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Abstract We study the distributed maximal independent set
(henceforth, MIS) problem on sparse graphs. Currently, there
are known algorithms with a sublogarithmic running time
for this problem on oriented trees and graphs of bounded
degrees. We devise the first sublogarithmic algorithm for
computing an MIS on graphs of bounded arboricity. This
is a large family of graphs that includes graphs of bounded
degree, planar graphs, graphs of bounded genus, graphs of
bounded treewidth, graphs that exclude a fixed minor, and
many other graphs. We also devise efficient algorithms for
coloring graphs from these families. These results are achie-
ved by the following technique that may be of independent
interest. Our algorithm starts with computing a certain graph-
theoretic structure, called Nash-Williams forests-decompo-
sition. Then this structure is used to compute the MIS or
coloring. Our results demonstrate that this methodology is
very powerful. Finally, we show nearly-tight lower bounds
on the running time of any distributed algorithm for comput-
ing a forests-decomposition.
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1 Introduction

1.1 Distributed message passing model

We study symmetry breaking problems in computer net-
works. The network is modeled by an undirected unweighted
n-vertex graph G = (V, E). The processors in the network
are represented by the vertices of G. For each two vertices
u, v ∈ V , there is an edge (u, v) ∈ E if and only if the
two processors corresponding to u and v in the network are
connected by a communication link. The processors commu-
nicate over the edges of G.

Traditionally, symmetry breaking problems have been
studied in the synchronous model [5,11,18,19]. In this
model, the communication proceeds in discrete rounds. There
is a global clock that is accessible to all the vertices which
counts the rounds. In each communication round each ver-
tex v ∈ V can send a short message of size O(log n) bits to
each of its neighbors, and these messages arrive before the
next round starts. In addition, it can perform local compu-
tations based on the information from messages that it has
received so far. For an algorithm A in this model, the running
time of A is the (worst-case) number of rounds of distributed
communication that may occur during an execution of A.

The need to break symmetry in the distributed message-
passing model arises for problems that have multiple solu-
tions. These solutions are sensitive to local perturbations, i.e.,
changing a (local) decision taken by one given vertex may
ruin the entire (global) solution. On the other hand, from the
local perspective of each given vertex at the beginning of
the computation, all possible decisions appear to be equally
feasible.

We focus on deterministic algorithms for the maximal
independent set (henceforth, MIS) and coloring problems.
These problems are among the most important problems in
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symmetry breaking. It has been shown that it is impossible
to break symmetry using deterministic algorithms if the ver-
tices are anonymous [12]. Consequently, we use a common
assumption [5,10,18,17] that each vertex has a distinct iden-
tity number (henceforth, ID) represented by bit string of
length O(log n).

1.2 MIS

A subset I ⊆ V of vertices is called a Maximal Independent
Set of G if

(1) I is an independent set, i.e., for every pair u, w ∈ U of
neighbors, either u or w do not belong to I , and

(2) for every vertex v ∈ V , either v ∈ I or there exists a
neighbor w ∈ V of v that belongs to I .

The problem of computing an MIS is one of the most funda-
mental problems in the area of distributed algorithms. More
than 20 years ago Luby [19] and Alon et al. [1] devised two
logarithmic time randomized algorithms for this problem on
general graphs. These algorithms remain the state-of-the-art
to this date. Awerbuch et al. [3] devised the first determinis-
tic algorithm for this problem on general graphs, which was
later improved by Panconesi and Srinivasan [22] in 1992.
The latter algorithm is the state-of-the-art. Its running time is
2O(

√
log n). The best-known lower bound for the MIS problem

on general graphs, �(

√
log n

log log n ), is due to Kuhn et al. [15].

Cole and Vishkin [5] presented a deterministic algorithm
for computing an MIS on oriented rings and paths. The run-
ning time of the algorithm of [5] is O(log∗ n).1 Linial [18] has
shown that this result is tight up to constant factors. In 1988
Goldberg et al. [11] initiated the study of the MIS problem on
sparse graphs. They devised deterministic algorithms for the
MIS problem on oriented trees and on planar graphs. The run-
ning time of their algorithm for oriented trees (respectively,
planar graphs) is O(log∗ n) (resp., O(log n)). Their second
algorithm (the one that applies to planar graphs) extends
also to graphs of bounded genus. The results of Goldberg
et al. [11] were stated in both distributed message-passing
and PRAM models of computation.

We improve and generalize the result of Goldberg et al.
[11] and devise a deterministic algorithm for the MIS prob-
lem on graphs of bounded arboricity that requires time
O(

log n
log log n ). The arboricity of a graph is a measure for its

sparsity. It is equal to the minimum number of forests into
which the edge set of the graph can be partitioned. Sparse
graphs have low arboricity. The family of graphs of bounded
arboricity includes not only planar graphs, graphs of bounded
genus, and graphs of bounded degree, but also graphs that

1 This algorithm was presented in the PRAM model.

exclude any fixed minor and graphs of bounded treewidth.
Moreover, a graph with constant arboricity may have genus
O(n), and may contain K√

n as a minor. Consequently, the
family of graphs on which our algorithm constructs MIS in
sublogarithmic time is much wider than each of the fami-
lies that we have listed above. Moreover, our result applies
also when the arboricity a = a(G) of the input graph G is
super-constant (up to a = log1/2−ε n, for any ε > 0). (See
Sect. 2 for a more detailed comparison between various graph
families.)

To our knowledge, prior to our work the only graph fam-
ilies on which there existed a sublogarithmic time algorithm
for the MIS problem were the family of graphs with bounded
degree [11,17,18] and the family of graphs with bounded
growth [9,14,24]. In other words, our algorithm is the first
sublogarithmic time (deterministic or randomized) algorithm
for the MIS problem on any graph family other than these two
families of graphs. Even for the family of unoriented trees,
which is contained in the family of graphs of constant arbo-
ricity, the best previous result has running time of O(log n).

In addition, we show that for graphs with arboricity
a = �(

√
log n), an MIS can be computed deterministically

in O(a
√

log n+a log a) time. In particular, this result implies
that an MIS can be computed deterministically in polylog-
arithmic time on graphs G with arboricity at most polylog-
arithmic in n. Hence we significantly extend the class of
graphs on which an efficient (that is, requiring a polyloga-
rithmic time) deterministic algorithm for computing MIS is
known.

1.3 Coloring

We also study the coloring problem. This problem is closely
related to the MIS problem, and similarly to the latter prob-
lem, the coloring problem is one of the most central and
most intensively studied problems in distributed algorithms
[10,11,17,18,26]. The goal of the coloring problem is to
assign colors to vertices so that for each edge e, the endpoints
of e are assigned distinct colors. In other words, the vertex
set has to be partitioned into color classes, such that each
color class forms an independent set. There is an inherent
tradeoff between the running time of a distributed coloring
algorithm and the number of colors it employs for coloring
the underlying network.

There are efficient algorithms for coloring graphs of boun-
ded degree. Specifically, for a positive integer parameter
�, Goldberg et al. [11] devised a (� + 1)-coloring algo-
rithm with running time O(� log n). Goldberg and Plot-
kin [10] devised an O(�2)-coloring algorithm with running
time O(log∗ n), for constant values of �, and Linial [18]
extended this result to general values of �. Recently, Kuhn
and Wattenhofer [17] presented a (�+1)-coloring algorithm
with running time O(� log � + log∗ n). For planar graphs,

123



Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition 365

Goldberg et al. [11] devised a 7-coloring algorithm with run-
ning time O(log n), and a 5-coloring algorithm with running
time O(log n log log n). (The latter algorithm assumes that a
planar embedding of the input graph is known to the vertices.)

We significantly extend the class of graphs families for
which efficient coloring algorithms are known, and devise
a (�(2 + ε) · a� + 1)-coloring algorithm for graphs G of
bounded arboricity a(G)≤ a that has running time O(a ·
log n). (The parameter ε > 0 can be set as an arbitrarily small
positive constant.) In particular, our algorithm 7-colors any
graph of arboricity at most 3 in logarithmic time, subsuming
the result of Goldberg et al. [11]. Moreover, it provides an
O(1)-coloring of any graph of constant arboricity in loga-
rithmic time. As was discussed above, this family of graphs
contains graphs of bounded degree, graphs of bounded genus,
graphs that exclude any fixed minor, and many other graphs.

We also present two tradeoffs between the running time
of our algorithm and the number of colors it employs. For a
positive parameter q ≥ 1, and an input graph G of arboricity
a = a(G), our first algorithm computes an O(q · a2)-color-
ing of the input graph in time O(

log n
log q + log∗ n). In partic-

ular, this implies that in just O(log∗ n) time one can color
planar graphs (and other graphs with bounded arboricity)
using O(n1/ log∗ n) = no(1) colors. In addition, for a positive
parameter t , 1 ≤ t ≤ a, our second algorithm computes an
O(t · a)-coloring in time O( a

t · log n + a · log a). Finally, we
show that for any a and q, any algorithm for O(q · a2)-col-
oring graphs requires �(

log n
log a+log q ) time, and thus our first

tradeoff is nearly optimal.
Using these results we show a separation between the

problems of MIS and O(a)-coloring, in the following sense.
The lower bound mentioned above implies that it is impos-
sible to compute an O(a)-coloring of graphs with bounded
arboricity in sublogarithmic time. Nevertheless, we devise
an MIS algorithm for this family of graphs with running
time O(

log n
log log n ). Therefore, the problem of computing O(a)-

coloring is harder than computing an MIS on graphs with
bounded arboricity.

1.4 Forests-decomposition

A forests-decomposition is a partition of the edge set of a
graph into edge-disjoint subsets, such that each subset forms a
forest. By definition, the edge set E of any graph G = (V, E)

of arboricity a = a(G) can be decomposed into a edge-dis-
joint forests. Moreover, a is the minimum number of forests
into which the graph edge set can be decomposed. An equiv-
alent definition formulated by Nash-Williams [21] in 1964
states that

a(G) = max

{⌈ |E(G ′)|
|V (G ′)| − 1

⌉
: G ′ ⊆ G, |V (G ′)| ≥ 2

}
.

This fundamental theorem has many applications in graph
theory and combinatorics (see [4], and the references therein).
However, so far there was no efficient distributed algorithm
known for computing such a decomposition. A key ingredient
in most of our algorithms for the MIS and coloring problems
is an efficient procedure for computing forests-decomposi-
tions. Specifically, we demonstrate that for a parameter q,
q ≥ 1, a forests- decomposition into O(q · a) forests of a
graph with arboricity a can be computed (distributedly) in
time O(

log n
log q ). We also show a lower bound of�(

log n
log q+log a )−

O(log∗ n) for this problem, demonstrating that our algo-
rithm is near-optimal. Remarkably, all our algorithms can
be applied even when vertices do not know the arboricity of
the underlying graph.

