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Abstract In an asymmetric rendezvous system, such as an
unfair synchronous queue or an elimination array, threads
of two types, consumers and producers, show up and are
matched each with a unique thread of the other type. Here
we present new highly scalable, high throughput asymmet-
ric rendezvous systems that outperform prior synchronous
queue and elimination array implementations under both
symmetric and asymmetric workloads (more operations of
one type than the other). Based on this rendezvous system,
we also construct a highly scalable and competitive stack
implementation.

1 Introduction

A common abstraction in concurrent programming is that
of an asymmetric rendezvous mechanism. In this mechanism
there are two types of threads, e.g., producers and consumers,
that show up. The goal is to match pairs of threads, one of
each type, and send them away. Usually the purpose of the
pairing is for a producer to hand over a data item (such as
a task to perform) to a consumer. Asymmetric rendezvous
is exactly the task performed by unfair synchronous queues
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(or synchronous channels) [17], in which producers and con-
sumers handshake to exchange data. Synchronous queues
are a key building block in Java’s thread pool implementa-
tion and other message-passing and hand-off designs [2,17].
The asymmetric rendezvous abstraction also encompasses
the elimination technique [20], which is used to scale con-
current stacks and queues [9,16].

In this paper we present two highly scalable asymmetric
rendezvous algorithms that improve the state of the art in
both unfair synchronous queue and elimination algorithms.
Our starting point is the elimination technique [1,9,20] where
an arriving thread picks a random slot in a collision array,
hoping to meet the right kind of partner; however, if the slot
picked is empty the thread waits for a partner to arrive. This
standard elimination approach is vulnerable to false matches,
when two threads of the same type meet, and to timeouts,
when a producer and a consumer each pick a different slot and
futilely wait for a partner to arrive. Consequently, elimination
arrays provide no progress guarantee and are unsuitable for
use in a synchronous queue implementation.

Our first algorithm, named AdaptiveAR (Adaptive Asym-
metric Rendezvous), is based on a simple idea that turns out
to be remarkably effective in practice: the algorithm itself is
asymmetric. While a consumer captures a node in a shared
ring structure and waits there for a producer, a producer
actively seeks out waiting consumers on the ring. As a result,
AdaptiveAR does not suffer from false matches and timeouts
and we show that it is nonblocking in the following sense: if
both producers and consumers keep taking steps, some ren-
dezvous operation is guaranteed to complete. (This progress
property, which we refer to as pairwise nonblocking, is sim-
ilar to lock-freedom [10] while taking into account the fact
that “it takes two to tango”, i.e., both types of threads must
take steps to guarantee a successful rendezvous.) We present
two new techniques, that combined with this asymmetric
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methodology on the ring lead to extremely high performance
and scalability in practice. The first is a new ring adaptiv-
ity scheme that dynamically adjusts the ring’s size, leaving
enough room to fit in all the consumers while minimizing
as much as possible empty nodes that producers will need-
lessly need to search. Having an adaptive ring size, we can
expect the nodes to be mostly occupied, which leads us to
the next idea: if a producer starts to scan the ring and finds
the first node to be empty, there is a good chance that a con-
sumer will arrive there shortly. However, simply waiting at
this node, hoping that a consumer arrives, would make the
algorithm prone to timeouts and impede progress. Rather,
we employ a peeking technique that lets the producer have
the best of both worlds: as the producer traverses the ring,
it continues to peek at its initial node; should a consumer
arrive there, the producer immediately tries to partner with
it, thereby minimizing the amount of wasted work.

Our second algorithm extends AdaptiveAR with two new
forms of adaptivity. Together with AdaptiveAR’s original
ring adaptivity scheme, this algorithm is triple adaptive
and hence named TripleAdp. We present TripleAdp sepa-
rately from AdaptiveAR because the adaptivity techniques it
employs add some overhead over AdaptiveAR.

The major new dimension of adaptivity in TripleAdp is
that it adapts the roles performed by the threads. AdaptiveAR
fixes the roles played by consumers and producers in the
algorithm: consumers wait for producers which seek them on
the ring. Unfortunately, in asymmetric workloads, with more
producers than consumers, the producers collide with each
other when competing for the few consumers in the ring. As a
result, in such workloads AdaptiveAR’s throughput degrades
as the number of producers increases. However, exactly this
property makes AdaptiveAR shine in workloads where con-
sumers outnumber producers: the few producers have their
pick among the many consumers occupying the ring, and
AdaptiveAR maintains the peak throughput achievable by
the producers. The main observation behind TripleAdp is
that the mirror image of AdaptiveAR, where consumers seek
producers that wait on the ring, will do well in the asym-
metric workloads where AdaptiveAR fails to maintain peak
throughput. TripleAdp therefore adapts to the access pattern
and switches between (essentially) AdaptiveAR and its mir-
ror image, enjoying the best of both worlds.

The second dimension of adaptivity added in TripleAdp
is that of overall memory consumption. For simplicity, we
designed AdaptiveAR to use a predetermined static ring size
and only adapt its effective size, i.e., the subset of the ring
actually used by the currently active threads. However, this
requires advance knowledge of the maximum number of
threads that can simultaneously run, which may not be known
a priori. TripleAdp addresses this limitation with a technique
to adapt the total ring size by allocating and deallocating ring
nodes as necessary.

Both AdaptiveAR and TripleAdp have several features
that no prior synchronous queue algorithm possesses together.
They are based on a distributed scalable ring structure, unlike
Java’s synchronous queue which relies on a non-scalable cen-
tralized structure. They are nonblocking and uniform, in that
no thread has to perform work on behalf of other threads.
This is in contrast to the flat combining (FC) based synchro-
nous queues of Hendler et al. [8], which are blocking and
non-uniform.

Most importantly, our algorithms perform extremely well
in practice on a number of hardware architectures with dif-
ferent characteristics. On an UltraSPARC T2 Plus multi-
core machine with 64 hardware threads and a write-through
cache architecture AdaptiveAR outperforms Java’s synchro-
nous queue by up to 120×, the FC synchronous queue by
up to 5.5×, and the Java Exchanger algorithm [12,18] (an
elimination-array implementation) by up to 2.5×. On an Intel
Xeon E7 multicore with 20 hardware threads and a write-
back cache architecture our algorithms outperform or match
the performance of prior synchronous queues in most bench-
marks.

Finally, we adapt our rendezvousing algorithms for use
as an elimination layer on top of Treiber’s lock-free stack
[24], yielding a highly scalable stack that outperforms exist-
ing concurrent stack implementations. Herepushoperations
act as producers and pop operations as consumers. A pair
of operations that successfully rendezvous can be linearized
together without having to access the main stack [9].

In addition to using elimination as a backoff scheme that
threads enter after sensing contention on the main stack, as
was done in prior work [9], we present an optimistic elimi-
nation stack. Here a thread enters the elimination layer first,
accessing the main stack only if it fails to find a match. If it
then encounters contention on the main stack it goes back to
try the rendezvous, and so on.

Our AdaptiveAR optimistic elimination stack yields more
than a factor of three improvement over the prior elimination-
array stack [9] and FC stack [7] algorithms on the Ultra-
SPARC T2 Plus architecture.

Outline: We review related work in Sect. 2. Section 3 pro-
vides the computational model and formal definitions of the
asymmetric rendezvous problem and our progress property.
Section 4 describes AdaptiveAR and Sect. 5 describes Triple-
Adp. Both algorithms are empirically evaluated together in
Sect. 6. We describe and evaluate our rendezvous-based elim-
ination stacks in Sect. 7. We conclude in Sect. 8.

2 Related work

2.1 Synchronous queues

A synchronous queue using three semaphores was described
by Hanson [6]. The Java 5 library improved on this using
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a coarse-grained locking synchronous queue, which was
superseded in Java 6 by Scherer, Lea and Scott’s algorithm
[17]. Their algorithm is based on a Treiber-style nonblock-
ing stack [24] that at all times contains rendezvous requests
by either producers or consumers. A producer finding the
stack empty or containing producers pushes itself on the
stack and waits, but if it finds the stack holding consumers, it
attempts to partner with the consumer at the top of the stack
(consumers behave symmetrically). This creates a sequen-
tial bottleneck. Motivated by this, Afek, Korland, Natanzon,
and Shavit described elimination-diffracting (ED) trees [1], a
randomized distributed data structure where arriving threads
follow a path through a binary tree whose internal nodes are
balancer objects [21] and the leaves are Java synchronous
queues. In each internal node a thread accesses an elimina-
tion array in an attempt to avoid descending down the tree.
Recently, Hendler et al. applied the flat combining paradigm
of [7] to the synchronous queue problem [8], describing sin-
gle combiner and parallel versions. In a Single FC channel a
thread attempts to become a combiner by acquiring a global
lock. Threads that fail to grab the lock instead post their
request and wait for it to be fulfilled by the combiner. The
combiner continuously scans the pending requests. As it does
so it keeps a private stack which contains pending operations
of one kind. If it reads a request that can be matched to the
top operation in the stack, it pops that operation and releases
the two matched threads. Otherwise, it pushes the request on
the stack and continues. In the Parallel FC version there are
multiple combiners, each handling a subset of participating
threads. Each combiner posts leftover operations that remain
in its subset to an exchange Single FC synchronous chan-
nel, in an attempt to match them with operations from other
combiners’ subsets.

2.2 Concurrent stacks

Several works exploit the elimination idea to obtain a scalable
stack implementation. Originally, Touitou and Shavit [20]
observed that concurrent push and pop stack operations
can be eliminated by having the push pass its item directly
to the pop. Their stack algorithm is not linearizable [11]
as it is based on diffracting trees [21]. Shavit and Zemach
described a linearizable stack using the elimination concept,
but their algorithm is blocking [22].

