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Abstract The paper considers broadcasting in radio
networks, modeled as unit disk graphs (UDG). Such net-
works occur in wireless communication between sites (e.g.,
stations or sensors) situated in a terrain. Network stations are
represented by points in the Euclidean plane, where a sta-
tion is connected to all stations at distance at most 1 from
it. A message transmitted by a station reaches all its neigh-
bors, but a station hears a message (receives the message
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correctly) only if exactly one of its neighbors transmits at
a given time step. One station of the network, called the
source, has a message which has to be disseminated to all
other stations. Stations are unaware of the network topology.
Two broadcasting models are considered. In the conditio-
nal wake up model, the stations other than the source are
initially idle and cannot transmit until they hear a message
for the first time. In the spontaneous wake up model, all
stations are awake (and may transmit messages) from the
beginning. It turns out that broadcasting time depends on
two parameters of the UDG network, namely, its diameter D
and its granularity g, which is the inverse of the minimum
distance between any two stations. We present a deterministic
broadcasting algorithm which works in time O(Dg) under
the conditional wake up model and prove that broadcasting
in this model cannot be accomplished by any deterministic
algorithm in time better than�(D

√
g). For the spontaneous

wake up model, we design two deterministic broadcasting
algorithms: the first works in time O(D+g2) and the second
in time O(D log g). While neither of these algorithms alone
is optimal for all parameter values, we prove that the algo-
rithm obtained by interleaving their steps, and thus working
in time O

(
min

{
D + g2, D log g

})
, turns out to be optimal

by establishing a matching lower bound.

Keywords Radio networks · Unit disk graphs · Ad hoc
networks · Broadcasting

1 Introduction

The model and the problem. A radio network consists of
stations, each of which can act in a given time step either as a
transmitter or as a receiver. The network is modeled as a unit
disk graph (UDG) whose nodes are the stations. These nodes
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are represented as points in the plane. Two nodes are joined
by an edge if their Euclidean distance is at most 1. Such
nodes are called neighbors. It is assumed that transmitters
of stations have power which enables them to transmit at
Euclidean distance 1. Hence the existence of an edge between
two nodes indicates that transmissions of one of them can
reach the other, i.e., these nodes can communicate directly.
We refer to radio networks modeled by unit disk graphs as
UDG radio networks.

In a radio network, a node acting as a transmitter in a
given time step sends a message which is delivered to all of
its neighbors in the same time step. An important distinction
at the receiving end is between a message being just delivered
and being heard, i.e., received successfully by a node. A node
acting as a receiver in a given step hears a message if and only
if a message from exactly one of its neighbors is delivered in
this step. The message heard in this case is the one that was
delivered from the unique neighbor. If messages from at least
two neighbors v and v′ of u are delivered simultaneously in a
given step, none of the messages is heard by u in this step. In
this case we say that a collision occurred at u. It is assumed
that the effect at node u of a collision is the same as that of
no message being delivered in this step, i.e., a node cannot
distinguish a collision from silence.

It is assumed that the network topology is unknown, nam-
ely, each node knows its own coordinates in the Euclidean
plane, but it is unaware of the coordinates of any other node
including its neighbors. Such networks are often called ad
hoc networks. In fact, the lower bounds established in this
paper remain valid even if the nodes know some global para-
meters of the network, such as the size or the diameter.

The paper considers broadcasting, which is the following
basic communication task. In the beginning, one distingui-
shed node, called the source, has a message which has to be
transmitted to all other nodes. Remote nodes get the source
message via intermediate nodes, along paths in the network.
We distinguish between two broadcasting models. In the
conditional wake up model, the stations other than the source
are initially idle and cannot transmit until they hear a mes-
sage for the first time (and subsequently wake up). In the
spontaneous wake up model, all stations are assumed to be
awake when the source transmits for the first time, and may
contribute to the broadcasting process by transmitting control
messages even before they hear the source message. All trans-
missions proceed in synchronous rounds measured by a glo-
bal clock that shows the round number.

The task of broadcasting in the conditional wake up model
can be interpreted as activating the network from a single
source, and is related to the task of waking up the network. In
this latter task, some nodes spontaneously wake up and have
to wake up other nodes by sending messages. Thus broad-
casting in the conditional wake up model, i.e., activating the
network from a single source, is equivalent to waking up the

network when exactly one node (the source) wakes up spon-
taneously. The broadcasting models with spontaneous wake
up and conditional wake up have also been called broadcas-
ting with and without spontaneous transmissions, respecti-
vely [26,27].