It is plausible that our algorithm for computing forests-
decompositions will be useful for other applications. Hence
we believe that this result is of independent interest.

1.5 Related work

Recently, MIS and coloring problems were studied on unit
disk, unit ball, and more generally, bounded growth graphs
[9,14,16,24]. Specifically, Kuhn et al. [16] devised a deter-
ministic algorithm with running time O(log∗ n) for these
problems on unit ball graphs whose underlying metric is dou-
bling. This result was extended in [14] to a more general fam-
ily of bounded growth graphs at the expense of increasing the
running time to O(log � · log∗ n). Gfeller and Vicari devised
a randomized algorithm for computing MIS in O(log log n ·
log∗ n) time on bounded growth graphs [9]. Finally, Schnei-
der and Wattenhofer improved this result and devised a deter-
ministic algorithm with running time O(log∗ n) for the MIS
problem on graphs of bounded growth [24]. We remark that
the family of graphs of bounded growth and of bounded
arboricity are incomparable, i.e., there are graphs of bounded
growth that have large arboricity and vice versa.

Our algorithm for computing a forests-decomposition is
closely related to one of the coloring algorithms from Gold-
berg et al. [11]. However, the latter algorithm does not explic-
itly compute a forests-decomposition. An algorithm that does
compute a forests-decomposition explicitly in the PRAM
model of parallel computing was devised by Arikati
et al. [2]. This algorithm computes an unoriented forests-
decomposition, i.e., the computed trees are unrooted and,
consequently, there is no child-parent relationship between
neighboring vertices. Once the decomposition has been com-
puted, each forest is oriented separately. However, this tech-
nique does not guarantee an acyclic orientation which is
required for our coloring algorithms. Moreover, the algo-
rithm of [2] starts by computing a constant approximation
on the graph arboricity. While this can be accomplished effi-
ciently in the PRAM model, it is not hard to see that in the
distributed model computing such an estimate requires �(n)
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time. Consequently, the technique of Arikati et al. is inappli-
cable in the distributed setting.

Finally, a number of recent papers considered the effect
of “sense of direction” or “orientation” on distributed com-
putation [13,25]. In particular, Kothapalli et al. [13] devised
a randomized algorithm that constructs an O(�)-coloring of
G in time O(log �+√

log n log log n) with high probability.

1.6 The structure of the paper

In Sect. 2 we present the basic notions used throughout the
paper. In Sect. 3 we present our algorithms for computing
forests-decomposition. In Sects. 4 and 5 we employ these
algorithms to devise efficient coloring algorithms. Section 6
is devoted to the MIS problem. Finally, in Sect. 7 we present
our lower bounds.

2 Preliminaries

2.1 Definitions and notation

Unless the base value is specified, all logarithms in this paper
are to base 2. For a non-negative integer i , the iterative log-
function log(i)(·) is defined as follows. For a positive inte-
ger n, log(0) n = n, and log(i+1) n = log(log(i) n), for every
i = 0, 1, 2, . . .. Also, for a positive integer n, log∗ n is defined
by: log∗ n = min

{
i | log(i) n ≤ 2

}
.

The degree of a vertex v in an undirected graph G =
(V, E), denoted deg(v), is the number of edges incident to
v. A vertex u such that (u, v) ∈ E is called a neighbor of v

in G. The neighborhood �(v) of v is the set of neighbors of
v. For a subset U ⊆ V , the degree of v with respect to U ,
denoted deg(v,U), is the number of neighbors of v in U . The
maximum degree of a vertex in G, denoted �(G), is defined
by �(G) = maxv∈V deg(v). The graph G ′ = (V ′, E ′) is a
subgraph of G = (V, E), denoted G ′ ⊆ G, if V ′ ⊆ V and
E ′ ⊆ E . The notation V (G ′) and E(G ′) is used to denote
the vertex set V ′ of G ′, and the edge set E ′ of G ′, respec-
tively. The out-degree of a vertex v in a directed graph Ĝ
is the number of edges connected to v that are oriented out-
wards of v. A directed cycle in a directed graph Ĝ is a cycle
whose edges are oriented consistently. In a simple directed
cycle, each vertex in the cycle is adjacent to one outgoing
edge and one incoming edge of the cycle. An orientation of
(the edges of) an undirected graph G is an assignment μ of
direction to each edge of G. An orientation is acyclic if the
resulting directed graph Ĝ contains no directed cycles. An
out-degree of a vertex v in G with respect to an orientation μ,
or shortly, μ-out-degree, is the out-degree of v in Ĝ. An out-
going edge of v in Ĝ is called an outgoing edge with respect
to μ, or shortly, a μ-outgoing edge. The arboricity a(G) of
a graph G = (V, E) is the minimum number of forests into

which E can be partitioned. An equivalent definition due to
Nash-Williams [21] is given by:

a(G) = max

{⌈ |E(G ′)|
|V (G ′)| − 1

⌉
: G ′ ⊆ G, |V (G ′)| ≥ 2

}
.

If the graph G can be understood from the context, we use
the notation � (respectively, a) as a shortcut for �(G) (resp.,
a(G)). A coloring ϕ : V → N that satisfies ϕ(v) �= ϕ(u) for
each edge (u, v) ∈ E is called a legal coloring.

Some of our algorithms use as a black-box an algorithm
due to Kuhn and Wattenhofer [17] that (� + 1)-colors any
graph G with maximum degree � in time O(� · log � +
log∗ n). We will refer to this algorithm as KW Coloring
Algorithm.

2.2 Graph parameters and classes

It follows from the definition of arboricity that a(G) ≤
�(G), and thus, the family of graphs with bounded arbo-
ricity contains the family of graphs with bounded degree.

For an integer parameter g > 0, a graph G is said to
have orientable (respectively, non-orientable) genus g if g is
the smallest number such that G can be drown on an orient-
able (resp. non-orientable) surface of genus g in such a way
that no two edges of G intersect. Intuitively, an orientable
(resp., non-orientable) surface of genus g can be thought of
as a sphere with g “handles” (resp, “cross-caps”). The orient-
able and non-orientable genuses of a given graph are always
within a factor of 2 of each other. See [20] for further details.
Henceforth we use the notion genus as a shortcut for orient-
able genus.

For a graph G = (V, E) of bounded genus g, by Euler
formula, |E | ≤ 3|V |−6+6 ·g. In addition, for any subgraph
G ′ = (V ′, E ′) of G, the genus of G ′ is at most g. Therefore,
for any subgraph G ′ of G, it follows that

|E ′| ≤ min
{
3|V ′| − 6 + 6 · g, |V ′| · (|V ′| − 1)

}
.

Thus,

a(G) ≤ max

{⌈
min

{
3|V ′| + 6 · g

|V ′| − 1
,
|V ′| · (|V ′| − 1)

|V ′| − 1

}⌉

: V ′ ⊆ V, |V ′| ≥ 2

}
= O(

√
g).

Hence the family of graphs of bounded genus is contained in
the family of graphs of bounded arboricity.

Another important graph family that is contained in the
family of graphs with bounded arboricity is the family of
graphs that exclude a fixed minor. Given an edge e = (x, y)

of a graph G, the graph G/e is obtained from G by contract-
ing the edge e, that is, by identifying the vertices x and y, and
removing all self-loops. In addition, for each pair of nodes u
and w for which the resulting graph has now more than one
edge, we replace all these edges with a single edge (u, w).
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A graph H ′ that is obtained from G by a sequence of edge
contractions is called a contraction of G, and a subgraph H
of a contraction of G is called a minor of G. For a fixed graph
H , a graph family G is said to exclude a minor H if for every
graph G ∈ G, H is not a minor of G.

It is well-known (see, e.g., [6] Theorem 7) that for any
fixed graph H there exists a number aH such that every graph
G that excludes minor H has arboricity at most aH . Conse-
quently, the family of graphs that exclude a fixed minor is
contained in the family of graphs with bounded arboricity.

The same is true for graphs with bounded treewidth. For
a positive integer parameter k, we say that a vertex v is a
k-simplicial vertex if the set of its neighbors forms a clique
of size k, Kk . A k-tree is a graph G that is either isomorphic
to Kk , or G has a k-simplicial vertex v and the graph G \ v

obtained by removing v from G is a k-tree. A treewidth of a
graph G is the minimum k such that G is a spanning subgraph
of a k-tree. It is well-known that a graph with treewidth k has
arboricity at most k. (See, e.g., [7] Theorem 2). Consequently,
the family of graphs of bounded treewidth is contained in the
family of graphs of bounded arboricity.

3 Forests-decomposition

In this section we present a distributed algorithm that com-
putes a forests-decomposition with (2 + ε) · a forests, for an
arbitrarily small constant parameter ε > 0. This algorithm
is a basic building block in most of our coloring algorithms.
Some of them invoke this algorithm directly. Other algo-
rithms do not employ it as a black-box, but rather use the
partition of the vertex set V produced by this algorithm.

In Sect. 3.1 we present a simpler variant of our algorithm
for computing a forests-decomposition that applies to the
scenario in which both the number of vertices n and the
arboricity a = a(G) of the input graph are known to all
vertices before the computation starts. In Sect. 3.2 we extend
the algorithm to scenarios in which one of those parameters
is not known in the beginning of the computation.

3.1 Known arboricity

In the first step, our algorithm for computing a forests-decom-
position, henceforth called Procedure Forests- Decomposi-
tion, invokes the partitioning subroutine called Procedure
Partition. Both Procedure Forests- Decomposition and Pro-
cedure Partition accept as input two parameters. The first
parameter is the arboricity of the input graph, and the second
parameter ε is a positive real number. Procedure Partition
partitions the vertex set of the graph into � = ⌊ 2

ε
log n

⌋
dis-

joint subsets H1, H2, . . . , H� that satisfy that every vertex
v ∈ Hi , i ∈ {1, 2, . . . , �}, has at most (2+ε) ·a neighbors in
the vertex set ∪�

j=i H j , i.e., deg(v, ∪�
j=i H j ) ≤ (2 + ε) · a.

We will henceforth refer to partitions that satisfy this prop-
erty as H-partitions with degree at most (2 + ε) · a and size
� = O(log n).

