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Abstract A diversity of possible communication assump-
tions complicates the study of algorithms and lower bounds
for radio networks. We address this problem by defining
an abstract MAC layer. This service provides reliable local
broadcast communication, with timing guarantees stated in
terms of a collection of abstract delay functions applied to
the relevant contention. Algorithm designers can analyze
their algorithms in terms of these functions, independently
of specific channel behavior. Concrete implementations of
the abstract MAC layer over basic radio network models
generate concrete definitions for these delay functions, auto-
matically adapting bounds proven for the abstract service to
bounds for the specific radio network under consideration.
To illustrate this approach, we use the abstract MAC layer to
study the new problem of Multi-Message Broadcast, a gen-
eralization of standard single-message broadcast in which
multiple messages can originate at different times and loca-
tions in the network. We present and analyze two algorithms
for Multi-Message Broadcast in static networks: a simple
greedy algorithm and one that uses regional leaders. We
then indicate how these results can be extended to mobile
networks.
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1 Introduction

The study of bounds for mobile ad hoc networks is com-
plicated by the large number of possible communication
assumptions: Do devices operate in slots or asynchronously?
Do simultaneous transmissions cause collisions? Can col-
lisions be detected? Is message reception determined by
geographical distances or by more complex criteria such as
signal-to-noise ratio? And so on. This situation causes prob-
lems. Results for one set of communication assumptions
might prove invalid for a slightly different set of assump-
tions. In addition, these low-level assumptions require algo-
rithm designers to grapple with low-level problems such as
contention management, again and again, making it difficult
to highlight interesting high-level algorithmic issues. This
paper proposes a possible solution to these concerns.

The abstract MAC layer In the standard ISO network
model, the MAC layer is responsible for managing local com-
munication, attempting to provide the higher layers with a
reliable local communication service. In this paper, we intro-
duce a simple abstract MAC layer service for mobile ad hoc
networks (MANETs). We intend this service to be imple-
mented over real MANETs, with very high probability. (In
Sect. 8, we discuss recent work that explores a variant of the
layer defined with explicit probabilities for its properties.) At
the same time, we intend it to be simple enough to serve as
a good basis for theoretical work on high-level algorithms
in this setting. The use of this service is to allow algorithm
designers to avoid tackling issues as contention management
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and collision detection. They can instead summarize their
effects with abstract delay bounds.

The abstract MAC layer service delivers messages reli-
ably within its local neighborhood, and provides feedback
to the sender of a message in the form of an acknowledge-
ment that the message has been successfully delivered to
all nearby receivers. The service does not provide the sender
with any feedback about particular recipients of the message.
The service provides guaranteed upper bounds on the worst-
case amount of time for a message to be delivered to all its
recipients, and on the total amount of time until the sender
receives its acknowledgement. It also may provide a (pre-
sumably smaller) bound on the amount of time for a receiver
to receive some message among those currently being trans-
mitted by neighboring senders. These time guarantees are
expressed using delay functions applied to the current amount
of contention among senders that are in the neighborhoods
of the receivers and the sender.

To implement our abstract MAC layer over a physical
network one could use popular contention-management
mechanisms such as carrier sensing and backoff [1], or
receiver-side collision detection with negative acknowledg-
ments [8]. A completely different kind of implementation
might involve network coding methods, such as the ZigZag
Decoding method of Gollakota and Katabi [14]. (As detailed
in Sect. 8, a coding-based implementation is currently in
progress.) Our MAC layer encapsulates the details of these
mechanisms within the service implementation, presenting
the algorithm designer with a simple abstract model that
involves just message delivery guarantees and time bounds.1

We believe that this MAC layer service provides a simple
yet realistic basis for theoretical work on high-level algo-
rithms and lower bounds for MANETs. For instance, one
might use it to study problems of communication (such as
network-wide broadcast or point-to-point message routing);
problems of establishing and maintaining basic structures
(clusters, leaders, or spanning trees); problems of imple-
menting higher-level services (group membership, resource
management, data management, or consensus); or applica-
tion-inspired problems (such as robot or vehicle control).
More fundamentally, since our MAC layer does not provide
senders with feedback about who received their messages,
some basic problems must also be studied, such as local uni-
cast with acknowledgement and neighbor discovery. In this
sense, our layer exists at a lower level than existing practical
layers, such as 802.11, which implement local unicast as a
primary primitive. We treat such primitives as higher-level

1 Note that MAC layer implementations are usually probabilistic, both
because assumptions about the physical layer are usually regarded as
probabilistic, and because many MAC layer implementations involve
random choices. Thus, these implementations implement our MAC
layer with very high probability, not absolute certainty.

problems to be solved using our basic layer. (Note: through-
out the paper, when referencing the transmission of messages
on the physical layer, we use the term transmit. To disam-
biguate the reliable local broadcast of the MAC layer from
global broadcast, we often use the term send when referring
to the former. For global broadcast we stick with the term
broadcast.)

Multi-Message Broadcast and Regional Leader Election In
this paper, we validate our formalism by studying two prob-
lems: Multi-Message Broadcast (MMB) and Regional Leader
Election (RLE). The MMB problem is a generalization of sin-
gle-message broadcast; c.f., [2–7,9,11,21–25]. In the MMB
problem, an arbitrary number of messages originate at arbi-
trary processes in the network, at arbitrary times; the problem
is to deliver all messages to all processes. We present and ana-
lyze two MMB algorithms in static networks, and indicate
how the second of these can be extended to mobile networks.

Our first MMB algorithm is a simple greedy algorithm,
inspired by the strategy of the single-message broadcast algo-
rithm of Bar-Yehuda et al. [4]. We analyze this algorithm
using the abstract MAC layer delay functions. We obtain an
upper bound on the time for delivery of each message that
depends in an interesting way on the progress bound—the
small bound on the time for a receiver to receive some mes-
sage. Specifically, the bound for MMB to broadcast a given
message m, is of the form O

(
(D + k)Fprog + (k − 1)Fack

)
,

where D is the network diameter, k is a bound on the number
of messages whose broadcast overlaps m, and Fack and Fprog

are the acknowledgement and progress bounds, respectively.
Note that a dependency on a progress bound was implicit in
the analysis of the single-message broadcast algorithm in [4].
(Their proof analyzes, for each step along a path to a given
destination, the time required for some copy of the message
to reach the next node in the path.) Our use of the abstract
MAC layer allows us to make this dependency explicit.

Our second MMB algorithm achieves better time com-
plexity by exploiting geographical information; in particular,
it uses a solution to the RLE problem as a sub-protocol. In
the RLE problem, the geographical area in which the network
resides is partitioned statically into regions; the problem is to
elect and maintain a leader in each occupied region. Regional
leaders could be used to form a backbone network that could,
in turn, be used to solve many kinds of communication and
coordination problems. We give an RLE algorithm whose
complexity is approximately bFprog , where b is the number
of bits required to represent process ids.

Using the RLE algorithm, our second MMB algorithm
works as follows: After establishing regional leaders, the
MMB algorithm runs a version of the basic greedy MMB
algorithm, but using just the leaders. In order to transfer mes-
sages that arrive at non-leader processes to leaders, all the
processes run a collect sub-protocol in parallel with the main
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Fig. 1 The MANET system

broadcast algorithm. The complexity of the resulting MMB
algorithm reduces to O

(
D + k + bFprog + Fack

)
, a signifi-

cant improvement over MMB without the use of leaders. The
improvement results from the fact that the contention among
leaders is less than the contention among all processes.

Finally, we extend our second MMB algorithm to the
mobile case. We then prove a preliminary theorem that says
that the MMB problem is solved given certain restrictions on
mobility and message arrival rates.

Contributions The contributions of this paper are: (a) the
definition of the abstract MAC layer, and the suggestions for
using it as an abstract layer for writing mobile network algo-
rithms, and (b) new algorithms for Multi-Message Broadcast
and Regional Leader Election, and their analysis using the
abstract MAC layer.

2 Model

We model a Mobile Ad Hoc Network (MANET) using the
Timed I/O Automata (TIOA) formalism. Our model captures
n user processes, which we label with {1, . . . , n}, in a mobile
wireless network with only local broadcast communication.

2.1 System components

A MANET system consists of three main components: the
network automaton, the abstract MAC layer automaton, and
the user automaton, connected as shown in Fig. 1. We briefly
describe each component:

The network automaton The network automaton models
the relevant properties of the real world: time, location, and
physical layer behavior. We assume this automaton provides
a physical layer interface that captures the low-level com-

munication on the radio channel. It might also output user
location and time. We do not assume an external interface
for controlling motion. That is, we model mobility as entirely
encapsulated within the network automaton, and independent
of the behavior of other system components. In this paper,
we assume that the location and time is accurate. It might
be more practical to guarantee only an approximation of this
information. For the protocols we consider, however, such a
change would not generate significant modifications.

For every network automaton we assume there exists a
pair of functions fG and fG ′ that map from states to directed
node interaction graphs (V, E) where V = {1, . . . , n} and
E ⊆ V ×V . We call the graph G = fG(s), for some network
state s, the communication graph. It captures the processes
that are within communication range in that state. We call
G ′ = fG ′(s) the interference graph. It captures the processes
within interference range. Though many radio network mod-
els assume a single communication graph—c.f., [4,13,18,30,
32]—we separate communication from interference because
in real networks the interference range often exceeds the reli-
able communication range.2 The algorithms we consider in
this paper assume the common special case where fG(s) =
fG ′(s), for all s. We introduce both graphs in our definitions,
however, because we believe the examination of the general
case, where the two graphs can differ, to be interesting future
work. When we refer to the edge set E at a given point in an
execution of a MANET system, we refer to the edge set from
the graph fG(s) where s is the network state at that point.
The same holds for E ′ with respect to fG ′ . Throughout the
paper, we use the term network as a shorthand to refer to the
Network Automaton.