It is assumed that the nodes are aware of the network’s den-
sity d, which is the minimum Euclidean distance between any
two nodes. However, all our results remain true if this infor-
mation is replaced by a linear lower bound on d. The physical
size of a radio station may provide such a lower bound, as
it is reasonable to assume that stations do not overlap. The
issue of density of nodes in geometric graphs has been mostly
studied in the context of random graphs, where the emphasis
is on exploration of threshold probability values controlling
certain graph properties, such as connectivity, bounded cover
time of a random walk, and limited routing stretch, see, e.g.,
[2,34]. In our work, however, we focus on worst case ins-
tances of geometric graphs, as well as on relations between
the parameters of the network and the efficiency of commu-
nication algorithms.

We consider only deterministic broadcasting algorithms
and do not assume any central authority monitoring the broad-
casting process. Thus the decision made by a node on whether
to transmit or to receive in a given round, and what message
to transmit, if any (some control messages can be transmitted
on their own or be appended to the source message) is based
solely on the coordinates of the node and on the messages it
heard so far. The execution time of a broadcasting algorithm
in a given radio network is the number of rounds it takes since
the first transmission until all nodes of the network hear the
source message.

As in most of the papers on algorithmic aspects of radio
broadcasting, we do not impose bounds on the size of mes-
sages. In particular we assume that the (exact) position of
a node can be encoded in a message. It is worthwhile to
mention that the problematic implications of this assumption
are addressed (at least to some extent) in the sequel papers
[18,19].
Our contributions. The focus of this paper is on the design
of fast broadcasting algorithms working in arbitrary UDG
radio networks with unknown topology, and on establishing
lower bounds on the execution time of such algorithms. It
turns out that the execution time of broadcasting algorithms
depends on two parameters of the network. One of them is the
diameter of the network, denoted by D: this is the maximum
length (in hops) of a shortest path in the network between
any two nodes. (The diameter of a UDG network should not
be confused with the diameter of the set of points represen-
ting its nodes, i.e., the largest Euclidean distance between
any two such points.) The other parameter is the granularity
of the network, denoted by g. This is the inverse of the den-
sity parameter d, namely, the inverse of the minimum Eucli-
dean distance between any two nodes of the network. Hence
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networks of large granularity are those that have some nodes
close to each other. The broadcasting times in both models
are increasing functions of D and g.

For the conditional wake up model, we present a deter-
ministic algorithm that completes broadcast in time O(Dg)
in any UDG radio network of diameter D and granularity g.
This is done in Sect. 2.1. On the negative side, in Sect. 2.2
we establish an�(D

√
g) lower bound on the execution time

of such algorithms. For the spontaneous wake up model, in
Sect. 3.1 we develop two deterministic broadcasting algo-
rithms, one working in time O(D + g2) and the other in
time O(D log g). These algorithms are based on completely
different ideas and, depending on parameter values, one or
the other may be more efficient. However, when they are
combined together by interleaving transmissions from their
consecutive rounds they form an asymptotically optimal
broadcasting algorithm with the time complexity O

(
min{

D + g2, D log g
})

. Indeed, a matching lower bound of
�

(
min

{
D + g2, D log g

})
is established in Sect. 3.2.

Our results give a provable separation between the condi-
tional and the spontaneous wake up models for broadcasting
in UDG radio networks: for networks of small diameter (e.g.,
D polylogarithmic in g) the lower bound for the conditional
wake up model is significantly larger than the upper bound
for the spontaneous wake up model.
Related work. In most of the papers concerning algorith-
mic aspects of radio communication, the radio network was
modeled as an arbitrary (directed or undirected) graph. This
literature can be divided into two subareas, one dealing with
centralized communication, in which it is assumed that nodes
have complete knowledge of the network topology and hence
can simulate a central transmission scheduler (cf. [1,5,6,
17,20,22,28]), and the other assuming only limited (usually
local) knowledge of topology and studying distributed com-
munication in such networks. The current paper belongs to
the latter subarea.

The first paper to study deterministic centralized broad-
casting in radio networks, assuming complete knowledge
of the network, was [5]. The authors also formulated the
model of radio network subsequently used by many resear-
chers. In [6], an O(D log2 n)-time broadcasting algorithm
was given for all n-node networks of diameter D. In [20], an
O(D + log5 n)-time broadcasting was proposed. This was
improved to D + O(log4 n) in [17], then to D + O(log3 n) in
[22], and very recently to O(D + log2 n) in [28]. The latter
complexity is optimal. On the other hand, in [1] the authors
proved the existence of a family of n-node networks of radius
2, for which any broadcast requires time �(log2 n).

The study of deterministic distributed broadcasting in
radio networks whose nodes have only limited knowledge of
the topology was initiated in [3]. The authors assumed that
nodes know only their own label and labels of their neigh-
bors. Many authors [4,7,8,11–13,26] studied deterministic

distributed broadcasting in radio networks under the assump-
tion that nodes know only their own label (but not labels
of their neighbors), and that the topology of the network
is unknown (ad hoc networks). In [7] the authors gave a
broadcasting algorithm working in time O(n) for arbitrary
n-node networks, assuming that nodes can transmit sponta-
neously, before getting the source message. For this model,
a matching lower bound�(n) on deterministic broadcasting
time was proved in [26] even for the class of networks of
constant radius. On the other hand, in [27] a lower bound

�
(

n log n
log(n/D)

)
was proved for (undirected) n-node networks

of diameter D, if spontaneous transmissions are not allowed.