During the execution of this procedure each vertex in V is
either active or inactive. Initially, all the vertices are active.
For every i = 1, 2, . . . , �, on the i th round each active vertex
with at most (2 + ε) · a active neighbors joins the set Hi and
becomes inactive. The pseudo-code of Procedure Partition is
presented below. In all our algorithms the presented pseudo-
code is for a given vertex v, and it is executed in parallel by
all vertices in the network.

Algorithm 1 Procedure Partition(a,ε): partitions the verti-
ces into � = ⌊ 2

ε
log n

⌋
sets such that every vertex v ∈ Hi ,

i ∈ {1, 2, . . . , �}, has at most (2+ε)·a neighbors in
⋃�

j=i H j .

Initially all vertices are active.
1: for round i = 1, 2, . . . , � do
2: if v is active and has at most (2 + ε) · a active neighbors then
3: make v inactive
4: add v to Hi
5: send the messages ‘inactive’ and ‘v joined Hi ’ to all the neigh-

bors
6: end if
7: for each received ‘inactive’ message do
8: mark the sender neighbor as inactive
9: end for
10: end for

The next lemma shows that each vertex in the network
becomes inactive during the execution, and joins one of the
sets H1, H2, . . . , H�.

Lemma 3.1 A graph G = (V, E) with arboricity a(G) has
at least ε

2+ε
· |V | vertices with degree (2 + ε) · a or less.

Proof Suppose for contradiction that there are more than
2

2+ε
·|V | vertices with degree greater than (2+ε)·a. It follows

that 2|E | = ∑
v∈V deg(v) > ((2+ε)·a)·|V |· 2

2+ε
= 2·a·|V |

≥ 2 · |E |
|V |−1 · |V | > 2|E |. This is a contradiction. ��

By the definition of arboricity, the subgraph induced by
any subset of V of active vertices has arboricity at most a.

Lemma 3.2 For any subgraph G ′ of G, the arboricity of G ′
is at most the arboricity of G.

By Lemmas 3.1–3.2, on each round at least ( ε
2+ε

)-fraction
of the active vertices become inactive, and so after log(2+ε)/2 n
rounds all vertices become inactive. For ε in the range 0 <

ε ≤ 2, it holds that log(2+ε)/2 n ≤ 2
ε

log n. For ε > 2 we

note that log(2+ε)/2 n = O(
log n
log ε

). Hence, we have proved
the following lemma.

Lemma 3.3 For a graph G with a(G) = a, and a parame-
ter ε > 0, Procedure Partition(a,ε) produces an H-partition
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H = H1, H2, . . . . . . , H� of size � ≤ ⌊
log(2+ε)/2 n

⌋
. It does

so within at most � rounds. Whenever ε ≤ 2, � is at most⌊ 2
ε

log n
⌋

. In the complementary range, � = O(
log n
log e ).

The next lemma shows that the H -partition H has a small
degree.

Lemma 3.4 The H-partition H = {H1, H2, . . . , H�} has
degree at most (2 + ε) · a.

Proof The vertex v was added to Hj on round number j .
Every neighbor of v that belongs to one of the sets Hj ,

Hj+1, . . . , H� was added to its set on round j or later. There-
fore, at the end of round j −1 all its neighbors in Hj ∪Hj+1∪
· · ·∪H� were active. The vertex v has been added because the
number of its active neighbors was at most (2 + ε) · a. Thus
the number of the neighbors of v in Hj ∪ Hj+1 ∪ · · · ∪ H� is
at most (2 + ε) · a. ��

We summarize the properties of Procedure Partition in the
following theorem.

Theorem 3.5 For a graph G with arboricity a(G) = a, and
a parameter ε > 0, Procedure Partition(a, ε) computes an
H-partition of size � with degree at most (2 + ε) · a. The
running time of the procedure is O(log n) whenever ε ≤ 2,
and it is O(

log n
log ε

) for ε > 2.

For convenience, we will denote the second parameter of
Procedure Partition by ε whenever ε ≤ 2, and by q whenever
it is greater than 2.

On the next step Procedure Forests-Decomposition orients
the edges of the graph as follows. For each edge e = (u, v),
if the endpoints u, v are in different sets Hi , Hj , i �= j, then
the edge is oriented towards the vertex in the set with a greater
index. Otherwise, if i = j , the edge e is oriented towards the
vertex with a greater ID among the two vertices u and v. The
orientation μ produced by this step is acyclic. By Lemma
3.4, each vertex has μ-out-degree at most (2 + ε) · a. This
step is called Procedure Orientation.

Finally, on the last step Procedure Forests- Decomposition
partitions the edge set of the graph into forests. Each vertex is
in charge for its outgoing edges, and it assigns each outgoing
edge a different label from the set {1, 2, . . . , �(2 + ε) · a�}.
This step will be henceforth referred as the labeling step. It
will later be shown that for each index i , the set of edges
labeled by i forms a forest.

Algorithm 2 Forests-Decomposition(a,ε): partition the edge
set into �(2 + ε) · a� forests.
1: Invoke Procedure Partition(a, ε)
2: μ := Orientation()
3: Assign a distinct label to each μ-outgoing edge of v from the set

{1, 2, . . . , �(2 + ε) · a�}

The time complexity of Procedure Partition is O(log n),
and the steps 2 and 3 of Procedure Forests-Decomposition,
orienting and labeling the edges, require O(1) rounds each.
Hence the overall time complexity of the forests-decompo-
sition algorithm is O(log n).

Lemmas 3.6–3.8 constitute the proof of correctness of the
algorithm for computing forests-decomposition.

Lemma 3.6 The orientation μ formed by the algorithm is
consistent.

Proof For an edge e = (u, v), if u orients e towards v then
either the index of v is greater than the index of u, or they
have the same index but I D(u) < I D(v). In both cases v

orients e towards v as well. ��
Lemma 3.7 The orientation μ formed by the algorithm is
acyclic.

Proof We show that there are no directed cycles with respect
to μ. Let C be a cycle of G. Let v be a vertex in C such that
the H -index i of v (that is, the index i s.t. v ∈ Hi ) is the
smallest index of a vertex in C , and such that I D(v) is the
smallest identity number in Hi ∩ C . Let u, w denote the two
neighbors of v in C . Obviously, both edges (v, u) and (v,w)

are oriented outwards of v, and thus, the μ-out-degree of u
in the cycle is 2. Hence C is not a directed cycle with respect
to μ. Consequently, the orientation μ is acyclic. ��

For each i = 1, 2, . . . , �, consider the graph Gi = G(Hi )

induced by the set Hi . Lemma 3.4 implies that the maximum
degree �(Gi ) of a vertex in Gi is at most (2+ε)·a. Moreover,
a stronger statement follows:

Lemma 3.8 Each vertex has μ-out-degree at most (2+ε)·a.

Proof Let v be a vertex of G. Let j be the H -index of v. Each
outgoing edge of v is connected to a vertex with an H -index
that is greater or equal to j . Hence by Lemma 3.4, v has at
most (2 + ε) · a outgoing edges. ��

By Lemma 3.8, once the orientation μ is formed, each
vertex can assign distinct labels to its outgoing edges from
the range 1, 2, . . . , �(2 + ε) · a�. The next lemma shows that
the undirected graph induced by the set of edges labeled with
the label i does not contain cycles.

Lemma 3.9 For each label i, the set of edges labeled by i
forms a forest.

Proof By Lemma 3.7, each cycle in the original undirected
graph G has a vertex with two μ-outgoing edges on this cycle.
Suppose for contradiction that there is a cycle C in G with all
edges labeled by the same label i . There exists a vertex v in
this cycle and two edges e1, e2 adjacent to v that are oriented
outwards of v by μ. Thus, the algorithm labeled the edges
e1, e2 with different labels, a contradiction. ��
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Fig. 1 Forests-decomposition. (Some vertices and edges are omitted
from the figure for clarity.) An outgoing edge from a vertex u to a vertex
v labeled with a label i means that v is the parent of u in a tree of the i th
forest Fi . Solid edges represent edges with the label ‘1’. Dashed edges
represent edges with the label ‘2’

Consider a directed subgraph induced by all edges labeled
by the same label i . By the previous Lemma, this subgraph
is a forest. We refer to this forest as Fi . The labeling step
assigned distinct colors to each outgoing edge of each vertex
of G. Consequently, each vertex in Fi has at most one outgo-
ing edge connecting it with another vertex in Fi . Hence, the
orientation μ inside Fi determines the parent-child relation-
ship in the following way. If a vertex v has no outgoing edges
in Fi , it is a root in the forest Fi . Otherwise, it has exactly
one outgoing edge in Fi that connects it with its parent. All
the other edges adjacent to v in Fi connect it with its chil-
dren. To summarize, in each forest Fi , μ orients the edges
“bottom-up”, from children to their parents.

We summarize this section with the following corollary.

Corollary 3.10 For a graph G with arboricity a = a(G),
and a positive parameter ε, Procedure Forests-Decomposi-
tion(a, ε) partitions the edge set of G into �(2 + ε) · a� for-
ests. The running time of the procedure is O(log n) whenever
ε ≤ 2, and O(

log n
log ε

) for ε > 2. Moreover, as a result of its
execution each vertex v knows the label and the orientation
of every edge (v, u) adjacent to v.

See Fig. 1 for an illustration.

3.2 General scenarios

For Algorithm 2 to work properly, each vertex needs to know
the number of vertices n, and the arboricity of the graph a
at the beginning of the computation. (The number of ver-
tices is required for the vertices to be able to compute the
value

⌊ 2
ε

log n
⌋

, and the arboricity is needed to compute
the degree threshold (2 + ε) · a.) In this section we extend
the algorithm to apply to the scenario in which one of these
parameters is not known to the vertices when the computa-
tion starts. Specifically, we devise algorithms for the scenario
when a is not known, but n is known. We extend it to even

more general scenario in which both a and n are unknown,
but the vertices are provided with a polynomial estimate
of n.

If only the number of vertices n is known, we compute a
2 · (2 + ε) · a forests-decomposition without a priori knowl-
edge of a in O(log n) rounds by the following algorithm.
First, we extend Procedure Partition to this scenario. The
generalized procedure is called Procedure General-Partition.