The abstract MAC layer automaton The abstract MAC
layer automaton mediates the communication of messages
between the user processes and the network. Each user pro-
cess i interacts with the MAC layer via inputs bcast (m)i and
abort (m)i and MAC layer outputs rcv(m)i and ack(m)i ,
where m is a message from some fixed alphabet. The abort
is used in cases where the sender is satisfied that “enough”
neighbors have already received the message, and so is will-
ing to terminate efforts by the MAC layer to complete its
local broadcast. Though real world MAC layers do not usu-
ally include an abort functionality, it seems both useful and
feasible to implement, so we include it in our interface. As
mentioned, the abstract MAC layer automaton connects to
the network through the physical layer interface. It might
also receive the network’s location and time outputs. We

2 To capture some physical layer models, notably a Signal to Interfer-
ence-plus-Noise Ratio model, we might need to extend our definition
of G ′ to allow weights on the edges; that is, capture not just who might
interfere but also how much interference they contribute. We do not
make this extension here but leave it as future work.
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avoid specifying a fixed network layer interface as this can
vary widely due to different physical layer assumptions. In
Sect. 2.2, we describe the properties an abstract MAC layer
automaton composed with a network automaton must satisfy
to be considered an abstract MAC layer service.

The user automaton The user automaton models n user
processes with unique labels from {1, . . . , n}. Each process i
connects to a MAC layer through the bcast, abort, rcv, and
ack interface described above. It might also receive the net-
work location and time outputs, depending on what is needed
by the protocol being modeled.

2.2 Guarantees for the abstract MAC layer service

Here we provide a set of properties that constrain the behav-
ior of the abstract MAC layer automaton composed with a
network automaton. An abstract MAC layer service is a com-
position that satisfies the constraints below. For simplicity we
use the shorthand MAC layer to refer to this service through-
out the paper. In these properties, and in the rest of the paper,
we assume all executions are infinite.

Well-formedness properties. To define meaningful proper-
ties for an abstract MAC layer we must first assume some
well-formedness conditions for the user automaton interact-
ing with the layer. These are constraints on the behavior of
the user automaton.

Fix an execution α of a MANET system. We say α is
user-well-formed if and only if the following hold: (a) Every
abort (m)i is preceded by a bcast (m)i with no intervening
bcasti , acki , or aborti events. (b) Every two bcasti events
have an intervening acki or aborti event.

Let α be a user-well-formed execution. We continue with
what properties the abstract MAC layer automaton must sat-
isfy in this execution to be considered an abstract MAC layer
service:

The cause function We assume there exists a “cause” func-
tion that maps every rcv(m) j event to a preceding bcast (m)i

event, where i �= j , and that maps each ack(m)i and
abort (m)i to a preceding bcast (m)i .

Constraints on message behavior We now define two
safety conditions and one liveness condition regarding the
relationships captured by the cause function:

1. Receive correctness: Suppose that bcast (m)i event π

causes rcv(m) j event π ′ in α. Then:

(a) Proximity: At some point between events π and
π ′, (i, j) ∈ E ′ (the edge set of the interference
graph).

(b) No duplicate receives: No other rcv(m) j

event caused by π precedes π ′.
(c) No receives after acknowledgements: No ack(m)i

event caused by π precedes π ′.

2. Acknowledgment correctness: Suppose that bcast (m)i

event π causes ack(m)i event π ′ in α. Then:

(a) Guaranteed communication: If for every point
between events π and π ′, (i, j) ∈ E (the edge set
of the communication graph), then a rcv(m) j event
caused by π precedes π ′.

(b) No duplicate acknowledgements: No other
ack(m)i event caused by π precedes π ′.

(c) No acknowledgements after aborts: No abort
(m)i caused by π precedes π ′.

3. Termination: Every bcast (m)i causes either an ack(m)i

or an abort (m)i .

Notice, in the proximity and guaranteed communication
bounds above, we use the interference graph G ′ to describe
the processes that might be able to communicate and the
communication graph G to describe the processes that are
guaranteed to communicate. In practice, the former includes
more processes than the latter.

Time bounds We now impose upper bounds on the time
from a bcast (m)i event to its corresponding ack(m)i and
rcv(m) j events. These bounds are expressed in terms of the
contention involving i and j during the interval of the local
broadcast. To help define these bounds, we provide a few
auxiliary definitions:

Let frcv, fack , and f prog be functions from natural num-
bers to nonnegative real numbers.

We will use these to bound delays for a specific mes-
sage being received, an acknowledgement being received,
and some message from among many being received, respec-
tively, with respect to a given amount of contention. We call
these the delay functions. Notice, in many MAC implemen-
tation we expect f prog to yield smaller values than fack , as
the time to receive some message among many is typically
better than the time to receive a specific message.

We assume that frcv, fack , and f prog are monotonically
non-decreasing. That is, as the contention increases, so does
the time to receive a specific message, an acknowledgement,
and some message from among many, respectively.

Let εa be a non-negative constant. We use this constant to
bound the amount of time beyond an abort when a message
from the originating bcast can still be received. We intend
εa to cover messages that are already on the channel, or in
the hardware send or receive buffers—thus unreachable by
higher layers. We assume this constant to be small.
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We use the term “message instance” to refer to a pair of
bcasti and acki , or bcasti and aborti events matched by the
cause function. Let α be an execution, α′ be a closed execu-
tion fragment within α,3 and j be a process. We then define
contend(α, α′, j) as follows. This function returns the set of
message instances in α that overlap with fragment α′, such
that (i, j) ∈ E ′ at some point in this overlap, where i is the
sender from the instance in question. These are the message
instances that might reach j during α′. Similarly, we define
connect (α, α′, j) as follows. This function returns the set of
message instances in α such that α′ is contained between the
corresponding bcasti and acki or bcasti and aborti events,
and (i, j) ∈ E for the duration of α′, where i is the sender.
These are the messages instances that must reach j if α′ is
sufficiently long. Notice that connect (α, α′, j) is a subset of
contend(α, α′, j).

Given an execution α and two events π and π ′ in α, the
notation α[π, π ′] to describe the execution fragment within α

that spans from π to π ′.4 We continue with the time bounds:

4. Receive: Suppose that a bcast (m)i event π causes a
rcv(m) j event π ′ in α. Then the time between π and π ′
is at most frcv(c), where c is the number of distinct send-
ers of message instances in contend(α, α[π, π ′], j). In
other words, the bound for when m must be received
at j grows with the number of other nearby processes
(e.g., connected in G ′) that have message instances over-
lapping with the instance in question. (In this bound,
as in those that follow, we count senders, not message
instances, because the senders’ process the messages one
by one.) Furthermore, if there exists an abort (m)i event
π ′′ such that π causes π ′′, thenπ ′ cannot occur more than
εa time after π ′′. The εa constant requires that that an
abort actually aborts the corresponding message within
a bounded amount of time.

5. Acknowledgement: Suppose that a bcast (m)i event
π causes an ack(m)i event π ′ in α. Let ackcon be
the set containing i and every process j such that
there exists a rcv(m) j with cause π . Then the time
between π and π ′ is at most fack(c), where c is the
number of distinct senders of message instances in⋃

j∈ackcon contend(α, α[π, π ′], j). The acknowledge-
ment bound is defined similarly to the receive bound,
with the exception that we now include the contention at
the sender and every receiver. This captures the intuition

3 Formally, that means that there exist fragments α′′ and α′′′ such that
α = α′′α′α′′′, and moreover, the first state of α′ is the last state of α′′.
Notice, this allows α′ to begin and/or end in the middle of a trajectory.
4 Formally, by the definition of a fragment this must span from the point
trajectory immediately preceding π to the point trajectory immediately
following π ′. A trajectory describes the state evolution between two
discrete events; formally it is a mapping from time to states. See [19]
for more details.

that an acknowledgement requires the receivers to some-
how communicate their receipt of the message back to
the sender.

6. Progress: For every closed fragment α′ within α, for
every process j , and for every integer c ≥ 1, it is not the
case that all three of the following conditions hold:

(a) The total time described by α′ is strictly greater than
f prog(c).

(b) The number of distinct senders of message instances
in contend(α, α′, j) is at most c, and connect
(α, α′, j) is non-empty.

(c) No rcv(m) j event from a message instance in
contend(α, α′, j) occurs by the end of α′.

In other words, the bound on when j should receive
some message (when there is a least one message being
sent by a neighbor in G), grows with the total number of
processes that are in interference range. As mentioned
in the introduction, this style of progress property was
implicitly used in previous work—e.g., [4]—to derive
bounds that are tighter than could be generated from a
basic acknowledgement bound alone.
A stronger version of (c) could require that the received
message is sent by a neighbor with an edge to j in G,
rather than just G ′, at some point during α′. This stron-
ger property, if needed, might be implemented on top
of a MAC layer guaranteeing the weaker property from
above. The details would depend on the radio network
model.

2.3 Implementing an abstract MAC layer

It is beyond the scope of this paper to offer a detailed imple-
mentation of an abstract MAC layer automaton, using, for
example, one of the popular radio network models from the
existing theoretical literature (e.g. [4,13,15,16,33]). Here we
discuss, only informally, some basic ideas for implementa-
tions with the aim of providing some intuition regarding the
type of concrete definitions our delay functions might adopt
in practice. For simplicity, in this example we assume G and
G ′ are fixed (e.g., the network is static) and undirected. (In
Sect. 8, we describe recent research efforts to define abstract
MAC layer definitions for a variety of physical layer assump-
tions. We refer the reader interested in more detail to these
citations).

A common radio network model is the slotted model of
[4,13,18,30,32]. This model assumes that the communica-
tion graph G and the interference graph G ′ are identical, that
there is no collision detection (i.e., a collision cannot be dis-
tinguished from silence), and that a message from a sender i
is correctly received by a neighbor j in a particular time slot
if and only if i is the only neighbor of j transmitting during
this time slot. If we assume synchronized clocks, allowing
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for synchronized slots, a simple strategy derived from the
decay function in [4] can be used to implement our abstract
MAC layer service. In this approach, time is divided into
synchronized epochs of Θ(log Δ) time slots, where Δ is the
maximum node degree in G (this assumes processes know
Δ.). A process that has a message to send, starts transmit-
ting at the beginning of the next epoch. During an epoch, the
probability of transmitting is exponentially decreased from
1 to 1/Δ. It is guaranteed that every process that has at least
one neighbor sending a message during an epoch receives
at least one message with constant probability. We there-
fore get a progress delay function f prog that is in O(log Δ)

for all contention parameters, with probability 1 − ε. Simi-
larly, our receive and acknowledgement delay functions, frcv

and fack , are both O(Δ log Δ) for all contention parameters.
Notice, this simple scheme requires time proportional only
to the worst-case contention. More sophisticated MAC layer
implementations, we expect, would include the contention
parameter c in the delay function definitions.

