
Distrib. Comput. (2010) 22:303–334
DOI 10.1007/s00446-010-0106-4

Adaptive progress: a gracefully-degrading liveness property

Marcos K. Aguilera · Sam Toueg

Received: 13 October 2008 / Accepted: 9 May 2010 / Published online: 25 June 2010
© Springer-Verlag 2010

Abstract We introduce a simple liveness property for
shared object implementations that is gracefully degrad-
ing depending on the degree of synchrony in each run.
This property, called adaptive progress, provides a gradual
bridge between obstruction-freedom and wait-freedom in
partially-synchronous systems. We show that adaptive pro-
gress can be achieved using very weak shared objects. More
precisely, every object has an implementation that ensures
adaptive progress and uses only abortable registers (which
are weaker than safe registers). As part of this work, we pres-
ent a new leader election abstraction that processes can use
to dynamically compete for leadership such that if there is
at least one timely process among the current candidates for
leadership, then a timely leader is eventually elected among
the candidates. We also show that this abstraction can be
implemented using abortable registers.

1 Introduction

1.1 A new progress condition

Three liveness properties have been extensively studied in the
context of shared object implementations, namely, in order

Research supported in part by the National Science and Engineering
Research Council of Canada.

M. K. Aguilera (B)
Microsoft Research Silicon Valley,
1065 La Avenida-bldg SVC6,
Mountain View, CA 94043, USA

S. Toueg
University of Toronto, 10 King’s College Road,
Toronto, ON M5S 3G4, Canada

of increasing strength, obstruction-freedom, lock-freedom,1

and wait-freedom [10,11].
In this paper, we first propose a new liveness property,

called adaptive progress (or briefly AP), that provides a nat-
ural bridge between the above well-known progress proper-
ties in partially-synchronous systems.2 The strength of the
liveness guarantee provided by adaptive progress depends
on the degree of synchrony, that is the number of partially-
synchronous processes, in each run. As the degree of syn-
chrony “increases”, the liveness guarantee gets stronger:
roughly speaking, it goes from obstruction-freedom to lock-
freedom, and then continues gradually all the way to wait-
freedom. In other words, the new liveness property adapts
its progress guarantees to the degree of synchrony in a run,
thereby providing graceful degradation. This feature is attrac-
tive for the following reason.

Many systems are synchronous most of the time. During
those times, it is natural to require strong liveness guarantees,
but when synchrony degrades we may be willing to gradu-
ally sacrifice some liveness. Ideally, this sacrifice should be
“fair”, namely, processes that fail to meet some minimal syn-
chrony condition may fail to make progress, but not others.
With adaptive progress, processes that are timely, namely,
processes that satisfy some reasonable synchrony condition,
are guaranteed to make progress. Processes that are not timely
may fail to make progress, but even if they are unbound-
edly slow or unstable (e.g., they repeatedly oscillate between
being timely and very slow) they cannot prevent the progress
of timely processes. We now explain the adaptive progress
property in more detail.

1 An implementation that is lock-free is also called “non-blocking”.
2 Adaptive progress was called timeliness-based wait-freedom in an
earlier version of this work [3].

123

304 M. K. Aguilera, S. Toueg

Intuitively, adaptive progress requires that every process
p that is timely in a run R be wait-free in R, i.e., p com-
pletes each operation that it executes in R in a finite number
of steps. Timeliness is defined here as relative to the speed of
the processes in the system, as in the seminal work on partial
synchrony of [6]. More precisely, a correct process p is timely
in a run R if there is an integer i ≥ 1 (which is unknown and
may depend on R) such that for every i consecutive process
steps in R, there is at least one step of p.

We now relate adaptive progress to obstruction-freedom,
lock-freedom and wait-freedom.

We first note that any implementation that satisfies the
adaptive progress property (i.e., an AP implementation) is
necessarily obstruction-free. To see this, consider an AP
implementation of some arbitrary object, and suppose that
there is a time after which some process p runs solo in a run
R of this implementation. Obstruction-freedom requires that
p completes every operation that it executes in R. Note that,
by definition, p is timely in run R (even if p is extremely
slow with respect to real time!). This is because: (a) “timely”
is defined relative to the speed of the system’s processes
in R, and (b) there is a time after which p is the only
process taking steps in R. (Intuitively, when p runs solo
it is not slow relative to other processes, so p is timely.)
Since p is timely in R, adaptive progress requires p to
be wait-free in R, i.e., p must complete every operation
that it executes in R—exactly as required by obstruction-
freedom. Thus, adaptive progress implies obstruction-
freedom.

Now consider an AP implementation of an arbitrary object
O in a system with n processes. As we observed above,
this implementation is obstruction-free. Consider a run R
of this implementation such that every process has an infi-
nite sequence of operations that it wishes to apply on O
(so all processes continuously compete to access O). Since
no process runs solo in R, an obstruction-free implemen-
tation of O does not guarantee any progress for any pro-
cess. If there is some synchrony in R, however, then the
AP implementation of O still guarantees some progress, and
the amount of progress depends on the degree of synchrony
in R. If some process p is timely in R, then the adaptive
progress property guarantees that some process (namely p)
completes all its operations in R. So if a process is timely
in R then, in some precise sense, the AP implementation of
O is “lock-free in R”. More generally, if k processes are
timely in R, these k processes are guaranteed to complete
all their operations in R. In the limit, if all the processes
in R are timely, then all processes complete all their oper-
ations in R, so the AP implementation of O is “wait-free
in R”. Thus, as the number of timely processes increases
from 1 to n, the progress guarantee of an AP implementation
goes from lock-freedom incrementally all the way to wait-
freedom.

1.2 Achieving adaptive progress

We next consider the problem of implementing objects that
satisfy the adaptive progress property. It is well-known that
any object has a wait-free implementation (and a fortiori an
AP implementation), provided one is allowed to use some
strong synchronization objects like compare-and-swap [10].
But such objects can be slow in practice compared to weaker
ones such as registers.

A natural question is therefore: what is the “weakest”
object that one can use to achieve AP implementations? We
show here the surprising result that such implementations
can be achieved using objects that are strictly weaker than
safe registers. More precisely, we give a universal AP imple-
mentation that uses only abortable registers [2]. Roughly
speaking, an abortable register behaves like an atomic reg-
ister except that, when it is accessed concurrently, some of
the concurrent read or write operations may abort (by return-
ing the special value ⊥). A write operation that aborts may or
may not take effect and, since the writer gets back ⊥ in either
case, it does not know whether its write operation succeeded
or not.3

To get AP implementations using abortable registers, we
proceed as follows:

1. We first introduce a dynamic leader election abstrac-
tion, denoted ��, that processes can use to dynamically
compete for leadership such that if there is at least one
timely process among the current candidates for lead-
ership, then a timely leader is eventually elected among
the leader candidates.

2. We then describe how to implement �� in a system with
registers. We give two such implementations: The first
one, which is relatively simple and efficient, uses atomic
registers; the second one, which is significantly more
complex, uses abortable registers only.

3. Finally, we show how �� can be used to obtain an AP
implementation of an object O of any type T using abor-
table registers. This is done in two steps:

(a) Given any type T , we first use the universal
construction described in [2] to get a wait-free
implementation of an object OQA of type TQA—the
query-abortable counterpart of T .4

3 In contrast, a write operation on a safe register always succeeds, i.e.,
it always takes effect, even if it is concurrent with other read or write
operations.
4 Intuitively, an object of type TQA behaves like one of type T except
that: (i) concurrent operations may abort; an operation that aborts returns
⊥ and it may or may not take effect; (ii) there is an additional operation,
denoted query, that any process can use to determine whether the last
(non-query) operation that it applied on the object took effect, and if
it did, the corresponding reply; the query operation may itself abort.

123

A gracefully-degrading liveness property 305

This construction can be done using abortable reg-
isters only.

(b) We then use �� to transform the wait-free
implementation of OQA of type TQA into an AP
implementation of an object O of type T . Roughly
speaking, timely processes use �� to successively
access OQA in a fair way among themselves.
This transformation does not use any shared objects.

The above approach to obtain AP implementations is simi-
lar to the “boosting” of obstruction-free implementations into
wait-free implementations using synchrony [7,15] or fail-
ure detectors (which in turn can be implemented using syn-
chrony) [9]. In contrast to AP implementations, however, the
wait-free implementations obtained by boosting in [7,9,15]
are not gracefully degrading: the boosting algorithms assume
that all the correct processes are (eventually) timely,5 and
it is not difficult to construct runs where a partial loss of
synchrony causes a total loss of liveness. In other words,
if some processes are not timely, they can prevent the pro-
gress of all the correct processes, even the timely ones. It is
also worth noting that these boosting algorithms use objects
that are stronger than abortable registers: the algorithms in
[7,9] and [15] use atomic registers and compare-and-swap,
respectively. A more detailed discussion of these algorithms
and other related work is given in Sect. 7.

As a final remark, the implementation of �� using
abortable registers (given in Sect. 5) implies that one can
implement �—a failure detector which is sufficient to solve
consensus [4]—in a system with abortable registers and
only one timely process. Thus, in shared memory systems
with limited synchrony, some powerful failure detectors
can be implemented with objects that are weaker than safe
registers.

1.3 Dynamic activity monitors

In this paper, we also introduce a new abstraction, called a
(dynamic) activity monitor, that serves as a building block
for dynamic applications in shared memory systems. Intu-
itively, for every ordered pair of processes p and q, the
activity monitor denoted A(p, q) is an abstraction that helps
p determine whether q is currently active or inactive, and
whether q is timely (with respect to p). This activity mon-
itor is fully dynamic: both p and q can independently turn
the monitoring mechanism on or off at any time they want.
We use activity monitors to implement �� in Sect. 4.2
in a modular way that shields the implementation from

5 It is easy to see that the concepts of “timely” and “eventually timely”,
which is seemingly weaker, are actually the same when the timeliness
bounds are not known and depend on each run (as assumed in [7,9,15]
and here).

low-level synchrony mechanisms, such as timers and time-
outs.

Summary of contributions

– We introduce a new liveness property, called adaptive
progress, for shared object implementations. This live-
ness property is simple and fair: every process that is
timely is guaranteed to be wait-free. It is also gracefully
degrading: when synchrony increases, the liveness guar-
antee also increases gradually from obstruction-freedom
(when there are no synchrony assumptions) all the way
to wait-freedom (when all processes are timely).

– We give two universal constructions that satisfy the adap-
tive progress property: a simple one that uses plain
(atomic) registers, and a more complex one that uses only
abortable registers. The second construction implies that
adaptive progress can be achieved with registers that are
weaker than safe.

– We specify a new leader election abstraction, denoted��,
that allows processes to dynamically compete for lead-
ership. In contrast to previously defined dynamic leader
election abstractions, the specification of �� refers to the
synchrony of the processes that participate in the election:
roughly speaking, if there is at least one timely process
among the processes that currently wish to be elected,
then a timely process is eventually elected.

– We show how to implement �� in systems with registers,
and also in systems with abortable registers. This shows
that it is possible to implement the powerful failure detec-
tor � using only abortable registers, provided at least one
process in the system is timely.

– We introduce the concept of a dynamic activity monitor,
denoted A(p, q), that can help a process p determine the
current “status” of another process q. With A(p, q), each
of p and q can independently stop or resume its partici-
pation in this monitoring whenever it wants. We believe
that both �� and A(p, q) are useful building blocks for
dynamic applications in shared memory systems.

Road map

The paper is organized as follows. In Sect. 2, we explain
our shared-memory model and define the adaptive progress
property. We define the dynamic leader elector �� in Sect. 3.
In Sect. 4, we implement �� using registers, in two steps.
First, we define activity monitors and implement them using
registers in Sect. 4.1. Then, we use activity monitors and reg-
isters to implement �� in Sect. 4.2. In Sect. 5, we implement
�� using abortable registers. In Sect. 6, we show how to use
�� to achieve an AP implementation of an arbitrary type.
We conclude the paper with a discussion of related work in
Sect. 7.

123

306 M. K. Aguilera, S. Toueg

2 Model

We consider shared-memory systems with n ≥ 2 processes
� = {0, . . . , n − 1} that can communicate with each other
via shared registers. We consider two types of shared regis-
ters, atomic registers [13,14] and abortable registers [2].6 In
our model, time values are taken from the set N of positive
integers.

Processes are (finite or infinite) deterministic automata
that execute by taking steps. In each step, a process p can
do one of the following three things (according to p’s state
transition function): (1) p invokes an operation on a shared
register and changes state, (2) p receives a response from an
operation and changes state, or (3) p just changes state. If p
invokes an operation in a step, p’s next step is to receive a
response from that operation (and change state). For conve-
nience, we assume that each step occurs instantaneously and
there is at most one step per time unit.

A process may fail by crashing, in which case the pro-
cess’s state changes to a crash state and the process stops
taking steps forever. A process p is correct if p does not
crash. A correct process takes infinitely many steps (a pro-
cess can take “do-nothing” steps if it has nothing to do). We
now define what it means for a process p to be timely with
respect to another process q in a run:

Definition 1 We say that p is q-timely (in a run) if p is cor-
rect and there is an integer i ≥ 1 such that every time interval
containing i steps of q has at least one step of p (in this run).

Note that the timeliness bound i above is not known (it
depends on each run and on each pair of processes p and q).

Definition 2 We say that p is timely (in a run) if p is
q-timely for every process q ∈ � (in this run).

We consider the following liveness property for object
implementations in shared memory systems:

Definition 3 (Adaptive progress) An object implementation
satisfies the adaptive progress property, if, for every run R of
the implementation, every process that is timely in R com-
pletes its operations on the object in a finite number of its
own steps.

Throughout the paper, if C is some property, we say that
there is a time after which C holds if there is a time t such that
for every time t ′ ≥ t , property C holds at time t ′. Similarly,
we say that C holds infinitely often if for every time t , there
is a time t ′ > t such that C holds at time t ′. Finally, we say

6 With both types of registers, read and write operations are not instan-
taneous, each such operation spans an interval of time; but their behavior
is linearizable [12].

that a variable v increases without bound if for every k ∈ N

there is a time after which v > k.

Properties of timely and non-timely processes

We now state and prove some basic properties of timely and
non-timely processes. The following lemmas are with respect
to an arbitrary run R.

Observation 1 (a) If p is correct then p is p-timely. (b) If
p is correct and q crashes then p is q-timely.

Proof Trivial from the definitions.

Lemma 1 If a process p is timely then there is an integer
i ≥ 1 such that every time interval containing i process steps
has at least one step of p.

Proof Suppose that p is a timely process. Since p is timely,
for every process q, p is q-timely, and so there is an integer
i pq ≥ 1 such that every time interval containing i pq steps of
q has at least one step of p. Let i = 1 + ∑

q∈�(i pq − 1).
Note that i ≥ 1. Moreover, every time interval containing
i process steps must have at least i pq steps of q for some
process q. Such a time interval has at least one step of p.

Lemma 2 If p is a correct process then p is timely if and
only if there is an integer i ≥ 1 such that every time interval
containing i process steps has at least one step of p.

Proof Let p be a correct process. If p is timely then, by
Lemma 1, there is an integer i ≥ 1 such that every time
interval containing i process steps has at least one step of p.

If p is not timely then there is a process q such that p is not
q-timely. Thus, since p is correct, for every integer i ≥ 1,
there is a time interval containing i process steps (those of
q) but no steps of p.

Lemma 3 For all processes p, q, and r, if p is q-timely and
q is r-timely then p is r-timely.

Proof Let p, q, and r be processes such that p is q-timely and
q is r -timely. So p and q are correct, and there are integers
i pq ≥ 1 and iqr ≥ 1 such that (*) every time interval con-
taining i pq steps of q has at least one step of p and (**) every
time interval containing iqr steps of r has at least one step
of q.

If r crashes, then p is r -timely by Observation 1(b). Now
assume that r is correct. Let i pr = i pq(iqr − 1) + 1. Note
that i pr ≥ 1. Consider any time interval containing i pr steps
of r . By (**), such a time interval has at least i pq steps of
q. By (*), this time interval has at least one step of p. Thus,
since p is correct, p is r -timely.

Corollary 1 For all processes p and q, if p is q-timely and
q is timely then p is timely.

123

A gracefully-degrading liveness property 307

Proof Let p and q be processes such that p is q-timely and
q is timely. By definition, q is r -timely for every process r .
By Lemma 3, p is r -timely for every process r . Thus, p is
timely.

Corollary 2 For all processes p and q, if p is not timely and
q is timely then p is not q-timely.

3 The dynamic leader elector ��

Intuitively, �� is a dynamic leader election abstraction that
allows processes to dynamically compete for leadership such
that if there is at least one timely process among the candi-
dates for leadership, then a timely leader is eventually elected.

Each process p interacts with �� via input and output
variables, denoted candidatep and leaderp, respectively;
these variables are local to p. Process p uses the input var-
iable candidatep to tell �� whether it currently wants to
compete for leadership: if p wants to do so it writes true to
candidatep, otherwise it writes false to candidatep.

At each process p,�� writes the output variable leaderp

to tell p who the current leader is. More precisely, �� sets
leaderp to q if it thinks that q is the current leader, and ��

sets leaderp to the special value “?” when it does not give
p any information about who may be the current leader (this
can occur when �� is still in the process of computing a
leader or when p is not competing for leadership).

Note that some processes may repeatedly switch between
competing and not competing for leadership, forever. Others
may crash, or fail to be timely. Processes that are not timely
may “flicker” forever: their execution speed may fluctuate so
that sometimes they appear to be crashed or very slow, and
sometimes they appear to be alive and timely.�� ensures that
if there are some timely processes that “permanently” com-
pete for leadership, then a timely leader is eventually elected.
This is guaranteed even if several processes that compete for
leadership flicker forever.