Procedure General-Partition invokes a procedure similar
to Procedure Partition (a, ε) for �log n�+1 times in parallel.
The i th invocation of this procedure accepts as input a = 2i ,
for i = 0, 1, . . . , �log n�. Each vertex v maintains a boolean
activity array Av , and round numbers array Rv . The entry
Av[i] is equal to 1 if v is currently active in the invocation
of Procedure Partition with the parameter a = 2i . Hence-
forth we say that v is i -active (respectively, i -inactive) if it is
active (resp., inactive) with respect to invocation i . Initially,
all vertices are i-active in all invocations, i.e., Av[i] = 1
for all i . In every round, for all i , each i-active vertex v

that has at most (2 + ε) · 2i i-active neighbors becomes
i-inactive, and the value of Av[i] is set to 0. In addition, the
round number in which it became i-inactive is recorded in
Rv[i]. We remark that some vertices may stay i-active in
some invocation i during the entire execution of the algo-
rithm. However, by a previous argument, when the process
stops after k = ⌊ 2

ε
log n

⌋
rounds, for all vertices v in the

graph G and for all indices i such that a(G) ≤ 2i ≤ n, the
vertex v is i-inactive, i.e., Av[i] = 0. (Since when Procedure
Partition is invoked with the parameters a′ ≥ a(G), and ε, all
vertices become inactive during its execution. See Lemmas
3.1–3.3).

In round k+1 each vertex v joins a set Hind , 1 ≤ ind ≤ �,
for � = log((2 + ε) · 2 · a) · 2

ε
log n = O(log a log n). (Here,

� is an upper bound on the number of sets H created by
the procedure.) The index ind of the set Hind depends on
the invocation with the smallest index m in which v became
m-inactive, and on the number of the round Rv[m] in which
it became m-inactive. Note that v had at most (2 + ε) · 2m

m-active neighbors when it became m-inactive. All other
neighbors w became m-inactive before v did. The index
ind of v is computed by the formula ind = ind(v) =
m · ⌊ 2

ε
log n

⌋ + Rv[m].
For the index ind as above, the set Hind is said to belong

to the class m. The collection of sets Hind that belong to the
class m is denoted Cm . Observe that there may exist indices
q ∈ {1, 2, . . . , �} for which no vertex v satisfies ind(v) = q.
The corresponding sets Hq are set as empty, i.e, Hq := ∅.

The pseudo-code of the algorithm is provided below. Note
that in step 12 only O(log n) bits are sent in each message.
Next, we show that the degree of the H -partition
H = {H1, H2, . . . , H�} is O(a(G)). Recall that for a ver-
tex v and a set Hi , we say that the set Hi is the set of v if
v ∈ Hi . The index i as above is called the H-index of v.
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Algorithm 3 General-Partition(ε)
Each vertex maintains an activity array Av of size �log n� + 1.
Initially for each vertex v, Av[i] = 1 for i = 0, 1, . . . , �log n�.
set k = ⌊ 2

ε
log n

⌋
1: for round i := 1, 2, . . . , k do
2: for j := 0, 1, . . . , �log n� in parallel do
3: Sum[ j] := ∑

u∈�(v) Au[j] /* Sum[ j] is the number of
j-active neighbors of v */

4: end for
5: for j := 0, 1, . . . , �log n� in parallel do
6: if Av[ j] = 1 and Sum[ j] ≤ (2 + ε) · 2 j then
7: /* if v has ≤ (2 + ε) · 2 j j-active neighbors in the invocation

j */
8: Av[ j] := 0
9: Rv[ j] := i
10: end if
11: end for
12: send the array Av to all the neighbors
13: end for
14: m := min {i | Av[i] = 0, i = 0, 1, . . . , �log n�}
15: ind := m · k + Rv[m]
16: join the set Hind
17: send the message ‘v joined Hind ’ to all neighbors

Lemma 3.11 For an index m = 1, 2, . . . , �log n�, a set
Hind ∈ Cm, and a vertex v ∈ Hind ,

(1) deg(v, ∪�
j=ind Hj ) ≤ (2 + ε) · 2 · a(G).

(2) deg(v, ∪ {
Hj | Hj ∈ Cm, j ≥ ind

}
) ≤ (2 + ε) · 2m.

Proof For a neighbor w that became m-inactive before v

did, the number of the invocation with the smallest index
q in which w becomes q-inactive at some point during the
execution is less or equal to m. If q < m then

ind(w) = q ·
⌊

2

ε
log n

⌋
+ Rw[q]

< ind(v) = m ·
⌊

2

ε
log n

⌋
+ Rv[m],

because 1 ≤ Rw[q], Rv[m] ≤ ⌊ 2
ε

log n
⌋

. If q = m then
Rw[m] < Rv[m], since w became m-inactive before v did.
Hence in this case as well, ind(w) < ind(v). Since v has at
most (2 + ε) · 2m neighbors that became m-inactive after v

did, or in the same round as v did, the number of neighbors of
v with an H -index greater or equal than the H -index ind of
v is at most (2 + ε) ·2m . Hence deg(v, ∪ {

Hj |Hj ∈Cm, j ≥
ind}) ≤ deg(v, ∪�

j=ind(v)Hj ) ≤ (2 + ε) · 2m , proving the
second assertion of the lemma.

Observe that for all i such that a(G) ≤ 2i ≤ n, at the end
of the execution Av[i] = 0 holds. Recall also that m is the
smallest index such that Av[m] = 0 at the end of the execu-
tion. Hence, it follows that 2m ≤ 2·a(G). Therefore, the over-
all number � of sets Hi is at most log(2 · a(G)) · ⌊ 2

ε
log n

⌋ =
O(log a(G) · log n). Also, it follows that for a vertex v ∈ Ht ,
t = 1, 2, . . . , �, deg(v, ∪�

j=t H j ) ≤ (2 + ε) · 2m ≤ (2 + ε) ·
2 · a(G), proving the first assertion. ��

Next, we build upon Procedure General-Partition to devise
an algorithm (Procedure General-Forests- Decomposition)
for computing the forests-decomposition in the scenario
when only n is known. Procedure General-Forests-Decom-
position starts with invoking Procedure General-Partition
with input ε. Step 2, Procedure Orientation, is executed exac-
tly as in Algorithm 2, and produces an orientation μ of the
graph. Finally, in the Labeling step each vertex that has δ

outgoing edges with respect to μ assigns distinct labels to
its outgoing edges from the set {1, 2, . . . , δ}. By the same
argument as in the proof of Lemma 3.7, the orientation μ is
an acyclic orientation. Also, by Lemma 3.8, for every vertex
v the μ-out-degree of v is at most 2 · (2 + ε) · a(G).

The properties of Procedure General-Forests-Decomposi-
tion are summarized in the following corollary.

Corollary 3.12 Procedure General-Forests-Decomposition
(ε) computes a forests-decomposition of the input graph
G = (V, E) into O(a(G)) forests. In addition, the procedure
produces an H-partition of size O(log a log n) and degree at
most (2 + ε) · 2 · a(G). The running time of the procedure is
O(log n).

We remark that the upper bound on the degree of the
H -partition can be made as close to 2 · a(G) as one wishes.
Let ε′, ε′ > 0, denote an arbitrarily small positive constant.
The only modification is that in Procedure General-Partition
we run

⌈
log1+ε′ n

⌉ + 1 executions of Procedure Partition in
parallel, with values of the threshold parameter a = (1+ε′)i ,
for i = 0, 1, . . . ,

⌈
log1+ε′ n

⌉
, instead of �log n� + 1 execu-

tions with values a = 2i , i = 0, 1, . . . ,
⌈

log2 n
⌉ + 1. This

way the number of forests in the resulting decomposition is
at most (1 + ε′)(2 + ε) · a(G). The time complexity remains
the same, up to a constant factor. The size of the H -partition,
as well as the maximum message size, grows also only by a
constant factor.

One can also run Procedure General-Forests- Decompo-
sition with an input parameter q, q > 2. By the same consid-
erations, this way we obtain a forests-decomposition into at
most a(G) · (2 + q) forests in time O(

log n
log q ), and an H -parti-

tion of size O(log a · log n
log q ) and degree at most a(G) · (2+q).

Finally, consider the scenario in which neither the graph
arboricity nor the number of vertices n is known to the verti-
ces in advance, but instead vertices are provided with a poly-
nomial estimate N of n. (Specifically, there exists a universal
constant c, c > 1, such that n1/c ≤ N ≤ nc.) In this sce-
nario we replace all occurrences of n in Procedure General-
Partition with N c. It is easy to see that precisely the same
analysis applies, but the size � of the H -partition becomes
at most

⌊ 2
ε

log N c · log(2a)
⌋ ≤ ⌊

c2 · 2
ε

log n · log(2a)
⌋

, and
the running time of the algorithm grows by at most a factor c2

as well. To summarize, Corollary 3.12 holds up to constant
factors in this more general scenario as well.
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4 O(a)-Coloring

In this section we employ the Forests-Decomposition algo-
rithm described in Sect. 3 to devise an efficient algorithm,
called Procedure Arb-Color, that colors the input graph G
of arboricity a = a(G) in (�(2 + ε) · a� + 1)-colors, for an
arbitrarily small parameter ε > 0. The running time of the
algorithm is O(a·log n). In Sect. 4.1 we present the algorithm
for the scenario when all vertices know both the number of
vertices n, and the arboricity at the beginning of computa-
tion. In Sect. 4.2 the algorithm is extended to the scenarios in
which the arboricity or the number of vertices is not known
in advance. The number of colors in the extended algorithm
is not affected, and the running time grows only by a constant
factor.

4.1 Known arboricity

Set A = �(2 + ε) · a�. We say that a color c is admissible for
a vertex v with respect to the vertex set H if each neighbor
of v in G(H) has a color different from c. We will prove that
whenever a vertex is required to choose an admissible color
by the algorithm, there is at least one such a color in the range
1, 2, , . . . , A + 1.