If time is not synchronized, a technique similar to the one
used in the context of the wake-up problem in single-hop
networks [13,18] and multi-hop networks [30,32] can be
used to synchronize the start of decay phases. At a high-level,
the strategy works as follows: starting at a small probability,
processes exponentially increase their transmission proba-
bility until they either hear a message from a neighbor or
decide to transmit. Let us assume that there are two physi-
cal communication channels (which simplifies the analysis,
but is not strictly necessary5). When a process transmits, it
starts the decay routine on the second communication chan-
nel. If we assume that the communication graph is a unit
disk graph (or more generally a bounded growth graph as
defined in [29]) and if the parameters are chosen correctly,
it can be shown that with reasonable probability, the number
of different start times of the decay routine is bounded in the
neighborhood of every process. This approximates the syn-
chronized time case from above (where all processes start
decay together). The cost of the approximation is that
we must use a modified decay function that replaces the
log(Δ) factor with polylog(Δ) in the progress, receive, and
acknowledgement bounds. For more details on this strategy,
see [30,32].

For the case where G �= G ′, similar techniques can pro-
vide a good starting point. Recent work, however, indicates
that care must be taken and new strategies and/or assump-
tions might by required [9,26,28]. This remains an interest-
ing direction for future work.

For simplicity, in this paper we assume that the abstract
MAC layer properties hold “with high probability,” but do
not expose the specific probabilities as parameters of the

5 In [30], it is described how to simulate different communication chan-
nels at the cost of a polylogarithmic factor.

implementation. As indicated by our example implementa-
tions from above, these probabilities, though high, can be
non-trivially distinct from 1. For some analyses it might prove
useful to make use of the specific probabilities. As mentioned
in Sect. 8, there is ongoing work that considers this gener-
alization of the model, and uses it to obtain more precise
probabilistic bounds on the broadcast problem.

2.4 Multiple abstract MAC layer automata

To simplify the analysis of multiple user protocols running
on the same network it proves useful to allow for multiple
independent abstract MAC automata in the same system (see
Fig. 2). In this scheme, each protocol (or perhaps even sub-
protocol) connects with its own MAC automaton. These auto-
mata all connect to the same single network automaton. Each
MAC automaton satisfies the specifications of the abstract
MAC layer service with respect to the network.

Such an approach certainly simplifies analysis, but we also
argue that it matches reality. Indeed, there exist a variety of
practical realizations of multiple MAC automata. For exam-
ple, most radio-equipped computing devices have access to
many communication frequencies. If a device has several
transmitters, it can execute several simultaneous MAC pro-
tocols on independent frequencies. If the device has a single
transceiver and/or access to only a single frequency, it can
use a TDM scheme to partition use of the frequency among
the different logical MAC layers.

In other words, by allowing multiple independent abstract
MAC automata in our model we remove the need for the
protocol designer to tackle the issue of contention between
protocols and focus instead on proving properties about their
individual behavior. The complexity of this contention will
be captured by the concrete implementation of the multiple
layers using a single network.

2.5 Upper bounds on message delivery times

We describe upper bounds on the message delivery time
bounds of Sect. 2.2. We use these for algorithm development
and analysis. We begin, however, with some graph notation
used by these upper bounds and elsewhere in the paper.

Graph notation For any graph G, we use D(G) to describe
the diameter of G, that is the maximum d(u, v), over all ver-
tex pairs (u, v), where d(u, v) describes the length of the
shortest directed path between u and v.

Upper bounds We describe three constants that prove
useful when describing message delivery times in our later
analysis and definition of algorithms. For the following def-
initions, fix α to be a user-well-formed execution of a MAC
layer and let Δα equal the maximum Δ(G ′) over all G ′ that
appear in a state of α.
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Fig. 2 The MANET system
with m abstract MAC layers

1. We define Fprog with respect to α to be f prog(Δα + 1).
This is an upper bound on the amount of time until a
process receives some message, starting from a point in
the execution at which: (a) there is at least one message
it should eventually receive (i.e., the message is sent by a
process that is and will remain a neighbor in G); and (b)
the message instances for previously received messages
have completed. (The addition of 1 to Δα , in this def-
inition and the two below, captures the possibility that
the receiver is also sending a message, which would be
counted in the contend set).

2. We define Frcv with respect to α to be frcv(Δα +1). This
is an upper bound on the amount of time until a process
receives a message sent by a neighbor in G.

3. We define Fack with respect to α to be fack((Δα + 1)2).
This is an upper bound on the amount of time until a
process receives an acknowledgement for a message it
sent. (The square is necessary to bound the worst-case
value of the union calculated in the acknowledgement
bound definition—a union that includes the contention
at the sender and at all of its neighbors in G).

Sometimes we need to define constants over all possible
executions of a MAC layer (e.g., if we want to use them as
upper bounds in a protocol definition). With this in mind we
define F+

prog, F+
rcv , and F+

ack to be the maximum values of
Fprog, Frcv , and Fack , respectively, over all executions of the
MAC layer under consideration.

3 The Multi-Message Broadcast problem

The Multi-Message Broadcast (MMB) problem assumes that
the environment submits messages to the user processes at
arbitrary times during an execution. The goal is to prop-
agate every such message to all of the users in the net-
work.

3.1 Preliminaries

In this section we assume a static network; i.e., for any given
execution, the location of each node, and the G and G ′ graphs
never change. Furthermore, we assume that G = G ′, and the
graphs are undirected; i.e., all communication links are bidi-
rectional. We note that the algorithm and proof below would
work for the general case, where G �= G ′, if one could guar-
antee the slightly stronger progress property that requires that
the message received is from a neighbor in G.

We assume a message set M of possible broadcast mes-
sages. A user automaton is considered to be an MMB proto-
col only if its external interface includes an arrive(m)i input
and deliver(m)i output for each user process i and message
m ∈ M.

We say an execution of an MMB protocol is MMB-well-
formed if and only if it contains at most one arrive(m)i

event for each m ∈ M. (That is, each broadcast message is
unique). We say an MMB protocol solves the MMB problem
if and only if for every MMB-well-formed execution of the
MMB protocol composed with a MAC layer, the following
hold: (a) For every arrive(m)i event and every process j ,
there exists a deliver(m) j event. (b) For every m ∈ M and
process j , there exists at most one deliver(m) j event and it
comes after an arrive(m)i event for some i .

3.2 The Basic Multi-Message Broadcast protocol

We describe a simple MMB protocol that nonetheless
achieves efficient runtime.

The Basic Multi-Message Broadcast (BMMB)
protocol
Every process i maintains a FIFO queue named bcastq
and a set named rcvd. Both are initially empty. If pro-
cess i is not currently sending a message (i.e., not wait-
ing for an ack from the MAC layer) and bcastq is not
empty, it sends the message at the head of the queue.
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If i receives an arrive(m)i event it immediately per-
forms a deliver(m)i output and adds m to the back of
bcastq. It also adds m to rcvd. If i receives a mes-
sage m from the MAC layer it first checks rcvd. If
m ∈ rcvd it discards it. Else, i immediately performs
a deliver(m)i event, and adds m to the back of bcastq
and to the rcvd set.

Theorem 1 The BMMB protocol solves the MMB problem.

Proof Let α be an MMB-well-formed execution of the
BMMB protocol composed with a MAC layer. We first note
that α is user-well-formed, as the definition of the protocol
has each process wait for an ack before submitting its next
bcast . There are no aborts. It follows that the abstract MAC
layer properties are satisfied by the MAC layer.

Let arrive(m)i be an event in α. At the point when this
event occurs, the size of the BMMB queue at process i is of
some finite size. Let us call this q. After at most (q + 1)Fack

time after this point, i will have succeeded in sending all q
elements ahead of m in its queue, and then m itself, to its
neighbors. We can reapply this argument D times for each
message, to show that it eventually arrives (and is delivered)
at all processes.

We continue with a collection of definitions used by our
complexity proof. In the following, let α be some MMB-well-
formed execution of the BMMB protocol composed with a
MAC layer.

The get event We define a get (m)i event with respect to
α, for some arbitrary message m and process i , to be one
in which process i first learns about message m. Specifi-
cally, get (m)i is the first arrive(m)i event in case message
m arrives at process i , otherwise, get (m)i is the first rcv(m)i

event.

The clear event Let m ∈ M be a message for which
an arrive(m)i event occurs in α. We define clear(m) to
describe the final ack(m) j event in α for any process j .6

The set K (m) Let m ∈ M be a message such that
arrive(m)i occurs in α for some i . We define K (m) = {m′ ∈
M : an arrive(m′) event precedes the last deliver(m) event
and the clear(m′) event follows the arrive(m)i event}. That
is, K (m) is the set of messages whose processing over-
laps the interval between the arrive(m)i event and the last
deliver(m) event.

The obvious complexity bound would guarantee the deliv-
ery of a given message m in O(D(G)k Fack) time, for

6 Notice, by the definition of BMMB if an arrive(m)i occurs then i
eventually sends m, so ack(m)i occurs. Furthermore, by the definition
of BMMB, there can be at most one ack(m) j event for every process
j . Therefore, clear(m) is well-defined.

k = |K (m)|, as there can be no more than k messages
ahead of m at each hop, and each message is guaranteed
to be sent, received, and acknowledged within Fack time.
The complexity theorem below, by contrast, does better. It
separates k Fack from the diameter, D(G), instead multiply-
ing this term only by the smaller progress bound, Fprog . This
captures an implicit pipelining effect that says some message
always makes progress in Fprog time.

Theorem 2 Let k be a positive integer and α be an MMB-
well-formed execution of the BMMB protocol composed with
a MAC layer. Assume that an arrive(m)i event occurs in α.
If |K (m)| ≤ k then the time between the arrive(m)i and the
last deliver(m) j is at most: (D(G) + 2k − 2)Fprog + (k −
1)Fack .

Theorem 2 is a direct consequence of the following lemma.

Lemma 1 Let α be an MMB-well-formed execution of the
BMMB protocol composed with a MAC layer. Assume that at
time t0, arrive(m)i0 occurs in α for some message m ∈ M
and some process i0. Let j be a process at distance d =
dG(i0, j) from the process i0. Further, let M′ ⊆ M be the set
of messages m′ for which arrive(m)i0 precedes clear(m′).
For integers � ≥ 1, we define

td,� := t0 + (d + 2� − 2) · Fprog + (� − 1) · Fack .