To define �� precisely, we first partition the set of cor-
rect processes according to how frequently they compete for
leadership, as follows:

Definition 4 For each run R of ��, we partition the set of
processes that are correct in R as follows:

– Ncandidates = {q : q is correct and there is a time after
which candidateq = false}.

– Pcandidates = {q : q is correct and there is a time after
which candidateq = true}.

– Rcandidates = {q : q is correct and candidateq = true
infinitely often and candidateq = false infinitely often}.

Intuitively, the letters N , P , and R in the above definitions
stand for Not candidate, Permanent candidate, and Repeated
candidate, respectively.

�� is defined as follows:

Definition 5 In every run R of ��, the following properties
hold:

1. If there is a timely process in Pcandidates then there is a
timely process � in Pcandidates or in Rcandidates such
that

(a) There is a time after which leader� = �.
(b) For every process p ∈ Pcandidates, there is a time

after which leaderp = �.
(c) For every process p ∈ Rcandidates, there is a time

after which leaderp ∈ {?, �}.
2. For every process p ∈ Ncandidates, there is a time after

which leaderp = ?

Achieving stronger leader election properties:
canonical use of ��

Note that with the above specification of ��, the elected
leader � can be in Rcandidates. In other words, �� may elect
as the permanent leader a process � that repeatedly joins and
then leaves the competition for leadership, forever. Since a
process that leaves the competition for leadership is usually
not interested (or willing) to be the leader, this “feature” of
�� can be undesirable. We can make this problem disappear
if �� is used in a particular way, which we call “canonical”.

Suppose that a process p with candidatep = false
wishes to set candidatep to true (to compete for leadership).
The use of �� is canonical if p first waits until leaderp �= p
before it sets candidatep to true. Intuitively, if p stops being
a candidate, p must wait until it stops being the leader (if it
was the leader) before p is allowed to become a candidate
again. This prevents a process in Rcandidates from being the
leader forever.

More precisely, we define canonical use as follows:

Definition 6 The use of �� is canonical (in a run R) if, for
every correct process p, after p sets candidatep to false, p
waits until leaderp �= p before p sets candidatep to true.

We first show that using �� in the canonical way is not
harmful, i.e., p’s waiting for leaderp �= p does not cause
p to block.

Lemma 4 If a correct process p waits for leaderp �= p
when candidatep = false then p does not wait forever.

Proof Let p be a correct process and suppose, by con-
tradiction, that p waits forever for leaderp �= p when
candidatep = false. Then there is a time after which

123

308 M. K. Aguilera, S. Toueg

candidatep = false, and so p ∈ Ncandidates. By Prop-
erty (2) of ��, there is a time after which leaderp = ?, and
so p does not wait forever for leaderp �= p, a contradiction.

We now state and prove the main property obtained when
�� is used in the canonical way, namely, the leader � elected
by �� is a timely process in Pcandidates, that is, a timely
process that competes for leadership “forever”:

Theorem 2 With a canonical use of ��, the following prop-
erties hold (in every run R):

1. If there is a timely process in Pcandidates then there is a
timely process � in Pcandidates such that

(a) There is a time after which leader� = �.
(b) For every process p ∈ Pcandidates, there is a time

after which leaderp = �.
(c) For every process p ∈ Rcandidates, there is a time

after which leaderp ∈ {?, �}.
2. For every process p ∈ Ncandidates, there is a time after

which leaderp = ?

Proof We first note that, by definition, �� ensures Property
(2). To show Property (1) above, assume that there is a timely
process in Pcandidates. By the definition of ��, there is a
timely process � ∈ Pcandidates ∪ Rcandidates, that satisfies
Properties (a), (b), (c). It suffices to show that, when �� is
used in a canonical way, � �∈ Rcandidates.

Suppose, by contradiction, that � ∈ Rcandidates. By def-
inition, � sets candidate to true and candidate to false
infinitely often. With a canonical use of ��, after � changes
the value of candidate to false, � waits until leader� �= �,
and only after this wait is over � can change candidate
from false to true. Thus, leader� �= � infinitely often. This
contradicts Property (a). So � �∈ Rcandidates.

It is sometimes sufficient to have a leader election abstrac-
tion that provides the following simple property: (a) the pro-
cess elected as the leader knows that it is the leader, and
(b) the other processes know that they are not the leader. The
following corollary to Theorem 2 states that �� provides
this simple property.

Corollary 3 With a canonical use of ��, the following prop-
erties hold (in every run R):

If there is a timely process in Pcandidates then there is a
timely process � in Pcandidates such that

(a) There is a time after which leader� = �.
(b) For every correct process p �= �, there is a time after

which leaderp �= p.

4 Implementing �� using registers

In this section, we show that �� can be implemented using
(atomic) registers. To do so, we first define activity mon-
itors and explain how to implement them using registers
(Sect. 4.1). We then use activity monitors and registers to
implement �� (Sect. 4.2).

4.1 Definition and implementation of activity monitors

For any two processes p and q, a (dynamic) activity monitor
A(p, q) is an abstraction that can be used by p to determine
whether q is currently active or inactive, and whether q is
timely with respect to p (i.e., whether q is p-timely). This
activity monitor is fully dynamic: both p and q can indepen-
dently turn the monitoring mechanism on or off at any time
they want, say for efficiency reasons.

Process p tells A(p, q) to turn the monitoring of q on or
off by writing on or off to a variable monitoringp[q] (which
is local to p and is periodically read by A(p, q)).

Similarly, q tells A(p, q) whether q is active for p or not
by writing on or off to a variable active-forq [p] (which is
local to q and is periodically read by A(p, q)). If q is alive
and active-forq [p] = on at time t , we say that q is active
for p at time t . Otherwise, we say that q is inactive for p at
time t .

The activity monitor A(p, q) tells p two things: (a) what
it thinks the current status of q is, and (b) how many times
it has so far suspected that q is not p-timely. To do so,
A(p, q) writes two output variables, denoted statusp[q]
and faultCntrp[q], which are local to process p.

Intuitively, statusp[q] = active, inactive or ?, if A(p, q)

estimates that q is currently active for p, inactive for p, or
A(p, q) has no estimate on the status of q, respectively; and
faultCntrp[q] is the number of times A(p, q) has sus-
pected that q is not p-timely. Figure 1 summarizes the mean-
ing of the input and output variables of A(p, q).

Note that there are nine possibilities for the input of
A(p, q): each of monitoringp[q] and active-forq [p] can
be (1) eventually always on, (2) eventually always off, or (3)
oscillating between on and off, forever. Furthermore, there
are many possibilities for the behaviors of p and q: (1) p
may crash or not, (2) q may crash or not, and (3) q may be p-
timely or not. To define A(p, q), we must specify its output
in all the above cases. This is done as follows:

Definition 7 In every run R of A(p, q), if p is correct in R
then the following properties hold:

– statusp[q] properties

1. If there is a time after which monitoringp[q]=off
then there is a time after which statusp[q]=?

123

A gracefully-degrading liveness property 309

Fig. 1 Input and output variables of activity monitor A(p, q)

2. If there is a time after which monitoringp[q]=on
then there is a time after which statusp[q]�=?.

3. If q crashes or there is a time after which
active-forq [p]=off then there is a time after which
statusp[q]�=active.

4. If q is p-timely and there is a time after which
active-forq [p]=on then there is a time after which
statusp[q]�=inactive.

– faultCntrp[q] properties

5. faultCntrp[q] is bounded if any of the following
conditions hold:
(a) q is p-timely
(b) q crashes
(c) there is a time after which active-forq [p] =

off
(d) there is a time after which monitoringp[q] =

off

6. faultCntrp[q] increases without bound if all of the
following conditions hold:
(a) q is not p-timely
(b) q is correct
(c) there is a time after which active-forq [p] =

on
(d) there is a time after which monitoringp[q] =

on

Intuitively, Properties 1 and 2 indicate how statusp[q]
depends on monitoringp[q], while Properties 3 and 4 indi-
cate how it depends on active-forq [p] and the sched-
uling of q. For example, if q crashes then, by Property
3, there is a time after which statusp[q] = inactive or
statusp[q] = ?. If, in addition, there is a time after which
monitoringp[q]=on then Property 2 implies that there is a
time after which statusp[q] = inactive.

Properties 5 and 6 specify the behavior faultCntrp[q].
Note the Property 6 is not the converse of Property 5 (e.g.,
the negation of “there is a time after which X” is not “there
is a time after which not X”).

It is easy to implement an activity monitor A(p, q) using
an atomic register R. If p = q the implementation is trivial.

If p �= q, the detailed algorithm code is given in Fig. 2 and
its key ideas are the following. When q is active for p, q
periodically writes an increasing counter to R. If q wants to
indicate it is no longer active for p, q writes a special value
−1 to R, to indicate it is stopping willingly (instead of crash-
ing). When p does not monitor q, p sets statusp[q] to “?”.
When p monitors q, p checks if R increases periodically
and, if so, p sets statusp[q] to active. Otherwise, p times
out on R (we use adaptive timeouts that increase over time).
When a timeout happens, p sets statusp[q] to inactive and p
may or may not increment faultCntrp[q] : p increments
faultCntrp[q] if (a) R �= −1 and (b) R increased since
the last time p incremented faultCntrp[q]. Condition (a)
prevents faultCntrp[q] from increasing forever if q stops
being active for p, which is necessary to ensure part (c) of
Property 5 above. Condition (b) prevents faultCntrp[q]
from increasing forever if q crashes, which is necessary to
ensure part (b) of Property 5 above.

In the appendix, we show the following:

Theorem 3 For any pair of processes p �= q, the algorithm
in Fig. 2 implements an activity monitor A(p, q) using reg-
isters.

4.2 Implementing �� using activity monitors and registers

We now give an algorithm for �� in a system with regis-
ters where every pair of processes (p, q) is equipped with an
activity monitor A(p, q). This algorithm does not have any
synchrony mechanisms, such as timers and timeouts, because
synchrony has been completely incorporated into the activity
monitors.

The algorithm, shown in Fig. 3, uses a shared register
CounterRegister[p] for each process p; this register counts
roughly how many times p has been considered “bad” for
leadership. When a process p is a candidate for leadership,
p periodically queries A(p, q) for each process q. Recall
that A(p, q) outputs a counter faultCntrp[q] and a sta-
tus statusp[q]. Process p uses faultCntrp[q] to detect
“bad” processes: if p sees that faultCntrp[q] increases
then p increments CounterRegister[q] to “punish” q. Process
p uses the vector statusp to determine the set activeSetp of

123

310 M. K. Aguilera, S. Toueg

Fig. 2 Implementation of
A(p, q) using registers. The top
shows code for the monitored
process q, while the bottom
shows code for the monitoring
process p

processes q with statusp[q] = active; p also includes itself
in activeSetp. Process p picks its leader as the process � in
activeSetp with smallest CounterRegister[�]. If p picks itself
as leader then p sets A(p, q)’s active-forp[q] to on (for
every process q). Otherwise, p sets active-forp[q] to off .
Intuitively, a process is perceived to be active only if it con-
siders itself to be the leader.

Every time p stops and starts being a candidate for
leadership, p increments its own CounterRegister[p] as a
“self-punishment”. This ensures that a process r that stops

and starts being a candidate infinitely often has an unbounded
CounterRegister[r], which is necessary to ensure that even-
tually r is not chosen as leader. Without this self-punish-
ment, it is easy to find a scenario where r has the small-
est CounterRegister[−] and leadership oscillates forever
between r and another process.

Figure 3 shows the code in detail. Initially, p sets
leaderp to ?, monitoringp[q] to off and active-forp[q]
to off for every process q. While candidatep = false, p
does nothing. When p finds that candidatep = true, p

123

A gracefully-degrading liveness property 311

Fig. 3 Implementation of ��

using activity monitors and
registers

sets monitoringp[q] to on for every process q, to indi-
cate it wants A(p, q) to monitor q. Then, p increments
CounterRegister[p]. While p finds that candidatep =
true, p repeats the following actions. First, p queries its
activity monitors A(p, q) until it gets a non-? status from
each process q. Then, p sets activeSetp to contain itself and
every process q that is considered active by A(p, q). Next,
p picks its leader as the process � in activeSetp with smallest
CounterRegister[�]. If p picks itself, it sets active-forp[q]
to on otherwise it sets it to off , for every process q. Next,
if p finds that faultCntrp[q] increased then p increments
CounterRegister[q].

Correctness of this algorithm is given by the following:

Theorem 4 The algorithm in Fig. 3 implements �� in a
system with registers where every pair of processes (p, q) is
equipped with an activity monitor A(p, q).

We now proceed to show this theorem. Henceforth, we con-
sider an arbitrary run R of the algorithm.

We first show that no correct process gets stuck forever
during the execution of an iteration of the loop in lines 9–21.

Lemma 5 Every correct process completes every iteration
of the while loop in lines 9–21 that it starts.

Proof Suppose, by contradiction, that some correct process
p gets stuck forever during the execution of an iteration of the
loop in lines 9–21. It is easy to see that the only place where p
can get stuck is in the repeat-until loop of line 11. Let q ′ be the
value of variable q of p while p is executing this loop. Before
entering the loop in lines 9–21, p sets monitoringp[q ′] to
on in line 6, and monitoringp[q ′] is still equal to on when
p gets stuck in the loop of line 11. Thus, there is a time after
which monitoringp[q ′] = on. By Property (2) of A(p, q ′),
there is a time after which statusp[q ′] �= ?. Thus, p does not

123

312 M. K. Aguilera, S. Toueg

get stuck forever executing the loop of line 11 with q = q ′—a
contradiction.

We classify correct processes into the following three sub-
sets (according to their behavior in run R):

Definition 8

– ncandidates is the set of correct processes that execute
the body of the while loop in lines 9–21 finitely many
times.

– infcandidates is the set of correct processes that execute
the body of the while loop in lines 9–21 infinitely many
times.

– pcandidates is the set of correct processes that execute
the body of the while loop in lines 9–21 infinitely many
times and eventually execute forever in this loop.

Note that infcandidates and ncandidates form a partition of
the set of correct processes, and pcandidates is a subset of
infcandidates.

To prove that the algorithm satisfies the properties of
��, we first relate the sets pcandidates, ncandidates, and
infcandidates (which we will use to prove properties of
the algorithm) to the sets Pcandidates, Ncandidates, and
Rcandidates (which are used to specify ��).

Lemma 6 Pcandidates ⊆ pcandidates, Ncandidates ⊆
ncandidates, and Pcandidates ∪ Rcandidates ⊇
infcandidates.

Proof Let p ∈ Pcandidates. By definition, p is correct
and there is a time after which candidatep = true. Thus,
from the code of the algorithm, it is clear that p eventually
executes forever in the loop in lines 9–21. By Lemma 5, p
executes this loop infinitely many times. Therefore, by defi-
nition, p ∈ pcandidates.

Let p ∈ Ncandidates. By definition, p is correct and there
is a time after which candidatep = false. Thus, from the
code of the algorithm, it is clear that p executes the body
of the loop in lines 9–21 finitely many times. Therefore, by
definition, p ∈ ncandidates.

Let p ∈ infcandidates. Thus, p is correct and
p �∈ ncandidates. By the above, p �∈ Ncandidates. Thus,
p ∈ Pcandidates ∪ Rcandidates.

Lemma 7 For every process p ∈ ncandidates, there is a
time after which (a) leaderp = ? and (b) for every process
q ∈ �, monitoringp[q] = off and active-forp[q] = off .

Proof Let p ∈ ncandidates. By definition of ncandidates
and Lemma 5, it is clear that p eventually executes forever
in the empty loop of line 5. Note that just before entering
this loop, p sets leaderp to ? in line 2 and, for every pro-
cess q ∈ �, p sets monitoringp[q] to off in line 3 and
active-forp[q] to off in line 4.

Corollary 4 For every process p ∈ Ncandidates, there is a
time after which leaderp = ?.

Proof By Lemma 6, Ncandidates ⊆ ncandidates. The cor-
ollary is now immediate from Part (a) of Lemma 7.

By the above corollary, Property (2) of �� (Definition 5)
is satisfied in run R of the algorithm. We now proceed to
show that Property (1) of �� is also satisfied in run R.
Roughly speaking, the proof will proceed as follows. Assume
that there is a timely process in Pcandidates. We show that
if p is one such process then CounterRegister[p] eventu-
ally stops changing—intuitively, processes stop “punishing”
p. Then, for each process p, we define cp to be the final
value of CounterRegister[p] if it stops changing or cp = ∞
otherwise. We let � to be the process p with smallest cp,
breaking ties by process id. We then show that eventually
� picks itself as leader forever, that is, there is a time after
which leader� = �. This proves part (a) of Property (1)
of ��. Because � sets active-for�[p] to on exactly when
leader� = �, it follows that, for every process p, there is a
time after which active-for�[p] = on. We then show that,
for every process q �= �, leaderq �= q. Thus, for every
q �= �, there is a time after which active-forq [p] =
off for every process p. If there is a time after which
active-forq [p] = off and p �= q, we argue that there
is a time after which p does not pick q as its leader. Thus,
for every process p, there is a time after which leaderp ∈
{p, �, ?}. However, when p �= �, we showed that leaderp �=
p. Thus, there is a time after which leaderp ∈ {�, ?}. This
proves part (c) of Property (1) of ��. Finally, we argue
that for every process p in pcandidates, leaderp �=?. Since
Pcandidates ⊆ pcandidates, this now proves part (b) of
Property (1) of ��.

We now proceed with the detailed proof.