Hendler, Shavit and Yerushalmi [9] applied elimination as
a backoff scheme on top of Treiber’s classic lock-free stack
algorithm [24] to obtain a scalable, lock-free, linearizable
stack. They used a collision array in which each thread picks
a slot trying to collide with a partner. Thus, the collision array
is (implicitly) a form of rendezvous.

In Hendler, Shavit and Yerushalmi’s adaptive scheme
threads adapt locally: each thread picks a slot to collide in
from sub-range of the collision array centered around the

middle of the array. If no partner arrives, the thread eventu-
ally shrinks the range. Alternatively, if the thread sees a wait-
ing partner but fails to collide due to contention, it increases
the range. In our adaptivity technique, described in Sect. 4,
threads also make local decisions, but with global impact:
the ring is resized.

Several concurrent stacks have been shown in works on
combining-based constructions. The idea in combining is
to have one thread perform the combined work of other
threads, saving them from accessing the main structure.
Hendler et al. implemented a stack using the flat combining
approach [7]. Fatourou and Kallimanis recently presented a
combining technique that provides bounds on the number
of remote memory references performed by waiting threads,
and demonstrated a stack implementation using that tech-
nique [5]. Both FC and Fatourou and Kallimanis’ techniques
are blocking, whereas we are interested in nonblocking algo-
rithms.

Fatourou and Kallimanis have also described an efficient
wait-free universal construction [4], and showed that a con-
current stack implemented using this construction performs
as well as the (blocking) FC based stack.

2.3 Other applications of elimination

Moir et al. used elimination to scale a FIFO queue [16]. In
their algorithm an enqueuer picks a random slot in an elimi-
nation array and waits there for a dequeuer; a dequeuer picks
a random slot, giving up immediately if that slot is empty.
It does not seek out waiting enqueuers. Scherer, Lea and
Scott applied elimination in their symmetric exchange chan-
nel [18], where there is only one type of a thread and so the
pairing is between any two threads that show up. Scherer, Lea
and Scott also do not discuss adaptivity, though an improved
version of their algorithm that is part of the Java concurrency
library [12] includes a scheme that resizes the elimination
array. However, here we are interested in the more difficult
asymmetric rendezvous problem, where not all pairings are
allowed.

2.4 Rendezvous semantics

Scherer and Scott proposed to model concurrent operations
such as rendezvousing, that must wait for another thread to
establish a precondition, by splitting them into two: a reserva-
tion (essentially, announcing that the thread is waiting) and
a subsequent followup at which the operation takes effect
after its request is fulfilled [19]. In contrast, our model does
not require splitting an operation into two. In fact, in our
algorithms some operations do not have a clear reservation
point. Thus, we demonstrate that asymmetric rendezvous can
be both reasoned about and implemented efficiently without
using the reservation/followup semantics.
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3 Preliminaries

3.1 Model

We use a standard shared memory system model with a set
of sequential asynchronous threads that communicate via
shared memory.

The memory locations in our model provide atomicread,
write and compareAndSet (CAS) operations. Formally,
each memory cell m has a state v and supports the fol-
lowing operations: (1) a read operation that returns v, (2)
a write(x) operation which changes the state to x and
returns OK, (3) a CAS(o, n) operation whose effect depends
on v: if v = o it changes the state to n and returns TRUE;
otherwise, it returns FALSE.

Using the memory operations the threads implement a
high-level object defined by a sequential specification, a
state machine consisting of a set of states, a set of opera-
tions used to transition between the states, and transitions
between the states. A transition T (s, op) = (s′, r) speci-
fies that if op is applied at state s, the object state changes
to s′ and op returns r . An operation op is total if a tran-
sition T (s, op) is defined for every state s. Otherwise op
is partial [11]. An implementation is an algorithm spec-
ifying the shared memory operations each thread has to
perform in order to complete an operation on the high-
level object. We consider only linearizable [11] implemen-
tations.

The computation is modeled as a sequence of events. A
high-level event consists of a thread invoking or returning
from a high-level operation. A primitive event is a com-
putation step in which a thread invokes a memory opera-
tion, receives a response and changes its state according to
the algorithm, all in one step. An execution is a (possibly
infinite) sequence of events. We consider only well formed
executions, in which the subsequence of thread t’s events
consists of (1) zero or more instances of a high-level oper-
ation invocation followed by primitive events and finally a
high-level response, (2) a possible final pending operation
that consists of a high-level invocation without a matching
high-level response.

Thread t is active in an execution E if E contains an
event by t . Two high-level operations are concurrent in an
execution if one of them starts before the other one returns.

We consider two variants of the above model. In one
(Sect. 4) the number of threads in the system is known by the
algorithm to be a constant T . In the second (Sect. 5) the maxi-
mum number of threads active in an execution remains finite,
but is not known in advance and can differ between execu-
tions. (This is essentially the bounded concurrency model
[13]).

3.1.1 Stack object

A stack is an object supporting the operations push()
and pop(). Its state is a sequence of m ≥ 0 items α =
xm, . . . , x1 where xm is called the top of the stack. A stack
whose state is the empty sequence, ε, is said to be empty. A
push(y) operation on state α makes y the top of the stack
by changing the state to y α. A pop() operation on a non-
empty state y α returns y, the top of the stack, and changes
the state to α. A pop() operation on an empty stack returns
a reserved value ⊥.

3.2 Asymmetric rendezvous

Informally, in the asymmetric rendezvous problem there are
threads of two types, producers and consumers. Producers
perform put(x) operations which return OK. Consumers
perform get() operations that return some item x passed
by a producer. Producers and consumers show up and must
be matched with a unique thread of the other type, such
that a put(x) and the get() that returns x must be
concurrent.

A rendezvous operation cannot always complete: for
example, a thread running alone cannot rendezvous. We
formally capture this issue by modeling the rendezvous prob-
lem using a sequential specification of an object that sup-
ports partial operations [11] which are undefined for some
states. An implementation of a partial operation requires hav-
ing the operation wait until the object reaches a state in
which the operation is defined. We now define an object with
partial operations whose specification captures the handoff
semantics of rendezvous, in which producers pass data to
consumers.

Definition 3.1 A handoff object consists of a single variable,
v, that initially contains a reserved value ⊥. It supports two
partial operations, put(x) and get(). A put(x) opera-
tion is defined only when v =⊥; it sets v to x and returns
OK. A get() operation is defined only when v = x for any
x �=⊥; it stores ⊥ back in v and returns x . For simplicity, we
assume each put(x) hands off a unique value.

Even with partial operations a sequential specification
alone cannot capture the synchronous nature of rendezvous,
i.e., that threads need to wait for each other. To see this,
notice that there must be an operation that is defined in the
initial state and such an operation can therefore complete
alone. The following definition addresses this limitation by
reasoning directly about the concurrent rendezvous imple-
mentation.

Definition 3.2 A concurrent algorithm A implements
asymmetric rendezvous if the following hold:
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– Linearizability: A is a linearizable implementation of the
handoff object.

– Synchrony: For any execution E of A, and any put(x)
operation that completes in E, E can be extended (adding
zero or more events) into an execution E ′ which contains
a get() operation that returns x and is concurrent to
put(x).

The idea behind these definitions is that when many
producers and consumers show up, each matched pro-
ducer/consumer pair can be linearized [11] as a put(x)
followed by a get() returning x .

3.3 Pairwise nonblocking progress

To reason about progress for rendezvous we must take
into account that rendezvous inherently requires waiting—a
thread cannot complete until a partner shows up. We there-
fore consider the joint behavior of producers and consumers,
using the following notion:

Definition 3.3 Let E be an execution of asymmetric ren-
dezvous, e ∈ E an execution step, and e′ ∈ E the step
preceding e. We say that e is a pairwise step if one of the
following holds: (1) e is a step by a put() operation and e′
is a step by a get() operation, (2) e is a step by a get()
operation and e′ is a step by a put() operation.

For example, if we denote an execution step of producer
pi with pi ’s id, and analogously use ci for consumers, then
in the following execution fragment the pairwise steps are
exactly the steps marked in bold:

. . . , p1, p5, p1, c3, p5, c4, c4, c4, p1, . . . .

We now define our notion of nonblocking progress, which
requires that if both producers and consumers take enough
steps, some rendezvous operation completes:

Definition 3.4 An algorithm A implementing asymmetric
rendezvous is pairwise nonblocking if, at any point in time,
after a finite number of pairwise steps some operation
completes.

Note that, as with the definition of the lock-freedom prop-
erty [10], there is no fixed a priori bound on the number of
steps after which some operation must complete. Rather, we
rule out implementations that make no progress at all, i.e., that
admit executions in which both types of operations take steps
infinitely often and yet no operation successfully completes.

4 AdaptiveAR

4.1 Algorithm description

The pseudo code of the AdaptiveAR algorithm is provided
in Fig. 2. The main data structure (Fig. 2a) is a ring of nodes.

Fig. 1 The ring data structure with the array of pointers. Node i points
to node i − 1. The ring maximum size is T and is resized by changing
the head’s prev pointer

The ring is accessed through a central array ring, where
ring[i] points to the i th node in the ring (Fig. 1).1 A con-
sumer attempts to capture a node in the ring. It traverses the
ring searching for an empty node, and once a node is captured,
waits there for a producer. A producer scans the ring, seek-
ing a waiting consumer. Once a consumer is found, it tries to
match with it. For simplicity, in this section we assume the
number of threads in the system, T , is known in advance and
pre-allocate a ring of size T . However, the effective size of
the ring is adaptive and it is dynamically adjusted as the con-
currency level changes. (We expand on this in Sect. 4.3.) In
Sect. 5 we handle the case in which the maximum number of
threads that can show up is not known in advance; in this case
the nodes are allocated and deallocated dynamically, i.e., the
total ring size adapts to the number of threads.