For all integers � ≥ 1, at least one of the following two
statements is true:

1. The get (m) j event occurs by time td,� and ack(m) j

occurs by time td,� + Fack .
2. There exists a set M′′ ⊆ M′, |M′′| = �, such that,

for every m′ ∈ M′′, get (m′) j occurs by time td,�, and
ack(m′) j occurs by time td,� + Fack .

Proof The proof uses a double induction: first on the number
� of messages, and then on the distance d to the destination
j . For the base where � = 1, the key insight is that when a
message arrives at a node on a length d path to j , either that
message, or some other message ahead of it in the queue,
will be received by the next hop within Fprog time. For the
inductive step where � > 1, we know by the hypothesis that
a set M′

j of at least �−1 messages have been received, sent,
and cleared from the queue by all the neighbors of j , before
time td,�. The interesting case is when |M′

j | = � − 1. Here
we use the hypothesis again, this time �, d − 1, and a neigh-
bor j ′ of j that is its direct predecessor on the path from
the source. This establishes that j ′ has received a message
m′′ /∈ M′

j by time td−1,�. It follows that either this message,
or some other message not in M′

j , is received by j by time
td−1,� + Fprog ≤ td,�. To show that � messages have been
acknowledged at j in time, we apply the hypothesis for �−1
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and j to show that � − 1 were acknowledged by td,�−1. This
leaves time for the new message, or some other message not
among these � − 1, to be acknowledged.

We first define sets Gi (t) ⊆ M′ and Ci (t) ⊆ M′ of mes-
sages for every process i and time t ≥ 0 in execution α of
the BMMB protocol. Gi (t) is the set of messages m′ ∈ M′
for which a get (m′)i event occurs by time t . Ci (t) ⊆ Gi (t)
is the set of messages m′ ∈ M′ for which the ack(m′)i event
occurs by time t . Hence, Gi (t) is the set of messages that
have been received by process i and Ci (t) is the set of mes-
sages that process i has finished processing by time t . From
the MAC layer properties and the definition of the BMMB
protocol, we obtain the following three statements:

(a) Consider a process i . If Gi (t)∩ (Gi ′(t)\Ci ′(t)) = ∅ for
every neighbor process i ′ of i , and there is a neighbor
i ′ for which Gi ′(t)\Ci ′(t) �= ∅, then a get (m′)i event
occurs after time t and by time t + Fprog , for some
m′ ∈ M′. In other words, if the neighbors of i only
have new messages in their queue, then i will receive
something new in Fprog time.

(b) For every process i and message m′ ∈ Ci (t), a get (m′)i ′
event occurs at all neighbors i ′ of i by time t .

(c) Assume that a message m′ is in the queue of a process
i at time t and let Q, |Q| = q, be the set of messages
in i’s queue ahead of m′ at time t . For k ≤ q, by time
t + k · Fack , there are ack(m′′)i events for k messages
m′′ ∈ Q and by time t + (q +1)Fack , an ack(m′)i event
occurs.

We prove the lemma by induction on �.

– Base case: � = 1.
For this fixed value of � we prove that the lemma holds
for all d by induction on d.

– Base case: d = 0.
If d = 0 then j = i0. Let m′ be the first message in
i0’s queue immediately after the arrive(m)i0 event.
By definition, m′ ∈ M′ and get (m′)i0 occurs by time
t0 = t0,1. We apply statement c) for i0, t0, and q = 0,
to determine that an ack(m′)i0 event occurs by time
t0 + Fack . If m′ = m we satisfy statement (1) of the
lemma, else we satisfy statement (2) for M′′ = {m′}.

– Inductive step: d > 0.
Assume the lemma for � = 1 and all smaller val-
ues of d. Write the shortest path from i0 to j as
i0, i1, . . . , id = j . We consider two cases for the set
Gid (td−1,1):
• Case 1: Gid (td−1,1) �= ∅.

Move backwards in time, starting from td−1,1,
until id ’s queue becomes non-empty. Label this
time t . Let m′ be the message at the front of id ’s

queue at t . By our assumption that Gid (td−1,1) �=
∅, it follows that t0 ≤ t and m′ ∈ M′. We
apply property c) to determine that by t + Fack <

td,1 + Fack , an ack(m′)id event occurs. If m′ = m
we satisfy statement (1) of the lemma, else we sat-
isfy statement (2) for M′′ = {m′}.

• Case 2: Gid (td−1,1) = ∅.
By our inductive hypothesis, we know a
get (m′)id−1 event occurs, for some m′ ∈ M′, by
time td−1,1. (Both statements (1) and (2) of the
lemma guarantee this property.) By our assump-
tion on Gid , and property b), an ack(m′)id−1 event
has not yet occurred. It follows that m′ is still
in the queue of id−1 at this time. We can there-
fore apply property a) for i = id to derive that a
get (m′′)id event, for some m′′ ∈ M′, occurs by
time td−1,1 + Fprog = td,1. We can now apply
property c) to determine that an ack occurs at id

for some message in M′ by time td,1 + Fack . If
this message is m we satisfy statement (1) of the
lemma, else we satisfy statement (2).

– Inductive step: � > 1.
Assume the lemma holds for smaller�. We perform induc-
tion on d.

– Base case: d = 0.
If d = 0 then j = i0. Suppose there are exactly
�0 messages in i’s queue immediately after the
arrive(m)i0 occurs at time t0. Note that the arrive
(m)i0 event is also the get (m)i0 event. For all of these
�0 messages, their get events occur by time t0 ≤ t0,�,
and they are in M′. If � < �0 then by property c)
there is an ack(m)i0 event by time t0 + �0 Fack ≤
t0 + �Fack ≤ t0,� + Fack , which implies that lemma
statement (1) is true. On the other hand, if � ≥ �0,
then ack(m′)i0 events occur, for the first � messages
on the queue, by time t0 +�Fack ≤ t0,� + Fack , which
implies that lemma statement (2) is true.

– Inductive step: d > 0.
By our inductive hypothesis, all neighbors of j satisfy
the lemma for �−1. We consider two cases regarding
which condition of the lemma they satisfy.
• Case 1: There exists a neighbor j ′ of j , that satis-

fies lemma statement (1) for � − 1.
By applying property b) it follows that a get (m) j

event occurs by time:
td+1,�−1 + Fack = (d + 1 + 2(� − 1) − 2)Fprog

+(� − 2)Fack + Fack

<(d+2�−2)Fprog +(�−1)Fack

= td,�.

(Notice, we use distance d + 1 for j ′ because
j is at distance d, and j ′’s distance is therefore
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somewhere in the range d − 1 to d + 1, the latter
being the worst case in terms of time complexity.)
We can now argue what happens at j once this get
event has occurred. By our inductive hypothesis, j
has to satisfy one of the two lemma statements for
�−1. If it satisfies statement (1), then we are done.
If it satisfies statement (2), then there exists a set
of � − 1 messages, from M′\{m}, such that for
each m′ in this set an ack(m′) j event has occurred
by time td,�−1 + Fack < td,�. There are two addi-
tional cases to now consider:
If m gets to the front of j’s queue by td,�, then
by property c) an ack(m) j event occurs by time
td,� + Fack , satisfying lemma statement (1).
If m does not get to the front of j’s queue by this
time, then some other message must be at the front.
Furthermore, this message cannot be among the
� − 1 already acknowledged, as we established
that these messages cleared the queue before td,�.
In this case, we again apply property c) to deter-
mine that � total message are acknowledged at j
by td,� + Fack , satisfying lemma statement (2).

• Case 2: Every neighbor j ′ of j satisfies only
lemma statement (2) for � − 1. It follows that by
time td+1,�−1 + Fack < td,�, each neighbor j ′ of j
has had � − 1 ack events for messages in M′. Let
M′

j be the union of the � − 1 messages acknowl-
edged at each neighbor of j . By property b), a
get (m′) j event occurs, for each m′ ∈ M′

j , by
time td+1,�−1 + Fack . We now consider two cases
regarding the size of M′

j .
If |M′

j | ≥ �, then � get events have occurred at
j before time td,�. We can now apply our induc-
tive hypothesis to j and �−1. If j satisfies lemma
statement (1) for � − 1, then we are done. Assum-
ing, therefore, that it satisfies statement (2), we
know that by time td,�−1, an ack(m′) j event has
occurred for � − 1 messages in M′. Because we
established that at least � messages from M′ arrive
at j before td,�, property c) tells us that an addi-
tional message from M′ will be acknowledged at
j by td,� + Fack , satisfying lemma statement (2).
On the other hand, if |M′

j | < �, then all neigh-
bors of j must have acknowledged the exact same
set of � − 1 messages by time td+1,�−1 + Fack .
For simplicity, call this time t . If at t , there is a
message not in M′

j in j’s queue, then by the same
argument used above we will satisfy the lemma.
If not, if follows that G j (t)∩(G j ′(t)\C j ′(t)) = ∅,
for every neighbor j ′ of j . Fix a neighbor j ′ at dis-
tance d − 1 from j . By our inductive hypothesis
on d, a get (m′′) j ′ event occurrs by time td−1,� for

a message m′′ /∈ M′
j . Basic algebra confirms that

td−1,� = t . We can now apply property a) for time
t to establish that a get event occurs at j for a mes-
sage not in M′

j by t + Fprog ≤ td,�. At this point,
we apply the same argument used in the |M′

j | ≥ �

case to prove that we satisfy lemma statement (2).

Proof (Proof of Theorem 2) Let t0 be the time when the
arrive(m)i event occurs. Assume that |K (m)| ≤ k. We show
that the last deliver(m) event occurs by time t1 = t0 +
(D(G) + 2k − 2)Fprog + (k − 1)Fack .

Let M′ ⊆ M be the set of messages m′ for which
arrive(m)i precedes clear(m′). By Lemma 1 for all pro-
cesses j by time t1, one of the following two cases holds: (1)
a get (m) j event occurs; or (2) there exists a set M′′ ⊆ M′
of size |M′′| = k such that get (m′) j events occur for all
messages m′ ∈ M′′.

We consider both cases. For case 1, because the deliver
(m) j event occurs at the same real time as the get (m) j event,
we have satisfied the Theorem bound for this process.