Definition 9 Let Timely = {q : q is timely in run R}.
If Pcandidates ∩ Timely = ∅, then Property (1) of ��

is trivially satisfied. Henceforth (from Lemmas 8 to 24) we
assume that

Assumption 5 Pcandidates ∩ Timely �= ∅
and show that Property (1) of �� is also satisfied in this case.

Lemma 8 pcandidates ∩ Timely �= ∅.

Proof By Lemma 6, Pcandidates ⊆ pcandidates. By
Assumption 5, Pcandidates ∩ Timely �= ∅. Thus,
pcandidates ∩ Timely �= ∅.

Lemma 9 For every process p, if some process writes
to CounterRegister[p] infinitely many times then
CounterRegister[p] increases without bound.7

7 Recall that we say v increases without bound if for every k ∈ N there
is a time after which v > k.

123

A gracefully-degrading liveness property 313

Proof Let p be some process, and suppose that some process
q writes to CounterRegister[p] infinitely many times. First
note that (*) CounterRegister[p] is written only in lines 8
and 20, using 1 plus a value read from CounterRegister[p]
in lines 7 and 13, respectively.

We claim that for every integer i ≥ 0, there is a time
after which CounterRegister[p] ≥ i . This claim proves the
lemma.

We show the claim by induction on i . For the base case
(i = 0), note that initially CounterRegister[p] = 0. More-
over, from (*), CounterRegister[p] ≥ 0 always holds. This
shows the base case.

Now suppose the claim holds for i , that is, there is a
time ti after which CounterRegister[p] ≥ i . We show
that there is a time ti+1 after which CounterRegister[p] ≥
i + 1. From (*), there is a time t ′i > ti after which,
if CounterRegister[p] is written, then it is written with 1
plus a value read from CounterRegister[p] after time ti .
By assumption, such a value read from CounterRegister[p]
is at least i . Thus, if CounterRegister[p] is written after
time t ′i then forever after CounterRegister[p] ≥ i + 1.
Since q writes to CounterRegister[p] infinitely many times,
q writes to CounterRegister[p] after time t ′i . After that,
CounterRegister[p] ≥ i + 1. This shows the claim.

Corollary 5 For every process p, CounterRegister[p]
increases without bound or it stops changing.

Proof Let p be a process. If CounterRegister[p] never stops
changing then some process writes to CounterRegister[p]
infinitely many times. By Lemma 9, CounterRegister[p]
increases without bound.

Lemma 10 Let p and q be processes such that
p ∈ infcandidates. Then faultCntrp[q] increases without
bound if and only if p writes to CounterRegister[q] infinitely
many times in line 20.

Proof Let p and q be processes such that p ∈ infcandidates.
First, suppose that faultCntrp[q] increases without

bound. Since p ∈ infcandidates, p executes line 11 infinitely
often, and so faultCntrp[q] also increases without bound.
Also, p executes the test faultCntrp[q] > maxFaultCntrp[q]
in line 19 infinitely many times. From the way p sets
maxFaultCntrp[q] in line 21, it is clear that p writes to
CounterRegister[q] infinitely many times in line 20.

Now, suppose that p writes to CounterRegister[q]
infinitely many times in line 20. Thus, p finds that
faultCntrp[q] > maxFaultCntrp[q] infinitely many times
in line 19. So, faultCntrp[q] increases without bound. Var-
iable faultCntrp[q] is set to faultCntrp[q] in line 11, and
so faultCntrp[q] also increases without bound.

Lemma 11 For every process q ∈ pcandidates ∩ Timely,
CounterRegister[q] stops changing.

Proof Assume, by contradiction, that for some process
q ∈ pcandidates ∩ Timely, CounterRegister[q] changes
infinitely many times. There are only two lines
where CounterRegister[q] can be changed: (1) in line 8,
CounterRegister[q] is written by q, and (2) in line 20,
CounterRegister[q] is written by some process. However,
q executes line 8 only finitely many times (since
q ∈ pcandidates). Therefore, processes write to
CounterRegister[q] infinitely many times in line 20. Since
there are only finitely many processes, some process p writes
to CounterRegister[q] infinitely many times in line 20. Thus,
p ∈ infcandidates and so, by Lemma 10, faultCntrp[q]
increases without bound. But, q ∈ Timely, so q is p-timely,
and thus, by Property (5) of A(p, q), faultCntrp[q] is
bounded—a contradiction.

Lemma 12 For every process p ∈ infcandidates −
pcandidates, CounterRegister[p] increases without bound.

Proof Let p ∈ infcandidates − pcandidates. By defini-
tion of infcandidates and pcandidates, it is clear that p
enters and exits the body of the loop in lines 9–21 infi-
nitely many times. Each time it enters this loop, p first
writes to CounterRegister[p] in line 8. Thus, by Lemma 9,
CounterRegister[p] increases without bound.

Definition 10 For every process p, we define cp as follows.
If CounterRegister[p] stops changing then cp is the final
value of CounterRegister[p]; otherwise, cp = ∞.

We now define � as the process in pcandidates with small-
est cp, breaking ties using the process id. Note that � is well
defined because, by Lemma 8, the set pcandidates is not
empty.

Definition 11 Let � be the process such that (c�, �) =
min{(cp, p) : p ∈ pcandidates}.
Lemma 13 There is a time after which CounterRegister[�]=
c� < ∞.

Proof By Lemmas 8 and 11, there is a process
k ∈ pcandidates such that CounterRegister[k] stops chang-
ing. Thus, by the definition of ck, ck < ∞. By the definition
of �, (c�, �) ≤ (ck, k), and so c� < ∞. By the definition of
c�, there is a time after which CounterRegister[�] = c�.

Lemma 14 For every process p �= � such that
p ∈ activeSet� infinitely often, there is a time after which
(CounterRegister[�], �) < (CounterRegister[p], p).

Proof Suppose p ∈ activeSet� infinitely often and p �= �.
Since � ∈ pcandidates, � executes line 12 infinitely many
times. By the way � sets activeSet� in line 12, it is clear
that status�[p] = active infinitely often. By the contrapos-
itive of Property (3) of A(�, p), we have (*) p is correct and
active-forp[�] = on infinitely often.

123

314 M. K. Aguilera, S. Toueg

By Lemma 13, there is a time after which
CounterRegister[�] = c� < ∞. By Corollary 5, there are
two possible cases:

Case 1 CounterRegister[p] increases without bound. Thus,
there is a time after which c� < CounterRegister[p].
Since there is a time after which CounterRegister[�] =
c�, there is a time after which (CounterRegister[�], �) <

(CounterRegister[p], p).

Case 2 CounterRegister[p] stops changing. By definition
of cp, there is a time after which CounterRegister[p] =
cp < ∞. It now suffices to show that (c�, �) < (cp, p).
By (*) and Lemma 7, p �∈ ncandidates. So p∈ infcandidates.
Since CounterRegister[p] stops changing, by Lemma 12,
p ∈ pcandidates. Thus, by the definition of � and the fact
that p �= �, we have (c�, �) < (cp, p).

Since activeSetp is initialized to {p} and p never removes
itself from activeSetp, we have the following:

Observation 6 For every process p, p ∈ activeSetp.

We now show that � eventually picks itself as the leader.

Lemma 15 There is a time after which leader� = �.

Proof Since �∈ pcandidates, (a) there is a time after which
the only place where � can set leader� is in line 14, and
(b) � sets leader� in line 14 infinitely many times. Each
time � sets leader� in line 14, � sets leader� to the pro-
cess q in activeSet� with smallest (counter�[q], q), where the
counter� vector has values read from the CounterRegister
vector in line 13. Since � is correct, by Observation 6,
� ∈ activeSet�. From Lemma 14, we conclude that there is a
time after which leader� = �.

Lemma 16 For every process p, there is a time after which
active-for�[p] = on.

Proof Let p be any process. Since � ∈ pcandidates,
(a) there is a time after which the only place where � can
set active-for�[p] is inside the if-then-else statement of
lines 15–17, and (b) � sets active-for�[p] in this if-then-
else statement infinitely many times. By Lemma 15, there
is a time after which leader� = �. From the way � sets
active-for�[p] in the if-then-else statement, it is now clear
that there is a time after which active-for�[p] = on.

Lemma 17 � ∈ Timely.

Proof Suppose, by contradiction, that � �∈ Timely.
By Lemma 8, there exists some process p ∈ pcandidates ∩

Timely. We now show that p and � meet the conditions
of Property 6 of A(p, �), implying that faultCntrp[�]
increases without bound.

(a) By assumption, � �∈ Timely. Moreover, since
p ∈ pcandidates∩Timely, p ∈ Timely. By Corollary 2,
� is not p-timely.

(b) By definition of �, � ∈ pcandidates. So, � is correct.
(c) By Lemma 16, there is a time after which

active-for�[p] = on.
(d) Since p ∈ pcandidates, eventually p executes forever

in the loop in lines 9–21. Before getting stuck in this
loop, p sets monitoringp[�] to on in line 6 and p does
not set monitoringp[�] to off afterwards. Thus, there
is a time after which monitoringp[�] = on.

By Property 6 ofA(p, �), faultCntrp[�] increases with-
out bound. By Lemma 10, p writes to CounterRegister[�]
infinitely many times. Thus, by Lemma 9, CounterRegister[�]
increases without bound. But, by Lemma 13,
CounterRegister[�] stops changing—a contradiction.

Lemma 18 For every process p ∈ infcandidates, there is a
time after which � ∈ activeSetp.

Proof Let p ∈ infcandidates. By Lemma 16, there is a
time after which active-for�[p] = on. By Lemma 17,
� is timely, and so � is p-timely. Since p is correct, by
Property (4) of A(p, �), (*) there is a time after which
statusp[�] �= inactive, i.e., statusp[�] ∈ {?, active}.

Since p ∈ infcandidates, p executes lines 11 and 12 infi-
nitely many times. In line 11, p sets statusp[�] to statusp[�],
and this is the only line in which p sets statusp[�]. Thus,
from (*), there is a time after which statusp[�] ∈ {?, active}.
Moreover, each time p executes line 12, statusp[�] �= ?
(because of the condition of the loop in line 11). So there
is a time after which, every time p executes line 12, p finds
that statusp[�] = active. From the way p sets activeSetp in
line 12, there is a time after which � ∈ activeSetp.

The next lemma shows that, except for �, all processes in
infcandidates eventually stop considering themselves as the
leader.

Lemma 19 For every process p ∈ infcandidates−{�}, there
is a time after which leaderp �= p.

Proof Let p ∈ infcandidates−{�}. By Lemma 18, there is a
time t1 after which � ∈ activeSetp.

We claim that there is a time t2 after which
(CounterRegister[�], �) < (CounterRegister[p], p). To
prove this claim, first note that, by Lemma 13, there is a
time after which CounterRegister[�] = c� < ∞. By Cor-
ollary 5, CounterRegister[p] increases without bound or
it stops changing. If CounterRegister[p] increases without
bound, the claim immediately follows. Now assume that
CounterRegister[p] stops changing. By the definition of cp,
there is a time after which CounterRegister[p] = cp < ∞.

123

A gracefully-degrading liveness property 315

To prove the claim it now suffices to show (c�, �) < (cp, p).
Since p ∈ infcandidates and CounterRegister[p] stops
changing, by Lemma 12, p ∈ pcandidates. Thus, by the
definition of � and the fact that p �= �, we have (c�, �) <

(cp, p)—this shows the claim.
There are only two places in the code where p can set

leaderp: (1) in line 2, where p sets leaderp to ?, and
(2) in line 14, where p sets leaderp to the process q in
activeSetp with the smallest (counter p[q], q), where the
counter p vector has values read from the CounterRegister
vector in line 13. From the above, if p executes lines 13
and 14 after time max{t1, t2}, it finds that (a) � ∈ activeSetp

and (b) (counter p[�], �) < (counter p[p], p). So if p exe-
cutes lines 13 and 14 after time max{t1, t2}, p sets leaderp

to a process different from p. Since p ∈ infcandidates, p
executes lines 13 and 14 infinitely many times, and so p exe-
cutes lines 13 and 14 after time max{t1, t2}. We conclude that
there is a time after which leaderp �= p.

Lemma 20 For every correct process q �= � and every pro-
cess p, there is a time after which active-forq [p] = off .

Proof Let q �= � be a correct process and p be a process. If
q ∈ ncandidates then by Lemma 7, there is a time after which
active-forq [p] = off . Now suppose that q �∈ ncandidates.
Since q is correct, q ∈ infcandidates. So, q executes the
if-then-else statement of lines 15–17 infinitely many times.
In this if-then-else statement, q sets active-forq [p] to
off if leaderq �= q and q sets active-forq [p] to on if
leaderq = q. Moreover, this is the only statement where q
can set active-forq [p] to on. By Lemma 19 there is a time
after which leaderq �= q. Therefore, there is a time after
which active-forq [p] = off .

Lemma 21 For every process p ∈ infcandidates, there is a
time after which activeSetp = {p, �}.
Proof Let p ∈ infcandidates. By Lemma 18, there is a time
after which � ∈ activeSetp. Since p ∈ infcandidates, p
is correct, so by Observation 6, p ∈ activeSetp. There-
fore, there is a time after which both p and � are in
activeSetp. We now prove that, for every q �∈ {p, �}, there is
a time after which q �∈ activeSetp. Let q �∈ {p, �}. Either
q crashes or, by Lemma 20, there is a time after which
active-forq [p] = off . Since p is correct, by Property (3)
of A(p, q), there is a time after which statusp[q] �= active.
Since p ∈ infcandidates, p sets statusp[q] to statusp[q]
in line 11 and then it sets activeSetp to {q : q ∈ � ∧
statusp[q] = active} ∪ {p} in line 12, infinitely many times.
Since there is a time after which statusp[q] �= active and
q �= p, there is a time after which q �∈ activeSetp.

We now show that eventually, correct processes either
choose � or ? as their leader.

Lemma 22 For every correct process p, there is a time after
which leaderp ∈ {?, �}.
Proof Let p be a correct process. If p ∈ ncandidates then
by Lemma 7, there is a time after which leaderp = ?.
Now assume that p �∈ ncandidates. Since p is correct,
p ∈ infcandidates. There are only two places in the code
where p can set leaderp: (1) in line 2, where p sets leaderp

to ?, and (2) in line 14, where p sets leaderp to a process
in activeSetp. Since p ∈ infcandidates, p sets leaderp in
line 14 infinitely many times. By Lemma 21, there is a time
after which activeSetp = {p, �}. Therefore, there is a time
after which leaderp ∈ {?, p, �}. If p = � the lemma is
immediate. If p �= �, by Lemma 19, there is a time after
which leaderp �= p, and the lemma also follows.

Lemma 23 For every process p ∈ pcandidates, there is a
time after which leaderp = �.

Proof Let p ∈ pcandidates. We claim that there is a time
after which leaderp �= ?.

To prove this claim note that since p ∈ pcandidates:
(a) there is a time after which p does not execute line 2,
which is the only place where leaderp can be set to ?, and
(b) p sets leaderp in line 14 infinitely many times, and when
it does so, it is clear that p sets leaderp to a non-? value.
So the claim holds.

From Lemma 22 and the above claim, there is a time after
which leaderp = �.

Putting together the above results, we get:

Lemma 24 � ∈ (Pcandidates ∪ Rcandidates) ∩ Timely.
Furthermore, the following holds:

1. There is a time after which leader� = �.
2. For every process p ∈ Pcandidates, there is a time after

which leaderp = �.
3. For every process p ∈ Rcandidates, there is a time after

which leaderp ∈ {?, �}.

Proof Since �∈pcandidates, we have that � ∈ infcandidates,
and so by Lemma 6, � ∈ Pcandidates ∪ Rcandidates. By
Lemma 17, � ∈ (Pcandidates ∪ Rcandidates) ∩ Timely. We
now show that the above three properties hold:

1. This is Lemma 15.
2. Let p ∈ Pcandidates. By Lemma 6, p ∈ pcandidates.

By Lemma 23, there is a time after which leaderp = �.
3. This follows immediately from Lemma 22 since

every process in Rcandidates is correct.

Theorem 4 The algorithm in Fig. 3 implements �� in a
system with registers where every pair of processes (p, q) is
equipped with an activity monitor A(p, q).

123

316 M. K. Aguilera, S. Toueg

Proof Property (2) of �� holds by Corollary 4. If
Pcandidates∩Timely = ∅, Property (1) of �� trivially holds.
If Pcandidates ∩ Timely �= ∅, Assumption 5 holds. In this
case, we can apply Lemma 24 which shows that Property (1)
of �� holds.

From Theorems 3 and 4, we have

Theorem 7 The algorithm obtained by combining the algo-
rithms in Figs. 2 and 3 implements �� in a system with
registers.

Note that this algorithm for implementing �� with reg-
isters ensures that if Pcandidates ∩ Timely �= ∅ then there
is a time after which the only processes that write to shared
registers are the leader and processes in Rcandidates. Thus,
in a precise sense, the implementation is “write efficient”.

5 Implementing �� using abortable registers

We now show how to implement �� using (single-writer
single-reader) abortable registers.8 An abortable register is
a very weak object because its read or write operations may
abort if they are concurrent.9 For example, suppose process
p wants to communicate a value v to process q by writing
v to abortable register R. Then, p needs to write v to R
successfully (without aborting) at least once, and q needs to
periodically read R to see if its value has changed. However,
every time p writes to R it is possible that q reads R concur-
rently, causing both write and read to abort, and this could
go on forever.

To implement��, we first give two communication mech-
anisms as building blocks: (1) a mechanism for p to send to
q the final value of a variable (of p) that stops changing,
provided p is q-timely (if p is not q-timely or the variable
keeps changing forever, q may never see any of p’s values),
and (2) a mechanism for p to periodically communicate a
heartbeat to q so that q can determine if p is q-timely or
not (but p cannot convey any other information to q in this
way). We then explain how these two weak communication
mechanisms can be used to implement ��.