The algorithm starts by executing Procedure Forests-
Decomposition with the input parameter a = a(G). This
invocation returns an H -partition of G of size � ≤ ⌊ 2

ε
log n

⌋
and degree at most A. Then, for each index i , the graph
Gi = G(Hi ) induced by the set Hi is colored using the
KW (� + 1)-coloring algorithm (see Sect. 2.1). By Lemma
3.4, for all i , i = 1, 2, . . . ,

⌊ 2
ε

log n
⌋

, the subgraph Gi sat-
isfies �(Gi ) ≤ A. Hence the algorithm colors each graph
Gi with at most A + 1 colors. The resulting coloring is not
necessarily a legal coloring for the entire network G. We then
convert it into a legal (A + 1)-coloring for G using the sub-
routine Recolor. The latter subroutine accepts as input the
H -partition H1, H2, . . . , H� that satisfies the above proper-
ties, with each set Hi being (A+1)-colored legally. Procedure
Recolor merges these (A + 1) colorings of H1, H2, . . . , H�

into a unified legal (A + 1)-coloring of the entire vertex set
V = ∪�

i=1 Hi .
The vertices of the set H� retain their colors. Vertices

of the sets H1, H2, . . . , H�−1 are recolored iteratively. On
the first iteration vertices of the set H�−1 are recolored, and
in the end of this iteration the set H�−1 ∪ H� is (A + 1)-
colored legally. More generally, for i = 1, 2, . . . , � − 1,
before the iteration i starts the set ∪�

j=�−i+1 Hj is (A + 1)-
colored legally. In iteration i vertices of the set H�−i are
recolored, and in the end of this iteration the set ∪�

j=�−i H j is
(A+1)-colored legally. The algorithm maintains also an aux-
iliary set W of vertices that were already recolored. Before
the iteration i starts, W = ∪�

j=�−i+1 Hj , and during the iter-

ation i it holds that ∪�
j=�−i+1 Hj ⊆ W ⊆ ∪�

j=�−i H j .

To recolor the set H�−i (on the i th iteration of Proce-
dure Recolor), the algorithm uses the (A + 1)-coloring ϕ of
H�−i that was computed on step 2. Specifically, the algo-
rithm recolors one color class of H�−i at a time. It starts
with finding (in parallel) an admissible color from the set
{1, 2, . . . , A + 1} with respect to W for every vertex v ∈
H�−i such that ϕ(v) = 1.

Observe that for every vertex v ∈ H�−i , deg(v, W ) ≤
deg(v,∪�

j=�−i H j ) ≤ A, and thus, there necessarily exists an
admissible color for v with respect to W in the set {1, 2, . . . ,

A + 1}. In addition, since ϕ is a legal coloring of H�−i , it
follows that the vertex set H1

�−i = {v ∈ H�−i | ϕ(v) = 1} is
an independent set, and thus vertices of H1

�−i can be recol-
ored in parallel. Once H1

�−i is recolored, the algorithm pro-
ceeds to recoloring H2

�−i = {v ∈ H�−i | ϕ(v) = 2}, H3
�−i =

{v ∈ H�−i | ϕ(v) = 3} , . . . , H A+1
�−i = {v ∈ H�−i | ϕ(v) =

A + 1}. Later we argue that the resulting (A + 1)-coloring of
∪�

j=�−i H j is legal.
The pseudo-code of Procedure Arb-Color is provided

below.

Algorithm 4 Procedure Arb-Color(a,ε)
1: H = (H1, H2 . . . , H�) := Forests-Decomposition(a,ε).
2: In parallel, color each graph Gi , i = 1, 2, . . . , �, with A + 1 colors

using the KW coloring algorithm. Denote the resulting colorings ϕi ,
i = 1, 2, . . . , �.

3: Recolor(H).

Algorithm 5 Procedure Recolor (H = (H1, H2, . . . , H�))
1: W := ∅
2: for i := � − 1 downto 1 do
3: for round k := 1 to A + 1 do
4: for each vertex v in Hi such that ϕi (v) = k (in parallel) do
5: recolor v with a color from {1, 2, . . . , A + 1} that is admissible

with respect to W
6: W := W ∪ {v}
7: end for
8: end for
9: end for

The next corollary follows directly from Lemma 3.4.

Corollary 4.1 For an index i , i = 1, 2, . . . , �, and any col-
oring of the vertices of G, legal or illegal, each vertex v

that belongs to Hi has an admissible color in the range
1, 2, . . . , A + 1 with respect to ∪�

j=i H j .

The correctness of Procedure Arb-Color is proven in the
next theorem.

Theorem 4.2 Procedure Arb-Color produces a legal (A +
1)-coloring.

Proof Step 1 of Algorithm 4 divides the vertex set V of
the graph G into � = O(log n) sets Hi . By Lemma 3.4,
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for each index i , i = 1, 2, . . . , �, the maximum degree of
Gi = G(Hi ) is at most A. Step 2 of Algorithm 4 produces
a legal (A + 1)-coloring for each Gi , i = 1, 2, . . . , �. We
prove by induction on i that Procedure Recolor produces
a legal (A + 1)-coloring for the graph induced by H�−i ∪
H�−i+1 ∪ · · · ∪ H�.

Base (i = 0): Step 2 of Procedure Arb-Color produces a
legal coloring for H�. This coloring does not change in step
3. Therefore, when the algorithm terminates, G� is (A + 1)-
colored legally.

Induction step: Let 	 denote the (A + 1)-coloring of the
graph G(∪�

j=�−i+1 Hj ) produced by the first i − 1 iterations
of Procedure Recolor. By the induction hypothesis, 	 is a
legal (A+1)-coloring. Also, let ϕ�−i denote the legal (A+1)-
coloring of G�−i produced on step 2 of Procedure Arb-Color.

We argue that the i th iteration produces a legal (A+1)-col-
oring 	 ′ for G(∪�

j=�−i H j ). Consider two neighboring ver-

tices u, v in ∪�
j=�−i H j . If they both belong to ∪�

j=�−i+1 Hj

then their colors do not change during the i th iteration, and so
	 ′(u) = 	(u) �= 	(v) = 	 ′(v), as required. If they both
belong to H�−i then ϕ�−i (u) �= ϕ�−i (v). In other words,
in this case u and v were colored differently before the i th
iteration has started. Hence u and v select their respective
colors 	 ′(u) and 	 ′(v) on different rounds of the i th itera-
tion. Suppose without loss of generality that v selects a color
after u does so. Since v selects an admissible color 	 ′(v)

with respect to W and u ∈ W is a neighbor of v, it follows
that 	 ′(u) �= 	 ′(v).

Finally, we are left with the case that one of the verti-
ces u and v belongs to H�−i , and the other to ∪�

j=�−i+1 Hj .
Suppose without loss of generality that u ∈ H�−i and v ∈
∪�

j=�−i+1 Hj . In this case the color of v does not change on
the i th iteration, i.e., 	 ′(v) = 	(v). When the vertex u sets
its color 	 ′(u) it selects an admissible color. Since v is a
neighbor of u, it follows that 	 ′(u) �= 	 ′(v), and we are
done. ��

Recall that A = O(a), and thus, Procedure Arb-Color
produces an O(a)-coloring of the input graph.

Lemma 4.3 The time complexity of Procedure Arb-Color is
O(a log n).

Proof By Corollary 3.10, Procedure Forests- Decomposi-
tion requires O(log n) rounds. Let i be the index such that the
maximum degree of Gi is the largest among G1, G2, . . . , G�.
Since the graphs G1, G2, . . . , G� are colored in parallel, step
2 of Algorithm 4 requires O(�(Gi ) · log �(Gi ) + log∗ n)

rounds. (Recall that the time complexity of the KW coloring
algorithm is O(� log �+log∗ n).) In addition, the maximum
degree of Gi is at most A for every index i = 1, 2, . . . , �, and

A = O(a). Hence, it follows that the time complexity of step
2 is O(a log a + log∗ n). Step 3 of Algorithm 4, Procedure
Recolor, invokes � − 1 = O(log n) iterations, each running
for A+1 rounds. Hence this step requires O(a log n) rounds.

��
We summarize this section with the following theorem.

Theorem 4.4 For a graph G with arboricity a = a(G), and
a positive parameter ε, 0 < ε ≤ 2, Procedure Arb-Color(a,
ε) computes an O(a) coloring of G in time O(a log n).

We remark that invoking Procedure Arb-Color with
ε = q > 2 as second parameter results in inferior bounds
than those given by Theorem 4.4. Specifically, the running
time becomes O(q · a · log n

log q ), and the number of used colors
increases to O(q · a).

4.2 General scenarios

In this section we extend Procedure Arb-Color described in
Sect. 4.1 to the scenario when the value of the graph arbo-
ricity is not known to the vertices before the beginning of
the computation. They are, however, assumed to know the
number of vertices n, or at least a polynomial estimate of n.

The running time of our algorithm, Procedure General-
Arb-Color, for O(a)-coloring in this scenario is still
O(a log n). Similarly to Procedure Arb-Color, Procedure
General-Arb-Color consists of three steps. In the first step
Procedure General-Forests-Decomposition is used instead
of Procedure Forests-Decomposition. (See Sect. 3.2.) This
procedure returns an H -partition H1, H2, . . . , H� with � =
O(log a log n) and degree at most 2A.

In the second step subgraphs Gi =G(Hi ), i =1, 2, . . . , �,
are colored in parallel using the KW coloring algorithm. To
properly run the KW coloring algorithm, vertices need to
know an upper bound on the maximum degree of the under-
lying graph. (The KW algorithm invokes Linial’s algorithm
[18] as a subroutine, and Linial’s algorithm needs this infor-
mation.) Let m be the index of the class such that Hi ∈ Cm .
By Lemma 3.11, �(Gi ) ≤ (2 + ε) · 2m . Since all vertices of
Hi know their class index m, it follows that they can com-
pute the upper bound �m = (2 + ε) · 2m , and employ it for
running the KW coloring algorithm. The resulting coloring
will use at most �m + 1 = ((2 + ε) · 2m + 1) colors.

Another difficulty arises on the third (recoloring) step. In
Procedure Arb-Color the vertices of H�−1 recolor themselves
in the beginning, then the vertices of H�−2 do, etc. However,
if the arboricity a is not known to the vertices, a vertex v has
no way to compute � = O(log a log n) and consequently,
it cannot deduce the index of the round in which v should
recolor itself.

To overcome this difficulty, we modify the algorithm as
follows. Consider a vertex v ∈ Hi , and let ϕi be the coloring
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of Hi computed on step 2. The vertex v will recolor itself
once it learns that every neighbor u of v that belongs to Hj

for j > i recolored itself, and moreover, that every vertex
w ∈ Hi with ϕi (w) > ϕi (v) did so as well. This completes
the description of the modified algorithm.

Observe that this rule guarantees that when a vertexv ∈ Hi

recolors itself, all its neighbors that have already been recol-
ored belong to ∪�

j=i H j . Consequently, by Lemma 3.11, at
this point v has at most 2A recolored neighbors. Thus there
necessarily exists an admissible color from {1, 2, . . . , 2A+1}
for v with respect to the set of already recolored vertices.

Lemma 4.5 After each recoloring step the set W of already
recolored vertices is legally (2A + 1)-colored.

Proof The proof is by induction on the number of recoloring
steps.