For case 2, there is a set M′′ ⊆ M′ of size k such that for
all messages m′ ∈ M′′, a get (m′) j event happens by time
t1. We will use this fact to prove that deliver(m) j occurs by
time t1. To do so, assume for contradiction that deliver(m) j

occurs after t1. By the definition of K (m) and M′, we have
that K (m) ⊆ M′. By our assumption on deliver(m) j , and
the definition of K (m), we have m′ ∈ K (m) for every mes-
sage m′ ∈ M′ for which a get (m′) event occurs by time
t1. As a consequence, M′′ ⊆ K (m). Because |M′′| = k
and |K (m)| ≤ k, this implies that M′′ = K (m). Because
m ∈ K (m), there is a get (m) j event and thus a deliver(m) j

by time t1, contradicting our assumption. We have therefore
shown, for all j , that a deliver(m) j occurs by time t1, as
needed.

4 Regionalized networks

Recall that our model requires the network automaton to
encode and report the location of every node at all times.
It does not, however, place any constraints on the geogra-
phy in which these locations reside or their relation to G and
G ′. In this section we define such general constraints, which
we use in Sect. 6 to improve the complexity of our MMB
solutions.

Preliminaries Let L be a set of locations. (For example,
this could describe points in the 2D plane.) Let R be a set of
region ids. Let region mapping reg be a mapping reg : L →
R. And let NR be a neighbor relation among regions in R.
Consider the graph Gregion = (R, NR). We call Gregion a
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region communication graph if and only if it is connected.
Let N ′

R be some neighbor relation such that NR ⊆ N ′
R . We

call the graph G ′
region = (R, N ′

R) the region interference
graph.

Regionalized network Fix a network N . Let L describe the
set of locations used by N . Given any state s of N , and node
i , we use the notation loc(i) to refer to the location of node i
encoded by N in s. Let R be a set of region ids, reg be a region
mapping from L to R, and NR and N ′

R be neighbor relations
for R such that NR ⊆ N ′

R . Assume Gregion = (R, NR) is
a region communication graph and G ′

region = (R, N ′
R) is a

region interference graph.
We say network N is regionalized with respect to

L , R, reg, NR , and N ′
R , if and only if for every execution

of N , and every point in the execution:

1. For every pair of nodes i and j such that reg(loc(i)) =
reg(loc( j)) or (reg(loc(i)), reg(loc( j)))∈ NR : (i, j)∈
E .

2. For every pair of nodes i and j such that (i, j) ∈
E ′, either: reg(loc(i)) = reg(loc( j)) or (reg(loc(i)),
reg(loc( j))) ∈ N ′

R .

That is, if two nodes are in the same region or neighboring
regions in the region communication graph, then they must
be connected in G, and if two nodes are connected in G ′
(i.e., can interfere with each other) then they are in the same
region or in regions that are neighbors in the region interfer-
ence graph. It follows that the region communication graph
captures which regions are always in communication range
while the region interference graph captures which regions
could be in interference range. For example, a simple grid
topology where we set the length of the grid square diagonal
to be half the reliable communication range, and classifying
grid squares sharing an edge as neighbors, might be used to
define a regionalization that matches these constraints.

Fixing a regionalized network For Sects. 5 and 6 we fix a
static network N that is regionalized with respect to some
parameters L , R, reg, NR , and N ′

R . As in Sect. 3 we assume
that G = G ′ and the graphs are undirected. We also assume
that the network occupies every region in every execution,
and that Δ(G ′

region) = O(1), where G ′
region = (R, N ′

R). For
many physical layer models, including the unit disc graph
model, this property is easy to obtain; c.f., the tiling of discs
used in [30,32]. When we refer to MAC layers in these sec-
tions, we implicitly mean MAC layers that include N . When
we refer to any region r , we implicitly assume that r ∈ R.
In Sect. 7 we fix the same network modified so that it is no
longer static.

5 The leader election problem

Notice that the BMMB protocol did not make use of location
information or synchronized clocks. This begs an obvious
question: can we do better if the processes know this infor-
mation? To answer this question, we first study the problem
of local leader election in a single region of our fixed region-
alized network, then use this protocol to elect a leader in every
region. Our solutions rely on synchronized clocks, running at
the same fixed rate, to coordinate the beginning and end of the
relevant phases among the different processes. The resulting
leader backbone forms a connected dominating set (CDS).
The use of a CDS in radio networks is a common strategy;
c.f.,[12,30,31,35,38]. Unlike this existing work, however,
our task is simplified by both the availability of location infor-
mation and the lack of need to deal explicitly with contention
on the channel.

5.1 Solving the RLE problem

We say a user automaton is a RLE protocol if and only if
it has a leader(r)i and notleader(r)i output for every pro-
cess i and every region r . We say a RLE protocol solves the
RLE problem for region r by time t if and only if for every
execution α of the protocol composed with a MAC layer the
following hold:

1. By time t in α exactly one process i such that reg
(loc(i))) = r outputs leader(r)i and every process j �=
i such that reg(loc( j)) = r , outputs notleader(r) j .

2. For every process i such that reg(loc(i)) = r , there
exists at most one event π in α such that π = leader(r ′)i

or π = notleader(r ′)i for some region r ′.

We continue with some RLE protocol definitions. Through-
out the definitions that follow, we assume a fixed positive
constant εb, which we will use in multiple protocols to add
an extra buffer to the end of intervals calculated to match
the length of the message receive time bounds. (The use of
this extra buffer is a technicality required by the fact that
the TIOA model allows multiple events to occur at the same
time; the εb is used to make sure a check of received mes-
sages happens after every relevant message receive event has
occurred.) We also assume that processes know the value of
F+

ack and F+
prog in advance, as these are upper bounds on

the delay for all possible executions of the network, and can
therefore be seen as modeling system constants.

5.2 The basic RLE protocol

The Basic Regional Leader Election (BRLE) protocol is
described below:
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The r -Basic Regional Leader Election (BRLE)
protocol
In the r -BRLE protocol for some region r , each process
i in r behaves as follows. At time 0, i sends its own id.
At time F+

ack + εb, i processes its set of received mes-
sages. If i is greater than every id described in a received
message, then i triggers a leader(r)i output. Else it
triggers notleader(r)i . The output happens instanta-
neously at time F+

ack +εb (i.e., we assume a processing
time of 0).

Theorem 3 For any region r, the r-BRLE protocol solves
the RLE problem for region r by time F+

ack + εb.

Proof We begin by noting that the protocol preserves user-
well-formedness, so we can assume the abstract MAC layer
properties hold.

Fix some pair of processes i and j in r . We first prove
that i and j receive each other’s messages. Both processes
send at time 0. According to the termination property of the
MAC layer, each send is the cause of either an abort or ack.
Because neither aborts, each must eventually cause an ack.

By the definition of a regionalized network, we know
(i, j) ∈ E . Therefore, by the acknowledgement correctness
property, i receives j’s message and j receives i’s message,
both before their ack events.

By the acknowledgement time bound, these receive events
and the subsequent acks, must occur by time F+

ack . It fol-
lows that at time F+

ack + εb > F+
ack , the messages have been

received. Apply this argument to all pairs in the region to
show that all processes in r receive all messages in r , there-
fore they make a common leader decision.

5.3 The Fast Regional Leader Election protocol

As mentioned, we assume that in many MAC layer imple-
mentations, f prog will be much smaller than fack . To accom-
modate this possibility we describe a Fast Regional Leader
Election (FRLE) protocol that relies only on f prog and the
size of the id space, For the following, let b be the number
of bits needed to describe the id space. (A common assump-
tion is that b = �lg n�, but this might not always hold.) As
in [3,8], we will use the bits in the processes’ ids to break
symmetry. This protocol will outperform BRLE in the case
where Fack is more than that b times larger than Fprog . In the
sample implementations from Sect. 2.3, to name an example,
this holds when the maximum degree in the graph is larger
than b.

The r -Fast Regional Leader Election (FRLE)
protocol
In the r -FRLE protocol for some region r , each process
i in r behaves as follows. Let ε′

a = εa + εb. (Recall,
εa is the maximum time after an abort that a message

might still be received.) Divide the time interval from 0
to b(F+

prog+ε′
a) into b phases each of length Fprog+ε′

a .
We associate phase p with bit p of the id space. At the
beginning of phase 1, process i sends the phase number
and its id if it has a 1 bit in location 1 of its id. Other-
wise it does not send. After F+

prog time has elapsed in
the phase, if i has sent and has not yet received an ack,
it submits an abort . At the end of the phase (i.e., ε′

a
time after the potential abort), i processes its received
messages. If i did not send in this phase, yet received
at least one message, it outputs notleader(r)i and ter-
minates the protocol. Otherwise, it continues with the
next phase, which proceeds the same as before with
respect to bit position 2. This continues until i termi-
nates with a notleader(r)i output or finishes the last
phase without terminating. In the latter case, i submits
a leader(r)i output.

Theorem 4 For any region r, the r-FRLE protocol solves
the RLE problem for region r by time b(F+

prog + εa + εb).

Proof We begin by noting that the protocol preserves user-
well-formedness, so we can assume the abstract MAC layer
properties hold.

We prove the following: if any process sends at the begin-
ning of phase p, then every process that does not send receives
at least one phase p message by the end of the phase.

Fix a phase p. Let � be the set of bcast events that
occur at the beginning of p. These are the only messages
that intersect with the interval defined by phase p (remem-
ber: all sends from previous stages were aborted by the end
of those phases).

Fix a process i that does not send in this phase. The defi-
nition of a static regionalized network provides that all pro-
cesses in r are neighbors of i in G for this entire interval. So
far we have satisfied conditions (a) and (b) of the progress
time bound.

It follows that condition (c) cannot also be satisfied. There-
fore, a rcv(m)i caused by some bcast in � must occur for i
in this interval, which satisfies our claim.

We are left to prove that the search logic produces a single
leader. This follows from two observations. First, it is impos-
sible for all processes that are non-terminated at the begin-
ning of some phase to submit notleader(r) outputs at the end
of the phase. Assume for contradiction that this occurs at the
end of some phase p. To terminate, a process must receive a
message in a phase in which it does not send. It follows that
some non-terminated process sends during phase p. (Recall:
from our above argument that the only message intervals that
intersect a given phase p are those that contain phase p mes-
sages.) By definition, a process that sends in a given phase
cannot be terminated in that phase. A contradiction.