Communicating the final value of a variable that eventu-
ally stops changing. Suppose p wants to communicate to
q the latest content of p’s local variable msgTo[q]. To do so,
whenever p sees that msgTo[q] changed to some new value
v, p repeatedly writes v to R until the write is successful.

8 A single-writer single-reader abortable register is an abortable regis-
ter in which there is one designated process that can write to it and one
designated process that can read it.
9 An operation invoked by a process that crashes spans a finite interval
of time which may extend beyond the time of the crash.

At the same time q periodically reads R to check for new
contents. To try to avoid concurrent execution, q slows down
the rate at which it reads R if q thinks that p might be trying
to write to R without success—this happens if the reads by
q abort or return values that do not change. If p is q-timely,
eventually q slows down (the rate at which it reads R) enough
so that p executes its write solo, ensuring that eventually p’s
write is successful. In fact, if msgTo[q] stops changing, even-
tually p writes successfully the final value of msgTo[q] to R
and stops writing to R. Thus, eventually q reads R without
p writing concurrently, and q gets the final value.

Note that this mechanism may fail to communicate any
information if p is not q-timely or if msgTo[q] keeps chang-
ing forever. In both cases, there are runs in which all reads
by q are concurrent with a write by p and they all abort.

The code details are shown in Fig. 4. There is a vector
MsgRegister[p, q] of abortable registers written by p and
read by q, for every pair of distinct processes p and q. There
are two procedures, WriteMsgs(msgTo) and ReadMsgs(),
which are to be called by processes periodically. Procedure
WriteMsgs(msgTo) serves for a process p to communicate
the contents of msgTo[q] to every process q �= p. Variable
msgCurr[q] has the value of msgTo[q] that p is currently
trying to write to MsgRegister[p, q] and prevWriteDone[q]
indicates whether the value of msgCurr[q] has been written
successfully to MsgRegister[p, q]. The procedure returns the
vector prevWriteDone. Procedure ReadMsgs() serves for a
process q to receive contents communicated by every pro-
cess p �= q. In this procedure, q reads MsgRegister[p, q]
for each p, every readTimeout[p] invocations. If the read
aborts or returns the same value as the last successful
read then q increments readTimeout[p]. Otherwise, q resets
readTimeout[p] to 1 and sets prevMsgFrom[p] to the value
read. At the end of the procedure, q returns prevMsgFrom,
which has the last successfully read message from every pro-
cess.

Communicating a heartbeat. Suppose that a process p
wants to communicate a “heartbeat signal” to q, which q
can use to determine if p is q-timely or not. If processes had
an atomic register R̂, p could write an increasing counter to
R̂ and q could read R̂ and verify that its value increases in a
timely fashion. This scheme is problematic if we replace R̂
with an abortable register R, for two reasons: (a) the writes
of p to R may always abort and never take effect, and (b) the
reads of q on R may always abort and so q never sees the
value of R. We can avoid problem (a) by having q gradu-
ally slow the rate with which it reads R (as we did above in
ReadMsgs), but how do we deal with problem (b)? The key
idea is that if q reads R and the read aborts then q knows that
p is writing some value to R, even if q does not know what
the value is. Thus, an abort response indicates that p is alive.
However, it does not indicate that p is q-timely: p may be

123

A gracefully-degrading liveness property 317

Fig. 4 Implementation of ��

using abortable
registers—procedures for
communicating the final value
of a variable that stops changing

slow and takes increasingly long to complete its writes to R,
while all the reads by q keep aborting.

We solve this problem by using two heartbeat registers: p
periodically writes increasing values to both registers, alter-
nating between the two, and q reads both registers in alter-
nation as well; q considers p to be q-timely only if, for both
registers, the read aborts or returns a higher value than pre-
viously returned. If p took a long time to complete a write to
one register, then a read on the other register would neither
abort nor return a higher value, so q would not consider p as
q-timely.

The details of this mechanism are shown in Fig. 5. Process
p periodically calls procedure SendHeartbeat(dest), where
dest is a boolean vector indicating to whom p wants to com-
municate its heartbeat. In this procedure, for every process
q such that dest[q] is true, p writes an ever-increasing value
to HbRegister1[p, q] and HbRegister2[p, q]. Process q calls
procedure ReceiveHeartbeat() from time to time. In this pro-
cedure, q reads HbRegister1[p, q] and HbRegister2[p, q]
every hbTimeout[p] invocations, for each process p. If, for
both registers, the read aborts or returns a higher value than
before, then q adds p to activeSet. Otherwise, q removes p
from activeSet and increments hbTimeout[p]. At the end of
the procedure, q returns activeSet—this is the set of processes
that q considers to be q-timely.

The main �� algorithm. We use the two communication
mechanisms above to implement ��. The algorithm, shown
in Fig. 6, has some similarities with the algorithm of Sect. 4.2:

processes use counters and choose the leader as the process
with smallest counter among some set of active processes.
However, we use some new techniques to determine the set
of active processes and to maintain the counters.

To determine the set of active processes, candidate pro-
cesses periodically call the procedures SendHeartbeat and
ReceiveHeartbeat, as described above. ReceiveHeartbeat
returns the set of active processes, which is then stored in
a local variable activeSetp for each participant p.

To maintain the counters used to pick the leader, p keeps its
own view of the counter of other processes in a local variable:
counter p[q]has p’s view of the counter of q. While p is a can-
didate for leadership, p communicates its own counter p[p] to
other processes via procedure WriteMsgs, described before.
Moreover, if p finds that q is not active, p punishes q by
asking q to set its counter counterq [q] beyond the counter of
p’s current leader—a value sufficiently large to ensure that
q is not picked as leader by p. This punishment is commu-
nicated also via procedure WriteMsgs. Procedure WriteMsgs
returns a boolean vector, stored in writeDone, indicating for
each process q whether p wrote successfully to the register
readable by q. Recall that WriteMsgs only guarantees that a
process p communicates a value successfully to q if (a) this
value stops changing, and (b) p is q-timely and keeps calling
WriteMsgs periodically.

In the proofs, we show that (a) always holds, that is, for
every process p, both p’s counter and any punishments sent
by p stop changing. However, (b) poses a problem: if p is
not timely then some candidates for leadership may receive

123

318 M. K. Aguilera, S. Toueg

Fig. 5 Implementation of ��

using abortable
registers—procedures for
communicating a heartbeat

the latest value of counter p[p] while others never do so, cre-
ating an inconsistency. This is undesirable because it could
cause different processes to pick different leaders. To avoid
this problem, if p cannot communicate with q via WriteMsgs
then p stops communicating heartbeats to q. This ensures the
property that if q eventually considers p active forever then q
eventually learns the final value of counter p[p]—a property
that is key for correctness of the algorithm.

Finally, like in the algorithm of Sect. 4.2, every time p
becomes a candidate of ��, it inflicts a “self-punishment”. It
does not do so simply by increasing counter p[p] (otherwise
counter p[p] may never stop changing and thus WriteMsgs
may not be able to communicate its value to other processes)
but rather by setting counter p[p] beyond the counter of p’s
current leader.

Figure 6 shows the code in detail. Initially, p sets leaderp

to ?. When p finds that candidate = true, p punishes itself
by increasing counter p[p] beyond the counter of p’s leader.
While p finds that candidate = true, p repeats the follow-
ing actions. First, p calls SendHeartbeat(writeDone), where
writeDone indicates to whom p should send its heartbeat
(its value comes from procedure WriteMsgs, below). Then,
p calls ReceiveHeartbeat to update activeSetp. Next, p picks
its leader. For each q not in activeSetp, p sets actrTop[q] to

be greater than the counter of p’s leader (actrTo stands for
“accusation counter to”). Intuitively, p wants to punish q by
asking q to set its counter to at least actrToq [p]. Next, p
assembles a message msgTop[q] to be sent to q via proce-
dure WriteMsgs. This message consists of counter p[p] and
actrTop[q]. Then, p calls WriteMsgs and sets writeDone to
the result—a boolean vector indicating whether, for each pro-
cess q, p wrote successfully to the register readable by q.
(Recall that writeDone determines to whom p communi-
cates its heartbeat when p calls SendHeartbeat.) Next, p
calls ReadMsgs to receive the pairs of counters and punish-
ments that other processes are communicating to p. Using
this information, p updates counter p[q], for every q �= p,
and p increases counter p[p] according to the punishments
it received.

Correctness of this algorithm is given by the following:

Theorem 8 The algorithm in Figs. 4, 5, and 6 implements
�� in a system with abortable registers.

We now proceed to show this theorem. Henceforth, we con-
sider an arbitrary run R of this algorithm.

Lemma 25 Every correct process completes every iteration
of the do-while loop in lines 44–57 that it starts.

123

A gracefully-degrading liveness property 319

Fig. 6 Implementation of ��

using abortable registers—main
code

Proof This is clear because the body of the do-while loop in
lines 44–57 has no unbounded loops.

We classify correct processes into the following three sub-
sets (according to their behavior in run R):

Definition 12

– ncandidates is the set of correct processes that execute the
body of the do-while loop in lines 44–57 finitely many
times.

– infcandidates is the set of correct processes that execute
the body of the do-while loop in lines 44–57 infinitely
many times.

– pcandidates is the set of correct processes that execute
the body of the do-while loop in lines 44–57 infinitely
many times and eventually execute forever in this loop.

Note that infcandidates and ncandidates form a partition of
the set of correct processes, and pcandidates is a subset of
infcandidates.

To prove that the algorithm satisfies the properties of
��, we first relate the sets pcandidates, ncandidates, and
infcandidates (which we will use to prove properties of
the algorithm) to the sets Pcandidates, Ncandidates, and
Rcandidates (which are used to specify ��).

Lemma 26 Pcandidates ⊆ pcandidates, Ncandidates ⊆
ncandidates, and Pcandidates∪Rcandidates⊇ infcandidates.

Proof (Similar to the proof of Lemma 6.) Let
p ∈ Pcandidates. By definition, p is correct and there is
a time after which candidatep = true. Thus, from the
code of the algorithm, it is clear that p eventually executes
forever in the loop in lines 44–57. By Lemma 25, p exe-
cutes this loop infinitely many times. Therefore, by defini-
tion, p ∈ pcandidates.

Let p ∈ Ncandidates. By definition, p is correct and there
is a time after which candidatep = false. Thus, from the
code of the algorithm, it is clear that p executes the body of
the loop in lines 44–57 finitely many times. Therefore, by
definition, p ∈ ncandidates.

Let p ∈ infcandidates. Thus, p is correct and
p �∈ ncandidates. By the above, p �∈ Ncandidates. Thus,
p ∈ Pcandidates ∪ Rcandidates.

Lemma 27 For every process p ∈ ncandidates, there is a
time after which leaderp = ?.

Proof (Similar to the proof of Lemma 7.) Let
p ∈ ncandidates. By definition of ncandidates and
Lemma 25, it is clear that p eventually executes forever in

123

320 M. K. Aguilera, S. Toueg

q q q q q

p p p

time t

Fig. 7 After time t, p takes at least one step every 3 steps of process q

the empty loop of line 42. Note that just before entering this
loop, p sets leader to ? in line 41.

Corollary 6 For every process p ∈ Ncandidates, there is a
time after which leaderp = ?.

Proof Clear from Lemmas 26 and 27.

By the above corollary, Property (2) of �� is satisfied in
run R of the algorithm. We now proceed to show that Prop-
erty (1) of �� is also satisfied in run R.

Definition 13 Let Timely = {q : q is timely in run R}.
If Pcandidates ∩ Timely = ∅, then Property (1) of �� is

trivially satisfied. Henceforth (from Lemmas 28 to 49) we
assume that

Assumption 9 Pcandidates ∩ Timely �= ∅
and show that Property (1) of �� is also satisfied in this case.

Lemma 28 pcandidates ∩ Timely �= ∅.

Proof Clear from Assumption 9 and Lemma 26.

Definition 14 We say that “process p does X every k steps of
process q” if p does X during any time interval that contains
k steps of process q.

Similarly, we define the following:

Definition 15 We say that “after time t, process p does X
every k steps of process q” if p does X during any time
interval that starts after time t and that contains k steps of
process q.

For example, when we say “after time t, p takes at least
one step every 3 steps of process q” we mean that, in any
time interval after time t containing 3 steps of q, p takes at
least one step, as illustrated in Fig. 7.

Lemma 29 There exists an integer C0 such that, for every
process p ∈ pcandidates ∩ Timely and every process q, p
takes at least one step every C0 + 1 steps of q.

Proof For every process p ∈ pcandidates ∩ Timely and
every process q, p is q-timely so there is an integer i pq

such that every time interval containing i pq steps of q
has at least one step of p. Let C0 = max{i pq : p ∈
pcandidates ∩ Timely and q ∈ �}.

Consider a process p ∈ pcandidates ∩ Timely and a pro-
cess q. Any time interval with C0 + 1 steps of q includes at
least i pq + 1 steps of q and hence a step of p.

Definition 16 Let C0 be the integer from Lemma 29.

Corollary 7 For every process p ∈ pcandidates ∩ Timely,
every process q, and every integer k ≥ 1, p takes at least k
steps every kC0 + 1 steps of q.

Proof Clear from Lemma 29.

Definition 17 For processes p and r , we say that p writes a
message successfully to r at time t if, at time t ,

– p executes in line 3 with q = r and the if guard evaluates
to false, or

– p receives a response ok from the write to
MsgRegister[p, q] with q = r in line 5.

Intuitively, p writes a message successfully to r if either the
value it wants to write to MsgRegister[p, r] has already been
written previously (the guard in line 3 evaluates to false) or p
actually writes the value to MsgRegister[p, r] and the write
returns an ok response.

The body of the do-while loop in lines 44–57 has no
unbounded loops. Therefore, we can define the following:

Definition 18 Let CM and Cm be the maximum and mini-
mum, respectively, number of steps to execute one complete
iteration of the do-while loop in lines 44–57.

Note that the values of CM and Cm depend on the code alone,
and not on how fast or slow a process executes the code.

Definition 19 Let T0 be the time after which processes in
pcandidates never exit the do-while loop in lines 44–57.

We now generalize Definition 14 for properties that hold
during a time interval:

Definition 20 In the following, we say “during times [t, t ′],
process p does X every k steps of process q” if p does X
during any time interval that is contained in [t, t ′] and that
contains k steps of process q.

The next lemma and corollary state sufficient conditions
for a process p to periodically write a message successfully
to a process q.

Lemma 30 For all processes p �= q, if p ∈ pcandidates ∩
Timely and q ∈ infcandidates then there exists an integer c
and a time t > T0 such that, after time t, p writes a message
successfully to q at least once every c + 1 steps of q.

Proof Consider two processes p �= q and suppose that
p ∈ pcandidates ∩ Timely and q ∈ infcandidates. Let
α = �(C0CM + 1)/Cm�.

123

A gracefully-degrading liveness property 321

Claim 1 After time T0, if q executes 2αCm steps without
reading variable MsgRegister[p, q] then p writes a message
successfully to q at some time between the first and last of
those 2αCm steps of q.

To show Claim 1, suppose that some time after
T0, q executes 2αCm steps without reading variable
MsgRegister[p, q]. During such steps of q, by Corol-
lary 7, p executes at least �(2αCm − 1)/C0� steps. Since
�(2αCm − 1)/C0� ≥ 2CM , during those steps p executes
procedure WriteMsgs in its entirety at least once. In this pro-
cedure, when p executes line 3 for q, if the guard evaluates to
false then p writes a message successfully to q by definition.
Otherwise, p writes to MsgRegister[p, q] in line 5. Since q
does not read variable MsgRegister[p, q] during those steps
of p, by the non-triviality property of abortable registers the
write returns ok. Thus, p writes a message successfully to q
by definition. This shows Claim 1.

Let c = 12(α + 1)αCm and t = T0 + 1. To prove the
lemma, we now show that after time t, p writes a message
successfully to q at least once every c + 1 steps of q.

Suppose, by contradiction, that for some t ′ > t , starting
at time t ′, q takes c + 1 steps without p writing a message
successfully to q. Let t ′′ be the time when q takes the last of
those c + 1 steps.

Claim 2 During the time interval [t ′, t ′′], there is at most
one value that p can write to MsgRegister[p, q].

To show Claim 2, note that if p never writes to
MsgRegister[p, q] during [t ′, t ′′] then the claim holds vacu-
ously. Now, suppose that p writes to MsgRegister[p, q] dur-
ing [t ′, t ′′]. Consider the first such a write, and let v be the
value being written. Then, v = msgCurrp[q] at the time
the write occurs. Neither this first write nor any subsequent
writes to MsgRegister[p, q] until time t ′′ return ok since p
does not write a message successfully to q during [t ′, t ′′].
Therefore, after the first write, prevWriteDonep[q] is set to
false in line 6 and then it is never set to true before time
t ′′. Thus, after the first write until time t ′′, p does not change
msgCurrp[q] because of the guard in line 4. Thus, any subse-
quent writes to MsgRegister[p, q] until time t ′′ are for value
v. This shows Claim 2.