Conceptually, each ring node contains a pointer that
encodes the node’s state:

1. Free: pointer points to a global reserved object, FREE,
that is distinct from any object a producer may enqueue.
Initially all nodes are free.

2. Captured by consumer: pointer is NULL.
3. Holding data (of a producer): pointer points to the data.

In practice, ring traversal is more efficient by following a
pointer from one node to the next rather than the alternative
of traversing the array. Array traversal in Java suffers from
two inefficiencies. First, in Java reading from the next array
cell may result in a cache miss (it is an array of pointers),

1 This reflects Java semantics, where arrays are of references to objects
and not of objects themselves.
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(a)

(b)

(c)

Fig. 2 Asymmetric rendezvous algorithm. Lines beginning with � handle the adaptivity process

whereas reading from the (just accessed) current node does
not. Second, maintaining a running array index requires an
expensive test+branch to handle index boundary conditions
or counting modulo the ring size, while reading a pointer is
cheap. The pointer field is named prev, reflecting that node
i points to node i − 1. This allows the ring to be resized with
a single atomic CAS that changes ring[1]’s (the head’s)
prev pointer. To support mapping from a node to its index
in the array, each node holds its index in a read-only index
field.

For the sake of clarity we start in Sect. 4.2 by discussing
the non-adaptive ring size algorithm. The adaptivity code,
however, is included in the pseudo code, marked by a � sym-
bol. It is explained in Sect. 4.3. Finally, Sect. 4.4 discusses
correctness and progress.

4.2 Nonadaptive algorithm

Producers (Fig. 2b): A producer searches the ring for a wait-
ing consumer, and attempts to pass its data to it. The search

begins at a node, s, obtained by hashing the thread’s id (Line
18). The producer passes the ring size to the hash function
as a parameter, to ensure the returned node falls within the
ring. It then traverses the ring looking for a node captured
by a consumer. Here the producer periodically peeks at the
initial node s to see if it has a waiting consumer (Lines 23–
25); if not, it checks the current node in the traversal (Lines
26–29). Once a captured node is found, the producer tries to
deposit its data using a CAS (Lines 24 and 27). If successful,
it returns.

Consumers (Fig. 2c): A consumer searches the ring for a
free node and attempts to capture it by atomically changing
its item pointer from FREE to NULL using a CAS. Once a
node is captured, the consumer spins, waiting for a producer
to arrive and deposit its item. Similarly to the producer, a
consumer hashes its id to obtain a starting point, s, for its
search (Line 37). The consumer calls the findFreeNode
procedure to traverse the ring from s until it captures and
returns node u (Lines 57–72). (Recall that the code responsi-
ble for handling adaptivity, which is marked by a �, is ignored
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for the moment). The consumer then waits until a producer
deposits an item in u (Lines 39–47), frees u (Lines 49–50)
and returns (Line 54).

4.3 Adding adaptivity

If the number of active consumers is smaller than the ring
size, producers may need to traverse through a large number
of empty nodes before finding a match. It is therefore impor-
tant to decrease the ring size if the concurrency level is low.
On the other hand, if there are more concurrent threads than
the ring size (high contention), it is important to dynamically
increase the ring. The goal of the adaptivity scheme is to keep
the ring size “just right” and allow threads to complete their
operations with a small number of steps.

The logic driving the resizing process is in the consumer’s
code, which detects when the ring is overcrowded or sparsely
populated and changes the size accordingly. If a consumer
fails to capture a node after passing through many nodes
in findFreeNode() (due to not finding a free node or
having its CASes fail), then the ring is too crowded and
should be increased. The exact threshold is determined by
an increase threshold parameter, Ti (0 < Ti ≤ 1). If in
findFreeNode(), a consumer fails to capture a node
after passing through more than Ti · ring_size nodes,
it attempts to increase the ring size (Lines 65–70). To detect
when to decrease the ring, we observe that when the ring
is sparsely populated, a consumer usually finds a free node
quickly, but then has to wait longer until a producer finds it.
Thus, we add a wait threshold, Tw, and a decrease threshold,
Td . If it takes a consumer more than Tw iterations of the loop
in Lines 39–47 to successfully complete the rendezvous, but
it successfully captured its ring node in up to Td steps, then
it attempts to decrease the ring size (Lines 51–53).

Resizing the ring is made by CASing the prev pointer of
the ring head (ring[1]) from the current tail of the ring to
the tail’s successor (to increase the ring size by one) or its pre-
decessor (to decrease the ring size by one). If the CAS fails,
then another thread has resized the ring and the consumer
continues. The head’s prev pointer is not a sequential bot-
tleneck because resizing is a rare event in stable workloads.
Even if resizing is frequent, the thresholds ensure that the
cost of the CAS is negligible compared to the other work per-
formed by the algorithm, and resizing pays-off in terms of
better ring size which leads to improved performance.

Notice that if some consumer is waiting at the tail of the
ring before the ring size decreases, this consumer will be left
outside the new ring and so new arriving producers will not
find it, which may impact progress. We next describe how to
solve this problem.

Handling consumers left out of the ring: Each consumer
periodically checks if its node’s index is larger than the cur-
rent ring size (Line 41). If so, it tries to free its node using a

CAS (Line 42) and find itself a new node in the ring (Lines
43–44). However, if theCAS fails, then a producer has already
deposited its data in this node and so the consumer can take
the data and return (this will be detected in the next execution
of Line 39).

4.4 Correctness proofs

Theorem 4.1 AdaptiveAR implements asymmetric rendez-
vous.

Proof We need to show: (1) linearizability (that AdaptiveAR
is a linearizable implementation of the handoff object) and (2)
synchrony (that a get() returning x executes concurrently
with put(x)).

Synchrony: Let p be someput(x) operation which com-
pletes. Then p reads NULL from s.item, for some node s
in the ring (Line 23 or 26), and deposits x in s.item using
CAS (Line 24 or 27). Thus, there exists a consumer c who
changed s.item from FREE to NULL (Line 61) and is there-
fore executing the loop in Lines 39-47 when p CASes x to
s.item.

We prove that if c continues to take steps after p’s CAS,
it returns x . When c executes Line 39, it notices x written
to s.item and returns x (Lines 49–54). Notice that even if
c attempts to free its node due to a ring resize (Line 42), its
CAS fails since s.item contains x and thus c proceeds to
execute Line 39.

Linearizability: We assign linearization points as follows.
Let p be a put(x) that completes its operation. Then p is
linearized at its successful CAS of x into s.item for some
node s (Line 24 or 27). As shown above, there exists a unique
concurrent get() operation, c, that captured s before p’s
linearization point and which returns x if it takes enough
steps. We linearize c returning x immediately after p, at the
sameCAS event as p. Conversely, let c be aget() operation
which completes its operation. Then c captures a node s and
then spins until observing some item x stored in s.item
(Line 39). This occurs as a result of some producer CASing
x into s.item, and so it follows that in the process described
above of assigning linearization points to put(x)/get()
pairs, we assign a linearization point to c. Thus, any operation
that completes has been assigned a linearization point.

Because we always linearize a put() followed imme-
diately by its matching get() at the put()’s successful
CAS operation, our linearization points assignment yields a
sequence of matching put()/get() pairs. It remains to
show that this sequence is a valid execution of the handoff
object. To do this, we show using induction on the number of
put()/get() pairs linearized that our linearization point
assignment constructs a valid execution of the handoff object
that leaves the object in state ⊥. In the base case no operation
is linearized, and this is the (valid) empty execution.
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For the induction step, we have a valid execution of the
handoff object that ends with the object in state ⊥. In each
put()/get() linearized, we linearize the put() first.
Thus the next operation linearized is a put(x), which is
valid in state ⊥, and changes the object’s state to x . We next
linearize a get() returning x , which is valid and changes
the object’s state to ⊥. 	

Theorem 4.2 AdaptiveAR is pairwise nonblocking.

Proof We say that the rendezvous of a put() and get()
pair occurs at the linearization point of the pair, as defined in
the proof of Theorem 4.1. Assume towards a contradiction
that there is an execution E with infinitely many pairwise
steps and yet no rendezvous occurs. Consider E1, the (infi-
nite) suffix of E in which any operation whose rendezvous
occurs in E no longer takes steps. (E1 is well defined because
any thread whose rendezvous occurs performs a finite num-
ber of steps before completing, and so after some point in E
any such operation either completes or never takes another
step).

The following two lemmas show that eventually the ring
size does not change, allowing us to consider an execution
where the ring size remains fixed. 	

Lemma 4.1 If the ring size changes in E1, it only increases.

Proof The ring size is decreased only after a rendezvous
occurs (Lines 51–53). By definition of E1, no thread whose
rendezvous completes takes steps in E1, so the ring size can-
not decrease in E ′. 	

Lemma 4.2 From some point onwards in E1, the ring size
does not change.

Proof Consider an event e ∈ E1 by some operation op that
changes the ring size. There are two possible cases: (1) e is a
CAS decreasing the ring size, which is impossible by Lemma
4.1, or (2) e is aCAS increasing the ring size (Line 67). Before
executing e, op executes Line 66, and so e increases the ring
size to some r ≤ T . Therefore there can be only finitely
many such ring increasing events. Since E1 is infinite, from
some point onwards the ring size does not change. 	


Let E ′ be the (infinite) suffix of E1 in which the ring size
does not change. Since there is a finite number of threads,
T , there must be a producer/consumer pair, p and c, each of
which runs forever without completing in E ′. We now prove
that c cannot run forever without capturing some ring node.

Lemma 4.3 At some point in E ′, there is a node that has
been captured by c.

Proof If c captures a node before E ′ and holds it captured in
E ′, we are done. Otherwise, suppose c never captures a node
in E ′. Then the ring size must be T . Otherwise, when c tries

to increase the ring size (Lines 65–67) it either succeeds or
fails because another thread changes the ring size, both of
which are impossible by definition of E ′.