Second, we show that two or more processes cannot
both survive all b phases to become leader. Assume for
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contradiction that both i and j become leader. Because their
ids are unique, there must be one bit position in which they
differ. Without loss of generality assume it is position k and
that i has a 1 in this position while j has a 0. It follows
that in phase k, i sends and j does not. By our claim at the
beginning of the proof, j will receive some message in this
phase—leading it to terminate. Another contradiction.

It follows that the protocol elects one and only one leader
as required. �

5.4 The Complete Regional Leader Election protocol

The RLE solutions described above work for a single region.
It proves useful, however, to elect such a leader in every
region in a regionalized network. Below we describe a pro-
tocol that elects a leader in every region. As with FRLE,
let b be the minimum number of bits needed to describe
the id space. This protocol uses a minimal-sized region Time
Division Multiple Access (TDMA) schedule T defined with
respect to the region interference graph for the regionalized
network. That is, T describes minimally-sized sequence of
sets of region ids such that: (a) every region id shows up in
exactly one set; (b) no set contains two region ids that are
neighbors in the region interference graph.

The Complete Regional Leader Election (CRLE)
protocol
In the CRLE protocol each process i behaves as fol-
lows. We dedicate b(F+

prog + ε′
a) time to each set in

T . Process i does nothing until the start of the time
dedicated to the single set in T that contains i . Process
i runs the reg(loc(i))-FRLE protocol during the time
interval dedicated to this set, adding a fixed offset to
the time input used by FRLE such that the transformed
time at the beginning of the interval evaluates to 0.

Theorem 5 The CRLE protocol solves RLE problem for

every region by time Θ
(

b · (F+
prog + εa)

)

Proof Using standard techniques we can construct a min-
imal TDMA schedule T to contain Δ(G ′

region) = O(1)

sets [34]. By the definition of T , each process runs FRLE
exactly once, during the time allocated to the slot containing
its region. No two regions running the protocol concurrently
are within interference range, and all outstanding messages
were aborted before the protocol begins (by definition of
FRLE, every process aborts any non-ack’d messages by the
end of each slot), so from the perspective of the processes
running FRLE it is as if their region is running it alone start-
ing at time 0. The correctness of their outputs follows from
Theorem 4.

6 Regional Multi-Message Broadcast

We combine the CRLE protocol from the previous section
with the BMMB protocol to generate a new protocol we call
Regional Multi-Message Broadcast (RMMB). The resulting
protocol improves the performance of BMMB by confining
the propagation of messages to the low-degree backbone of
leaders elected by CRLE. In more detail, the protocol first
runs CRLE, which elects a leader in each region in our fixed
regionalized network. When an arrive(m)i event occurs at
a non-leader process i in region r, i sends m to the leader in
r . The leaders run BMMB using the messages received from
non-leaders in their region as well as messages that came
with an arrive input. This ensures that every message that
arrives in the network eventually gets sent to every leader in
the network. The leaders, in turn, propagate the message to
the non-leaders in their region. (It is sufficient for each leader
to broadcast the message once, as by definition a leader is
within communication range of all of the processes in its
region.) Because our regionalized network is defined such
that contention among leaders is constant (e.g., each leader
is within range of only a constant number of other leaders),
the BMMB protocol run by the leaders has an improved time
complexity as compared to BMMB run by all processes.

The Regional Multi-Message Broadcast (RMMB)
protocol
To simplify analysis, the RMMB protocol makes use
of three independent MAC automata (see Sect. 2.4 for
more on the use of multiple MAC automata). We label
the automata collect, leader election, and broadcast. At
a high-level, we use the leader election MAC automa-
ton to elect a leader in each region using CRLE. We use
the broadcast automaton to run BMMB on this leader
backbone once CRLE terminates. And we use the col-
lect automaton to transfer messages from arrive events
at non-leaders to the leader in the region. This collect
protocol runs concurrently with the CRLE and BMMB
protocols. Before CRLE completes, all processes run-
ning collect will queue the messages in case they are
elected leader.
State Each process i maintains a broadcast queue and
an arrive queue. Both are initially empty. It also main-
tains a leader flag which is initially f alse, and two
sets, delivered and rcvd, both initially empty.
Leader Election Each process i in region r behaves
as follows with the leader election MAC automaton.
Starting at time 0, i executes the CRLE leader election
protocol. At the end of the protocol (i.e., after the time
dedicated to the last set in the TDMA schedule has
transpired), i sets its leader flag to true if and only
if it triggered a leader(r)i output during the CRLE
protocol.
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Collect Each process i in region r behaves as follows
with the collect MAC automaton. When an arrive(m)i

or rcv((m, r))i event occurs,7 i places the message
(m or (m, r)) on the back of its arrive queue. As soon
as i’s arrive queue becomes non-empty it does the
following. If the element at the head of the queue is
a single message m′, it removes m′ from the arrive
queue, performs a deliver(m′)i output, adds m′ to the
delivered set, places m′ on the back of the broadcast
queue, and then propagates m′ before moving on to the
next element in the arrive queue (if any). The prop-
agate step depends on the status of the leader flag. If
leader = true, then propagate is a noop and takes up 0
time. If leader = f alse then i sends (m′, r) and then
waits for the corresponding ack((m′, r))i .
If the element at the head of the arrive queue is
an (m′, r) message, then i removes (m′, r) from the
queue, performs a deliver(m′)i output, adds m′ to the
delivered set, places m′ on the back of the broadcast
queue. (There is no propagate step for this case.)
Broadcast Each process i in region r behaves as
follows with the broadcast MAC automaton. Process
i waits the fixed amount of time required for the CRLE
protocol executed on the leader election MAC autom-
aton to complete. If i has leader = true at this
point, then it executes the BMMB protocol using the
broadcast queue maintained by the protocol running
on the collect MAC automaton, and using its delivered
set in addition to the list rcvd used by BMMB to deter-
mine when to pass along a message. If i is not a leader,
then for each m received from the broadcast MAC auto-
mata, if m is not in the delivered set it performs a
deliver(m)i output and then adds m to the delivered
set.

We continue with the relevant theorems.

Theorem 6 The RMMB protocol solves the MMB problem.

Proof Let α be an MMB-well-formed execution of the
RMMB protocol composed with the specified MAC auto-
mata and our fixed regionalized network. We note that α is
user-well-formed, so it follows that the abstract MAC layer
service properties are satisfied for each MAC automaton.

Let arrive(m)i be an event in α. At the point when this
event occurs, the size of the arrive queue at process i is of
some finite size. (The collect protocol ensures that a given
message is added to a given process’s arrive queue—and
therefore, also its broadcast queue—at most once. To see
why, note that a message enters the arrive queue at pro-
cess i only following an arrive(m)i event, which happens

7 The rcv((m, r))i inputs describes a message (m, r) arriving from the
MAC layer at i

only once, or a rcv((m, r))i event, which also happens only
once, as only the single process that received m through an
arrive(m) event will propagate it.) Let us call this queue size
q. After at most (q + 1)Fack time after this point, i’s collect
protocol will have succeeded in sending all q elements ahead
of m in its queue, and then m itself, to its neighbors in G, a
set which includes all processes in its same region. All pro-
cesses in its region add these messages to their arrive queue
and therefore eventually their broadcast queue, in the order
they arrive. This includes the single process j that eventually
has its leader election protocol set its leader flag to true in
this region.

There exists a point in α, therefore, where j both has
leader = true and m in its broadcast queue. At this point,
we can apply the argument from the correctness theorem for
BMMB (Theorem 1) to the broadcast protocol to argue that
this message eventually gets to a leader in every region, and
from there, to every process in every region, in finite time.

We now turn our attention to the time complexity of
RMMB. The key observation is that RMMB executes on a
backbone of leaders. The contention on the broadcast MAC
automaton is at most Δ(G ′

region) = O(1); therefore the rel-
evant delay functions, fack and f prog , both evaluate to con-
stants.

For the following theorem, we assume a bound on the rate
of of arrive events at individual processes. Specifically, we
bound the rate to prevent any process from having more than
a constant number of messages in its arrive queue at any
one point. (This bound will be in O(1/Fack)).

The bound presented below improves the BMMB by
removing the Fack and Fprog as multiplicative factors on
k and D(G), respectively.

We note that our restriction on arrival rates would not
change the bound for the original BMMB protocol (increased
message arrivals is captured by K (m)). In the regionalized
setting, however, without this restriction we would have to
complicate our analysis to take into account the possible sizes
of the arrive queues of non-leader processes. For faster arrival
rates these queue sizes would increase our time bound, per-
haps toward infinity as the execution continues and queues
continue to grow faster then they can be emptied. Even with
no arrival rate bound, we can still show that with a sim-
ple improvement (the leader acknowledging collect messages
using a separate MAC automaton), some messages will arrive
at the leader every Fprog time if there are any messages to
be sent. This style of analysis might lead to a theorem that
captures a bound on throughput, not the fate of a specific
message. It remains interesting future work to formalize such
bounds.

Finally, as before, we use b to describe the number of bits
required to describe the id space.
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Theorem 7 Let k be a positive integer and α be an MMB-
well-formed execution of the RMMB protocol composed
with three MAC automata and a network. Assume that an
arrive(m)i event occurs in α. If |K (m)| ≤ k then the length
of the interval between arrive(m)i and the last deliver(m) j

is O
(

max{b(F+
prog + εa), Fack} + D(G) + k

)
.

Proof We apply Theorem 2 to BMMB running on the lead-
ers to get a bound on the interval from when m arrives at a
leader until the final deliver(m) at a leader. We then modify
this bound to take into account the time required for m to
move between non-leaders and leaders.

Let j be the process that is elected leader in i’s region. Let
π be the later of the following two events: m being received
(or arriving in the case i = j) or CRLE completes. By Theo-
rem 2, the interval between π and the last deliver(m) event
at a leader is at most (D(G) + 2k − 2)Fprog + (k − 1)Fack .
We can improve this further by observing that on the broad-
cast MAC automaton only the leaders send. This constraint
improves the parameters passed to f prog and fack to be no
larger than Δ(G ′

L), where G ′
L is the subgraph of G ′ includ-

ing only leaders. By the definition of a regionalized network,
Δ(G ′

L) = O(1), therefore we replace Fprog and Fack with
two O(1) terms yielding a bound that is O (D(G) + k).