At the beginning, before the first recoloring step, W = ∅,
and the statement holds vacuously.

Consider some recoloring step. We only need to show that
no two neighboring vertices v and u recolor themselves on
this step. Suppose without loss of generality that the H -index
iv of v is no greater than the H -index iu of u, i.e., iv ≤ iu .
If iv < iu , and u recolors itself on this step, then v does not
recolor itself as it has an unrecolored neighbor with a larger
H -index.

If i = iv = iu then suppose without loss of generality
that ϕi (v) < ϕi (u). (Recall that ϕi is a legal coloring of Hi

computed at step 2.) Then, again, if u recolors itself on this
step then v does not do so, and we are done. ��
Next, we analyze the running time of the algorithm.

Lemma 4.6 The running time is O(a log n).

Proof By Corollary 3.10, the first step, Procedure General-
Forests-Decomposition, requires O(log n) time. To analyze
the running time of the second step, recall that no vertex
joins a set Hi of class m with m > �log 2a�. (See the proof
of Lemma 3.11.) Coloring the graph Gi = G(Hi ) using the
KW coloring algorithm with an upper bound �m on the max-
imum degree requires O(�m · log �m + log∗ n) time. Since
�m = (2 + ε) · 2m , the overall running time of the second
step is O(a · log a + log∗ n).

Finally, the running time T of the recoloring step satis-
fies T ≤ ∑�log 2a�

m=0 Tm , where for each index m = 0, 1, . . . ,

�log 2a�, Tm is the time required to recolor all sets Hi of class
m. Recall that each set Hi of class m is (�m + 1)-colored,
for �m = �(2 + ε) · 2m�, and that there are at most O(log n)

sets in each class. Hence, for each m = 0, 1, . . . �log 2a�,
Tm ≤ O(log n) · (�m + 1) = O(log n) · 2m . Hence, T ≤∑�log 2a�

m=0 Tm = O(a · log n). ��
Similarly to Sect. 3.2, it is easy to see that the number

of employed colors can be reduced to �(2 + ε) · a� for an
arbitrarily small constant ε > 0.

Finally, consider the most general scenario in which the
vertices provided only with a polynomial estimate N of the
number of vertices, n1/c ≤ N ≤ nc for a universal constant
c > 1. In this case we replace all occurrences of n in Pro-
cedure General-Arb-Color by N c. It is easy to verify that
the modified algorithm is correct, and that the running time
grows only by a constant factor.

We summarize this section with the following corollary.

Corollary 4.7 Procedure General-Arb-Color produces an
O(a)-coloring in O(a log n) time.

5 Faster coloring

In this section we present two algorithms. Both algorithms
exhibit tradeoffs between the running time and the number
of colors that they employ. For a positive parameter t , 1 ≤
t ≤ a, our first algorithm, Procedure Tradeoff-Color, com-
putes an O(t ·a)-coloring in time O( a

t · log n +a log a). Our
second algorithm, Procedure Tradeoff-Arb-Linial, achieves
an O(q ·a2)-coloring within time O(

log n
log q + log∗ n). In Sect.

5.1 we assume that the arboricity and the number of vertices
are known in advance. In Sect. 5.2 we extend those algorithms
to general scenarios.

5.1 Known arboricity

5.1.1 Procedure tradeoff-color

Similarly to Procedure Arb-Color (Algorithm 4), Procedure
Tradeoff-Color consists of three steps. Moreover, steps 1 and
2 are exactly the same as in Procedure Arb-Color, and the
only difference is that in step 3 it invokes Procedure Trade-
off-Recolor instead of Procedure Recolor.

Similarly to Procedure Recolor, Procedure Tradeoff-
Recolor accepts as input the H -partition H = {H1, H2, . . . ,

H�} of the graph G computed by Procedure Forests-Decom-
position in step 1. Both Procedure Recolor and Procedure
Tradeoff-Recolor proceed iteratively, and in both procedures
vertices of the set H� retain their colors, and on iteration i ,
i = 1, 2, . . . , � − 1, vertices of the set H�−i are recolored.
The difference between the two procedures is that while in
Procedure Recolor each color class of H�−i is recolored in a
separate round, Procedure Tradeoff-Recolor recolors roughly
t color classes of H�−i on the same round. Specifically,
Procedure Tradeoff-Color groups the (A + 1) color classes
C1, C2, . . . , CA+1 of H�−i into p = ⌈ A+1

t

⌉
disjoint subsets

S1, S2, . . . , Sp. Each subset S j , j = 1, 2, . . . , p, contains the
color classes Cr with indices r ∈ I j ={( j − 1)t + 1, ( j − 1)

t + 2, . . . , min { j · t, p}}.
The i th iteration of Procedure Tradeoff-Recolor contin-

ues for p rounds. In round j , j = 1, 2, . . . , p, vertices of
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color classes Cr , r ∈ I j , are recolored in parallel. To guar-
antee that no pair of neighboring vertices u ∈ Cr , w ∈ C ′

r ,
r �= r ′, r, r ′ ∈ I j , will select the same color, the color clas-
ses

{
Cr | r ∈ I j

}
are assigned disjoint palettes

{
Pr | r ∈ I j

}
,

Pr = {(A + 1)(r − 1 − ( j − 1)t) + 1, (A + 1)(r − 1−
( j − 1)t) + 2, . . . , (A + 1)(r − 1 − ( j − 1)t) + (A + 1)}.

In other words, the color class C( j−1)t+1 is assigned the
palette P( j−1)t+1 = {1, 2, . . . , A + 1}, the color class
C( j−1)t+2 is assigned the palette P( j−1)t+2 = {(A + 1) + 1,

(A + 1) + 2, . . . , 2(A + 1)}, etc.
Consider a vertex v ∈ Cr , r ∈ I j . In round j of the

i th iteration the vertex v selects an admissible color from
its palette Pr with respect to the set W of already recolored
vertices. This completes the description of Procedure Trade-
off-Recolor.

Since each palette Pr contains (A + 1) colors, and
deg(v, W ) ≤ deg(v, ∪�

j=�−i H j ) ≤ A, it follows that there
necessarily exists an admissible color for v with respect to
W . An inductive argument similar to the one employed in the
proof of Theorem 4.2 shows that Procedure Tradeoff-Color
produces a legal coloring.

For an upper bound on the running time, observe that Pro-
cedure Tradeoff-Recolor runs for O(log n) iterations, and
each iteration requires

⌈ A+1
t

⌉ = O( a
t ) rounds. Hence the

running time of Procedure Tradeoff-Recolor is O( a
t log n).

The running time of step 1 of Procedure Tradeoff-Color, that
is, of Procedure Forests-Decomposition, is O(log n). Finally,
step 2 of Procedure Tradeoff-Color (see step 2 of Procedure
Arb-Color, Algorithm 4) requires O(a log a+log∗ n) rounds.
Hence the overall running time of Procedure Tradeoff-Color
is O( a

t · log n + a log a).
However, the improved running time of Procedure Trade-

off-Color comes at a price. Specifically, since we used t dis-
joint palettes of size A + 1 each, the number of colors that
were used is t · (A + 1) = O(t · a). We summarize the prop-
erties of Procedure Tradeoff-Color in the following theorem.

Theorem 5.1 For a positive parameter t , 1 ≤ t ≤ a, Pro-
cedure Tradeoff-Color produces a legal O(a · t)-coloring of
the input graph in time O( a

t · log n + a log a).

5.1.2 Procedures Arb-Linial and tradeoff-Arb-Linial

Observe that by substituting t = a in Theorem 5.1 we obtain
an O(a2)-coloring algorithm with running time O(log n +
a log a). Next, we present another O(a2)-coloring algorithm
that has an even better running time of O(log n). The impro-
ved algorithm, Procedure Arb-Linial, like the algorithm of
Linial [18], relies on the following combinatorial result by
Erdős et al. [8]. (The proof can also be found in [18]).

Theorem 5.2 [8,18] For positive integers n′ and r,
n′ > r , there exists a family Q̂ = Q̂(n′, r) of n′ subsets of

{
1, 2, . . . ,

⌈
5r2 · log n′⌉ }

that satisfies that for every r + 1

sets Q0, Q1, . . . , Qr ∈ Q̂, Q0 � ∪r
i=1 Qi .

Our algorithm consists of two steps. In the first step it con-
structs a forests-decomposition F = {F1, F2, . . . , FA} of the
input graph G, and on the second step it uses F for computing
the O(a2)-coloring of G. The first (forests-decomposition)
step entails an invocation of Procedure Forests-Decomposi-
tion with the input parameter a = a(G) and ε, 0 < ε ≤ 2.
By Corollary 3.10, this invocation produces a forests-decom-
position F with A ≤ �(2 + ε) · a� forests. For a vertex v and
a forest Fi , i ∈ {1, 2, . . . , A}, such that v ∈ V (Fi ) and such
that v has a parent in Fi , let πi (v) denote the parent of v in
Fi . Finally, let �(v) denote the set of all parents of v.

The second (coloring) step of the algorithm proceeds itera-
tively. Initially, each vertex v uses its distinct identity number
ID(v) as its color. In each round vertices recolor themselves
while maintaining the legality of the coloring. The number of
colors used by these coloring is gradually reduced from n to
O(a2). Similarly to the algorithm of Linial [18], the reduc-
tion in the number of colors consists of two phases. The first
phase continues for O(log∗ n) rounds, and reduces the num-
ber of colors from n to O(a2 log a). The second phase lasts
for just one single round, and reduces the number of colors
to O(a2).

In each round of the coloring step each vertex v sends
its current color to all its neighbors. Fix a round R and a
vertex v, and let ϕ(v) and {ϕ(u) | u ∈ �(v)} be the colors
of v and the colors of its parents in forests F1, F2, . . . , FA

in the beginning of round R, respectively. Also, let p be
the current upper bound on the number of colors employed
by the algorithm. (Initially, p = n.) Based on the colors
ϕ(v) and {ϕ(u) | u ∈ �(v)}, and on parameters p and A,
the vertex v computes the set system Q̂(p, A) whose exis-
tence is guaranteed by Theorem 5.2. This computation is
performed by v locally, involving no communication what-
soever. Then the vertex v selects an arbitrary new color ϕ′(v)

from Qϕ(v) \∪ {
Qϕ(u) | u ∈ �(v)

}
. By Theorem 5.2, the set

Qϕ(v) \ ∪ {
Qϕ(u) | u ∈ �(v)

}
is not empty. Moreover, by

Theorem 5.2, ϕ′(v) ∈ {
1, 2, . . . ,

⌈
5A2 · log p

⌉}
, and thus,

the vertex v updates its upper bound on the number of emplo-
yed colors from p to

⌈
5A2 · log p

⌉
.