A ring of size T has room for c, as T is the maximum
number of threads. Thus c fails to capture a node only by
encountering another consumer, c′, twice at different nodes.
This c′ left one node and captured another only as a result of
the following: (1) noticing the ring decreasing or (2) com-
pleting its operation and returning again, both of which are
impossible by definition of E ′. It therefore cannot be that c
never captures a node. 	


Consider now the execution fragment in E ′ in which c
holds some node s captured. Then s.item = NULL. There
are two possible cases: (1) p visits s or (2) p never visits s.

Suppose that p visits s while executing its loop. Then p
attempts to rendezvous with c by executing Line 24 or 27.
If p’s CAS succeeds, a rendezvous has occurred. Otherwise,
either another producer rendezvouses with c or c leaves s.
As shown above, c leaving s implies that a rendezvous has
occurred. In any case we reach a contradiction.

Therefore, suppose p never visits s. This implies that s has
been left out of the ring by some decreasing resize. Since in E ′
the ring does not decrease, c eventually executes Lines 41–44
and moves itself into p’s range. Because the ring size does not
change, this means that p eventually visits s, a contradiction.

5 TripleAdp

Here we present TripleAdp, an algorithm that adds two new
forms of adaptivity to address some of AdaptiveAR’s lim-
itations. First, TripleAdp adapts the roles performed by the
threads to solve the problem wherein AdaptiveAR’s through-
put degrades as the number of producers grows in workloads
with more producers than consumers. Second, TripleAdp
adapts its total ring size to match the changing number of
threads. Thus TripleAdp can run without knowing the maxi-
mum number of threads in the system. In addition, adapting
the total ring size makes TripleAdp’s memory consumption
adaptive as well.

5.1 Algorithm description

The main idea behind TripleAdp is to switch between running
AdaptiveAR and its mirror image, where consumers seek
producers that wait on the ring. Consequentially, TripleAdp’s
main data structure is a ring of nodes with similar structure to
AdaptiveAR’s node (Fig. 3, Lines 1–5); the difference from
AdaptiveAR is explained below. To support reallocating the
ring we use indirection: a global sharedring variable points
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Fig. 3 Algorithm TripleAdp: definitions and helper procedures

Fig. 4 Pseudo code of get() and put()

to the ring (Lines 8–9).2 This allows a thread to install a new
ring/array pair. The thread first allocates a new ring (Lines
14–23) and then installs it with a single atomic CAS to point
ring at the new array and thereby the new ring. Naturally,
threads waiting in the old ring need to move to the new ring,
a procedure we describe later.

A thread in TripleAdp is either a waiter which captures
a node in the ring and waits for a partner, or a seeker that
scans the ring looking for waiters. To determine what role
an arriving thread plays the thread consults a global mode
variable (Fig. 4). If mode=1 then consumers wait and pro-
ducers seek, as in AdaptiveAR. If mode=2 then roles are
reversed, i.e., AdaptiveAR’s mirror image is run. The mode
can change during the execution in response to the workload

2 This is standard array semantics in Java, but not in C++.

and so the wait and seek procedures periodically check
for a mode switch, upon which the thread’s role is reversed.
This means that role reversal does not occur atomically with
the mode change, so threads in different modes can be active
concurrently. To prevent such threads from stepping on each
other in a ring node, each node has a two member array field
named item, where item[m] is accessed only by threads
in mode m and encodes the node’s state in mode mode:

1. Free: item[mode] points to a global reserved object,
FREE, distinct from any object a producer may enqueue.

2. Captured (by a waiter): If mode = 1 (consumers wait-
ing), item[1]=NULL. Otherwise (producers waiting),
item[2] holds producer’s item.

3. Rendezvous occurred: If mode = 1 item[1] holds
producer’s item. Otherwise, item[2]=NULL.

Figure 6 shows the pseudo code of the wait and seek
procedures. For the sake of clarity, we initially describe the
code without going into the details of adapting the ring size
and memory consumption, to which we return later. The rel-
evant lines of code are shown in the pseudo code marked by
a � but are ignored for the moment.

Waiters (Fig. 6a): First (Line 96), a waiter determines its
operation mode by invoking the helper procedure
waitItemIndex() whose code is given in Fig. 3 (Lines
29–34). If the waiter does not have a value to hand off then
it is a consumer, implying it is in the consumers waiting mode
(m = 1). Otherwise, it is a producer and m = 2. The waiter
then attempts to capture a node in the ring and waits there
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Fig. 5 Pseudo code of findFreeNode(). Lines marked by a �
handle ring size adaptivity

for a seeker to rendezvous with it. This process generally
follows that of AdaptiveAR. The waiter starts by searching
the ring for free nodes to capture. It hashes its id to obtain a
starting point for this search (Lines 99–100) and then invokes
the findFreeNode procedure to perform the search (Line
101). The pseudo code of findFreeNode is shown in
Fig. 5. Here the waiter traverses the ring and upon encoun-
tering a FREE node, attempts to CAS the node’s item to its
value (Lines 66–69). (Recall thatvalue holds the thread’s
item if it is a producer, and NULL otherwise.) The traversal
is aborted if the global mode changes from the current mode
(Lines 70–71) and the waiter then reverses its role (Lines
102–103). Once findFreeNode captures a node u (Line
101), the waiter spins on u and waits for a seeker. If the waiter
detects a global mode change during this period it releases
u and reverses its role (Lines 121–122). The waiter returns
(Line 199) once it notices that a seeker deposited a value in
u (Lines 107–109). If the waiter is a consumer, it returns the
seeking producer’s deposited value, or NULL otherwise.

Seekers (Fig. 6b): A seeker traverses the ring, looking for
a waiter to rendezvous with. Symmetrically to the waiter
code, the seeker starts by determining its operation mode
(Line 137). The seeker then begins traversing the ring from
an initial node s obtained by hashing the thread’s id (Lines
139–140). As in the waiter case, the traversal process fol-
lows that of AdaptiveAR: the seeker proceeds while peek-
ing at s to see if a waiter has arrived there in the meantime
(Lines 148–153). If s has no waiter, the next node in the tra-

versal is checked. To determine if a node is captured by a
waiter, the seeker uses the helper procedure hasWaiter()
(Fig. 3, Lines 45–50). Once a waiter is found, the seeker tries
to match with it by atomically CASing the value stored in
the node’s itemwith its value. If successful, it returns the
retrieved value. During each iteration of the loop, the seeker
validates that it is in the correct mode and switches roles if
not (Lines 144–145).

Adapting effective and total ring size (�-marked lines):
The waiter adjusts both the effective and total ring size.
Deciding when to resize the ring and adjusting its effec-
tive ring size is performed as in AdaptiveAR (Lines 74–88,
76–78, 110 and Line 116). Where AdaptiveAR would fail
to increase the effective ring size due to using a statically
sized ring, in TripleAdp the waiter allocates a new ring of
double the size and tries to install it using a CAS on ring
(Lines 81–84). In the other direction, when the effective ring
size is a quarter of the ring size the waiter swings ring to
point to a new allocated ring of half the old size (Lines 111–
115). Seekers and waiters check whether a new ring has been
allocated (Lines 146–147 and 124, 72–73). If so they move
themselves to the new ring by restarting the operation.

Adapting to the access pattern: Seekers are responsible for
adapting the operation mode to the access pattern. The idea is
to assign the role of waiter to the majority thread type (pro-
ducer or consumer) in an asymmetric access pattern. Ring
size adaptivity then sizes the ring according to the number
of waiters. This reduces the chance for seekers (which are
outnumbered by the waiters) to collide with each other on
the ring. Following this intuition, a seeker deduces that the
operation mode should be changed if it starts to experience
collisions with other seekers in the form of CAS failures.
A seeker maintains a counter of failed CAS attempts (Lines
155, 165). A seeker that completes a rendezvous checks if its
counter is above a contention threshold T f , and if so it tog-
gles the global operation mode using a CAS on mode (Lines
151–152, 161–162).

Memory reclamation: We assume the runtime environ-
ment supports garbage collection (GC).3 Thus, once the
pointer to an old ring is overwritten and all threads move
to the new ring, the garbage collector reclaims the old ring’s
memory.

We assume GC for simplicity. A different memory man-
agement scheme that allows safe memory reclamation for
concurrent nonblocking code will work as well, but may
require changes to TripleAdp to interface with the mem-
ory manager. For example, consider the use of hazard point-
ers [14]. An operation must point a hazard pointer to the
ring it will access after reading the global ring pointer (Lines
98, 139). After pointing the hazard pointer at the ring, the

3 GC is part of modern environments such as C# and Java, in which
most prior synchronous queue algorithms were implemented [1,8,17].
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(a) (b)

Fig. 6 TripleAdp pseudo code for seeking and waiting threads. Lines marked by a � handle ring size adaptivity

operation must check that the global ring pointer has not
changed and retry the process if it has. If the ring has not
changed since the operation wrote its hazard pointer, it is
guaranteed that the ring will not be reclaimed until the opera-
tion’s hazard pointer changes [14]. The operation must there-
fore nullify its hazard pointer once it completes. The proof
of Theorem 5.2 (Sect. 5.2) can be extended to show that
TripleAdp remains pairwise-nonblocking when using haz-
ard pointers.

5.2 Correctness proofs

Theorem 5.1 TripleAdp implements asymmetric rendezvous.

Proof We prove linearizability and synchrony of TripleAdp:
Synchrony: Let p be some put(x) operation that suc-

cessfully CASes x into item[i] pointer while in
seek(p, x) (Fig. 6b, Lines 150,160). It follows that i = 1,

since that is the index seekItemIndex() returns when
passed x �= NULL (Fig. 3, Lines 38–39). This, in turn, implies
that p observes NULL in item[1] before proceeding with its
CAS, as that is what hasWaiter() returns in this case
(Lines 46–47). Thus the waiter found by p is some get()
operation, c, that invokes wait(c,NULL) before p CASes
x into the node.