We now increase the bound to include the time that might
elapse between arrive(m)i and π . There are two cases.
If π describes m being received by j , then by our arrival
rate assumption when the arrive(m)i occurs, the size of the
arrive queue at i is O(1). We apply the same argument as
for claim (c) from the proof of Lemma 1 to establish that m
arrives at the leader in i’s region within O(Fack) time.

If on the other hand π describes CRLE completing then by

Theorem 5 this requires O
(

b · (F+
prog + εa)

)
time. In either

case the time is at most max{b(F+
prog + εa), Fack}.

We increase the bound further to include the time that
might elapse between the last deliver(m) event at a leader
and the last deliver(m) at any process. Consider the
deliver(m)l event for any leader l. At this point in the exe-
cution l has at most k messages ahead of m in its broadcast
queue. (Notice, this follows directly from our assumption
that |K (m)| < k.) Because the contention on the broad-
cast MAC automata is constant l will send m and receive an
ack in O(k) time. (Notice, it follows that non-leader pro-
cesses receive the broadcast messages automatically simply
by being in the same region as a leader that sends.) This does
not change the asymptotics of our bound, leaving us with a
result that matches the theorem statement.

7 Adapting RMMB for mobile networks

Our previous results assumed static networks. Here we adjust
RMMB to tolerate (bounded) mobility. The original RMMB

protocol was comprised of three sub-protocols: leader elec-
tion, collect, and broadcast. Our mobile RMMB protocol
uses the same structure, with these sub-protocols modified
as needed to accommodate mobility. As before, we make use
of leader election, collect, and broadcast MAC automata.
We now include a fourth MAC automaton called leader-ack
used by the collect sub-protocol in addition to the collect
automaton.

7.1 The region exit bound

We assume each process maintains a region exit bound state
variable which in all execution states contains a time value
no later than the time when the process will next exit the
current region. We assume that while a process remains
within a region, this value does not change. In some settings,
enough information might be available to calculate a non-
trivial bound (e.g., as a function of velocity and position); in
other cases, such information might not be available. How-
ever, even without any information on process mobility, the
constraints of the bound can be trivially satisfied by setting
the variable equal to the current time upon first entering a
region.

We continue by describing each of the sub-protocols used
by our mobile RMMB protocol.

7.2 Mobile leader election

In the following, let tC F = tC RL E + tF RL E , where tC RL E

describes the time required to complete an instance of
CRLE and tF RL E describes the time required to complete
an instance of FRLE. Our mobile leader election sub-proto-
col is parameterized by a time bound t . For any t ≥ tC F , and
any execution α, the sub-protocol should satisfy the follow-
ing three properties for every region r :

1. at every point in α, there is at most one leader in r ;
2. if at every point in α, there is some process in r whose

region exit bound is at least t greater than the current
time, then at all times greater than or equal to t , there is
a leader in r ; and

3. for every process j that transforms from leader to not
leader while in r , the exit bound of j in r is less than t
beyond the current time when the transformation occurs.

Below we describe the modified leader election sub-pro-
tocol of RMMB.

The t-mobile leader election sub-protocol
In the t-mobile leader election sub-protocol, for some
time bound t , each process i runs the leader election
sub-protocol from RMMB with the following mobil-
ity-inspired modifications. Process i now runs CRLE
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continuously, launching a new instance immediately
following the global completion of the previous.
(Recall that an instance of CRLE requires a fixed
amount of time, so all processes are trivially synchro-
nized.) At the beginning of each TDMA slot s in a
given instance of CRLE, i executes the reg(loc(i))-
FRLE sub-protocol, if and only if reg(loc(i)) ∈ s. It
does not join ongoing instances of FRLE when entering
a new region in the middle of a slot. In addition, instead
of using its own id in the sub-protocol, i calculates and
uses a leader id (lid) which is a triple (�, x, i), where �

is a boolean flag. The flag � is set to 1 if and only if: (a)
i is currently the leader in the region; and (b) its exit
bound is at least t beyond the current time. The value
x encodes the region exit bound for i at this point. Pro-
cess i calculates its lid at the beginning of a slot and
uses that same lid throughout the FRLE instance.

We now show that the mobile leader election protocol sat-
isfies our desired three properties for t ≥ tC F .

Property 1 follows from the safety of FRLE and the restric-
tion that processes execute FRLE only if they are in the region
at the beginning of the corresponding slot.

To see why property 2 is satisfied, consider any region
r , and the first TDMA slot for r . Assume the property pre-
condition holds. It follows that at least one process knows
it will be around for at least t ≥ tC F more time. Because
the lid encodes this dwell time, and FRLE favors higher ids,
the leader elected will remain in the region for at least tC L RE

additional time (tC F = tC RL E + tF RL E , and tF RL E was used
by the slot)—enough to make it to the end of the next slot for
this region. At the beginning of this next slot, there will be at
least one process remaining with an exit bound at least tC F

in the future. If the leader also has at least this much dwell
time, it will remain leader and remain in the region until the
next election, otherwise, a new process will be elected leader
that will remain in the region until the next election. The
argument can be extended to all slots.

Property 3 follows by the definition of lid. If the current
leader has a region exit bound at least t beyond the current
time at the beginning of an FRLE slot for its region, it will be
the only process in the region with its � bit set to 1. Because
� is the high-order bit in lid, the current leader will win the
election.

7.3 Mobile collect

Let function fcol : N → R be defined such that fcol(q) =
Fack(q + 1), for q ∈ N. Our mobile collect sub-protocol
should satisfy the following property in any given execution:
if an arrive(m)i event occurs for some process i in region r
with leader j , such that i’s arrive queue is of size q at this
point, and both i and j remain in r for at least fcol(q) time

after the event, and j remains a leader during this time, then
within this interval m is removed from i’s arrive queue and
added to j’s broadcast queue.

Below we describe the modified collect sub-protocol of
RMMB.

The mobile collect sub-protocol
In the mobile collect sub-protocol each process i
runs the collect sub-protocol from RMMB with the
following mobility-inspired modifications. For every
arrive(m)i event occurring at some time t , we label m
with a timestamp (t, k, i), where k describes the num-
ber of arrive events that occurred at i at time t before
this event. We add the labelled message to the arrive
queue which we now maintain sorted lexicographically
on the timestamps. In addition, we now require each
leader to send an acknowledgement message for each
message received from a non-leader. The leader can use
the leader-ack MAC automaton for these acknowledge-
ments. (By our assumption from Sect. 4, the contention
among leaders is constant, therefore these acknowl-
edgements can be sent and received fast.) A non-leader
receiving an acknowledgement message from a leader
removes the message from its arrive queue. It also
aborts this message if it has not already received a corre-
sponding MAC ack. A non-leader continually resends
the message at the head of its queue (waiting for a MAC
ack before sending again) until it receives an acknowl-
edgement from a leader.

It follows directly from the definition of the sub-protocol
that our property is satisfied for the given definition of fcol .
Notice, that if only process i is sending on the collect autom-
aton, this function can be improved to O(Fprog · (q + 1)),
as the leader’s acknowledgements arrive in O(1) time on the
leader-ack MAC automaton.

7.4 Mobile broadcast

Our mobile broadcast sub-protocol should satisfy the follow-
ing property in any given execution: There exists a function
fbcast : N → R, where fbcast (q) = Θ(q), such that if m is
added to a broadcast queue of length q at leader process i in
region r , and this process, as well as the leaders of all regions
neighboring r at this point, remain leaders for fbcast (q) time,
then by the end of this interval m has been removed from i’s
broadcast queue and has been present in the broadcast
queue of some leader in each region neighboring r at some
time by the interval’s end. (Notice, this property is satisfied
even if a former leader in a neighboring region had m in its
broadcast queue a long time before i added m to its queue.
Informally, it says that for each neighboring region r ′, either
i gets m to the current leader of r ′, or this leader, or a former
leader in r ′, has already received m.)
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Below we describe the modified broadcast sub-protocol
of RMMB.

The mobile broadcast sub-protocol
In the mobile broadcast sub-protocol each process i
behaves the same as in the broadcast sub-protocol of
RMMB with the following mobility-inspired modifi-
cations. Process i keeps the broadcast queue sorted
on the timestamps added to each message by mobile
collect. If i is a leader then becomes a non-leader, it
empties the contents of its broadcast queue into the
arrive queue used by its collect sub-protocol. If i is
a non-leader and then becomes a leader, it empties
its arrive into its broadcast . In both cases it sorts
the resulting non-empty queue as usual. Process i can
deliver any broadcast message it receives that it has not
yet delivered.

Our property is satisfied as each message on a broadcast
queue requires only a constant amount of time to be sent from
a leader to its neighboring leaders.

7.5 The mobile RMMB protocol

We combine the sub-protocols described above to generate
the mobile RMMB protocol. Below we prove a preliminary
theorem that proves RMMB solves the MMB problem under
a certain set of constraints on the rate of arrive events and
the mobility of nodes.

In the following, we say a network is T -stable, for some
nonnegative real T , if and only if every process calculates an
exit bound at least T past the current time upon entering a
new region, and for all regions and for all times there exists
at least one process with an exit bound at least T past the cur-
rent time. We also reference the tC F time bound defined in
our discussion of the mobile leader election sub-protocol. In
the following, we use the constant D to refer to the maximum
diameter over all G and all executions of the network.

We begin with a key lemma which we use to prove the
more general theorem that follows.

Lemma 2 Let k′ be a positive integer and X be a nonneg-
ative real. Let α be a MMB-well-formed execution of the
mobile RMMB protocol, composed with four MAC automata
and a regionalized (2X +max{X, tC F })-stable network, with
X+tC F passed as the parameter to the mobile leader election
sub-protocol.

Assume an arrive(m)i event occurs in α at time t, there
are at most k′ messages with timestamps smaller than m
in process arrive and broadcast queues over all states
labelled with time t, and X ≥ k′Fack. It follows that a
deliver(m) j event occurs for all j by time t+(D+1)2X+X.

Proof We first establish the following three claims:

1. At all points in α, there exist no more than k′ messages
ahead of m in any broadcast or arrive queue.

2. At all points in α, and every region r , there is a leader in
r that has at least X time left in the region.

3. If a message m arrives at a leader in region r at time
t ′, then for every neighboring region r ′, at some time
t ′′ ≤ t ′ + 2X a leader in r ′ receives m.