In [7,8,11,13] the model of directed graphs was used.
The aim of these papers was to construct broadcasting algo-
rithms working as fast as possible in arbitrary (directed)
radio networks without knowing their topology. The cur-
rently fastest deterministic broadcasting algorithms for such
networks are the O(n log2 D)-time algorithm from [13] and
the O(n log n log log n)-time algorithm from [14]. On the
other hand, in [12] an �(n log D) lower bound on broad-
casting time was proved for directed n-node networks of
diameter D.

The first papers to study randomized broadcasting algo-
rithms in radio networks were [3,31]. The authors do not
assume that nodes know the topology of the network or that
they have distinct labels. In [3] the authors showed a ran-
domized broadcasting algorithm running in expected time
O(D log n + log2 n). In [31] it was shown that for any rando-
mized broadcasting algorithm and parameters D ≤ n, there
exists an n-node network of diameter D requiring expected
time �(D log(n/D)) to execute this algorithm. It should be
noted that the lower bound�(log2 n) from [1], for some net-
works of radius 2, holds for randomized algorithms as well.
A randomized algorithm working in expected time O(D
log(n/D)+ log2 n), and thus matching the above lower bou-
nds, was presented in [27] (cf. also [13]).

The wakeup problem in radio networks was first studied in
[21] for single-hop networks (modeled by complete graphs),
and then in [9,10] for arbitrary networks. In [23] the authors
studied randomized wakeup algorithms for radio networks.
In all these papers it was assumed that a subset of all nodes
wake up spontaneously (possibly at different times) and have
to wake up other (dormant) nodes.

Another model of radio networks is based on geometric
positions in the plane of the points representing stations. The
underlying graph is no longer arbitrary. It may be a unit disk
graph, or its generalization, where radii of disks representing
reachability areas may differ from node to node [15], or rea-
chability areas may be of shapes different than a disk [16,29].
Broadcasting in such geometric radio networks and some of
their variations was considered, e.g., in [15,16,29,35,36]. In
[36] the authors proved that scheduling optimal broadcasting
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is NP-hard even when restricted to such graphs, and gave an
O(n log n) algorithm to schedule an optimal broadcast when
nodes are situated on a line. In [35] broadcasting was consi-
dered in networks with nodes randomly placed on a line.
In [29] the authors discussed fault-tolerant broadcasting in
radio networks arising from regular locations of nodes on the
line and in the plane, with reachability regions being squares
and hexagons, rather than circles. In [16] broadcasting with
restricted knowledge was considered but the authors studied
only the special case of nodes situated on the line. The first
paper to study deterministic broadcasting in arbitrary geo-
metric radio networks with restricted knowledge of topology
was [15]. The authors studied several models, also assuming
a positive knowledge radius, i.e., the knowledge available to a
node, concerning other nodes inside some disk. In the case of
knowledge radius 0, corresponding to our present scenario,
they showed a broadcasting algorithm under the spontaneous
wake up model which works in time linear in the number of
nodes, assuming that nodes are labeled by consecutive inte-
gers. The main difference between our model and the one
from [15] is that we investigate dependence of broadcasting
time on diameter and granularity, while in [15] the authors use
diameter and the number of nodes as parameters. It should be
noted that the total number of nodes in a network of diameter
D and granularity g may be as large as�(D2g2) or as small
as O(D), hence the algorithm of [15] is much slower than
ours.

Modeling ad hoc radio networks by unit disk graphs and
their generalizations has recently attracted growing atten-
tion. In [32] this model was used for studying distributed
solutions of the maximum independent set problem, in [33]
of the coloring problem, and in [24] the convergecast pro-
blem was studied in geometric radio networks with varying
reachability radii.

2 Conditional wake up

2.1 Broadcasting algorithm

In this section we address the problem of broadcasting in
UDG radio networks assuming that stations may transmit
only after receiving the source message for the first time. A
broadcasting algorithm for UDG radio networks that works
in time O(Dg) is presented. Our algorithm relies on the pro-
cedure Echo proposed in [25], and new notions of a grid
of boxes, a border and an effective border, to be defined
later in this section. We begin in Sect. 2.1.1 by presenting
an O(Dg log g)-time broadcasting algorithm. The structure
of this algorithm is geared towards facilitating our improved
O(Dg)-time algorithm, presented in Sect. 2.1.2.

Recall that every network node has unique (x, y) coordi-
nates and it is aware of this fact at any time of the

communication process. We say that a node becomes infor-
med on the first receipt of the broadcast message. Otherwise,
the node stays uninformed. Initially, only the source node s
is informed.