We prove that if c continues to take steps after p’s
CAS, it returns x . When c executes Line 107, it notices
x written to s.item[1] and returns x (Lines 107–119).
Notice that even if c attempts to free its node to a mode
change (Lines 121–122) or ring resize (Lines 124–127),
its CAS will fail and thus c will proceed to execute Line
107.

A symmetric argument shows that a get() operation
which successfully CASes NULL into some node’s item[i]
pointer must have i = 2 and must therefore observe a pro-
ducer waiting in some wait(p, x) call.
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Linearizability: We define linearization points for the
operations as follows, depending on the roles they play in
TripleAdp. Let p be a put(x) operation that completes
a rendezvous while executing seek(p, x). Then p is lin-
earized at its successful CAS of x into s.item[1], for some
node s. As shown above, there is then a unique concurrent
get() operation, c, that CASes NULL to s.item[1] from
wait(c,NULL) before p’s linearization point, and which
returns x if it takes enough steps. We linearize c returning
x immediately after p, at the same CAS event. Conversely,
let c be a get() operation which completes its operation in
wait(c,NULL). Then c captures a node s by CASing NULL
into s.item[1], and then spins until observing some item x
stored in s.item[1] (Line 107). This occurs as a result of
some producer CASing x into s.item[1]. It follows that in
the process described above of assigning linearization points
to put(x)/get() pairs, we assign a linearization point to c.

Symmetrically, let c be a get() operation that completes
a rendezvous from seek(c, NU L L). Then c successfully
CASes NULL into s.item[2], for some node s, and there
exists a put(x), p, executing wait(p, x) which previously
CASes x into s.item[2]. We linearize p at c’s successful
CAS, and linearize c returning x immediately after p, at
the same CAS event. Conversely, let p be a put(x) oper-
ation that completes a rendezvous while in wait(p, x).
Then p captures a node s, CASes x into s.item[2], and
then spins until observing that x is not stored in s.item[2]
(Line 107). This occurs as a result of some get() running
seek() CASing NULL into s.item[2]. It follows that in the
process described above of assigning linearization points to
get()/put(x) pairs, we assign a linearization point to p.

Thus, any operation that completes has a linearization
point assigned to it. Because we always linearize a put()
followed immediately by its matching get() at a suc-
cessful CAS operation by one member of the pair, our lin-
earization points assignment yields a sequence of matching
put()/get() pairs. It remains to show that this sequence
is a valid execution of the handoff object. To do this, we show
using induction on the number of put()/get() pairs lin-
earized that our linearization point assignment constructs a
valid execution of the handoff object that leaves the object in
state ⊥. In the base case no operation is linearized, and this
is the (valid) empty execution.

For the induction step, we have a valid execution of the
handoff object that ends with the object in state ⊥. The next
operation linearized is aput(x), which is valid and changes
the object’s state to x . We then linearize a get() returning
x , which is valid and changes the object’s state to ⊥. 	

Theorem 5.2 TripleAdp is pairwise nonblocking.

Proof Similarly to Theorem 4.2’s proof, we say that the ren-
dezvous of a put() and get() pair occurs at the lineariza-
tion point of the pair, as defined in the proof of Theorem 5.1.

The proof is by contradiction. Assume that there is an execu-
tion E in which there are infinitely many pairwise steps and
yet no rendezvous occurs. We consider E ′, the infinite suffix
of E in which any operation whose rendezvous occurs in E
no longer takes steps. Notice that E ′ cannot contain mode
switches, since a mode switch happens after a seeker’s ren-
dezvous occurs (Lines 150,160). Thus, in E ′ TripleAdp either
stays in producers waiting mode (AdaptiveAR mirror image)
or consumers waiting mode (essentially AdaptiveAR). We
first prove that if no ring reallocations occur in E ′, then these
modes are pairwise nonblocking, leading to a contradiction
(Lemmas 5.1 and 5.2). Thus TripleAdp must reallocate the
ring in E ′. In fact, we show that TripleAdp must reallocate the
ring infinitely often (Lemma 5.3). We conclude by showing
that this too implies a contradiction. 	

Lemma 5.1 If from some point onwards in E ′, no ring real-
locations occur and TripleAdp runs with mode = 2 then a
rendezvous occurs.

Proof Assume towards a contradiction that the lemma is
false. Then, as in Theorem 4.2’s proof, there is a pro-
ducer/consumer pair, p and c, each of which runs forever
without completing. Let r be the ring after the last ring real-
location in E ′. Then p and c must eventually execute on r :
eventually each of them executes Lines 146–147 or 124,72–
73) and, if its current ring differs from r , moves itself to r .
Once p and c are on the same ring, the same arguments as
Theorem 4.2’s proof show that p must eventually capture a
node. This implies that c doesn’t find p on the ring. This can
only occur if p was left out of the ring because some producer
decreased the ring. But, since from that point on, the ring size
cannot decrease (otherwise a rendezvous completes), p even-
tually moves itself into c’s range, where either c or another
consumer rendezvous with it, a contradiction. 	

Lemma 5.2 If from some point onwards in E ′, no ring real-
locations occur and TripleAdp runs with mode = 1 then a
rendezvous occurs.

Sketch of proof Following Lemma 5.1’s proof. 	

Lemma 5.3 If E ′ contains a finite number of ring realloca-
tions, a rendezvous occurs.

Proof After the last ring reallocation, either Lemma 5.1 or
5.2 applies. 	


It follows that E ′ must contain infinitely many ring real-
locations. A ring reallocation that reduces the total ring size
(Lines 111–115) is performed after a waiter’s rendezvous
occurs, which is impossible. Thus, the only ring reallocations
possible are ones that increase the total ring size. To complete
the proof, we show that there cannot be infinitely many such
ring reallocations. Here we use the assumption that the con-
currency is finite. Let T be the maximum number of threads
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that can be active in E ; we show that the ring size cannot
keep growing indefinitely. Assume w.l.o.g. that the increase
threshold Ti is 1. Let R be the initial ring to be installed with
size si ze(R) ≥ T . Then R’s effective size always remains
≥ T , because a ring size decrease implies that a rendezvous
has occurred. Consider the first waiter w that tries to real-
locate R. Then w observes si ze(R) occupied nodes, i.e., it
observes another waiter w′ in two different nodes. w′ leaves
one node and returns to capture another node due to one of the
following reasons: a mode switch (impossible), a ring reallo-
cation (impossible, since w is the first to reallocate the ring),
or because w′ successfully rendezvouses, a contradiction.

6 AdaptiveAR and TripleAdp evaluation

We study the performance of our algorithms on a number of
rendezvous workloads. We compare them to Java’s unfair
synchronous queue (or channel) (JDK), ED tree, and FC
synchronous channels. We also compare our algorithms to a
rendezvous implementation based on Java’s Exchanger algo-
rithm [18,12]. The Exchanger is an adaptively sized colli-
sion array whose design is inspired by the collision arrays
used for elimination in stacks and queues [9,16], but with
an optimized implementation as appropriate for a package in
Java’s concurrency library. As in the original collision array,
the Exchanger is symmetric and any two arriving threads
can be matched. Therefore, our Exchanger-based rendezvous
implements the put() and get() operations by having
the thread repeatedly invoke the Exchanger until obtaining a
match with an opposite operation. Since threads may contin-
uously obtain false matches, this algorithm is not a practical
approach for implementing rendezvous. However, its sim-
ilar characteristics to our algorithm make it an interesting
yardstick to compare to.

Experimental setup: Evaluation is carried out on both a
Sun SPARC T5240 and an Intel Xeon E7-4870. The Sun
has two UltraSPARC T2 Plus (Niagara II) chips. Each is
a multithreading (CMT) processor, with 8 1.165 GHZ in-
order cores with 8 hardware strands per core, for a total of 64
hardware strands per chip. Each core has a private L1 write-
through cache and the L2 cache is shared. The Intel Xeon
E7-4870 (Westmere EX) processor has 10 2.40 GHz cores,
each multiplexing 2 hardware threads. Each core has private
write-back L1 and L2 caches and the L3 cache is shared.

Both Java and C++ implementations are tested.4 For the
prior algorithms, we use the original authors’ implementa-

4 Java benchmarks were ran with HotSpot Server JVM, build
1.7.0_05-b05. C++ benchmarks were compiled with Sun C++ 5.9
on the SPARC machine and with gcc 4.3.3 (-O3 optimization setting)
on the Intel machine. In the C++ experiments we used the Hoard 3.8 [3]
memory allocator.

tion.5 Following Hendler et al. [8], we test both JDK and
JDK-no-park, a version that always uses busy waiting instead
of yielding the CPU (parking), and report the results of the
variant that performs best in each workload.

Unless stated otherwise our benchmarks use dedicated
threads, each performing only put() or get() operations
in a loop over a period of 10 s, and results are averages of
ten such runs of the Java implementation on an idle machine.
Except when stated otherwise, our results had very little vari-
ance. Throughout the evaluation we use a modulo hash func-
tion (hash(t) = t modringsize) in AdaptiveAR and the
Exchanger to map thread ids to ring nodes. Thread ids are
assigned uniformly at random at the start of each run, to
model the fact that in practice little is known about which
threads try to rendezvous at any point in time. The adaptivity
thresholds we use for both AdaptiveAR and TripleAdp are
Ti = 1, Td = 2, Tw = 64. In addition, we set T f = 10 for
TripleAdp.