Claim 3 During times [t ′, t ′′], q finds that resq [p] �= ⊥ and
resq [p] �= prevMsgFrom[p] in line 14 every 4(α + 1)αCm

steps of q.10

To show Claim 3, consider any time interval [u′, u′′] con-
tained in [t ′, t ′′] in which q executes 4(α+1)αCm steps. From
Claim 1 and the fact that p does not write a message suc-
cessfully to q during times [t ′, t ′′], we know that (*) during

10 Recall from Definition 20 the meaning of the statement “during times
[t ′, t ′′], process p does X every k steps of q”.

times [t ′, t ′′], q reads MsgRegister[p, q] at least once every
2αCm steps of q. (Note that this read occurs in line 13.)
Therefore, during [u′, u′′], q reads MsgRegister[p, q] at
least 2(α + 1) = 2α + 2 times, storing the result in
resq [p]. We now prove that at least once in the first 2α

times that this happens, resq [p] �= ⊥ and resq [p] �=
prevMsgFrom[p] (this implies Claim 3). Suppose, by con-
tradiction, that in the first 2α times during [u′, u′′] when q
reads MsgRegister[p, q] in line 13, the result resq [p] sat-
isfies resq [p] = ⊥ or resq [p] = prevMsgFrom[p]. Then,
by the guard in line 14, q increments readTimeoutq [p] in
line 15 at least 2α times without resetting it to 1 in line 18.
Clearly, readTimeoutq [p] is always a positive integer. There-
fore, after being incremented 2α times, readTimeoutq [p] is
set to at least 2α + 1. Thus, the next time when q reads
MsgRegister[p, q] in line 13, readTimerq [p] ≥ 2α + 1
because of the assignment in line 12. Subsequently, by the
way readTimerq [p] works, q executes at least 2α complete
iterations of the do-while loop in lines 44–57 without reading
MsgRegister[p, q], and this happens before the (2α + 2)-th
reading of MsgRegister[p, q]during [u′, u′′]. Since each loop
iteration takes at least Cm steps, q takes 2αCm steps without
reading MsgRegister[p, q]. This contradicts (*) and shows
Claim 3.

Since q executes 12(α+1)αCm steps during [t ′, t ′′], from
Claim 3, there are at least three times during [t ′, t ′′] when q
finds that (**) resq [p] �= ⊥ and resq [p] �= prevMsgFrom[p]
in line 14. Consider the first three such times and let r j be the
value of resq [p] in the j-th time, for j = 1, 2, 3. Then, from
(**), r j �= ⊥ for j = 1, 2, 3. Moreover, from (**) and the
fact that p sets prevMsgFromq [p] to r j in line 17, we have
that r1 �= r2 and r2 �= r3.

Note that r j is the value returned by the read of
MsgRegister[p, q] in line 13, for j=1, 2, 3. By Claim 2, there
is at most one value that p can write to MsgRegister[p, q]
during [t ′, t ′′]. Therefore, by linearizability of abortable reg-
isters, it is not possible for the non-⊥ values read from
MsgRegister[p, q] to change more than once. Thus, either
r1 = r2 or r2 = r3. This contradicts the fact that r1 �= r2 and
r2 �= r3.

Corollary 8 There exists an integer C1 and a time
T1 > T0 such that, for all processes p �= q such that
p ∈ pcandidates ∩ Timely and q ∈ infcandidates, after time
T1, p writes a message successfully to q at least once every
C1 + 1 steps of q.

Proof Immediate from Lemma 30 and the fact that the sys-
tem has only finitely many processes.

Definition 21 Let C1 and T1 be the integer and time from
Corollary 8.

123

322 M. K. Aguilera, S. Toueg

We now show that if p periodically writes messages
successfully to q and p’s message to q stops changing, then q
eventually sees the message provided that q ∈ infcandidates.

Lemma 31 For all processes p �= q, if

(a) p writes a message successfully to q infinitely often,
(b) there is a value v and a time after which msgTop[q] = v,

and
(c) q ∈ infcandidates

then there is a time after which msgFromq [p] = v.

Proof Consider two processes p �= q, and suppose that p
writes a message successfully to q infinitely often, there
is a value v and a time after which msgTop[q] = v,
and q ∈ infcandidates. Let t1 be the time after which
msgTop[q] = v.

Claim 1 There is a time t2 > t1 after which msgCurrp[q] =
msgTop[q].

Suppose, by contradiction, that msgCurrp[q] �=
msgTop[q] infinitely often. The only place where
msgCurrp[q] changes is in line 4, where it is set to
msgTop[q]. Thus, since after time t1 msgTop[q] = v and
msgCurrp[q] �= msgTop[q] infinitely often, there is a time
after which p does not set msgCurrp[q] in line 4. Thus,
(*) there is a time t ′1 after which msgCurrp[q]does not change
and msgCurrp[q] �= msgTop[q]. After time t ′1, every time q
executes line 3, the if guard evaluates to true. Since p writes
messages successfully to q infinitely often, there is some
time after max{t1, t ′1} when p writes a message to q success-
fully. At such a time, by Definition 17, p executes line 5 and
receives an ok response from the write to MsgRegister[p, q].
After doing so, p sets prevWriteDonep[q] to true. Since
prevWriteDonep[q] can change only in line 6, the next time
p executes line 3, its guard evaluates to true by (*) and
prevWriteDonep[q] is still true. Thus p executes line 4 and
sets msgCurrp[q] to msgTop[q]. This contradicts (*) and
shows Claim 1.

Claim 2 There is a time after which p never writes to
MsgRegister[p, q] in line 5.

Suppose, by contradiction, that p writes to
MsgRegister[p, q] in line 5 infinitely often. Then, (**) p
executes line 3 infinitely often with the if guard evaluat-
ing to true. Let t ′2 be some time after t2 when p executes
line 3 and the guard evaluates to true. Then, by Claim 1,
at time t ′2 we have that prevWriteDonep[q] = false. After
time t ′2, if p ever gets an ok response from the write to
MsgRegister[p, q] in line 5 then p sets prevWriteDonep[q] to
true in line 6 and, because prevWriteDonep[q] is not changed
anywhere else, in every subsequent execution of line 3, the

guard evaluates to false and therefore prevWriteDonep[q]
remains true forever, and this contradicts (**). Therefore,
(***) after time t ′2, every time p executes line 5, p gets a ⊥
response from the write to MsgRegister[p, q]. Since p writes
a message successfully to q infinitely often, it does so at some
time t ′′2 > t ′2. At time t ′′2 , from (***) and Definition 17, p
executes in line 3 and the guard evaluates to false. There-
fore, prevWriteDonep[q] = true and, by the same argument
above, prevWriteDonep[q] remains true forever after, which
contradicts (**). This shows Claim 2.

Claim 2 implies that (a) eventually MsgRegister[p, q]
stops changing, (b) p eventually stops changing
prevWriteDonep[q] (since line 6 is the only place where
this happens), and (c) the final value of prevWriteDonep[q]
is true (otherwise p keeps writing to MsgRegister[p, q]
by the guard in line 3). Thus, at the last time that p sets
prevWriteDonep[q] (which could be on initialization), p sets
it to true, and so MsgRegister[p, q] = msgCurrp[q]. More-
over, at this time, msgCurrp[q] = v (otherwise, subsequently
p finds that msgCurrp[q] �= msgTop[q] in line 3 and sets
prevWriteDonep[q] again). Thus, there is a time t3 > t2
after which MsgRegister[p, q] = v.

From Claim 2, there is a time t4 > t3 after which p does not
access MsgRegister[p, q]. Since q ∈ infcandidates, eventu-
ally q tries to read MsgRegister[p, q] in line 13 after time
t4. When this happens, the read does not abort and it returns
v. Thus, q sets prevMsgFromq [p] to v (if it is not set to
that value already). Subsequently, any time q tries to read
MsgRegister[p, q], the read returns v. Thus, there is a time
after which prevMsgFromq [p] = v.

The next lemma states sufficient conditions for a process
p to periodically write to its two heartbeat registers that are
read by process q.

Lemma 32 There exists an integer C2 and a time T2 > T0

such that, for every processes p �= q, if p ∈ pcandidates ∩
Timely and q ∈ infcandidates, then after time T2, p writes to
HbRegister1[p, q] and HbRegister2[p, q] in lines 24–25 at
least once every C2 + 1 steps of q.

Proof Let C2 = C1 + C0(CM + 1) and T2 = T1.
Consider two processes p �= q such that p ∈ pcandidates

∩Timely and q ∈ infcandidates. Let t1 be some time after T2.
By Corollary 8, starting at time t1, q takes at most C1 steps
before p writes a message successfully to q. Let t2 be the
first time after t1 when this happens. Next, q takes at most
C0(CM +1) steps before p has executed CM steps (by Corol-
lary 7). We now consider what p does during those CM steps.
After writing a message successfully to q, p returns in line 7
with prevWriteDonep[q] = true. Thus, p sets writeDone
in line 52 so that writeDonep[q] = true. Next, p executes
SendHeartbeat(dest) with dest[q] = true. Inside this proce-
dure, p writes to HbRegister1[p, q] and HbRegister2[p, q]
in lines 24–25.

123

A gracefully-degrading liveness property 323

Definition 22 Let C2 and T2 be the integer and time from
Lemma 32.

Definition 23 We say that a process p times out on a
process q at time t if p removes q from activeSetp in line 38
at time t .

We now give sufficient conditions for a process q not to
timeout on a process p.

Lemma 33 For every process p ∈ pcandidates∩Timely and
every process q �= p, there is a time after which q does not
time out on p.

Proof Suppose, by contradiction, that there is a timely pro-
cess p ∈ pcandidates ∩ Timely and a process q such that q
times out on p infinitely often. Then hbTimeoutq [p] grows
without bound (because q increments hbTimeoutq [p] right
after q times out on p, and hbTimeoutq [p] is monotonically
nondecreasing).

Since p ∈ pcandidates ∩ Timely, by Lemma 32,
(*) after time T2, p writes to HbRegister1[p, q] and
HbRegister2[p, q] in lines 24–25 at least once every C2 + 1
steps of q.

From the code in Fig. 5, q repeats the following cycle:
(1) it sets hbTimerq [p] to hbTimeoutq [p], and (2) q executes
hbTimeoutq [p] iterations of the do-while loop in lines 44–57
until hbTimerq [p] reaches 0, and (3) q executes line 30. From
the time (1) occurs to the time (3) occurs, q does not read
HbRegister1[p, q]. Thus, since hbTimeoutq [p] grows with-
out bound, there is a time t when hbTimeoutq [p] reaches a
large enough value so that, after t, q invokes a read operation
on HbRegister1[p, q] (in line 33) at most once every C2 + 5
steps of q.

Consider any time t ′ > max{T2, t} when q invokes a
read operation on HbRegister1[p, q]. In its next 3 steps,
q gets a response for the read, invokes a read operation
on HbRegister2[p, q], and gets a response. Subsequently,
q executes at least C2 + 1 steps without invoking a read
on HbRegister1[p, q] again (since t ′ > t). From (*), while
q executes those steps, p writes to HbRegister1[p, q] and
to HbRegister2[p, q] at least once. Moreover, when either
of these writes happen, p is the only process accessing
HbRegister1[p, q] or HbRegister2[p, q] (since the only pro-
cesses that access this register are p and q). Thus, neither
write of p aborts, and so they take effect, causing the values
of HbRegister1[p, q] and HbRegister2[p, q] to increase. The
next time hbTimerq [p] reaches 0, q reads HbRegister1[p, q]
and HbRegister2[p, q] again. For each of these, either q reads
⊥ or it reads a value different from what it read before. There-
fore, the guard in line 35 evaluates to true, and so q does not
timeout on p.

Thus, we have shown that if q reads HbRegister1[p, q]
at a time t ′ > max{T2, t} then the next time hbTimerq [p]

reaches 0, q does not timeout on p. Therefore, there is a time
after which q never times out on p—a contradiction.

Since activeSetp is initialized to {p} and p never removes
itself from activeSetp, we have the following:

Observation 10 For every process p, p ∈ activeSetp.

Lemma 34 For every process p ∈ pcandidates ∩ Timely
and every process q ∈ infcandidates, there is a time after
which p ∈ activeSetq .

Proof Let p ∈ pcandidates ∩ Timely and q ∈ infcandidates.
If p = q then the result follows from Observation 10. So
assume p �= q. Process q calls procedure ReceiveHeartbeat
infinitely many times. In each execution of this procedure, q
decrements hbTimerq [p] by one, until it reaches 0. When
it reaches 0, q resets hbTimerq [p] to hbTimeoutq [p] and
executes the if statement in line 35. This happens infinitely
many times. The if statement results in either q adding p
to activeSetq in line 36 or q removing p from activeSetq in
line 38. By Lemma 33, there is a time t after which q does
not time out on p. Therefore, q adds p to activeSetq infinitely
often and there is a time after which q does not remove p from
activeSetq . Thus, there is a time after which p ∈ activeSetq .

Observation 11 For every process p, counter p[p] is mono-
tonically nondecreasing with time.

Lemma 35 For all processes p �= q, if there is time after
which actrToq [p] stops changing then there is a time after
which actrFromp[q] stops changing.

Proof Consider two processes p �= q, and assume that
there is time after which actrToq [p] stops changing. Since
msgToq [p] can be set only to 〈counterq [q], actrToq [p]〉 (in
line 51), there is a time after which the second component
of msgToq [p] stops changing. Since msgCurrq [p] can be set
only to msgToq [p] (in line 4), there is a time after which the
second component of msgCurrq [p] stops changing. Since
MsgRegister[q, p] is linearizable and it can be written only
with the value of msgCurrq [p] (in line 5) there is a time
after which the non-⊥ values read from MsgRegister[q, p]
(in line 13) always have the same second component. Since
prevMsgFromp[q] can be set only to a value read from
MsgRegister[q, p] (in line 17), there is a time after which
the second component of prevMsgFromp[q] stops chang-
ing. Since msgFromp can be set only to a value returned
from procedure WriteMsgs (in line 53), and this procedure
returns the value of prevMsgFromp, there is a time after
which the second component of msgFromp[q] stops chang-
ing. Since actrFromp[q] can be set only to the second compo-
nent of msgFromp[q] (in line 55), there is a time after which
actrFromp[q] stops changing.

123

324 M. K. Aguilera, S. Toueg

We now show that the counter of a process in
pcandidates ∩ Timely eventually stops changing. We later
extend this result to show that the counter of every process
eventually stops changing.

Lemma 36 For every process p ∈ pcandidates ∩ Timely,
there exists an integer cp and a time after which
counter p[p] = cp.

Proof Let p ∈ pcandidates ∩ Timely.

Claim For every process q �= p, there is a time after which
actrToq [p] stops changing.

Consider a process q �= p. If q �∈ infcandidates then there
is a time after which p does not execute the body of the do-
while loop in lines 44–57, and so eventually actrToq [p] stops
changing. If q ∈ infcandidates then, by Lemma 34, there is
a time after which p ∈ activeSetq . The claim now follows
since actrToq [p] can be changed only in line 50, and only if
p �∈ activeSetq .

The only places where p changes counter p[p] is in
lines 43 or 56. Since p ∈ pcandidates, there is a time
after which p does not execute line 43. In line 56, p sets
counter p[p] to max{counter p[p], actrFromp[q]} for some
q �= p. By the claim and Lemma 35, for every process
q �= p, there is a time after which actrFromp[q] stops chang-
ing. Thus, for every process q, there is a time after which
line 56 does not change counter p[p]. Thus, there is a time
after which counter p[p] does not change.

Recall that by Lemma 28, pcandidates ∩ Timely �= ∅.
A process in this set intersection enjoys some strong prop-
erties on its interactions with other processes, as we showed
in previous lemmas. We now pick an arbitrary process in
this set intersection and use it to prove properties about other
processes.

Definition 24 Let s be some fixed process in pcandidates ∩
Timely.

Note that, by Lemma 36, there exists an integer cs and a
time after which counters[s] = cs .

Lemma 37 For every process p ∈ infcandidates, there is a
time after which counter p[leaderp] ≤ cs .

Proof Let p ∈ infcandidates. Since s ∈ pcandidates ∩
Timely, by Lemma 34, there is a time t1 after which
s ∈ activeSetp. Since p ∈ infcandidates, p executes line 47
infinitely often. Let t2 be the first time after t1 when
p sets leaderp in line 47. Then, from time t2 onwards,
counter p[leaderp] ≤ counter p[s], since p chooses leaderp

in line 47 as the process q in activeSetp with the smallest
(counter p[q], q). Moreover, at any given time,
counter p[s] ≤ counters[s] since values of counter p[s]

come from the first component of msgFromp[s], which come
from the first component of MsgRegister[s, p], which come
from the first component of msgTos[p], which come from
counters[s] in line 51. At any time, counters[s] ≤ cs ,
by definition of cs and the fact that counters[s] is mono-
tonically nondecreasing (Observation 11). Thus, after time
t2, counter p[leaderp] ≤ counter p[s] ≤ counters[s] ≤ cs .

From the way p modifies actrTop[q] in the algorithm (in
line 50), it is clear that:

Observation 12 For all processes p �= q, actrTop[q] is
monotonically nondecreasing with time.

We show that the accusation counter of q at p �= q even-
tually stops changing:

Lemma 38 For all processes p �= q, there exists an integer
apq and a time after which actrTop[q] = apq .

Proof Consider two processes p �= q. The only place where
p sets actrTop[q] is in line 50. If p �∈ infcandidates then there
is a time after which p does not execute the do-while loop
in lines 44–57. Thus, there is a time after which actrTop[q]
does not change, and the lemma follows.

Now assume p ∈ infcandidates. When p changes
actrTop[q], it changes it to max{actrTop[q],
counter p[leaderp]} in line 50. By Lemma 37, there is a time
after which counter p[leaderp] ≤ cs . Therefore, there is a
time after which actrTop[q] does not change, and the lemma
follows.

We now extend Lemma 36 to show that the counter of
every process eventually stops changing.

Lemma 39 For every process p, there exists an integer cp

and a time after which counter p[p] = cp.

Proof Let p be a process. The only places where p changes
counter p[p] are in lines 43 or 56.