2.1.1 O(Dg log g)-time broadcasting algorithm

Our solution uses extensively the notion of a grid of boxes.
The entire 2-dimensional space can be partitioned into square
boxes, each of size c × c. All boxes are aligned with the
coordinate axes and each box includes its left side with both
endpoints and its bottom side without the right endpoint and
does not include its right and top sides. The boxes form an
infinite grid Gc, where each box is identified by the location
((x, y) coordinates) of its bottom left corner and 1/c is called
the precision of the grid. In general, for any two integers i
and j , the corners of the box B[i ·c, j ·c] are located in points
(ic, jc), (ic, ( j +1)c), ((i +1)c, ( j +1)c) and ((i +1)c, jc).

Fix γ = 1/
√

2. The grid Gγ , referred to later as the pivo-
tal grid (see Fig. 1a), plays a central role in our broadcasting
algorithm. Note that 1

c = √
2 is the smallest possible preci-

sion of any grid Gc with the property that all nodes occupying
the same box can communicate directly with each other. Each
box on the pivotal grid has a transmission range, which is
defined as a maximal area around the box that can be reached
by transmissions coming from inside the box. In other words,
the range is a set of points located at distance at most 1 from
the box, as illustrated in Fig. 1b.

We say that a box in the pivotal grid has a leader if all nodes
in the box are informed and they are aware of the choice of
some distinguished node as the leader. Further, any box in
the pivotal grid is allowed to become active according to a
transmission pattern to be defined shortly. Each box becomes
active only once, and this happens on the first occasion when
the following two conditions are satisfied: (1) the box is allo-
wed to become active according to the transmission pattern;
and (2) the box has a leader. The main purpose of the acti-
vation process is to inform all nodes that reside within the
transmission range of the box and to select leaders in boxes
occupied by the newly informed nodes.
Outline of the broadcasting algorithm. The transmission
pattern used in our broadcasting procedure is defined as a
periodic sequence of stages. During each stage, only a cer-
tain collection of boxes is allowed to become active, to avoid
collisions that may be caused by transmissions occurring in
different active boxes and their ranges. The transmission pat-
tern is based on distant active boxes, see Fig. 2a, and its per-
iod is 36, i.e., each box has a chance to become active during
every 36th stage. More precisely, the box B[i · γ, j · γ ] is
allowed (depending on whether the leader is already selec-
ted) to become active in stage k only if i = k mod 6 and
j = �k/6� mod 6. It is evident that the proposed transmis-
sion pattern (based on distant boxes whose ranges are at
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Fig. 2 a Active boxes and their ranges, and b node A dominates node B w.r.t. the top range

distance more than 1 apart, see Fig. 2a), prevents the possi-
bility of collisions between transmissions coming from dif-
ferent active boxes.

Each stage is divided into four phases. During each phase,
the nodes of the active box attempt to communicate (pass on
the broadcast message and help to find a leader) with the
nodes from one of the four parts of its range, referred to as
its top, right, bottom and left range (see Fig. 1b). Each part
of the range overlaps with six boxes of the grid. The overlap-
ping parts form six different shapes S1, . . . , S6 (see Fig. 1b).

We focus in this section on the communication performed
between the nodes in the active box and its top range. The
communication with nodes from the right, bottom and left
ranges is analogous.
Domination property. We need the following definition. For
any two nodes A and B in the active box, we say that A domi-
nates B with respect to the top range if any node in the top
range reachable from B is also reachable from A. The follo-
wing lemma can now be established using a straightforward
geometric analysis.
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Lemma 1 Let A = (xA, yA) and B = (xB, yB) be two
nodes in the active box and define x = |xA − xB | and y =
yA − yB (observe that x is in absolute value while y may be
negative). If y > 4x, then A dominates B.

Proof Assume that C = (xC , yC ) is a node belonging to
the top range of the active box and let X = |xA − xC | and
Y = yC − yA (see Fig. 2b). If X = 0 and y > 4x ≥ 0,
then clearly, under the assumption that C is reachable from
B, we conclude that C is also reachable from A. The same
holds if x = 0 and y > 4x ≥ 0. Therefore in what follows
we assume that both x and X are positive. Suppose, towards
contradiction, that y > 4x (as in the premise of the lemma),
yet C is reachable from B but not from A, i.e.,

X2 + Y 2 > 1 ≥ (X − x)2 + (Y + y)2. (1)

We argue that since C is outside of the transmissions range
of A, necessarily X < 4Y . To see this, note that the ratio Y/X
is minimized when A is positioned in the top-left corner of
the active box, C is positioned in the right border of the top
range and the distance between A and C is exactly 1. One

can show that in this border case Y
X =

√
3−1√
3+1

> 1
4 .