After O(log∗ n) rounds the number of colors reduces to
O(A2 log A). Employing another related set system T exac-
tly in the same way as described above, our algorithm reduces
the number of colors to O(A2). The required set system T
is given by the following theorem.

Theorem 5.3 [8,18]: There exists a collection T of O(A2

log A) subsets of
{
1, 2, . . . , O(A2)

}
such that for every A+1

subsets T0, T1, . . . , TA ∈ T , T0 � ∪A
i=1Ti .

We remark that Procedure Arb-Linial is essentially a
composition of Linial O(�2)-coloring algorithm with our
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algorithm for computing forests-decomposition. The main
difference of the coloring step of Procedure Arb-Linial from
the original Linial coloring algorithm is that in Procedure
Arb-Linial each vertex considers only the colors of its par-
ents in forests F1, F2, . . . , FA. On the other hand, in the
algorithm of Linial each vertex considers the colors of all its
neighbors.

The next lemma shows that all colorings produced
throughout the algorithm are legal.

Lemma 5.4 Suppose that the coloring ϕ is legal. Then the
coloring ϕ′ is legal as well.

Proof Consider an edge e = (u, v) ∈ E . Since F = {F1,

F2, . . . , FA} is a partition of the edge set E into disjoint for-
ests, there exist an index i ∈ {1, 2 . . . A} such that e ∈ E(Fi ).
Suppose without loss of of generality that u is the parent of
v. Then u ∈ �(v), and consequently ϕ′(v) ∈ Qϕ(v) \ Qϕ(u).
On the other hand, ϕ′(u) ∈ Qϕ(u) and so ϕ′(v) �= ϕ′(u), as
required. ��

By Corollary 3.10, the running time of Procedure Forests-
Decomposition is O(log n). The coloring step of Procedure
Arb-Linial requires O(log∗ n) time. Hence the overall run-
ning time of the algorithm Arb-Linial is O(log n). Observe
that A = O(a), and thus, the resulting coloring is an O(a2)

coloring. To summarize, we have proved the following the-
orem.

Theorem 5.5 Procedure Arb-Linial computes a legal
O(a2)-coloring in O(log n) time.

Next, we present a variant of Procedure Arb-Linial, Pro-
cedure Tradeoff-Arb-Linial, that provides a tradeoff between
the number of colors and the running time. Procedure Trade-
off-Arb-Linial accepts as input a = a(G), and a parameter
q, q > 2. On its first step it invokes Procedure Forests-
Decomposition with the same pair of parameters a and q. By
Corollary 3.10, this procedure partitions the edge set of G
into at most (2 + q) · a forests, and it does so within time
O(

log n
log q ). The second recoloring step of Procedure Trade-

off-Arb-Linial is very similar to that of Procedure Arb-Li-
nial. The only difference is that the value of A is now (2 +
q) · a and not �(2 + ε) · a� as it was in Procedure Arb-
Linial. By the same argument, Procedure Tradeoff-Arb-
Linial computes an O(A2 ·q2) = O(a2 ·q2)-coloring within
time O(

log n
log q + log∗ n).

Finally, set q ′ = q2. We get an O(a2 · q ′)-coloring within
time O(

log n
log q ′ + log∗ n).

Corollary 5.6 For an n-vertex graph G with arboricity a

and a parameter q, 2 < q ≤ O(
√

n
a ), Procedure Trade-

off-Arb-Linial invoked with parameters a and q computes
O(a2 · q)-coloring in time O(

log n
log q + log∗ n).

In particular, by substituting q = n1/ log∗ n , we get an
O(n1/ log∗ n)-coloring of graphs with bounded arboricity in
just O(log∗ n) time.

5.2 General scenarios

5.2.1 Procedure tradeoff-color

It is easy to verify that the same considerations that were
applied to Procedure Arb-Color in Sect. 4.2 can be applied
to Procedure Tradeoff-Color. Consequently, Theorem 5.1 is
applicable in the more general scenarios as well. In partic-
ular, it is applicable if the vertices are provided with only a
polynomial estimate N on the number of vertices n instead
of the number of vertices n itself, and are not provided with
the arboricity a of the input graph.

5.2.2 Procedure Arb-Linial

Observe that Procedure Arb-Linial is applicable if instead of
the arboricity a the vertices are provided with an upper bound
a′ > a on the arboricity. However, in this case the argument
of Theorem 5.5 guarantees that the algorithm computes a
legal coloring that uses at most O((a′)2) colors, and not nec-
essarily O(a2).

We adapt Procedure Arb-Linial to the scenario when the
arboricity a is not known to the vertices before the computa-
tion starts. Let c, c > 0, be the universal constant hidden by
the O-notation in the expression “O(a2)-coloring” in Theo-
rem 5.5. (In other words, the implied coloring uses at most
c · a2 colors.)

To adapt the first (forests-decomposition) step, we employ
Procedure General-Forests-Decomposition instead of Proce-
dure Forests-Decomposition. A difficulty arises, however, in
the second (coloring) step, when the vertices need to com-
pute the set system Q̂(p, A) without knowing the value of
A. We show that this difficulty can be overcome without
increasing the running time of the algorithm, if we allow the
algorithm to use messages of a slightly larger size, specifi-
cally, O(log2 n). In addition, we show that using messages of
size at most O(log n), one can still complete the coloring step
within only a slightly larger running time of O(log n ·log∗ n).

To implement the coloring step without knowing A within
the same running time by using larger messages we replace
the coloring step of Procedure Arb-Linial with �log n� + 1
invocations A1,A2, . . . ,A�log n�+1 of the original coloring
step, with each invocation Ai using the arboricity param-
eter Ai = 2i , for i = 0, 1, . . . , �log n� + 1. These invo-
cations are executed in parallel and employ distinct palettes
Pi , i = 0, 1, . . . , �log n�+1. Specifically, the invocation A0

ends up coloring the graph with colors from the palette P0 ={
1, 2, . . . , c · (A0)

2
}
, the invocation A1 employs the pal-

ette P1 = {|P0| + 1, |P0| + 2, . . . , |P0| + c · (A1)
2
}
, etc.
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Observe that for indices i such that Ai ≥ A, the invocation
Ai succeeds to construct a legal (c · (Ai )

2)-coloring of the
graph in time O(log n). For an index i such that Ai < A,
there might be a situation that there is no admissible color
for some vertex v in the invocation Ai . To handle such situ-
ations we add to the algorithm a “failure” rule. Specifically,
if a vertex v recognizes that it has no admissible color in an
invocation Ai , for some i , it selects an arbitrary color γ from
the palette Pi , and sets its color ϕi (v) in the invocation Ai to
be equal to γ .

Finally, once all the invocations have terminated, and a
vertex v and all its neighbors have selected their colors in
each invocation, v selects its final color ϕ(v) as follows. ϕ(v)

is equal to ϕm(v) for the smallest index m of an invocation
Am in which for every neighbor u of v in G, ϕm(v) �= ϕm(u)

holds. This completes the description of the algorithm. The
index m = m(v) as above will be henceforth referred to as
the index of v.

Next, we show that the algorithm is correct.

Lemma 5.7 The coloring ϕ is legal.

Proof The invocation with index j = �log n� satisfies 2 j ≥
n ≥ a(G). Hence the coloring ϕ j that it produces is legal.
Consequently, for each vertex v there is an invocation with
index m ≤ j such that ϕm(v) �= ϕm(u), for each neighbor u
of v.

Consider a pair u, w ∈ V of neighboring vertices. Let m
(respectively, m′) be the index such that ϕ(u) = ϕm(u) (resp.,
ϕ(w) = ϕm′(w)). First, consider the case that m = m′. It fol-
lows that, ϕm(u) �= ϕm(w) because the invocation of index
m = m(u) satisfies ϕm(u) �= ϕm(z) for every neighbor z of
u. Hence ϕ(u) �= ϕ(w). Suppose now that m �= m′. How-
ever, then ϕ(u) = ϕm(u) ∈ Pm , ϕ(w) = ϕm′(w) ∈ Pm′ , and
the palettes Pm and Pm′ are disjoint. Thus, ϕ(u) �= ϕ(w),
completing the proof. ��

Observe that for for every vertex v, the index m = m(v) ≤
log(2A). It follows that the overall number of colors used by
the algorithm is at most

�log(2A)�∑

i=0

c · (2i )2 = O(A2) = O(a2). (1)

The running time is O(log n). Note, however, that running
�log n� + 1 invocations A0,A1, . . . ,A�log n� in parallel req-
uires sending �log n�+ 1 messages of size O(log n) each on
each round, over each edge of the network. In other words,
the messages sent by this algorithm may be of size O(log2 n).

Alternatively, one may opt to execute the �log n� + 1
invocations A0,A1, . . . ,A�log n� one after another instead
of executing them in parallel. Since each execution requires
O(log∗ n) time, the overall running time increases only sligh-
tly to O(log n · log∗ n).

We summarize this argument in the following theorem.

Theorem 5.8 Procedure Arb-Linial is applicable in the sce-
nario when the vertices do not know the arboricity a of the
graph before the algorithm starts. In this scenario the proce-
dure can either compute an O(a2)-coloring of the graph in
time O(log n) using messages of size O(log2 n) or compute
an O(a2)-coloring in time O(log n · log∗ n) using messages
of size O(log n).

The algorithm extends also in a straightforward way to
the scenario in which instead of the number of vertices n, the
vertices are provided with a polynomial estimate N of n.

Similarly, Procedure Tradeoff-Arb-Linial can also be
adapted to the scenario when the arboricity a is unknown
to the vertices before the computation starts, but n is known.
If we allow messages of size O(log2 n), by the same consid-
erations as with Procedure Arb-Linial, Procedure Tradeoff-
Arb-Linial computes O(a2 · q2)-coloring in time O(

log n
log q ).

However, if message size is restricted to O(log n), then
sequential executions A0,A1, . . . ,A�log n� require O(log n ·
log∗ n) time. Consequently, a straight-forward adaptation of
Procedure Tradeoff-Arb-Linial to this scenario results in
O(a2 ·q2)-coloring within time O(log n · log∗ n). This, how-
ever, is inferior to the results in Theorem 5.8.