If p �∈ infcandidates then there is a time after which p
does not execute either of these lines. Thus, there is a time
after which counter p[p] does not change, and the lemma
follows.

Now assume p ∈ infcandidates. By Observation 11,
counter p[p] is monotonically nondecreasing. By Lemma 37,
there is a time after which counter p[leaderp] ≤ cs . Thus,
there is a time after which line 43 does not increase
counter p[p]. By Lemma 38, for every process q �= p,
there is a time after which actrToq [p] stops changing. By
Lemma 35, for every process q �= p, there is a time after
which actrFromp[q] stops changing. Thus, there is a time
after which line 56 does not increase counter p[p]. Thus,
there is a time after which counter p[p] does not change, and
the lemma follows.

Definition 25 For all processes p �= q, let apq and cp be the
integers from Lemmas 38 and 39, respectively.

123

A gracefully-degrading liveness property 325

The next lemma states that if p ∈ infcandidates then
the message p writes to another process q eventually stops
changing and remains equal to 〈cp, apq〉.
Lemma 40 For all processes p �= q, if p ∈ infcandidates
then there is a time after which msgTop[q] = 〈cp, apq〉.
Proof Consider two processes p �= q such that
p ∈ infcandidates. The only place where p sets msgTop[q]
is in line 51. Since p ∈ infcandidates, p executes this line
infinitely many times. In this line, p changes msgTop[q] to
〈counter p[p], actrTop[q]〉. By Lemma 39, there is a time
after which counter p[p] = cp. By Lemma 38, there is a
time after which actrTop[q] = apq . So, there is a time after
which msgTop[q] = 〈cp, apq〉.

We now give sufficient conditions for p to write its mes-
sage successfully to q.

Lemma 41 For all processes p �= q, if p ∈ activeSetq infi-
nitely often and q ∈ infcandidates then p writes a message
successfully to q infinitely often.

Proof Consider two processes p �= q such that
p ∈ activeSetq infinitely often and q ∈ infcandidates. Sup-
pose, by contradiction, that p writes a message success-
fully to q only finitely often. We claim that p writes to
HbRegister1[p, q] and HbRegister2[p, q] in lines 24 and 25
only finitely often. Indeed, if p �∈ infcandidates then p
executes lines 24 and 25 only finitely often. Now suppose
p ∈ infcandidates. Then p executes procedure WriteMsgs
infinitely often. Thus, since p writes a message success-
fully to q only finitely often, there is a time after which
prevWriteDonep[q] = false, and so there is a time after
which writeDonep[q] = false. Since p always calls pro-
cedure SendHeartbeat with parameter dest = writeDone,
by the guard in line 23, p writes to HbRegister1[p, q] and
HbRegister2[p, q] in lines 24 and 25 only finitely often. This
shows the claim.

Since q ∈ infcandidates, q calls procedure
ReceiveHeartbeat infinitely many times. By the code, q infi-
nitely often finds that hbTimerq [p] = 0 in line 29 and exe-
cutes the reads in line 33–34. Since there are only finitely
many writes to HbRegister1[p, q] and to HbRegister2[p, q]
there is a time after which every read on HbRegister1[p, q]
returns the same non-⊥ value v1, and there is a time
after which every read on HbRegister2[p, q] returns the
same non-⊥ value v2. Thus, there is a time after which
prevHbCounter1q [p] = hbCounter1q [p] = v1 �= ⊥ and
prevHbCounter2q [p] = hbCounter2q [p] = v2 �= ⊥. Thus,
q adds p to activeSetq in line 36 only finitely many times,
and q removes p from activeSetq in line 38 infinitely many
times. Thus, there is a time after which p �∈ activeSetq . This
contradicts the fact that p ∈ activeSetq infinitely often.

The next lemma and corollary give conditions for a pro-
cess q to learn about the counter and accusation counter that
process p writes.

Lemma 42 For all processes p �= q, if p ∈ activeSetq infi-
nitely often and q ∈ infcandidates then there is a time after
which (a) counterq [p] = cp, (b) actrFromq [p] = apq , and
(c) counterq [q] ≥ apq .

Proof Consider two processes p �= q such that
p ∈ activeSetq infinitely often and q ∈ infcandidates. By
Lemma 41, p writes a message successfully to q infinitely
often, and so p ∈ infcandidates. By Lemma 40, there is
a time after which msgTop[q] = 〈cp, apq〉. Therefore, by
Lemma 31, (*) there is a time after which msgFromq [p] =
〈cp, apq〉.

Since q ∈ infcandidates, q executes lines 55 and 56 infi-
nitely often. In line 55, q sets 〈counterq [q], actrFromq [p]〉 to
msgFromq [p]. Thus, there is a time after which
(a) counterq [p] = cp and (b) actrFromq [p] = apq .
Moreover, by the way q sets counterq [q] in line 56, and
since counterq [q] is monotonically non-decreasing (Obser-
vation 11), there is a time after which (c) counterq [q] ≥ apq .

Corollary 9 For all processes p �= q, if p ∈ pcandidates ∩
Timely and q ∈ infcandidates then there is a time after which
(a) counterq [p] = cp, (b) actrFromq [p] = apq , and (c)
counterq [q] ≥ apq .

Proof Consider two processes p �= q such that
p ∈ pcandidates ∩ Timely and q ∈ infcandidates. By
Lemma 34, there is a time after which p ∈ activeSetq . The
corollary now follows from Lemma 42.

Intuitively, a process q should not think that a pro-
cess in ncandidates is active. Indeed, this holds if q is in
infcandidates:

Lemma 43 For every process q ∈ infcandidates, there is a
time after which activeSetq ⊆ infcandidates.

Proof Consider a process q ∈ infcandidates. Since there
are only finitely many processes, there is a time after which
activeSetq contains only processes that are in activeSetq infi-
nitely often. Suppose p ∈ activeSetq infinitely often. If p =
q then p ∈ infcandidates since q ∈ infcandidates. If p �= q,
then by Lemma 41, p writes a message successfully to q
infinitely often, and so p ∈ infcandidates.

We now define � as the process p in pcandidates with
smallest cp, breaking ties using the process id. Note that � is
well defined because, by Lemma 28, the set pcandidates is
not empty.

Definition 26 Let � be the process in pcandidates such that
(c�, �) = min{(cp, p) : p ∈ pcandidates}.

123

326 M. K. Aguilera, S. Toueg

The next two lemmas show that not only � is the process
in pcandidates with smallest counter; � is also the process in
infcandidates with smallest counter.

Lemma 44 For every process p ∈ infcandidates −
pcandidates, (c�, �) < (cp, p).

Proof Suppose, by contradiction, there is a process in
p ∈ infcandidates−pcandidates such that (cp, p) ≤ (c�, �).
Let p be such a process with smallest (cp, p). Then, by defi-
nition of � and the fact that (cp, p) ≤ (c�, �), p is the process
in infcandidates with smallest (cp, p).

By Lemmas 43 and 42, we can find a time t after which
(a) activeSetp contains only processes in infcandidates, and
(b) for every process q ∈ activeSetp, counter p[q] = cq .
Since p ∈ infcandidates, p sets leaderp in line 47 infinitely
many times. After time t , whenever p sets leaderp after time t
in line 47, p sets leaderp to p (this is because p is the process
with smallest (cp, p) in infcandidates and p ∈ activeSetp).
Thus, there is a time t ′ > t after which leaderp = p and
counter p[p] = cp.

Since p ∈ infcandidates − pcandidates, p sets
counter p[p] in line 43 infinitely many times. When p does
so after time t ′, p sets counter p[p] to cp +1, a contradiction
to the fact that counter p[p] = cp after time t ′.

We now show that � is the process in infcandidates with
smallest cp, breaking ties using the process id.

Lemma 45 (c�, �) = min{(cp, p) : p ∈ infcandidates}.
Proof Let p ∈ infcandidates. If p ∈ pcandidates then
(c�, �) ≤ (cp, p) by definition of �. If p ∈ infcandidates −
pcandidates then (c�, �) < (cp, p) by Lemma 44.

Recall that s is some fixed process in pcandidates ∩
Timely (see Definition 24). In the next two lemmas and the
following corollary, we use s to show properties about �.

Lemma 46 There is a time after which � ∈ activeSets .

Proof Suppose, by contradiction, that � �∈ activeSets infi-
nitely often. Then � �= s. Moreover, (*) infinitely often s
sets activeSets in line 46 to a set that does not contain �.
By Lemmas 43 and 42, we can find a time t after which
(a) activeSets contains only processes in infcandidates, and
(b) for every process q ∈ activeSets, counters[q] = cq . By
(*), we can find a time t ′ > t when s sets activeSets in
line 46 to a set that does not contain �. Then, s sets leaders

to some process q �= � in line 47. Moreover, by (a), q ∈
infcandidates. Therefore, by Lemma 45, (c�, �) < (cq , q).
Thus, cq ≥ c�.

Then, s finds that � �∈ activeSets in line 50 and s
sets actrTos[�] to a value a ≥ counters[leaders] + 1. But
leaders = q and counters[q] = cq by (b). So a ≥ cq + 1 ≥
c� + 1.

Since actrTos[�] is monotonically nondecreasing (Obser-
vation 12), there is a time after which actrTos[�] ≥ c� + 1.
Thus, by the definition of as� (Definition 25), as� ≥ c� + 1.

By definition, s ∈ pcandidates ∩ Timely and
� ∈ pcandidates ⊆ infcandidates. So by Corollary 9(c),
there is a time after which counter�[�] ≥ as�. But as� ≥
c� + 1, so there is a time after which counter�[�] ≥ c� + 1,
which contradicts the definition of c� (Definition 25).

Lemma 47 � ∈ Timely.

Proof Suppose, by contradiction, that � �∈ Timely. From
Lemma 46, s removes � from activeSets only finitely many
times (in line 38). So, (*) there is a time t after which s does
not increase hbTimeouts[�] (in line 39). Since hbTimeouts[�]
is monotonically nondecreasing, there exists an integer h
such that, after time t, hbTimeouts[�] = h. Let x0 be the
number of steps of s up to time t .

Since s ∈ Timely and � �∈ Timely, by Corollary 2, � is
not s-timely. So, for every integer i there is a time interval
that has i steps of s but no steps of �. In particular, there is
a time interval that has x0 + (2h + 2)CM steps of s but no
steps of �. Thus, we can find a time interval I after time t
that has (2h + 2)CM steps of s but no steps of �. In I, s exe-
cutes at least 2h complete iterations of the do-while loop in
lines 44–57. Moreover, since it occurs after time t , from the
code, there are at least two iterations in which hbCounters[�]
reaches 0 and s executes the code starting in line 30.

In the first iteration, s reads HbRegister1[�, s] and
HbRegister2[�, s]. Let r1 and r2 be the responses, respec-
tively. Since � takes no steps during I, � can have an outstand-
ing operation on at most one register during I . Thus, either
(1) the read by s on HbRegister1[�, s] is not concurrent with
any other operations or (2) the read by s on HbRegister2[�, s]
is not concurrent with any other operations.11

Suppose (1) holds (the other case is analogous). By the
non-triviality property of abortable registers, the read by
s returns a value v �= ⊥. In the next iteration in which
hbCounters[�] reaches 0, s reads HbRegister1[�, s] again.
This read returns the same value v, since � has not taken
any steps and it does not have a concurrent operation on
HbRegister1[�, s]. Therefore, the guard in line 35 evaluates
to false and s increases hbTimeouts[�] in line 39. Since this
increase occurs after time t , it contradicts (*) and shows the
lemma.

Corollary 10 � ∈ pcandidates ∩ Timely.

In the final part of the proof, we show that processes
in infcandidates eventually set their leader variable perma-
nently to �. As a result, there is a time after which their

11 This is the place where we need two heartbeat registers. If there was
only one, � may have stopped taking steps while leaving an outstanding
write on the heartbeat register, which can cause s to get a ⊥ value and
not time out on �, even though � is slow.

123

A gracefully-degrading liveness property 327

leader is either � or ?. Recall that the distinction between
leader and leader is that a process sets leader to ? when
it stops being a candidate, whereas leader is left untouched.

Corollary 11 For every process p ∈ infcandidates, there is
a time after which � ∈ activeSetp.

Proof Immediately from Lemma 34 and Corollary 10.

Lemma 48 For every process p ∈ infcandidates, there is a
time after which leaderp = �.

Proof Let p ∈ infcandidates. By Lemmas 43 and 42,
we can find a time t after which (a) activeSetp contains
only processes in infcandidates, and (b) for every process
q ∈ activeSetp, counter p[q] = cq . Since p ∈ infcandidates,
p sets leaderp in line 47 infinitely many times. By (a), (b),
Lemma 45, Corollary 11, and the way p sets leaderp in
line 47, there is a time after which, if p sets leaderp, p sets
leaderp to �. Thus, there is a time after which leaderp = �.

From Lemma 48 and the way p sets leaderp to leaderp

or “?” in the code of Fig. 6, we have:

Corollary 12

(a): For every process p ∈ pcandidates, there is a time after
which leaderp = �.

(b): For every process p ∈ infcandidates, there is a time
after which leaderp ∈ {?, �}.

Putting together the above results, we get:

Lemma 49 � ∈ (Pcandidates ∪ Rcandidates) ∩ Timely.
Furthermore, the following holds:

1. There is a time after which leader� = �.
2. For every process p ∈ Pcandidates, there is a time after

which leaderp = �.
3. For every process p ∈ Rcandidates, there is a time after

which leaderp ∈ {?, �}.

Proof Since � ∈ pcandidates, we have that �∈ infcandidates,
and so by Lemma 26, � ∈ Pcandidates ∪ Rcandidates. By
Lemma 47, � ∈ (Pcandidates ∪ Rcandidates) ∩ Timely. We
now show that the above three properties hold:

1. Since � ∈ pcandidates, from Corollary 12(a), there is a
time after which leader� = �.

2. Let p ∈ Pcandidates. By Lemma 26, p ∈ pcandidates.
By Corollary 12(a), there is a time after which
leaderp = �.

3. Let p ∈ Rcandidates. Since every process in Rcandidates
is correct, either p ∈ ncandidates or p ∈ infcandidates.
If p ∈ ncandidates then, by Lemma 27, there is a
time after which leaderp = ?. If p ∈ infcandidates

then, by Corollary 12(b), there is a time after which
leaderp ∈ {?, �}. So in both cases there is a time after
which leaderp ∈ {?, �}.

Putting the above facts together, we show that the algo-
rithm described in this section implements ��:

Theorem 8 The algorithm in Figs. 4, 5, and 6 implements
�� in a system with abortable registers.

Proof Property (2) of �� holds by Corollary 6. If
Pcandidates ∩ Timely = ∅, Property (1) of �� trivially
holds. If Pcandidates ∩ Timely �= ∅, Assumption 9 holds.
In this case, we can apply Lemma 49 which shows that Prop-
erty (1) of �� holds.

6 Using �� to achieve adaptive progress

We now explain how �� can be used to obtain an AP imple-
mentation of an object O of type T , for any type T .

Given any type T , we first use the universal construction
of [2] to get a wait-free implementation of an object OQA of
type TQA—the query-abortable counterpart of T . Intuitively,
an object OQA of type TQA behaves like an object O of type
T except that (a) if an operation executes concurrently with
another operation, it may abort, with or without taking effect,
and return a special value ⊥; and (b) there is an additional
operation called query. A process can call query to deter-
mine the fate of its last non-query operation op on the object:
if op took effect then query returns the response that should
have been returned by op; otherwise, query returns a special
value F to indicate that op did not take effect. As with other
operations, a query operation can also abort and return ⊥
(this can occur only if it is concurrent with other operations
on the object). A formal definition of the query-abortable
type TQA is given in [2].

We then use �� to transform the wait-free implementa-
tion of OQA of type TQA into an AP implementation of O of
type T , as shown in Fig. 8. Intuitively, when p wants to exe-
cute an operation op on O, p first waits until leaderp �= p
(to ensure that the use of �� is canonical), and then p sets the
input variable candidatep of �� to true, to indicate that it
now wants to compete for the leadership. If �� tells p that it
is the leader (i.e., leaderp = p) then p executes a sequence
of op and query operations on OQA, as illustrated in Fig. 9,
until p is successful. The first operation is op (shown by the
double circle), and the corresponding response is either a
“normal” response v �= ⊥ or ⊥ (indicating that the operation
aborted).

If it is a normal response v �= ⊥ then p is done; in this
case, p sets candidatep to false to relinquish the leadership
and exits the procedure invoke(op, O, T) by returning v. If
the response is ⊥, p is uncertain whether the aborted opera-
tion op took effect or not. In this case, p executes a query

123

328 M. K. Aguilera, S. Toueg

Fig. 8 AP implementation of
any type T from its
query-abortable counterpart TQA
and ��

Fig. 9 Sequence of operations executed on object OQA of type TQA by
the implementation in Fig. 8

operation to try to find out. While query returns ⊥, p contin-
ues executing query operations. If a query returns a “nor-
mal” response v �∈ {⊥,F} then p knows that its previous
execution of op took effect and that v is the corresponding
response—so p is done. If query returns F then p knows
that its previous execution of op did not take effect, so p tries
to execute op again. If, at any time, �� tells p that it is not
the leader anymore, (i.e., leaderp �= p) then p stops trying
to execute operations on OQA.