Note that inequality (1) implies that 2X x−2Y y > x2+y2.
Since the right hand side of the inequality is nonnegative, we
also conclude that 2X x > 2Y y, which implies that x

y >
Y
X .

Contradiction now follows by the lemma’s premise and by
the fact that Y/X > 1/4 as argued above. ��

Let c = γ /a for some positive integer a and consider the
infinite grid Gc and its intersection with an active box on the
pivotal grid Gγ . The boxes of Gc located in the active box
form entries (or cells) of a matrix Mc with precision 1/c. The
matrix Mc has γ /c rows and columns with indices starting
at the top-left corner of Mc.
Observation. Let A be a node that occupies the cell Mc[i, j],
for some 1 ≤ i, j ≤ γ /c. One of the main consequences of
Lemma 1 is that A dominates all nodes belonging to matrix
cells Mc[i +5, j],Mc[i +6, j], . . . ,Mc[γ /c, j] in the same
column j .

We use this observation later in the main algorithm. Note
also, that if we enhance matrix precision so that 1/c ≥ 5g,
then the top node in each column of Mc dominates all other
nodes in the same column. This follows from the fact that the
minimum distance between any two nodes in the network is
1/g and from Lemma 1.

Let ξ = min
{
k | 2k ≥ 5γ g

}
and let η = γ /2ξ . We say

that the set of top nodes in each column of Mη forms the top
border Btop of the active box. Since all nodes in the active
box are dominated by the top border, we conclude that it
suffices to use only the top border nodes while performing
communication with the nodes in the top range.

The following phenomenon serves as a fundamental ingre-
dient in our broadcasting algorithm. Consider some region

R in the plane, possibly inhabited by some nodes, and a dis-
tinguished node ψ /∈ R such that the Euclidean distance
between any two points in R ∪ {ψ} is at most 1. Suppose
that in some round t all nodes in R transmit simultaneously
with ψ (all other relevant nodes listen) and let φ �= ψ be
some node at Euclidean distance at most 1 from all points in
R ∪ {ψ}. We argue that by the outcome of round t , the node
φ can decide whether R contains any node. Indeed, if φ ∈ R,
then clearly, φ knows that R contains at least one node. On
the other hand, if φ /∈ R, then φ was listening in round t . In
that case, if φ does not hear anything, then ψ’s transmission
collided with some transmission originated in R, hence R
must contain some nodes; if φ hears ψ’s transmission, then
R does not contain any node. We refer to such a round t as a
content test of the region R.
Procedure echo. Our broadcasting algorithm makes an
extensive use of Procedure Echo [25]. The procedure ope-
rates on a region R in the plane and a distinguished node
ψ /∈ R such that the Euclidean distance between any two
points in R ∪ {ψ} is at most 1. During execution of proce-
dure Echo, the distinguished node ψ assists in the selection
of a single node in R, called a representative. As the outcome
of the selection process, if R contains some nodes, then all
participating nodes are aware of the coordinates of the selec-
ted representative; if R does not contain any node, then ψ
learns about it.

The region R has an abstract representation in the form of
a vector V [1, . . . , k] of k subregions, where each subregion
contains at most one node. For simplicity, we assume that
k is a power of 2 (this can be easily generalized). Unless
stated otherwise, we assume that the subregions are boxes
of the grid Gc imposed on R for some c ≤ d/

√
2 so that

a box cannot contain more than one node. The procedure is
invoked by ψ which sends a message (heard by all nodes
in R assuming that there are no collisions) that encodes the
vector V , that is, the exact manner in which R is partitioned
to subregions. Therefore every node v ∈ R knows the index
1 ≤ iv ≤ k of the subregion in which it is located.

A pseudocode of procedure Echo governing the selection
process is written from the perspectives of the distinguished
node ψ and a regular participant v ∈ R (see Fig. 3). This
procedure is a tuned version of the algorithm originally pre-
sented by Kowalski and Pelc in [25]. It is based on content
tests of subsets of the subregions performed in a binary search
fashion. The result of a typical content test rules out some
nodes in R from participating in the selection process. When
a regular node is no longer taking part in the selection process,
its local variable participate, initially set to true, converts to
false.

In each iteration of the loop “repeat”, the number of yet to
be considered subregions of R (the subregions whose poten-
tial inhabiting nodes are still participating) is halved. In case
the upper half of the yet to be considered subregions (those
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Fig. 3 Pseudocode of Procedure Echo

with indices in {mid + 1, . . . , top}) is inhabited, the nodes
in it know about it (recall that each node knows the index
of its subregion) and they survive (to participate in the next
iterations). The nodes in the lower half of the yet to be consi-
dered subregions (those with indices in {bot + 1, . . . ,mid})
either hear the message mψ and learn that the upper half is
empty, in which case they survive, or learn that the upper half
is inhabited and withdraw from further selection process.