Thread placement: Unless stated otherwise, we ran the
experiments without pinning threads to specific cores. While
pinning threads to cores can sometimes be useful to reduce
measurement noise, it also poses a problem: which thread-to-
core placement to use? Any fixed policy may help or harm
a specific algorithm [23], and the optimal policy for each
algorithm is an open research question. We therefore let the
operating system perform thread scheduling, relying on aver-
aging many executions to reduce noise. As noted above, our
results have very little variance.

6.1 Symmetric producer/consumer workload

We measure the throughput at which data is transferred from
N producers to N consumers. Figure 7a shows the results
from running on a single multi-core chip of the SPARC
machine. Only AdaptiveAR, TripleAdp, Exchanger and Par-
allel FC show meaningful scalability. In low concurrency
settings AdaptiveAR outperforms the Parallel FC channel
by 2 × −3× and the Exchanger by 2×. At high thread
counts AdaptiveAR obtains 5.5 times the throughput of Par-
allel FC and 2.7 times that of the Exchanger. TripleAdp falls
below AdaptiveAR by 20 % for all thread counts (this dif-
ference becomes noticeable in the graphs as the thread count
increases). Despite this, TripleAdp outperforms Parallel FC
by 4.45× and the Exchanger by 2.3×.

The remaining algorithms scale poorly or not at all.
Hardware performance counter data (Fig. 7b–d) shows that
these implementations exhibit some kind of serialization: the

5 We remove all statistics counting from the code and use the latest
JVM. Thus, the results we report are usually slightly better than those
reported in the original papers. On the other hand, we fixed a bug in
the benchmark of [8] that miscounted timed-out operations of the Java
channel as successful operations; thus the results we report for it are
sometimes lower.
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(a) (b)

(c) (d)

Fig. 7 Rendezvousing between producer/consumer pairs: SPARC results. L2 misses are not shown; all algorithms but JDK had less than one L2
miss/operation on average

number of instructions per rendezvous for JDK and Single
FC increases as concurrency grows; for the ED tree, the
cache miss plot shows a growing trend (Fig. 7d). Taking
JDK for example, as concurrency grows a thread requires
more attempts until its CAS to the top of the stack succeeds
(Fig. 7c) which causes the overall instruction count to grow
too. Consequently, as concurrency increases JDK’s through-
put deteriorates while AdaptiveAR’s increases, resulting in
around 120× throughput difference at 64 threads (32 pro-
ducer/consumer pairs).

Turning back to the more scalable algorithms, we find their
throughput differences correlated with the implementations’
path length, i.e., the average number of instructions per suc-
cessful rendezvous (Fig. 7b). The path length is crucial on the
SPARC, which is an in-order processor. AdaptiveAR com-
pletes a rendezvous in less than 170 instructions of which
one is a CAS, and this number remains stable as concurrency
grows. Compared to AdaptiveAR, TripleAdp performs extra

work in each rendezvous when checking for mode switches
and ring reallocations. This extra work is wasted in this work-
load, in which mode switches and ring reallocations are rare,
leading to the 20 % throughput drop. In comparison, while
Parallel FC hardly performs CASes (Fig. 7c) the time spent
waiting for the combiner adds up and Parallel FC requires
2.6× to 5.8× more instructions than AdaptiveAR to com-
plete a rendezvous. Finally, an Exchanger rendezvous takes
1.5× to 2.74× more instructions. The main reason is false
matches which occur with probability 1/2, so on average
two exchanges are required to complete a rendezvous. The
remaining throughput gap is due to other algorithmic dif-
ferences between AdaptiveAR and the Exchanger, such as
peeking, which we expand upon in Sect. 6.1.4.

The throughput results on the Intel processor (Fig. 8a) are
similar to the low concurrency SPARC results for all algo-
rithms but AdaptiveAR and TripleAdp, which now obtain
comparable throughput to the Exchanger. Here the average
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(a) (b)

Fig. 8 Rendezvousing between producer/consumer pairs: Intel results.
Box plot on the right zooms in on 10:10 results. The bottom and top of
a box are the 25th and 75th percentiles of the data, with a line at the

median and a marker at the average. Whiskers extend to the minimum
and maximum of the data

results, shown in Fig. 8a, do not tell the whole story. Figure
8b, which includes more details about the results, shows
that AdaptiveAR’s throughput is much more stable than the
Exchanger. Still, why does the Exchanger surpass Adap-
tiveAR in some executions?

It turns out that on this processor and workload the
Exchanger’s symmetric behavior can be advantageous due to
the write-back caching architecture. In the Exchanger algo-
rithm a thread captures a slot by pointing that slot’s pointer
field (using CAS) to a private memory location on which the
thread spins. A thread finding an occupied slot tries to nullify
the pointer using CAS and, if successful, to rendezvous at the
private location. Now, consider a stable producer/consumer
pair, p and c, whose ids hash to the same array slot s. Because
thread ids remain constant throughout the run, this pair is
likely to repeatedly rendezvous at s. As we now explain, this
results in s moving between these threads’ caches, allow-
ing them to complete a rendezvous more efficiently. When
an Exchanger match occurs at s, the thread that arrives later
performs a CAS on s and leaves shortly after, whereas the
thread that occupies s can only leave after noticing that a
match has occurred in its private location. Thus the thread
that arrives last at s, say p, will return first and when it does
its cache will have exclusive access to s’s cacheline. This
enables it to immediately capture s; when its partner c shows
up shortly after it will see s occupied and complete the match.
Thus the Exchanger’s symmetry allows a stable thread pair
p and c to repeatedly change their roles in the collision array.
In different executions there are different number of stable
pairs, hence the Exchanger’s erratic performance.

In AdaptiveAR, however, thread roles are fixed. So while
in a stable pair the consumer c always writes to the slot s
last, by then its partner p has already returned for another

rendezvous. When p reads s, c’s cache loses exclusive access
to s, which means that when c returns and tries to CAS s, a
cache miss will occur. Furthermore, p which sees that s is
not occupied may proceed to other nodes in the ring, experi-
encing cache misses as a result and causing cache misses for
threads whose ids map to these nodes. Because this workload
is symmetric, TripleAdp essentially fixes the thread roles and
thus behaves similarly to AdaptiveAR.

Figures 9a, b demonstrate this effect. In Fig. 9a we addi-
tionally plot the results of running the benchmark with an
artificial sequential ids distribution that creates N stable
pairs. Thus the Exchanger no longer wastes work on false
matches, resulting in a 2.4× reduction of instructions spent
per operation. Every match is also more efficient due to the
previously described effect, yielding an 2.6× reduction in
cache misses and almost 3× better throughput. With Adap-
tiveAR and TripleAdp, however, there is no improvement
in throughput. The SPARC (Fig. 9c) has a write-through
cache architecture in which all CAS operations are applied in
the shared L2 cache and invalidate the L1 cacheline. There
is therefore no advantage for being the last thread to CAS
a slot. The Exchanger’s only benefit from the elimination
of false matches is in the amount of work done, yielding
a 1.6× throughput improvement. Similarly, AdaptiveAR’s
and TripleAdp’s throughput increases by 12–14 % because
consumers capture slots immediately without contention and
producers find them faster.

Varying arrival rate: How important are the effects
described above in practice, where threads do some work
between rendezvouses? To study this question we measure
how the throughput of the producer/consumer pairs work-
load is affected when the thread arrival rate decreases due
to increasingly larger amounts of time spent doing “work”
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(a) (b)

(c) (d)

Fig. 9 Effect of initial slot selection on N : N workload throughput. Performance counter plots are logarithmic scale. There were no L3 (shared)
cache misses on the Intel processor

(a) (b)

Fig. 10 N : N rendezvousing with decreasing arrival rate due to increasing amount of work time between operations
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(a) (b)

(c) (d)

Fig. 11 Percent of operations performed by each thread in an N : N test with maximum concurrency. The horizontal line marks ideal behavior

before each rendezvous. Figure 10a, b show that as the work
period grows the throughput of all algorithms that exhibit
scaling deteriorates, due to the increase in the sequential part
of the workload at the expense of the parallel time. Going
from no work to 1.5μs of work, Parallel FC on the SPARC
degrades by 2×, the Exchanger by 2.5×, and AdaptiveARand
TripleAdp degrades by about 3× (because they start much
higher). Still, the SPARC has sufficient parallelism to allow
AdaptiveAR and TripleAdp to outperform the other imple-
mentations by at least 2×. On the Westmere EX even a mini-
mal delay between rendezvousing diminishes the impact that
stable pairs have on the Exchanger’s throughput, and as the
amount of work increases AdaptiveAR’s and TripleAdp’s
throughput increases up to 1.30× that of the Exchanger.

6.1.1 Work uniformity

One clear advantage of AdaptiveAR over FC is work uni-
formity, since the combiner in FC spends time doing work

for other threads at the expense of its own work. We show
this by comparing the percent of total operations performed
by each thread in a multiple producer/multiple consumer
workload. In addition to measuring uniformity, this test is
a yardstick for progress in practice: if a thread starves we
will see it as performing very little work compared to other
threads. In Fig. 11 we pick the best result from five exe-
cutions with maximum concurrency and plot the percent of
total operations performed by each thread. On the Intel the
ideal uniform behavior is for each thread to perform 5 %
(1/20) of the work. AdaptiveAR (Fig. 11a) and TripleAdp
(Fig. 11b) are relatively close to uniform, with the high-
est performing thread completing about 1.28× (1.31× for
TripleAdp) the operations as the lowest performer. However,
the other algorithms show non-uniform behavior. Parallel
FC (Fig. 11c) has a best/worst ratio of 30×, showing the
impact that performing combining has on the combiner. On
the SPARC the results are mostly similar and we therefore
omit them.
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(a)
(b)

Fig. 12 Throughput of synchronous queue bursty workload. AdaptiveAR’s ring size is sampled continuously using a thread that does not participate
in the rendezvousing

Fig. 13 N : N rendezvousing on both processors of the SPARC
machine

6.1.2 NUMA architecture

When utilizing both processors of the SPARC machine the
operating system’s default scheduling policy is to place
threads round-robin on both chips. Thus, the cross-chip over-
head is noticeable even at low thread counts, as Fig. 13 shows.
Since the threads no longer share a single L2 cache, they
experience an increased number of L1 and L2 cache misses;
each such miss is expensive, requiring coherency protocol
traffic to the remote chip. The effect is catastrophic for seri-
alizing algorithms; for example, the Java channel’s through-
put at 128 threads is 5× worse than its throughput with 64
threads running on a single chip.