It is worth pointing out that the wait for leaderp �= p in
line 2, which ensures a canonical use of ��, is crucial for
obtaining an implementation that achieves adaptive progress.
Without it, a strict subset of timely processes would be able
to monopolize the access to the implemented object O: they
would be able to execute an infinite sequence of operations
on O and win every competition for leadership among them-
selves, thereby preventing all the other timely processes from
executing their operations. However, the enhanced leader
election properties that we get from a canonical use of ��

ensure that the access to the object O remains fair among all
the timely processes, so they all eventually complete all their
operations on O . Intuitively, this is because when �� is used
in a canonical way, a subset of timely processes cannot pass
the leadership back and forth between themselves while pre-
venting the other timely processes, who are also candidates,
from getting the leadership forever: such a behavior would
contradict Corollary 3 that states that eventually the leader is

elected among the set of timely processes who remain candi-
date forever! This intuitive argument is used in a more precise
way in the proof of Theorem 51.

We now show the correctness of this algorithm. Hence-
forth we consider an arbitrary run R of the algorithm.

Lemma 50 For every process p, when p is in line 2,
candidatep = false.

Proof Let p be any process. Initially, candidatep = false.
Moreover, when p executes procedure invoke in line 1, p
sets candidatep to false before returning. So whenever p
enters the procedure invoke in line 1, it does so with
candidatep = false.

From Lemma 50 and p’s code, it is clear that in the algo-
rithm in Fig. 8 the use of �� is canonical.

Lemma 51 For every operation op of type T , if a timely
process p calls procedure invoke(op, O, T) in line 1 then p
eventually returns from this procedure.

Proof Suppose, by contradiction, that there is an operation
op of type T and a timely process p that calls procedure
invoke(op, O, T) in line 1, but p never returns from this
procedure. Since p is timely, p is correct, and so p exe-
cutes forever in the procedure. By Lemmas 50 and 4, p
does not wait forever in line 2. Thus, p loops forever in
the repeat loop of line 5. Before entering this loop, p sets
candidatep to true. Since p never returns, it is clear from
p’s code that candidatep remains true forever. Therefore,
p ∈ Pcandidates. So there is at least one timely process in
Pcandidates (namely, p). Since �� is used in the canonical
way, by Corollary 3, there is a timely process � in Pcandidates
such that:

(a) there is a time after which leader� = �, and
(b) there is a time after which, for every correct process

p �= �, leaderp �= p.

123

A gracefully-degrading liveness property 329

Since � ∈ Pcandidates, there is a time after which
candidate� = true. Thus, from Lemma 50 and �’s code,
it is clear that there is a time T0 after which � loops forever in
the repeat loop of line 5. By (a) above, � executes lines 7–10
infinitely many times.

Claim There is a time T1 after which no process p �= �

executes lines 7–10.

The proof of this claim is immediate from (b) above, the
guard in line 6, and the fact that OQA is wait-free.

Therefore, there is a time T2 > max{T0, T1} after which �

starts executing an operation on OQA (in line 7), and this exe-
cution is not concurrent with any other operation executions
on this object. Since OQA is query-abortable, this execution
returns a value v �= ⊥. If v �= F then � subsequently exits
the invoke procedure in line 8—which contradicts the defini-
tion of T0. So, v = F , and � sets op′ to op in line 10. Note
that since op is an operation of O, op �= query. Thus, in the
next iteration of the repeat loop in line 5, � executes operation
op′ �= query on OQA in line 7. Since this execution is not
concurrent with any other operation executions on OQA and
op′ �= query, it returns some value v′ �∈ {⊥,F}. Therefore
p exits the invoke procedure in line 8, and it does so after time
T0—a contradiction to the definition of T0 that concludes the
proof of the lemma.

Theorem 13 The algorithm in Fig. 8 uses �� to obtain an
AP implementation of an arbitrary type T from a wait-free
implementation of its query-abortable counterpart TQA.

Proof Let T be an arbitrary type and TQA be its query-
abortable counterpart. Consider a correct process p that
executes invoke(op, O, T) in the algorithm of Fig. 8. This
execution can cause executions of op or query operations
on OQA only according to the pattern shown in Fig. 9. Note
that op can take effect at most once (because p re-executes
op on OQA only if it determines that its previous execution
of op on OQA aborted without taking effect). Moreover, if
p returns from invoke(op, O, T) then op takes effect exactly
once, and p returns a correct non-⊥ response (the response
is correct because OQA is the query-abortable counterpart of
O). Therefore, Fig. 8 is an implementation of type T from
TQA and ��. From Lemma 51, this is an AP implementation.

Let T be an arbitrary object type. Since (a) there is an
implementation of its query-abortable counterpart TQA from
abortable registers [2], and (b) there is an implementation of
�� using only abortable registers (Theorem 8), from Theo-
rem 13 we conclude the following:

Theorem 14 Every type T has an AP implementation from
abortable registers.

7 Related work

This work is related to notion of partial synchrony [6], to the
concepts of obstruction-freedom [11] and wait-freedom [10],
to the algorithms that boost obstruction-freedom to wait-
freedom given in [7,9,15], to the algorithms that implement
failure detector � in partially-synchronous systems given in
[1], and to the work on abortable and query-abortable object
types described in [2].

The notion of partial synchrony was introduced by Dwork
et al. [6] for message-passing systems, where timeliness
involves not only processes but also communication links.
That work shows how to solve consensus in a system with
process crashes, assuming that all correct processes and links
between them are eventually timely.

Algorithms that boost obstruction-freedom to wait-
freedom are given in [7,15]. The key idea in these algorithms
is to avoid contention so that a process can execute solo and
hence terminate the obstruction-free operation. These algo-
rithms work assuming that all correct processes are timely,
i.e., the whole system is partially synchronous. If some cor-
rect processes are not timely, however, these algorithms have
runs such that no correct process (not even the timely ones)
makes any progress. Intuitively, this is because a single slow
or unstable process can prevent all correct processes from
making progress. So they are not gracefully degrading when
synchrony decreases.

Going into more detail, the basic technique to avoid con-
tention in [7] is similar to the one in the greedy contention
manager [8]: processes obtain a timestamp and the process
ps with smallest timestamp is allowed to execute while oth-
ers must wait for ps to finish. This scheme by itself cannot
tolerate crashes: for example, if ps crashes, other processes
block forever. To overcome this limitation, [7] proposes that
(a) ps periodically increments a heartbeat and processes use
a timeout on the heartbeat to stop waiting on ps , and (b) if
there is a premature timeout, ps causes other processes to
wait again and increase the timeout value. This transforma-
tion uses atomic registers, and it would not work with abor-
table registers. Moreover, if ps is not timely, then ps may
not make progress and it may also prevent timely processes
from making progress.

In [15], the basic technique to avoid contention is to use a
lock to provide mutual exclusion. To tolerate crashes, the pro-
cess holding a lock periodically increments a heartbeat and
processes use a timeout on the heartbeat to release the lock
and let another process acquire the lock. A premature time-
out causes the lock to be released even though the (former)
lock holder is still executing. In that case, the former lock
holder waits until the new holder releases it or times out,
and increases the timeout value. This transformation uses
compare-and-swap objects to implement the lock, which is
a much stronger object than the abortable registers we use.

123

330 M. K. Aguilera, S. Toueg

We should note that the work in [15] is concerned about effi-
ciency, that is, ensuring that processes terminate their oper-
ations in a small number of steps. Efficiency is provided
under the assumption that all correct processes are timely. In
contrast, our work is concerned about termination of timely
processes, and we ensure this property independent of the
behavior of other processes. We do not focus on efficiency
here, but this may be a topic for future research.

As in [7,15], the core idea in our algorithm is to choose a
process to run solo, and we make this choice in a fair man-
ner to avoid starvation. In contrast to those works, however,
we choose this process using ��, a modular abstraction that
selects a leader among the current set of contenders, provided
that at least one of them is timely. Our implementation of ��

includes new techniques to prevent an unstable process from
being repeatedly re-elected as the leader forever—a behavior
that could prevent timely processes from making progress.
For example, in our implementation of ��, in contrast to the
timestamps used in [7] (which are fixed for each process’s
operation) the counter of a process p may change during the
execution of an operation by p, to repeatedly “punish” p if p
is unstable. Moreover, processes must use �� in a particular
way to ensure that the leadership rotates fairly among con-
tenders, as we explain in Sect. 3. Finally, in the implementa-
tion of �� using abortable registers, we introduce techniques
to coordinate the reading and writing of the register to prevent
operations from always aborting, as explained in Sect. 5.

In [9], Guerraoui et al. determine the weakest failure detec-
tors to boost obstruction-freedom. In particular, [9] describes
(a) an algorithm that boosts obstruction-freedom to wait-free-
dom using I♦P (a failure detector that is equivalent to the
eventually perfect failure detector ♦P) and (b) an algorithm
that implements I♦P in a system where all the correct pro-
cesses are timely. By combining these two algorithms, one
obtains wait-free implementations in systems where all cor-
rect processes are timely. But this combined algorithm is not
gracefully degrading: if only some of the correct processes
are timely, the non-timely processes can prevent all the timely
processes from making progress.

��, a dynamic variant of failure detector � [5,4], is spec-
ified in terms of the timeliness properties (if any) of the
candidates for leadership. Our algorithms for �� include
several techniques that were first proposed in [1] for imple-
menting � in systems with weak reliability and synchrony
assumptions. Another dynamic variant of �, denoted I�∗ ,
was previously proposed in [9] to boost obstruction-freedom
to lock-freedom. In contrast to ��, the specification of I�∗
does not refer to process timeliness (and so it is not use-
ful to obtain AP implementations: the progress property of
such implementations is stated in terms of the degree of syn-
chrony of each process). The implementation of I�∗ given in
[9] uses atomic registers and assumes that all processes are
timely.

Finally, our AP implementations use the universal con-
struction of query-abortable types given in [2].

Acknowledgments The authors are grateful to Stephanie L. Horn and
the anonymous referees for their many helpful comments.

Appendix: Implementing activity monitors
using registers

Figure 2 gives an algorithm that implements the activity mon-
itor A(p, q) for any pair of distinct processes p and q.12 This
algorithm uses a shared register HbRegister[q, p] that is writ-
ten by q and read by p. Intuitively, q periodically increments
HbRegister[q, p] when active-forq [p] = on, and q sets
HbRegister[q, p] to −1 and sleeps when active-forq [p] =
off . Process p monitors HbRegister[q, p] when
monitoringp[q] = on (otherwise p sleeps). To mon-
itor HbRegister[q, p], p executes in a loop and, every
hbTimeoutp iterations of the loop, p reads HbRegister[q, p]
and decides on one of three possibilities: (1) if
HbRegister[q, p] has a negative value, p sets statusp[q] to
inactive; (2) otherwise, if HbRegister[q, p] increased since
the last time p checked, p sets statusp[q] to active and
allow_increment p to true; (3) otherwise, HbRegister[q, p]
has not changed since the last time p checked, so p “times
out” on q : p sets statusp[q] to inactive. Moreover, if
allow_increment p is true, p increments faultCntrp[q] and
hbTimeoutp, and p sets allow_increment p to false. The
role of allow_increment p is to ensure that p increments
faultCntrp[q] only if p sees that q is active and subse-
quently times out on q. This prevents p from incrementing
faultCntrp[q] infinitely often if q crashes.

We now show that, for any two processes p �= q, the algo-
rithm in Fig. 2 implements an activity monitor A(p, q) using
registers. Henceforth, we consider an arbitrary run R of this
algorithm such that p is correct (note that if p is not correct,
then the properties of A(p, q) are trivially satisfied).

In the following, the value of varp at time t is denoted by
vart

p.

Lemma 52 (1) hbTimeoutp ≥ 1 and hbTimeoutp is mono-
tonically nondecreasing. (2) hbTimerp ≥ 0.

Proof (1) Initially, hbTimeoutp = 1. Subsequently,
hbTimeoutp can only change by being incremented.
Thus, hbTimeoutp ≥ 1 and hbTimeoutp is monotoni-
cally nondecreasing.

(2) Initially, hbTimerp = 1. Moreover, hbTimerp is
changed in only two ways: (a) p sets hbTimerp to
hbTimeoutp, or (b) p decrements hbTimerp only if
hbTimerp ≥ 1. In either case, hbTimerp ≥ 0.

12 Note that it is trivial to implement the activity monitor A(p, q) when
p = q.

123

A gracefully-degrading liveness property 331

Lemma 53 If q is correct and there is a time after which
active-forq [p]=on then

(a) there is a time after which HbRegister[q, p] ≥ 0,
(b) there is a time after which HbRegister[q, p] is mono-

tonically nondecreasing, and
(c) q increments HbRegister[q, p] infinitely often.

Proof Suppose q is correct and there is a time after which
active-forq [p]=on. Then, it is clear from q’s code that
eventually q loops forever in the while loop of line 4. So it
is clear that (a), (b), and (c) hold.

Lemma 54 For all t and t ′, if t ≤ t ′ and HbRegister[q, p]t ′

≥ 0 then HbRegister[q, p]t ≤ HbRegister[q, p]t ′ .

Proof Let t and t ′ be such that t ≤ t ′ and
HbRegister[q, p]t ′ ≥ 0. If HbRegister[q, p]t < 0 then the
lemma trivially holds. Now assume HbRegister[q, p]t ≥ 0.
Note that (a) when q sets HbRegister[q, p] to a non-negative
value, q sets it to hbCounterq , and (b) hbCounterq is mono-
tonically nondecreasing.

Lemma 55 If q is p-timely then there exists an integer
j ≥ 1 such that for every time interval [t, t ′] contain-
ing at least j steps of p, if HbRegister[q, p]t ′ ≥ 0 then
HbRegister[q, p]t < HbRegister[q, p]t ′ .

Proof Assume that q is p-timely. Since q is correct, from
the code of the algorithm, it is clear that there exists an inte-
ger i ≥ 1 such that if, at any time t, HbRegister[q, p]t ≥ 0
then q executes one of the following two statements within
i steps:

– (a) q increases HbRegister[q, p] by 1 (in line 6), or
– (b) q sets HbRegister[q, p] to −1 (in line 2).

Since q is p-timely, there exists an integer k ≥ 0 such
that (*) every time interval containing k + 1 steps of p has
at least one step of q.

Let j = ik + 2 and consider any time interval [t, t ′]
containing at least j steps of p. If HbRegister[q, p]t < 0
then the lemma trivially follows, so assume that
HbRegister[q, p]t ≥ 0. Time interval [t + 1, t ′] has at least
j −1 = ik +1 steps of p. By (*), time interval [t +1, t ′] has
at least i steps of q. Thus, at some time in [t +1, t ′], (a) or (b)
occurs.

Consider the first time t ′′ in [t + 1, t ′] when (a) or (b)
occurs. There are two possible cases:

– If (a) occurs then HbRegister[q, p]t ′′ =HbRegister[q, p]t

+ 1. Since t ′′ ≤ t ′ and HbRegister[q, p]t ′ ≥ 0, by
Lemma 54, HbRegister[q, p]t ′′ ≤ HbRegister[q, p]t ′ .
Thus, HbRegister[q, p]t + 1 ≤ HbRegister[q, p]t ′ .

– If (b) occurs then note that at time t ′′, hbCounter p

is equal to HbRegister[q, p]t , that is, hbCountert ′′
p =

HbRegister[q, p]t . At time t ′′, HbRegister[q, p]t ′′ = −1,
and at time t ′ ≥ t ′′, HbRegister[q, p]t ′ ≥ 0. Thus,
at some time in [t ′′ + 1, t ′], q sets HbRegister[q, p] to
a non-negative value (this must occur in line 6). Let
t ′′′ be the first time in [t ′′ + 1, t ′] when this occurs.
At time t ′′′, HbRegister[q, p] is set to hbCountert ′′

p + 1
(because p increments hbCounter p in line 5). Thus
HbRegister[q, p]t ′′′=hbCountert ′′

p+1=HbRegister[q, p]t

+ 1. Since t ′′′ ≤ t ′ and HbRegister[q, p]t ′ ≥ 0, by
Lemma 54, HbRegister[q, p]t ′′′ ≤ HbRegister[q, p]t ′ .
Thus HbRegister[q, p]t + 1 ≤ HbRegister[q, p]t ′ .

In both cases above, HbRegister[q, p]t <HbRegister[q, p]t ′ .

Lemma 56 If q is p-timely then p increments hbTimeoutp

only finitely many times.

Proof Assume, by contradiction, that q is p-timely and p
increments hbTimeoutp infinitely many times. Note that p
increments hbTimeoutp only in line 25.

Claim 1 There is a time after which, each time p executes
line 21, p finds that the guard “hbCounter p ≥ 0 and
hbCounter p ≤ prevHbCounter p” in line 21 is false.

We now prove this claim. Since p increments hbTimeoutp

infinitely many times in line 25, p sets hbCounter p to
HbRegister[q, p] infinitely many times in line 16. For each
i ≥ 1, let ti be the time when p sets hbCounter p to
HbRegister[q, p] for i-th time (in line 16). For convenience,
let t0 = 0. Let ci be the value of hbCounter p at time ti . Thus,
ci = hbCounterti

p = HbRegister[q, p]ti . It is clear from
lines 15 and 16 that (a) for all i ≥ 1, prevHbCounterti

p =
hbCounterti−1

p = ci−1.
Since q is p-timely, by setting t = ti−1 and t ′ = ti in

Lemma 55, we have (b) there exists an integer j such that,
for every i ≥ 1, if time interval [ti−1, ti] has j steps of p and
ci ≥ 0 then ci−1 < ci .

Claim 1.1 There exists k such that, for every i ≥ k, time
interval [ti−1, ti] has at least j steps of p.