On the conclusion of procedure Echo, all participating
nodes learn the coordinates of the node v inhabiting the
subregion with the largest index in V . These coordinates
are disseminated to all nodes (including ψ) in the last ite-
ration of the loop “repeat”. The node v is thus selected to
be the representative of R. Note that the time complexity of
procedure Echo is logarithmic in the number of subregions
of R.
The broadcasting algorithm. Before we present a pseudo-
code of our broadcasting algorithm we recall that it runs
in 36 periodic stages, where a box B[i · γ, j · γ ] has a
chance to become active in stage k only if i = k mod 6
and j = � k

6� mod 6. Recall also that each stage is split into
four phases. In what follows we focus on transmissions per-
formed by nodes of some active box during a single stage,
and in particular on the time complexity f (g) of commu-
nication with the nodes in the top range of the box. Since
the communication mechanism with other parts of the range
is analogous, the total time complexity of a stage is boun-
ded by 4 · f (g). Now, as every box has a chance to become
active every 36th stage, the maximum time that passes since
a leader in some box is established until the activation of the
box is bounded by 36 × 4 · f (g) = O( f (g)). We show that
f (g) = O(g log g).

It is important to point out that each (inhabited) box B has
one leader although several boxes may attempt to select a
leader in B. We assume that once a leader in B is selected, say
via communication with some box B ′ such that B intersects
with the top range of B ′, the nodes in B will not cooperate

(i.e., act as if the box is not inhabited) with any subsequent
attempt to select a leader in B.

Let λ be the leader in the active box. Our broadcasting
algorithm is divided to two parts, namely, border computation
and leader selection.
Border computation. The border computation part (see
Fig. 4), establishes the content of the top border Btop, that is,
the top cell occupied by some network node for each column
C j of Mη (a column does not contribute any cell to the top
border if it is not inhabited). The top occupied cell is found
via a direct application of Procedure Echo, where the region
R corresponds to the column C j and the subregions of R
correspond to the cells of C j . Since there are O(g) columns
as well as O(g) cells in each column of Mη, the total time
complexity of the border computation is O(g log g).
Leader selection. When the top border Btop is found, the
broadcasting algorithm turns to select a leader (if possible)
in the shape Si , for i = 1, . . . , 6 (see Fig. 1b). For each node
v ∈ Btop \ {λ}, the algorithm tries to transmit the broad-
cast message from v to Si . All newly informed nodes in Si

send confirmation messages and λ sends a control message
simultaneously. If v does not hear the control message from
λ, then at least one node in Si received the transmission of
v. In that case, a leader in Si is selected via an application of
procedure Echowith distinguished node v, where the region
R is the intersection of Si and the transmission range of v.
Finally, to handle the possibility that λ ∈ Btop, if a leader
in Si was not selected by some node in Btop − {λ}, then λ
invokes Procedure Echo in attempt to select a leader in Si

by itself. (Refer to Fig. 4 for pseudocode.)
To analyze the running time of the leader selection part,

note that there are O(g) border nodes to consider in the active
box. Each border node v spends O(1) rounds to decide whe-
ther it can establish communication (and select a leader) with
some nodes in the shape Si . If v can communicate with Si ,
then it invokes Procedure Echo on a region of area smal-
ler than 1/2 (an upper bound on the area of a shape) and a
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Fig. 4 Pseudocode for broadcasting from within an active box

leader in Si is selected (there is no need to try the remaining
border nodes). As such a region is partitioned into O(g2)

subregions, it follows that Procedure Echo takes O(log g)
rounds. Therefore the time complexity of selecting a leader
in Si is O(g)+ O(log g) = O(g). A similar process is per-
formed to select a leader (and pass the source message) in
the remaining five shapes of the top range and in the right,
bottom, and left ranges. The theorem follows.

Theorem 1 There exists a deterministic algorithm that com-
pletes broadcast in any unknown UDG radio network of dia-
meter D and granularity g in time O(Dg log g) under the
conditional wake up model.

Proof Recall that the algorithm works in stages and every
box has a chance to become active in every 36th stage. Thus
the maximum time between selection of the leader in the box
and the box activation is bounded by 36 times the length of
each stage. The time complexity of each stage is dominated
by executions of the border computation procedure, which is
executed four times (once for each part of the range). As a
single execution of this procedure requires time O(g log g),
the total waiting time is also O(g log g).

Let P be a shortest path connecting any node w with the
source node s (in the UDG). Since a move along each edge of
P takes time O(g log g), and since P consists of at most D
edges, it follows that w receives the source message in time
O(Dg log g). ��

Information about expansion of the broadcasting tree and
ultimately the lack of it can be sent continuously towards the
root of the tree using one extra time slot during each stage.
The root figures out that the expansion is terminated if it
does not receive any expansion messages during consecutive

36 stages. This information can be later distributed to all
other nodes in the network to acknowledge termination of
the broadcasting process.