Despite the cross-chip communication overhead, the algo-
rithms with a scalable distributed design, namely Adap-

tiveAR, TripleAdp, Parallel FC and the Exchanger, show
scaling trends similar to the single chip ones but with overall
lower throughput. AdaptiveAR’s NUMA throughput with 32
producer/consumer pairs is about half of its single-chip 32
pair throughput, TripleAdp’s drops by 67 %, the Exchanger
by 30 % and Parallel FC by 10 %.

We believe that the throughput of all the scalable algo-
rithms can be improved using NUMA-aware scheduling
to minimize cross-chip communications; we leave this for
future work. In this paper we are interested in the perfor-
mance opportunities opened up by the shift from classic
SMP-style parallelism to multicore chips with low synchro-
nization and communication overheads, and so we focus our
evaluation on the single chip case.

6.1.3 Bursts

To evaluate the effectiveness of our concurrency level adap-
tivity technique, we measure the rendezvous rate on the
SPARC machine in a workload that experiences bursts of
concurrency changes. For 10 s the workload alternates every
second between 31 thread pairs and 8 pairs. The 63rd hard-
ware strand is used to take ring size measurements. This
sampling thread continuously reads the ring size and records
the time whenever the current read differs from the pre-
vious read. Figure 12a shows the throughput results; here
AdaptiveAR obtains 2.62× the throughput of the Exchanger,
5× that of Parallel FC and 40× that of JDK. TripleAdp
lags behind AdaptiveAR by 20 %. Figure 12b depicts how
AdaptiveAR successfully adapts its ring size as the concur-
rency level changes over time. The results for TripleAdp
are essentially identical, so we omit them to keep the graph
readable.
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(a) (b)

(c) (d)

Fig. 14 Rendezvousing between producer/consumer pairs: contribution of each technique

6.1.4 AdaptiveAR performance breakdown

In this section (and Fig. 14) we quantify how much each of
the techniques used in AdaptiveAR improves performance.
For the purpose of this test (and only in this section), we start
with the Exchanger-based collision array implementation,
referred to as Baseline, and introduce our techniques one by
one (each on top of all the previous ones), eventually obtain-
ing a new implementation of AdaptiveAR from a different
code base (as opposed to our from-scratch implementation
of AdaptiveAR). This methodology also provides further
assurance that AdaptiveAR’s performance advantages are
due to our ideas and not implementation artifacts. To focus
solely on rendezvousing performance we disable the algo-
rithms’ adaptivity schemes and use an array/ring whose size
equals the number of producer/consumer pairs taking part in
the test. Our modifications to Baseline yield the following
versions:

– Asymmetrical: Distinguishes between producers and
consumers. A consumer thread attempts to occupy a slot
and then waits for a partner. A producer thread searches
the array for a waiting consumer.

– Exchange in array: In the Exchanger algorithm a thread
captures a slot using CAS to change a pointer field in the
slot to point to a private memory location on which the
thread spins. A thread finding an occupied slot attempts
to nullify this pointer using a CAS and, if successful, to
rendezvous at the private location. Here we change the
protocol so that rendezvous occurs in the array slot.

– Ring: In the Exchanger a thread maintains an index to
traverse the array. Here we turn the array into a ring and
traverse it using pointers.

– Peeking: Implements peeking (Sect. 4.2). This version is
algorithmically identical to AR, our from-scratch Adap-
tiveAR implementation with adaptivity disabled as in
Sect. 4.2.
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(a) (b)

Fig. 15 Single producer and N consumers rendezvousing

Figure 14a shows the throughput results on the SPARC.
Asymmetrical obliterates false matches as evidenced by the
reduced instruction count shown in Fig. 14b. As a result,
throughput increases by 2×. Exchange in the array adds
up to 30 % by simplifying the code and reducing the num-
ber of CASes. Traversing pointers (Ring) saves a conditional
on each iteration and yields a 5 % gain. Peeking gives a
final 20 % boost. On the Intel (Fig. 14c) processor Asym-
metrical serves to stabilize the algorithm’s performance
(Fig. 14d). Because the processor is an out-of-order proces-
sor with 2× the clock rate of the SPARC the cost of cache
misses dominates and the remaining techniques have less
impact.

6.2 Asymmetric workloads

The throughput of one producer rendezvousing with a vary-
ing number of consumers is presented in Fig. 15a (SPARC)
and b (Intel Westmere EX). We focus on the SPARC results
as the results from the Intel processor are similar. Since the
throughput is bounded by the rate of a single producer, little
scaling is expected and observed. However, for AdaptiveAR
and TripleAdp it takes several consumers to keep up with a
single producer. This is because the producer hands off an
item and completes, whereas the consumer needs to notice
the rendezvous has occurred. And while the single consumer
is thus busy the producer cannot make progress on a new
rendezvous. However, when more consumers are active, the
producer can immediately return and find another (differ-
ent) consumer ready to rendezvous with. Figure 15a shows
that most algorithms do not sustain their peak throughput.
Exchanger’s throughput degrades by 50 % from its peak to
32 consumers; on the Intel the degradation is a much more
severe 2.8×. The FC channels have the worst degradation
on the SPARC: 4× for Single FC and 1.4× for Parallel FC.

JDK’s degradation is minimal (20 % from peak to 32 con-
sumers), and it along with the ED tree achieves close to peak
throughput even at high thread counts. Yet this throughput
is low: AdaptiveAR outperforms JDK by up to 3.6× and
the ED tree by 5× to 8× despite degrading by 33 % from
peak throughput. As in the N :N workload, TripleAdp pays
a 20 % throughput penalty compared to AdaptiveAR on the
SPARC and achieves comparable performance on the Intel
processor. Both TripleAdp and AdaptiveAR maintain peak
throughput up to 16 threads before experiencing some degra-
dation.

Why do AdaptiveAR and TripleAdp degrade at all? After
all, the producer has its pick of consumers in the ring
and should be able to complete a hand-off immediately.
The reason for this degradation is not algorithmic but due
to contention on chip resources. A Niagara II core has
two pipelines, each shared by four hardware strands. Thus,
beyond 16 threads some threads must share a pipeline—
and our algorithm indeed starts to degrade at 16 threads.
To prove that this is the problem, we present in Fig. 17a
results when the producer runs on the first core and con-
sumers are scheduled only on the remaining seven cores.
While the trends of the other algorithms are unaffected, our
algorithms now maintains peak throughput through all con-
sumer counts.

Results from the opposite workload, where multiple pro-
ducers try to serve a single consumer, are given in Fig. 16a
(SPARC) and b (Intel Westmere EX). Here the producers
contend over the single consumer node and as a result Adap-
tiveAR’s throughput degrades as the number of producers
increases, as do the Exchanger and FC channels. Despite this
degradation, on the SPARC AdaptiveAR outperforms the FC
channels by 2× −2.5× and outperforms the Exchanger up to
8 producers and the JDK up to 48 producers (falling behind
by 35 and 15 %, respectively, at 32 producers).
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(a) (b)

Fig. 16 Rendezvousing between N producers and a single consumer

(a) (b)

Fig. 17 Asymmetric rendezvousing (single producer and N consumers, single consumer and N producers) with OS constrained to place the single
producer (or consumer) alone on a core, so that threads performing the reverse operation do not interfere with its execution

The advantage of TripleAdp becomes apparent in this
workload. TripleAdp maintains its peak throughput (modulo
chip resource contention, as Fig. 17b shows), outperforming
all other algorithms by at least 2× on both the SPARC and
Intel Xeon E7 architectures. The 20 % penalty in the 1 : N
workload was for this benefit.

6.3 Oversubscribed workloads

Here we explore the algorithms’ performance in oversub-
scribed scenarios, in which the number of threads exceeds the
number of hardware execution strands and forces the oper-
ating system to context switch between the threads.

Figure 19 shows the results when the number of producers
in the system equals the number of consumers. For reference,
the first point in the plots shows the performance when the

number of threads equals the number of hardware threads.
The JDK and ED tree show little degradation from this point.
Both FC variants experience a sharp drop in throughput as
concurrency grows because the odds for the combiner threads
being descheduled by the operating system and causing the
algorithm to block increase. On the SPARC, AdaptiveAR’s
and TripleAdp’s throughput degrades from the starting point
with no oversubscription (2.3× for AdaptiveAR and 1.67×
for TripleAdp).

This degradation occurs because when the operating sys-
tem switches out a thread waiting at some ring node, that
node remains captured until the thread runs again. Even if
a match occurs in the mean time, that thread must wake up
to mark the node as FREE. The Exchanger does not show a
similar degradation because its exchanges are done outside
of the nodes. Recall that in the Exchanger a captured node
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points to a private memory location where the waiting thread
spins. A thread encountering a captured node nullifies the
node pointer using CAS before proceeding to rendezvous at
the private location. Thus, a captured Exchanger node can be
freed even if its waiting thread is not running.

Despite their throughput degradation, AdaptiveAR and
TripleAdp obtain the best throughput results and outper-
form the Exchanger, which is the next best performer, by
1.55×. On the Intel the throughput of AdaptiveAR, Triple-
Adp and the Exchanger remain stable, with the Exchanger
outperforming AdaptiveAR by 56 % and TripleAdp by 26 %.