To provide a meaningful tradeoff for this scenario too, we
modify the algorithm in the following way. Set δ > 0 to be
an arbitrarily small real constant, and let t = logδ/2 n be a

parameter. Set A′
i = t i , for i = 0, 1, . . . ,

⌈
log n
log t

⌉
+ 1. (This

is instead of setting Ai = 2i .) Let A′
i be an invocation of

Procedure Tradeoff-Arb-Linial with the arboricity parameter

A′
i , i = 0, 1, . . . ,

⌈
log n
log t

⌉
+ 1. Invocations A′

i are now exe-

cuted one after another, and require overall O(
log n

log log n ·log∗ n)

time. The computation of forests-decomposition requires an
additional O(

log n
log q ) time, and thus the total running time of

Procedure Tradeoff-Arb-Linial in this scenario is O(
log n

log log n ·
log∗ n + log n

log q ).
The overall number of colors used by the algorithm is (see

(1)) at most C = ∑�logt (t ·A)�
i=0 c(t i )2. Since A = a · (2 + q),

it follows that C = O((t · A)2) = O(a2 · q2 · logδ n). We
summarize the properties of Procedure Tradeoff-Arb-Linial
in this scenario by the following theorem.

Theorem 5.9 Let q > 2, δ > 0, be a pair of positive real
numbers. In the scenario when the vertices do not know the
arboricity a of the graph before the algorithm starts, Proce-
dure Tradeoff-Arb-Linial invoked with the parameter q can
either compute an O(a2 · q2)-coloring of the graph in time
O(

log n
log q + log∗ n) using messages of size O(log2 n), or com-

pute an O(a2·q2·logδ n)-coloring in time O(
log n

log log n ·log∗ n+
log n
log q ) using messages of size O(log n).
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6 MIS algorithms

6.1 Known arboricity

In this section we capitalize on the results of Sect. 5, and
present an algorithm that computes an MIS in graphs with
bounded arboricity in sublogarithmic time. The algorithm
employs a standard reduction from MIS to coloring (see,
e.g., [23], chapter 7), described below for the sake of com-
pleteness.

First, observe that by Corollary 5.6, for any graph with
arboricity o(

√
log n), a legal o(log n)-coloring can be found

in o(log n) time. Then a standard technique [23] that reduces
the number of colors, one color per round, can be used to
achieve (� + 1)-coloring in additional o(log n) rounds. We
summarize this fact in the following corollary.

Corollary 6.1 For a graph G with arboricity a(G) =
o(

√
log n), both (�+1)-coloring and o(log n)-coloring can

be found in sublogarithmic time.

Suppose we are given a legal p-coloring of the graph, for
some positive integer p. Let U1, U2, . . . , Up be the disjoint
color classes, with all vertices of Ui being colored by i , for
i = 1, 2, . . . , p. Initialize the independent set W as U1. The
reduction algorithm proceeds iteratively, taking care of one
of the color classes U2, U3, . . . , Up on each of the p−1 iter-
ations. For iteration i = 1, 2, . . . , p − 1, before the iteration
i starts, an independent set W ⊆ ∪i

j=1U j is maintained. In
iteration i each vertex v ∈ Ui+1 checks in parallel whether
it has a neighbor w ∈ W . If it has, it decides not to join
W . Otherwise it joins W . Obviously, the algorithm requires
(p − 1) rounds, and produces an MIS. (The proof can be
found in [23, Chap. 7].)

Lemma 6.2 W is a maximal independent set.

The next theorem follows directly from Corollary 6.1.

Theorem 6.3 Consider an n-vertex graph G with arbori-
city a(G) = o(

√
log n). Procedure Tradeoff-Arb-Linial com-

bined with the standard reduction from an MIS to coloring,
computes an MIS of G in time o(log n). Moreover, whenever
a = O(log1/2−δ n), for some constant δ, 0 < δ < 1/2, the
same algorithm runs in time O(

log n
log log n ).

Whenever a = �(
√

log n) we use the same reduction in con-
junction with Procedure Tradeoff-Color. The running time of
the resulting algorithm for computing MIS becomes O( a

t ·
log n+a log a+a ·t). This expression is optimized by setting
t = √

log n.

Theorem 6.4 Consider an n-vertex graph G with arboricity
a(G) = �(

√
log n). Procedure Tradeoff-Color invoked with

parameters a and t = √
log n, combined with the standard

reduction from MIS to coloring, computes an MIS of G in
time O(a · √log n + a log a).

In particular, Theorem 6.4 implies that an MIS can be com-
puted deterministically in polylogarithmic time on graphs
with polylogarithmic arboricity.

6.2 General scenarios

Consider the scenario that vertices know neither a nor an
upper bound a′ on a, but we are allowed to use messages
of size O(log2 n). In this case, as we have shown in Sect. 5,
Procedure Tradeoff-Arb-Linial is applicable, and it provides
the same tradeoffs up to constant factors. Hence the argu-
ments presented in this section are applicable as well. Con-
sequently, Theorem 6.4 extends to the scenario when the
vertices do not know the value of a, but are allowed to use
messages of size O(log2 n).

Finally, Theorem 5.9 provides us with only slightly infe-
rior tradeoff for the case that vertices do know the arboricity
and message size is limited to O(log n). An analogous cal-
culation shows that in this case, as long as a = log1/2−δ n
(for an arbitrarily small δ > 0) the algorithm computes an
MIS in time O(

log n
log log n · log∗ n).

7 Lower bounds

In this section we build upon a fundamental result of Linial
[18] and show nearly tight lower bounds on the running time
required for coloring and for computing a forests-decompo-
sition. For graphs of constant arboricity our upper and lower
bounds match up to constant factors.

Theorem 7.1 [18] For a pair of positive integer numbers n
and d, n − 1 ≥ d, any distributed algorithm for coloring the
d-regular n-vertex tree of radius r which has running time
at most 2

3r uses at least 1
2

√
d colors. In other words, any

algorithm that uses less than 1
2

√
d colors has running time

greater than 2
3r .

Observe that r ≥ 1
2

log n
log(d−1)

. Consider the family G of
planar graphs. Suppose that a correct algorithm for q-color-
ing G requires at least t (q) time in the worst-case. By The-
orem 7.1, q-coloring the 5q2-regular tree requires at least
2
3r = �(

log n
log q ) rounds. Since a 5q2-regular tree is a pla-

nar graph, it follows that t (q) = �(
log n
log q ). We conclude

that q-coloring planar graphs requires �(
log n
log q ) time, which

matches our upper bound up to constant factors, as long as
q = O(n1/ log∗ n). (See Corollary 5.6.)

For a positive integer parameter a = o(n1/4) it is pos-
sible to construct an n-vertex graph with arboricity a. Let
G be such a graph. Let H be a (a4 · q2)-regular tree with
(n) vertices, for some parameter q = o(

√
n/a2). Let J be

the graph obtained by connecting the root of H with one of
the vertices of G. Since O(a2 · q)-coloring of H requires
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Fig. 2 The graph J is constructed by connecting the two graphs G
and H

�(loga2q n) = �(
log n

log q+log a ) time (by Theorem 7.1), and H
is an induced subgraph of J , this lower bound applies also
for O(a2 ·q)-coloring of J . Since the arboricity of J is equal
to the arboricity of G, the next result follows.

See Fig. 2 for an illustration.

Corollary 7.2 For a = o(n1/4), and a parameter q =
o(

√
n/a2), O(a2 · q)-coloring n-vertex graphs with arbo-

ricity a requires �(
log n

log a+log q ) time.

Next, we turn to lower bounds for the problem of com-
puting forests-decompositions. For a parameter q, q ≥ 1,
let t (q) be the best possible running time of a correct algo-
rithm for computing an O(q · a)-forests-decomposition on
graphs with a fixed arboricity a. Given an O(q · a)-forests-
decomposition, step 2 of Procedure Arb-Linial computes an
O(q2 ·a2)-coloring within additional time O(log∗ n). Hence
the resulting algorithm A computes an O(q2 · a2)-coloring
within time t (q) + O(log∗ n).

Let d be a positive integer value to be determined later,
and consider an execution of the algorithm A on a a graph
obtained from connecting the d-regular n-vertex tree with an
arbitrary(n)vertex graph of arboricity a, as earlier. By The-
orem 7.1, if t (q)+O(log∗ n) ≤ 1

3
log n

log(d−1)
, then O(q2 ·a2) ≥

1
2

√
d .

Set d = c · q4 · a4, for a sufficiently large constant c so
that the inequality O(q2 · a2) ≥ 1

2

√
d will not hold. Then

t (q) = �(
log n
log d ) − O(log∗ n) = �(

log n
log q+log a ) − O(log∗ n).

Theorem 7.3 For a = o(n1/4), and a parameter q, q =
o(n1/4/a), computing an O(q · a)-forests- decomposition
for n-vertex graph with arboricity a requires �(

log n
log q+log a )−

O(log∗ n) time.

8 Conclusions and open questions

In this paper we have presented efficient deterministic MIS
and coloring algorithms for the family of graphs with arbo-
ricity at most polylogarithmic in n. Although this is a wide
and important family of graphs, the question regarding the
existence of efficient deterministic algorithms for yet wider
families remains open. In particular, it is currently not clear
whether it is possible to extend our results to graphs with

arboricity at most 2logε n for some constant ε > 0. Also, we
have devised a sublogarithmic time MIS algorithm on graphs
with arboricity o(

√
log n). It would be interesting to extend

this result to graphs with arboricity o(log n).
The lower bounds that we have presented are tight for

the problems of O(a)-forests-decomposition and O(a2)-
coloring. However, it might be possible to improve the O(a)-
coloring algorithm. This appears to be a challenging task.

The lower bound �(

√
log n

log log n ) of [15] for the MIS problem
is applicable for general graphs. However, on sparse graphs it
might be possible to develop more efficient algorithms. Cur-
rently, even on unoriented trees the best known algorithm
has running time O(

log n
log log n ) (shown in this paper). Finding

better solution or a strong lower bound would help to classify
the complexity of the distributed MIS problem.

Also, we have shown that one can color graphs with boun-
ded arboricity in no(1) colors in just O(log∗ n) time. Improv-
ing the bound on the number of colors is an interesting venue
for research.

Finally, we have shown that the problem of computing
an O(a)-coloring on sparse graphs is harder than computing
an MIS on such graphs. Our lower bound for computing an
O(a)-coloring is logarithmic, while the MIS algorithm has
sublogarithmic running time. This fact is quite surprising,
since there is no evidence for such a separation between the
(� + 1)-coloring and the MIS problems.
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