2.1.2 O(Dg)-time broadcasting algorithm

Observe that the main bottleneck in our O(Dg log g)-time
broadcast algorithm is the computation of the top border of
the active box, which requires time �(g log g) in the worst
case. Here we show how to reduce this time to O(g).

Recall that in the matrix Mη the (single) node in the top
occupied cell of each column dominates every other node in
the column (this is actually how we defined the top border
Btop). However, if the precision 1/c of Mc is not so fine, then
in order to dominate the whole column, we have to consider
the top five cells in the column starting from the highest
cell occupied by network nodes. This is a consequence of
Lemma 1. We call the collection of the top five occupied
cells (that is, the top most occupied cell and the four cells
immediately below it) in each column C j the border area of
C j . If the top occupied cell in a column is the i th cell from
the bottom for some i < 5, then the border area consists of i
cells only. Note that (depending on the matrix precision) the
border area of C j may contain nodes that do not belong to
Btop (determined with respect to the matrix precision 1/η),
while on the other hand, there may exist Btop nodes in C j

that do not belong to the border area. We refer to the union
of the border areas in all columns of Mc as the border field
of the matrix.

Another interesting consequence of Lemma 1 is that we
sometimes do not need to extract all the top border nodes
since some top border nodes can be dominated by others.
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A subset of the top border nodes is called effective if it
dominates all other nodes in the top border and in conse-
quence also all other nodes in the active box. Analogously, a
subset of the border field of Mc is called effective if its nodes
dominate all other nodes in the active box.

At the heart of our improved algorithm is a procedure
that computes an effective subset of the top border nodes
in time O(g). The algorithm is based on computation of a
sequence of effective subsets of border fields in matrices Mc

with exponentially increasing precision 1/c. This is done
by Procedure Effective, which works as follows. Define
α(i) = γ /2i . Let W0 be the set that consists of the single
cell of Mα(0). For i = 1, . . . , ξ , Procedure Effective
computes a subset Wi of the border field of Mα(i). We will
prove soon that Wi is effective for every 0 ≤ i ≤ ξ .

The computation of Wi is performed based on the set Wi−1

in the following manner. Let A be a border area in Wi−1,
i.e., the region A consists of the top 5 occupied cells in some
column of the matrix Mα(i−1). As each cell of Mα(i−1) is split
into 2 × 2 cells of Mα(i), the region A is split into a 10 × 2
submatrix (or 2i ×2 submatrix if A consists of i < 5 cells) of
Mα(i) (see Figure 5). Procedure Effective computes the
border areas A1 and A2 of this submatrix via 2(�log(10)
 +
1) = 10 applications of the content test (in a binary search
fashion). Upon completion of these 10 content tests, each
node in A knows whether it is in Ai for some i = 1, 2.

The (sub)regions A1 and A2 are considered as border areas
in Wi . The above process is repeated for every column in
Mα(i−1) (recall that A is a region in some column) in an
iterative manner. Since each node knows its row and column
in Mα(i−1), it also knows when (if at all) to participate in
the content tests. The next lemma can now be established by
induction on i .

Lemma 2 The set Wi is an effective subset of the border field
of the matrix Mα(i) for every 0 ≤ i ≤ ξ .

Proof For every 0 ≤ i ≤ ξ , we have to prove that Wi is a
subset of the border field of Mα(i) and that it is effective. We
prove these two properties by induction on i . The assertion
holds by definition for i = 0 as the matrix Mα(0) admits a
single cell contained in W0. Every region A in Wi−1 is repla-
ced in Wi by the border areas A1 and A2 of the corresponding
10 × 2 submatrix (or 2i × 2 submatrix if A consists of i < 5
cells) of Mα(i). By the inductive hypothesis, A is a border
area in Mα(i−1), hence A1 and A2 are border areas in Mα(i).
To see that Wi is effective, note that by the inductive hypo-
thesis, the nodes in Wi−1 dominate the whole active box. By
Lemma 1, the nodes in Wi dominate the nodes in Wi−1, the-
refore, since dominance is a transitive relation, the nodes in
Wi also dominate the whole active box and Wi is indeed an
effective subset of the border field. ��

Recall that 2ξ = O(g), and that the last matrix Mα(ξ) is
exactly Mη. It is left to bound the running time of Procedure

Wi−1

W    −> Wi−1 i

Wi

Fig. 5 Transition from the border field Wi−1 to Wi

Effective. For every 1 ≤ i ≤ ξ , the computation of
Wi requires (at most) a constant number of rounds for each
column in Mα(i−1). As Mα(i) has 2i columns, the running
time of Procedure Effective is
ξ−1∑

i=0

O
(

2i
)

= O(g).