To show Claim 1.1, first note that hbTimeoutp is mono-
tonically nondecreasing (Lemma 52). Since, p increments
hbTimeoutp infinitely many times (by assumption),
hbTimeoutp increases without bound. For each i ≥ 0, let τi be
the value of hbTimeoutp at time ti . Thus, limi→∞ τi = ∞. It
is clear from p’s code that, from time ti to time ti+1, p decre-
ments hbTimerp in line 12 at least τi times until hbTimerp

reaches 0. Therefore, from time ti to ti+1, p executes at least
τi steps. Since limi→∞ τi = ∞, there exists k such that, for
every i ≥ k, τi−1 ≥ j . So, for every i ≥ k, time interval
[ti−1, ti] has at least j steps of p, which shows Claim 1.1.

123

332 M. K. Aguilera, S. Toueg

From (b) and Claim 1.1, for every i ≥ k, if ci ≥ 0
then ci−1 < ci . Thus, from (a) and the definition of ci , for
every i ≥ k, if hbCounterti

p ≥ 0 then prevHbCounterti
p <

hbCounterti
p. So, for every i ≥ k, the condition

“hbCounterti
p ≥ 0 and hbCounterti

p ≤ prevHbCounterti
p” is

false. From p’s code it is now clear that Claim 1 holds.
Note that p can increment hbTimeoutp only in line 25,

and only if the guard “hbCounter p ≥ 0 and hbCounter p ≤
prevHbCounter p” in line 21 is true. Thus, Claim 1 implies
that p increments hbTimeoutp only finitely many times—a
contradiction that shows the lemma.

In the next six lemmas we prove that the six properties of
A(q, p) are satisfied.

Lemma 57 If there is a time after which monitoringp[q]=
off then there is a time after which statusp[q]=?.

Proof Suppose there is a time after which monitoringp[q]
= off . Since p is correct, from p’s code it is clear that p
eventually loops forever in the while loop of line 9. Before
getting stuck in this loop, p sets statusp[q] to ? and p does
not set statusp[q] afterwards.

Lemma 58 If there is a time after which monitoringp[q]=
on then there is a time after which statusp[q]�=?.

Proof Suppose there is a time after which monitoringp[q]=
on. Since p is correct, from p’s code it is clear that p eventu-
ally loops forever in the while loop of line 11. Before getting
stuck in this loop, p sets hbTimerp to hbTimeoutp, where
hbTimeoutp ≥ 1 by Lemma 52. From the way p decrements
hbTimerp in line 12, it is clear that eventually p executes
line 13 with hbTimerp = 0. Then, p finds that one of the
three if statements in lines 17, 18, or 21 has a condition
that is satisfied, and p sets statusp[q] to inactive, active,
or inactive, respectively. Thereafter, statusp[q]�=?.

Lemma 59 If q crashes or there is a time after which
active-forq [p]=off then there is a time after which
statusp[q]�=active.

Proof Suppose q crashes or there is a time after which
active-forq [p]=off . Initially, statusp[q] = ?. If p never
sets statusp[q] to active, then the lemma trivially holds.
Now assume that p sets statusp[q] to active at least once.
Note that p sets statusp[q] to active only in line 19.

We claim that p executes line 19 only finitely many
times. Assume, by contradiction, that p executes line 19
infinitely many times. Since q crashes or there is a time
after which active-forq [p]=off , from q’s code, there
is a time after which HbRegister[q, p] does not change.
Note that p sets hbCounter p only in line 16, and p sets
it to HbRegister[q, p]. Thus, there is a time after which
hbCounter p does not change. Since p executes line 19 infi-
nitely many times, p sets prevHbCounter p to hbCounter p

in line 15 infinitely many times. Thus, there is a time after
which hbCounter p = prevHbCounter p. So, from the guard
“hbCounter > prevHbCounter” in line 18, it is clear that p
executes line 19 only finitely many times—a contradiction
that shows the claim.

Let t be the time when p executes line 19 for the last time.
There are two cases:

(1) After time t, p remains forever in the loop of line 11. By
Lemma 52, hbTimerp ≥ 0. Since p is correct, from p’s
code it is clear that p eventually executes line 13 with
hbTimerp = 0 after time t . Then, p finds that one of
the three if statements in lines 17, 18, or 21 has a condi-
tion that is satisfied. From the definition of t , it cannot
be the if statement in line 18. Thus, p sets statusp[q]
to inactive in line 17 or 22. Thereafter, statusp[q] �=
active.

(2) After time t, p exits the loop of line 11. Since p is cor-
rect, p sets statusp[q] to ? in line 8 after time t . There-
after, statusp[q] �= active.

Lemma 60 If q is p-timely and there is a time after
which active-forq [p]=on then there is a time after which
statusp[q]�=inactive.

Proof Suppose q is p-timely, and there is a time after which
active-forq [p]=on. Initially, statusp[q] = ?. If p never
sets statusp[q] to inactive, then the lemma trivially holds.
Now assume that p sets statusp[q] to inactive at least once.
Note that p sets statusp[q] to inactive only in lines 17 or 22.

Claim 1 p sets statusp[q] to inactive in line 17 only finitely
many times.

To prove this claim, note that before executing line 17, p
sets hbCounter p to HbRegister[q, p] in line 16. Since q is
p-timely, q is correct. Since q is correct and there is a time
after which active-forq [p]=on, by Lemma 53, there is a
time after which HbRegister[q, p] ≥ 0. Therefore, the guard
“hbCounter < 0” in line 17 can evaluate to true only finitely
many times. So p sets statusp[q] to inactive in line 17 only
finitely many times. So Claim 1 holds.

Claim 2 p sets statusp[q] to inactive in line 22 only finitely
many times.

Assume, by contradiction, that (a) p sets statusp[q] to
inactive in line 22 infinitely many times. From this assump-
tion and p’s code, it is clear that p executes each of the three if
statements in lines 17, 18, and 21 infinitely many times. Fur-
thermore, since q is correct, from Lemma 53 and the way p
sets prevHbCounter p and hbCounter p in lines 15 and 16, it is
clear that p executes the if statement of line 18 infinitely many
times while the guard “hbCounter p ≥ 0 and hbCounter p >

prevHbCounter p” is true. So, (b) p sets allow_increment p

to true infinitely many times in line 20.

123

A gracefully-degrading liveness property 333

Claim 2.1 p increments hbTimeoutp infinitely often.

To prove this claim, we now show that for each time t ,
there exists t ′ > t such that p increments hbTimeoutp at time
t ′ (in line 25). Consider any time t . Let t1 > t be the first
time after t when p sets allow_increment p to true in line 20;
note that t1 exists by (b). Let t2 > t1 be the first time after t1
when p sets statusp[q] to inactive in line 22; note that t2
exists by (a). Furthermore, since p can set allow_increment p

to false only in line 26, allow_increment p is still true at time
t2. Thus, after p executes line 22 at time t2, p finds that
allow_increment p = true in line 23, and so p increments
hbTimeoutp in line 25. This shows Claim 2.1.

Since q is p-timely, by Lemma 56, p increments
hbTimeoutp only finitely many times. This contradicts Claim
2.1 and concludes the proof of Claim 2.

From Claims 1 and 2, p sets statusp[q] to inactive only
finitely many times. Let t be the time when p sets statusp[q]
to inactive for last time. There are two cases:

(1) After time t, p remains forever in the loop of line 11. By
Lemma 52, hbTimerp ≥ 0. Since p is correct, from p’s
code it is clear that p eventually executes line 13 with
hbTimerp = 0 after time t . After that, p finds that one of
the three if statements in lines 17, 18, or 21 has a guard
that is satisfied. From the definition of t , it cannot be the
if statement in line 17 or 21. Thus, p sets statusp[q]
to active in line 19. Thereafter, statusp[q] �= inactive.

(2) After time t, p exits the loop of line 11. Since p is correct,
p sets statusp[q] to ? in line 8 after time t . Thereafter,
statusp[q] �= inactive.

In both cases above, there is a time after which
statusp[q] �= inactive.

Lemma 61 faultCntrp[q] is bounded if any of the follow-
ing conditions hold:

(a) q is p-timely
(b) q crashes
(c) there is a time after which active-forq [p] = off
(d) there is a time after which monitoringp[q] = off

Proof (a): If q is p-timely then, by Lemma 56, p incre-
ments hbTimeoutp only finitely many times. Thus, p exe-
cutes line 25 only finitely many times. So, p executes
line 24 only finitely many times. Therefore, p increments
faultCntrp[q] only finitely many times and
faultCntrp[q] is bounded.

(b) and (c): Assume q crashes or there is a time after
which active-forq [p]=off . By Lemma 59, there is a time
after which statusp[q]�=active. So, p sets statusp[q] to
active in line 19 only finitely many times. Thus, (i) p sets
allow_increment p to true in line 20 only finitely many times.

Suppose, by contradiction, that faultCntrp[q] is not
bounded. Then p increments faultCntrp[q] in line 24 infi-
nitely many times. Since p executes line 24 infinitely many
times, we have (ii) p sets allow_increment p to false in line 26
infinitely many times.

From (i) and (ii), there is a time after which
allow_increment p = false, that is, the guard in line
23 is false. Therefore, p increments faultCntrp[q] in
line 24 only finitely many times—a contradiction. So,
faultCntrp[q] is bounded.

(d): If there is a time after which monitoringp[q] = off
then it is clear from p’s code that eventually p loops forever
in the while loop of line 9. So, faultCntrp[q] is bounded.

Lemma 62 faultCntrp[q] increases without bound if all
of the following conditions hold:

(a) q is not p-timely
(b) q is correct
(c) there is a time after which active-forq [p] = on
(d) there is a time after which monitoringp[q] = on

Proof Suppose that conditions (a), (b), (c), and (d) hold. First
note that p can change faultCntrp[q] only by increment-
ing it in line 24, and so faultCntrp[q] is monotonically
nondecreasing. There are two possible cases:

(I) p increments faultCntrp[q] infinitely many times. In
this case, faultCntrp[q] increases without bound.

(II) p increments faultCntrp[q] finitely many times. In
this case, it is clear that p changes hbTimeoutp (in line 25)
only finitely many times. So hbTimeoutp is bounded.

Since p is correct and (d) holds, p eventually loops for-
ever in the while loop of line 11. Thus, it is clear from p’s
code that p sets hbCounter p to HbRegister[q, p] in line 16
infinitely many times.

For each i ≥ 1, let ti be the time when p sets hbCounter p

to HbRegister[q, p] for i-th time (in line 16).
Let K be large enough so that, from time tK onwards, p

loops forever in the while loop of line 11.

Claim 1 There exists an integer j ≥ 1 such that, for every
i ≥ K , time interval [ti , ti+1] has at most j steps of p.

To show this claim, note from the above that hbTimeoutp

is bounded by some value B1 ≥ 1. So, from p’s code and the
definitions of K , ti , and ti+1, for every i ≥ K , p executes at
most B1 complete loop iterations of the while loop of line 11
(and p does not execute outside the loop) between times ti
and ti+1. From p’s code it is also clear that there is a bound
B2 ≥ 1 on the number of steps that p takes to execute each
iteration of this while loop. Let j = B1 B2. Then, for every
i ≥ K , time interval [ti , ti+1] has at most j steps of p, where
j ≥ 1. This shows Claim 1.

123

334 M. K. Aguilera, S. Toueg

Since (b) and (c) holds, by Lemma 53, we have (1) there
is a time t ′ after which HbRegister[q, p] ≥ 0, (2) there is
a time after which HbRegister[q, p] is monotonically non-
decreasing, and (3) q increments HbRegister[q, p] infinitely
often.

Since p sets hbCounter p to HbRegister[q, p] in line 16
infinitely many times, it is clear from the code that p also exe-
cutes the if statement of line 18 infinitely many times. From
(1), (2), and (3) above, and the way p sets prevHbCounter p
and hbCounter p in lines 15–16, it is clear that p executes the
if statement of line 18 infinitely many times while the guard
“hbCounter p ≥ 0 and hbCounter p > prevHbCounter p” is
true. So, p sets allow_increment p to true infinitely many
times in line 20.

Let t be a time such that p never increments
faultCntrp[q] after time t ; note that t exists by the assump-
tion of case (II). Let tallow be the first time after max{t, t ′, tK }
when p sets allow_increment p to true in line 20. Since
faultCntrp[q] is not incremented after time t (in line 25),
allow_increment p is not set to false after time t . Thus, after
time tallow, allow_increment p = true forever.

Since q is not p-timely and q is correct, for every integer
k ≥ 1 there exists a time interval that has k steps of p but
no steps of q. Let sallow be the number of steps of p up to
time tallow. Pick k = 3 j + sallow, where j is the bound of
Claim 1. Then there exists a time interval that has k steps of
p but no steps of q. Thus, there exists a time interval [u, u′]
with u > tallow such that [u, u′] has 3 j steps of p but no steps
of q.

Note that u > tK (because u > tallow > max{t, t ′, tK }).
Thus, by Claim 1, (i) time interval [u, u′] contains time
interval [tg, tg+2] for some g ≥ K . Note that q does not
take a step during [u, u′] and q is the only process that
writes to HbRegister[q, p]. Therefore, the value read from
HbRegister[q, p] can change at most once during [u, u′] (it
could change once since q may have an outstanding write
at time u). At times tg, tg+1, and tg+2, process p reads
HbRegister[q, p] and stores the result in hbCounter p. There-

fore, either hbCounter
tg
p =hbCounter

tg+1
p or hbCounter

tg+1
p =

hbCounter
tg+2
p . Assume that hbCounter

tg
p = hbCounter

tg+1
p

(the other case is analogous and omitted). From p’s
code, prevHbCounter

tg+1
p = hbCounter

tg
p . Thus,

prevHbCounter
tg+1
p = hbCounter

tg
p = hbCounter

tg+1
p . In

other words, at time tg+1, prevHbCounter p = hbCounter p.
By (i), tg+1 > u. Since u > tallow > max{t, t ′, tK }, we

have tg+1 > t ′. Thus, at time tg+1, HbRegister[q, p] ≥ 0.

Therefore, hbCounter
tg+1
p ≥ 0.

In summary, at time tg+1, p is in line 16 and hbCounter p ≥
0 and prevHbCounter p = hbCounter p. Thus, when p
reaches the if statement in line 21, the guard evaluates to
true, and so p reaches the if statement in line 23. Recall that,
after time tallow, allow_increment p = true forever. Since

tg+1 > tallow, the guard in line 23 also evaluates to true, and
p increments faultCntrp[q] in line 24. This increment-
ing occurs after time t , which contradicts the definition of t .
Thus, case (II) cannot occur and this concludes the proof.

Theorem 3 For any pair of processes p �= q, the algo-
rithm in Fig. 2 implements an activity monitor A(p, q) using
registers.

Proof Lemmas 57–62 show that the 6 properties of A(p, q)

hold.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On
implementing Omega in systems with weak reliability and syn-
chrony assumptions. Distrib. Comput. 21(4), 239–314 (2008). A
preliminary version of this work appeared in the Proceedings of
the 22nd ACM Symposium on Principles of Distributed Comput-
ing, pp. 306–314. ACM, New York (2003)

2. Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S.L., Toueg, S.:
Abortable and query-abortable objects and their efficient imple-
mentation. In: Proceedings of the 26th ACM Symposium on Princi-
ples of Distributed Computing, pp. 23–32. ACM, New York (2007)

3. Aguilera, M.K., Toueg, S.: Timeliness-based wait-freedom: a
gracefully degrading progress condition. In: Proceedings of the
27th ACM Symposium on Principles of Distributed Computing,
pp. 305–314. ACM, New York (2008)

4. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure
detector for solving consensus. J. ACM 43(4), 685–722 (1996)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

6. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the pres-
ence of partial synchrony. J. ACM 35(2), 288–323 (1988)

7. Fich, F.E., Luchangco, V., Moir, M., Shavit, N.: Obstruction-free
algorithms can be practically wait-free. In: Proceedings of the 19th
International Symposium on Distributed Computing, vol. 3724 of
LNCS, pp. 78–92. Springer, Heidelberg (2005)

8. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of trans-
actional contention managers. In: Proceedings of the 24th ACM
Symposium on Principles of Distributed Computing, pp. 258–264.
ACM, New York (2005)

9. Guerraoui, R., Kapalka, M., Kouznetsov, P.: The weakest fail-
ure detectors to boost obstruction-freedom. Distrib. Comput.
20(6), 415–433 (2008)

10. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. 13(1), 124–149 (1991)

11. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchroni-
zation: Double-ended queues as an example. In: Proceedings of the
23rd International Conference on Distributed Computing Systems,
pp. 522–529. IEEE Computer Society, New York (2003)

12. Herlihy, M., Wing, J.: Linearizability: a correctness condition for
concurrent objects. Trans. Program. Lang. Syst. 12(3), 463–492
(1990)

13. Lamport, L.: On interprocess communication; part I: basic formal-
ism. Distrib. Comput. 1(2), 77–85 (1986)

14. Lamport, L.: On interprocess communication; part II: algorithms.
Distrib. Comput. 1(2), 86–101 (1986)

15. Taubenfeld, G.: Efficient transformations of obstruction-free algo-
rithms into non-blocking algorithms. In: Proceedings of the 21st
International Symposium on Distributed Computing, vol. 4731 of
LNCS, pp. 450–464. Springer, Heidelberg (2007)

123

	Adaptive progress: a gracefully-degrading liveness property
	Abstract
	1 Introduction
	1.1 A new progress condition
	1.2 Achieving adaptive progress
	1.3 Dynamic activity monitors

	2 Model
	3 The dynamic leader elector ΩΔ
	4 Implementing ΩΔ using registers
	4.1 Definition and implementation of activity monitors
	4.2 Implementing ΩΔ using activity monitors and registers

	5 Implementing ΩΔ using abortable registers
	6 Using ΩΔ to achieve adaptive progress
	7 Related work
	Acknowledgments
	Appendix: Implementing activity monitors using registers
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