Claim 1 follows from our theorem assumption which
states that at most k′ messages with smaller timestamps than
m are in process queues in any state labelled with time t . Any
messages that arrive after time t will have a later timestamp,
and because the queues are sorted by timestamps, they will
be placed behind m.

To prove the first part of claim 2—that there is always a
leader—we defer to property (b) of the leader election sub-
protocol. To prove the second part—that this leader has at
least X time left—fix some leader i in some region r at some
point in α. Consider the last leader election TDMA slot for
r . Let t ′ be the time this election began. We know i won this
election. There are two cases for i’s victory.

In the first case, i had its high order lid bit set to 1. By the
definition of the leader election protocol, and the parameter
specified in the theorem statement, i keeps this bit at 1 only
if it had an exit bound value of at least t ′ + tC F + X at the
beginning of the slot.

In the second case, no process executed FRLE with
the high order bit set to 1. Here, FRLE favors the pro-
cess with the highest exit bound at the beginning of the
slot. By assumption, at least one process has a bound of
t ′ + (2X + max{X, tC F }) > t ′ + tC F + X , at this point.
Therefore, if i won, its bound was at least this large. In both
cases, because no more than tC F time has elapsed since the
beginning of the last election, process i has at least X time
left in the region.

To prove claim 3, consider a leader i that receives m in r
for the first time at time t ′. If i remains leader for the next X
time, this is sufficient for i to clear its broadcast queue and
successfully send m. (Recall: X = k′Fack , and by our first
claim, at most k′ messages can get ahead of m in the queue.)
By our second claim, there is always a leader in every neigh-
boring region, so there will be some leader process in each
region to receive m when the send occurs.

On the other hand, if i loses its leadership at some time
t ′′ ≥ t ′, before sending m, its broadcast queue transforms
into an arrive queue. The new leader in the region, which we
label j , has an exit bound of at least t ′′+(2X+max{X, tC F }).
By our second claim, we know i will remain in this region
for at least X more time after losing its leadership—enough
to finish clearing its queue and get m to j . Leader j still has
more than X time as leader at this point, enough time to clear
its broadcast queue and send m. The total time for i to get
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m to j is X , and the total time for j to send m is also bounded
by X , providing the needed 2X .

With our claims established, we can now finish the proof.
Consider the arrive(m)i event from the lemma statement.
Within X time the message m arrives at a leader’s broadcast
queue. We then repeatedly apply the third claim from above
to show that the message arrives at, and is subsequently sent
by, a leader in every region within (D+1)2X additional time.

Now consider some arbitrary process j and the interval
of length less than or equal to X + (D + 1)2X between the
arrive(m) event and the message being received and sent by
every leader. During every point of this interval, label each
region r as done if and only if m has been received by a
leader in r either from a neighboring leader or a process in r .
Consider the first point at which j inhabits a region labelled
done. There are two cases. The first case is that j is in a
region r that transforms from not done to done. Here, m is
coming from a neighbor or a process in r , meaning that j
will also receive (and subsequently deliver) message m. The
second case is that j moves from a region r ′ that is not done
into a region r that is done. At this point, the leader in r has
not yet sent m (if it had, we would be in the first case with
respect to r ′). By our stability assumption, j remains in r
for longer than the 2X upper bound on the time required for
the leader in r to send. When this send occurs, j will receive
(and subsequently) deliver message m.

We conclude with a theorem capturing a particular restric-
tion on arrive-rates that ensures mobile RMMB solves the
MMB problem:

Theorem 8 Let k be a positive integer, Fmax
ack and tmax

C F be
nonnegative reals, and T = (D + 1)2k Fmax

ack + k Fmax
ack . If we

restrict the rate of arrive events such that no more than k
such events happen in any interval of length T , and consider
only regionalized (2k Fmax

ack +max{k Fmax
ack , tmax

C F })-stable net-
works with Fack ≤ Fmax

ack , and tC F ≤ tmax
C F , then the mobile

RMMB protocol, executed with k Fmax
ack + tmax

C F passed as the
parameter to the mobile leader election sub-protocol, solves
the MMB problem.

Proof This theorem identifies an arrival rate for which our
mobile RMMB protocol solves the MMB problem. Specifi-
cally, it restricts arrive events such that no more than k occur
in any interval of length T = (D + 1)2k Fmax

ack + k Fmax
ack . Put

another way, each message requires enough time to prop-
agate through the network before too many new messages
can arrive—preventing queue pile-ups. The theorem also
restricts process mobility by requiring that the execution is
T ′-stable, for T ′ = (2k Fmax

ack + max{k Fmax
ack , tmax

C F }). This
allows leaders enough time to make progress clearing out
their broadcast queues before potentially losing their lead-
ership. Below, we formalize our proof with an argument by
induction.

We can show by induction on message arrival events that
for each arrive(m) we satisfy the queue size constraint
needed by Lemma 2—thus ensuring the delivery of m to
all processes.

In more detail, order the arrive events by their time-
stamps. We can describe them as an ordered sequence
e1, e2, .... For each ei , let m(ei ) be the message associated
with the i th arrive event in this order, let t (ei ) be the time
at which this arrive occurred, and let q(ei ) be the number
of messages with smaller timestamps than m(ei ) in queues
in any state labelled with time t (ei ).

Our inductive hypothesis for a given i > 0 states that for
all j, 1 ≤ j ≤ i, q(e j ) ≤ k. (Notice, this tells us that each
satisfies the constraints of Lemma 2 for k′ = k and will there-
fore be delivered to all processes, and thus cleared out of all
queues, in T time.)

To prove the inductive step for i + 1, given the hypothesis
holds for i , we first note that there are no more than k − 1
events e j such that j ≤ i and t (e j ) ≥ t (ei+1) − T . If k such
events existed we violate the theorem assumption (this would
be an interval of size T with k + 1 arrive events.) However,
for events that took place more than T time before ei+1 by
our hypothesis and Lemma 2 they would have delivered and
cleared out of the system before ei+1 (i.e., not exist in any
queue). It follows that q(ei+1) ≤ k, as needed.

Finally, we note that the base case is trivial for i ≤ k.

8 Conclusions

The large number of possible communication assumptions
complicates the study of algorithms and lower bounds for
radio networks. Results proved for one set of assumptions,
for example, might be invalid using a slightly different set of
assumptions, and algorithm designers are forced to tackle
the low-level issue of contention management again and
again. In this paper, we addressed this problem by intro-
ducing the abstract MAC layer—a service that provides reli-
able local broadcast with timing guarantees stated in terms
of abstract delay functions applied to the relevant contention.
Inspired by real network link layers, this abstraction splits the
task of designing radio network algorithms into two pieces:
implementing the abstract MAC layer using a specific set
of network assumptions, and designing and analyzing algo-
rithms that use the abstract MAC layer. We then validated
our approach by using the formalism to study the problem
of multi-message broadcast (MMB). We presented and ana-
lyzed solutions to this problem in static networks with and
without location information, and then extended the latter
solution to the mobile setting.

The abstract MAC layer definition is general and meant
to accommodate a wide variety of underlying network
models. The details of its definition, however, are open to
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modification. Indeed, we concede that the layer definition
that ultimately finds the widest use will likely differ from the
definition presented here. Perhaps, for example, the guar-
antees will be stated in probabilistic terms (i.e., as in this
recent extension [20]), or the communication and interfer-
ence graphs will be replaced with a more flexible construc-
tion; related suggestions along these lines have included
the addition of edge weights and the replacement of one
interference graph with multiple graphs—each correspond-
ing to different strengths of interference. Such tinkering is
both inevitable and encouraged: this study provides the foun-
dation for what will hopefully become a large body of work.

Recent extensions Our basic work on abstract MAC layers
has been extended in several ways since the original con-
ference publication [27]. In [10], Cornejo et al. show how
to build a version of the dynamic graph model of Walter
et al. [37] over our abstract MAC layer. The dynamic graph
model has already been used to develop and analyze many
high-level radio network algorithms [17,36,37]; building this
model over the abstract MAC layer allows this analysis to be
extended to new network models. In [20], Khabbazian et al.
generalize the definition of the layer to replace the determin-
istic delay functions with probability distributions, allow-
ing for more advanced analysis of probabilistic algorithms.
They then use this variant of the layer to study efficient solu-
tions to both broadcast and multi-message broadcast. Finally,
work in progress by Khabbazian et al. studies coding-based
implementations of the layer, looking in particular at Zig-Zag
coding [14].

Open questions In addition to studying basic primitives
such as neighbor discovery or unicast communication, it
remains open to explore solutions to more advanced prob-
lems—perhaps building structures such as trees or dominat-
ing sets over the networks. It would also be interesting to
study additional questions and extensions to the MMB prob-
lem, such as the formulation of general throughput bounds
or calculating the costs of adding sender acknowledgements.

Improvements to the formalism itself provide another
important area of study. An interesting direction to inves-
tigate is adding edge weights to the communication and
interference graphs, allowing for more subtle distinctions in
the definition of interference. Such improvements will likely
prove necessary for the successful modeling of basic radio
network models such as those that make use of signal to
interference-plus-noise ratios (SINR).

It is also important to study definitions of the abstract
MAC layer that allow some properties to fail. For example,
consider a natural variant of the model that sometimes gen-
erates acknowledgements even though some neighbor(s)
did not receive the message. Can we design protocols that
degrade gracefully under such failures—perhaps always

maintaining safety and relying on the correct acknowledge-
ments only for liveness?

In addition, this new model introduces new questions con-
cerning fundamental limitations: what can and cannot be
solved using an abstract MAC layer, and under what condi-
tions? Such bounds can concern both global problems such as
network-wide broadcast, and local problems such as break-
ing symmetry among neighbors. A key feature of the abstract
MAC layer definition is the modeling of communication by
two graphs: one describing reliable communication and one
describing unreliable communication. Recent work [26,28]
highlights the surprising impact of having unreliable commu-
nication edges, showing, for example, that there exists small
diameter graphs in which randomized broadcast requires
Ω(n) rounds. Further investigation into techniques for deal-
ing with this uncertainty is warranted.

Finally, it will prove useful to analyze specific MAC layer
strategies for specific radio network models, providing con-
crete definitions for the delay functions. This work can span
from the formalization of existing strategies, like the decay
approach described in Sect. 2.3, to novel strategies such as
those based on network coding.
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