Figure 20 depicts throughput results for asymmetric over-
subscribed workloads, where the threads performing one type
of operation outnumber the threads invoking the reverse oper-
ation by a factor of three. The performance trends follow
those of the N : N case, with the exception that Triple-

Fig. 18 Throughput of synchronous queue bursty N : N workload in
an oversubscribed setting. Workload alternates every second between
512 threads (256 pairs) and 16 threads (8 pairs)

Adp outperforms AdaptiveAR on the Intel by adapting its
ring structure to the scenario with more consumers than
producers.

Finally, Fig. 18 shows the throughput results in an oversub-
scribed bursty workload on the SPARC machine. For 10 s the
workload alternates every second between 256 thread pairs
and 8 pairs. TripleAdp, AdaptiveAR and the Exchanger are
the best performers, achieving orders of magnitude better
throughput than the other algorithms. TripleAdp outperforms
the Exchanger by 1.88× and AdaptiveAR by 17 %. Triple-
Adp outperforms AdaptiveAR because TripleAdp maximal
ring size is not bounded, allowing its ring to grow and adapt
itself to the high concurrency level in this test.

7 Concurrent stack

Hendler et al. improved the performance and scalability of
a Treiber-style lock-free stack [24] by adding an elimina-
tion layer as a backoff scheme for the lock-free stack [9].
In their algorithm an arriving thread that fails to complete
its operation (due to contention in the main stack) enters a
collision array where it hopes to collide with an operation
of the opposite type. If such a match occurs, the resulting
Push()/Pop() operation pair can be linearized next to
each other without affecting the state of the stack. Thus, the
collision array implements a form of asymmetric rendezvous.

In this section we use AdaptiveAR as an elimination layer
on top of a Treiber-style stack. This requires extending Adap-
tiveAR with support for aborts: the ability to give up on a
pending rendezvous operation after a certain period of time.
Without aborts a single thread might remain in the elimi-
nation layer forever, making the resulting stack algorithm
blocking.

(a) (b)

Fig. 19 Oversubscribed (more threads than available hardware threads) symmetric workload. Total number of threads grows, starting from the
number of available threads in the hardware
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(a) (b)

(c) (d)

Fig. 20 Oversubscribed (more threads than available hardware threads) asymmetric worklads. Total number of threads grows, starting from the
number of available threads in the hardware

Abort semantics: We change the specification of the hand-
off object as follows. Bothput() andget()operations can
nondeterministically return a reserved value ⊥ indicating an
aborted operation, in which case the state of the object is not
changed. Note that since there is no notion of time in our
model, we do not define when it is considered legal to time-
out and abort a rendezvous operation. This allows for trivial
rendezvous implementations that always return ⊥, though
they would be of little use in practice.

Abort implementation: We add a parameter to the algo-
rithm specifying the desired timeout. Timeout expiry is
then checked in each iteration of the main loop in put(),
get() and findFreeNode() (Fig. 2c). If the timeout
expires, a producer or a consumer in findFreeNode()
aborts by returning ⊥. A consumer that has captured a ring
node cannot abort before freeing the node by CASing its
item from NULL back to FREE. If the CAS fails, the con-
sumer has found a match and its rendezvous has completed

successfully. Otherwise its abort attempt succeeded and it
returns ⊥.

We consider two variants of an elimination stack, where
we abstract the elimination task to an abortable rendezvous
object. The first variant (Fig. 21a) uses elimination as a back-
off scheme: threads try to eliminate upon detecting con-
tention on the main stack. (This is essentially Hendler et
al.’s elimination stack [9]). The second variant (Fig. 21b) is
optimistic: a thread enters the elimination layer first, access-
ing the main stack only if it fails to find a match. If it then
encounters contention on the main stack it goes back to try
the rendezvous, and so on.

We implemented these variants in C++ within the bench-
mark framework of Hendler et al. [7]. We tested each variant
with two algorithms for performing elimination: AdaptiveAR
and a collision array. Since code for the original collision
array implementation [9] is not available we chose to port
Java’s optimized Exchanger to C++ for use as the collision

123



266 Y. Afek et al.

(a) (b)

Fig. 21 Elimination stack variants. We omit the linked list manipulation details of the Treiber lock-free stack [24]

array. We set AdaptiveAR’s wait threshold to a value smaller
than the abort timeout, for otherwise ring size decreases never
occur as the thread always aborts first.

We compared these implementations (referred to as Back-
off elim (AdaptiveAR/Exchanger) and Optimistic elim
(AdaptiveAR/Exchanger) in the plots) to the implemen-
tations of Treiber’s lock-free stack (Lock-free) and the FC
based stack [7] (Flat combining) in the framework.

We report results of a benchmark measuring the through-
put of an evenpush/pop operation mix. Each test consists of
threads repeatedly invoking stack operations over a period of
10 s. Each thread performs both push() and pop() opera-
tions; this is the same benchmark used in [7].6 In the Intel test
each thread performs a small random number (≤64) of empty
loop iterations between completing one stack operation and
invoking the next one. We found this delay necessary to avoid
long runs [15] where a thread holding the top of the stack
in its cache quickly performs a long sequence of operations,
leading to unrealistically high throughput. On the SPARC
the long run pathology does not occur because all CASes are
performed in the shared L2 cache, so we did not add delays
in the SPARC test.

Figure 22 shows the results of the benchmark. The backoff
variants fail to scale in all workloads and machine combina-
tions, illustrating the price paid for accessing the main stack:

6 We reduced the overhead due to memory allocation in the original
implementations [7] by caching objects popped from the stack and using
them in future push operations.

both the overhead of allocating a node to push on the stack
as well as trying (and failing) to CAS the stack’s top to point
to the node. However, AdaptiveAR’s backoff stack achieves
3.5× the throughput of the Exchanger backoff stack on the
SPARC by avoiding false matches.

The lock-free stack has no elimination to fall back on
and does not scale at all. Consequentially, the optimistic
AdaptiveAR elimination stack outperforms it by 33× on the
SPARC and by 4.8× on the Intel. However, the optimistic
algorithms achieve this scalability at the expense of lower
throughput under low thread counts. The backoff Adap-
tiveAR elimination stack achieves 3× the throughput of the
optimistic AdaptiveAR variant with 2 threads on the Intel,
and 1.65× on the SPARC.

The performance trends of the optimistic elimination
stacks match those observed in Sect. 6 on the SPARC. The
optimistic AdaptiveAR elimination stack obtains the high-
est throughput. It outperforms the backoff Exchanger elimi-
nation stack by 7.5×, the optimistic Exchanger elimination
stack by 2.1×, and the FC stack by 3.6×. On the Intel, the
optimistic Exchanger and AdaptiveAR elimination stacks
show different scaling trends. The optimistic Exchanger stack
is the best performer at 8 to 16 threads, however its throughput
flattens beyond 12 threads. In contrast, the optimistic Adap-
tiveAR stack scales up to 20 threads, where it outperforms
the Exchanger stack by 1.25×.

This behavior occurs because at low concurrency lev-
els, entering the collision array and failing to eliminate pro-
vides sufficient backoff to allow threads to complete their

123



Fast and scalable rendezvousing 267

(a) (b)

Fig. 22 Stack throughput. Each thread performs both push and pop operations with probability 1/2 for each operation type

(a) (b)

Fig. 23 Analysis of stack elimination on Intel Xeon E7. Left Percent
of stack operations that complete through elimination. Right a stack
operation may complete through elimination only after several rounds
of failing to eliminate and going back to the main stack. Thus, we show

the percent of successful elimination attempts (resulting in completion
of the stack operation) out of all elimination attempts, which outnumber
the stack operations

operations quickly. We show this by plotting the number
of optimistic stack operations that complete through elim-
ination in this benchmark (Fig. 23a). Even as concurrency
increases, the Exchanger elimination stack completes about
40–50 % of the operations on the main stack. The reason,
as Fig. 23b shows, is that half of the Exchanger matches are
false. Threads that fail to eliminate go back to the stack and—
because concurrency is low—often manage to quickly com-
plete their operation there. In contrast, AdaptiveAR obtains
almost 100 % elimination success rate. It pays a price in the
low concurrency levels, where threads wait longer until a
partner comes along, leading to lower throughput.

8 Conclusion

This paper focused on the rendezvous problem, an abstract
problem of high throughput concurrent matching, in which
consumers and producers show up and are matched each with
a unique thread of the other type. We have presented adap-
tive, nonblocking, high throughput asymmetric rendezvous
systems that scale well under symmetric workloads and
maintains peak throughput in asymmetric workloads. This
is achieved by a careful marriage of new algorithmic ideas
and attention to implementation details, to squeeze all avail-
able cycles out of the processors.
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Our work shows the degree of impact that hardware
architecture specific details can have on a concurrent algo-
rithm’s performance. For instance, the Intel processor’s
write-back cache architecture leads to significant cost differ-
ences between CASing a location in a core’s cache compared
to one in a remote core’s cache, whereas on the SPARC with
its write-through cache architecture the CAS cost is more
uniform. This suggests that algorithms must be fully aware
of their underlying hardware to maximize their performance.
Yet much of the programming world is moving toward man-
aged languages, such as Java, whose goal is to abstract away
such architectural details and avoid exposing them to the
program. Reconciling these conflicting directions is a very
interesting research problem.

Finally, our results raise a question about the flat com-
bining paradigm. Flat combining has a clear advantage in
inherently sequential data structures, such as a FIFO or pri-
ority queue, whose concurrent implementations have central
hot spots. But as we have shown FC may lose its advantage in
problems with inherent potential for parallelism. It is there-
fore interesting whether the FC technique can be improved
to match the performance of our asymmetric rendezvous sys-
tems.

Availability

Our implementation is available from Tel Aviv University’s
Multicore Computing Group web site at http://mcg.cs.tau.
ac.il/.
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