and collect can
be traversed only once. For more details, see “From con-

vergence to collect of Appendix 2”.

4 Conclusion

The proposed algorithm answers to the posed conjectures
concerning the gathering on the studied model by providing
a complete characterization for the initial configurations. The
obtained result is of main interest for robot-based computing
systems. In fact, it closes all the cases left open with the
exception of potentially gatherable configurations in SP4.

Our technique, mostly based on the supermin concept,
may result as a new analytical approach for investigating
related distributed problems. In fact, the concept of supermin
combined with the reduction move can be used to solve
other problems in the Look–Compute–Move model such as
graph exploration and searching (see e.g [12]). Moreover,
similar techniques can be exploited to solve such problems
on different graph topologies (see e.g. [8,11] for the gathering
on grids and trees, respectively).

Another challenging direction would be that of investi-
gating the minimum number of steps required by the robots
to accomplish the gathering task. So far, the research has
mainly focused on the feasibility of the gathering, while few
results concern the minimization of the robots’ movements.
A first study to this respect can be found in [15]. Similarly,
low effort has been spent in order to increase the opportunity
to parallelize movements. As we have seen for ring networks,
at most two robots are allowed to move concurrently but for
the case when the algorithm moves the robots composing
multiplicities.

123



276 G. D’Angelo et al.

Appendix 1: Transitions among types of configuration

In this appendix we provide a graphical representation of the
possible transitions among all the types of configurations. In

particular, for each configuration type we show all the con-
figurations that can be reached according to the algorithm and
the asynchronous execution of the Look–Compute–Move
cycles.

From To

W1 CONV-S-1

W1 W7

W1 W1

From To

CONV-A-1 a

W2 CONV-S-1

W2

W2 CONV-S-1

W2 CONV-S-1
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From To

W3

W3 CONV-S-1

W3 CONV-S-1

MC-A-1

W3 MC-S-x a

From To

W3 W3

W3 CONV-Ann

From To

W6 a

W4 W4

W6 b

W4 CONV-S-1

From To

W6 c

W4 W4

W6 d

W4 CONV-S-1

From To

W6 e

W4 W4

W6 f

W4 CONV-S-1

123



278 G. D’Angelo et al.

From To

COLL-A-1

W5 COLL-S-2 c

COLL-A-1

W5 COLL-S-2 b

COLL-A-1

W5 COLL-S-2 c

From To

W6 a W4

W6 b CONV-S-1

W6 c W4

W6 d CONV-S-1

W6 e W4

W6 f CONV-S-1
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From To

W7

W7 W7

W7 W7

W7

W7 CONV-S-1

W7 CONV-S-1

From To

COLL-A-1

W7 COLL-S-2 b

W7

W7 W4

W7 W4

From To

W7

W7 W4

W7 W4

W7 W7

W7 CONV-A-1
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From To

COLL-A-1 COLL-S-2 b

COLL-A-1 COLL-S-2 a

COLL-A-1 MC-S-x b

From To

COLL-A-2 a

COLL-S-2 a COLL-S-2 a

COLL-A-2 a COLL-S-2 a

COLL-A-2 a

COLL-S-2 a MC-S-x b

COLL-A-2 a MC-S-x b
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From To

COLL-A-2 b

COLL-S-2 c MC-S-x b

COLL-A-2 b MC-S-x b

COLL-A-2 b MC-S-x b

From To

COLL-A-2 b

COLL-S-2 b COLL-S-2 b

COLL-A-2 b COLL-S-2 b

COLL-A-2 b

COLL-S-2 b MC-S-x b
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From To

MC-A-x c

MC-S-x d

MC-A-x b

MC-S-x b MC-A-x c

From To

MC-A-x a

MC-S-x b

MC-A-x a

MC-S-x b MC-S-x a

From To

MC-A-1 MC-S-x a

MC-S-x c

MC-S-x c

MC-S-x a MC-A-x a

From To

MC-A-x a

CONV-S-1

CONV-A-1 a

MC-S-x a CONV-S-1
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From To

CONV-A-1 a

CONV-S-1 CONV-S-1

CONV-A-1 a CONV-S-1

CONV-A-1 b CONV-A-1 b

CONV-A-1 b CONV-A-1 a

From To

7N2

7N2 7N2

7N2 7N2

7N1

7N1 7N1

7N1 7N1

Appendix 2: Special cases for configuration transitions

In this section, we describe the behavior of the algorithm in
the cases that lead to backward arcs in Fig. 2.

From multiplicity–convergence to
multiplicity–creation

The only case when a configuration in multiplicity–
convergence can lead to one of multiplicity–creation

is that with six robots, that is the initial configuration was in
W3. An exhaustive example is given below.

Let us consider the configuration in Mc-s-x a given in
Fig. 21a where each multiplicity contains two robots (and
hence there are six robots in the ring). The algorithm aims to
move the two multiplicity towards the north. However, it
may happen that only one robot moves from each multiplic-
ity, hence obtaining the configuration in W3 given in Fig. 21b.
At this point, the algorithm in [9] is applied which leadsagain
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(a) (b) (c) (d)

Fig. 21 Configurations on type: (a) Mc-s-x a, (b) W3, (c) Mc-a-1, (d) Mc-s-x a

Fig. 22 Configurations on
type: (a) Conv-a-1 b, (b)
Coll-a-1, (c) Coll-s-2 c, (d)
Mc-s-x a, (e) Conv-s-1

(a) (b) (c) (d) (e)

to the configuration in Mc-s-x a given in Fig. 21d, possibly
passing through that in Fig. 21c which belongs to Mc-a-
1. Therefore, in these cases, this process can be repeated a
finite number of times, until the two multiplicities join into
the north, hence the backward arc from multiplicity–
convergence to multiplicity–creation of Fig. 2 can be
traversed a finite number of times.

From convergence to collect

The only case when a configuration in convergence can
lead to one of collect is that with more than six nodes
occupied where an xn move leads to a configuration at one
reduction move from a symmetric configuration. That is
we can go from a configuration in Conv-a-1 b to one in
Coll-a-1. An exhaustive example is given below.

Let us consider the configuration in Conv-a-1 b given in
Fig. 21a. In this case, the algorithm performs an xn move,
leading to the configuration given in Fig. 22b. Note that such
a configuration belongs to Coll-a-1 as it is at one reduc-

tion move from the symmetric configuration in Coll-s-2
c given in Fig. 22c. Therefore, the algorithm forces such a
reduction move, obtaining the configuration in Fig. 22c.
Then, the two single robots which are not guards are moved
to join the multiplicities. At this point (see Fig. 22d) each
multiplicity contains at least three robots and therefore both
of them are moved towards the north in phase multi-

plicity–convergence. Since each multiplicity contains at
least three robots, this phase cannot generate configurations
with only one multiplicity, except for the last steps when the
two multiplicities are joint (see e.g. Fig. 22e). This implies
that moving from convergence to collect can occur only
once and therefore the backward arc from convergence to
collect of Fig. 2 can be traversed only once.
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