Theorem 2 There exists a deterministic algorithm that com-
pletes broadcasting in any unknown UDG radio network
of diameter D and granularity g in time O(Dg) under the
conditional wake up model.
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Table 1 A table of notations for Sect. 2.2

Notation Definition

τ �√�g� + 1� ≈ √
g


 A set of τ 2 auxiliary cells

B0, . . . , Bτ−1 Blocks of auxiliary cells

z0, . . . , zτ−1 Target cells

T t Cells scheduled to transmit in round t

T t
j T t ∩ B j

U t Cells uncommitted at the beginning of round t

U t
j U t ∩ B j

Qt
j T t

j ∩ U t
j

Xt { j | Qt
j �= ∅}

Ot Cells occupied at the beginning of round t

E t Cells empty at the beginning of round t

O∞ Cells occupied at the end of the execution

E∞ Cells empty at the end of the execution

ht The delivery status in round t

C j The constraints collection of block B j

Ct
j The constraints collection C j at the beginning of

round t

j∗ An index j ∈ Xt that maximizes |Qt
j |

2.2 Lower bound

In this section we establish an �(D
√

g) lower bound on
the running time of any deterministic broadcasting algorithm
under the conditional wake up model. We start with presen-
ting a class N of UDG radio networks of radius 2 (i.e., the
graph distance from the source to any node is at most 2), and
prove that for every deterministic broadcasting algorithm A,
there exists a network N ∈ N such that the running time of
A on N is �(

√
g).

2.2.1 The networks

In the forthcoming constructions we make an extensive use
of the notion of cells. A cell is a point in the Euclidean
plane that may contain a node, in which case we say that
the cell is occupied, or it may be empty. We assume that
all the nodes in the networks we construct are placed in
cells.

Let τ = �√�g� + 1�. A UDG radio network N ∈ N
consists of a source cell s, a set 
 of τ 2 auxiliary cells and
a set of τ target cells. The source cell is always occupied
with a source node. The auxiliary cells and the target cells
may be occupied with auxiliary nodes and target nodes, res-
pectively. The auxiliary cells are arranged in pairwise dis-
joint subsets B0, . . . , Bτ−1, referred to as blocks, each of size
τ . The auxiliary cells and the source cell are all within the
transmission range of each other, hence they form a clique
in N . The target cells are denoted by z0, . . . , zτ−1, where z j

is in the transmission range of an auxiliary cell c if and only
if c ∈ B j . The source cell is not in the transmission range
of any target cell, hence any communication from the source
node to a target node has to be delivered via some auxiliary
node. For ease of reference, the reader may use Table 1 which
summarizes the notations used throughout this section.

The above structure is guaranteed by positioning the
source cell s in (0, 1/2), the auxiliary cells of B j in

{( 1
2 ,

( jτ + i)d
) | 0 ≤ i < τ

}
and the target cell z j in

( 1
2

+
√

1 − (
τ−1

2 d
)2
,
(

jτ + τ−1
2

)
d
)
. The embedding of a net-

work of the class N in the Euclidean plane is illustrated in
Fig. 6. The network is designed so that exactly one target cell
is occupied by a target node, while the rest of the target cells
are empty. Moreover, if z j is the occupied target cell, then at
least one cell c ∈ B j is occupied. Therefore any network in
N is connected with radius 2.

2.2.2 Overview

Our lower bound can be viewed as a game played between a
deterministic algorithm, whose goal is to deliver the source
message to the (single) target, and an adversary which
attempts to slow down the algorithm, forcing it to executions
of length at least τ . We treat the algorithm as if it enjoys
a centralized authority which monitors its behavior (thus
increasing its strength). Initially, the algorithm does not have
any information on the network, except that it is an instance
of N . As the execution progresses, the algorithm gains
additional information on which cells are empty and which
cells are occupied.

From the perspective of the adversary, initially all auxi-
liary cells and all target cells are uncommitted and as the exe-
cution progresses, the adversary commits some of the cells
to be either empty or occupied (recall that the source cell is

1

B0

B1

Bj

Bτ−1

z1
z0

z j

zτ−1

0. 15 .5

clique of size at most

0

τ2auxiliary cells

source
node occupiedlength 1

1.5−O(d)

τ auxiliary cells

τ+1
target cells

Fig. 6 A network in N . The y-coordinate of the target cells is set to
ensure that the occupied target cell z j is not in the transmission range
of Bi for every j �= i
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committed to be occupied from the beginning). We assume
that the algorithm knows for each cell whether it is uncom-
mitted, empty, or occupied. Eventually (in round τ ), all cells
become committed and the network N ∈ N is revealed. The
adversarial policy guarantees that the source message was
not heard at the target (there is exactly one occupied target
cell) prior to round τ .

We ignore the first round in which the source transmits
alone and consider the state in which all auxiliary nodes (but
not the target) have already heard the message. In each round,
the algorithm schedules a subset T of the cells to transmit.
Some of the cells in T may be committed to contain a node
(occupied cells) and they certainly transmit. Other cells in
T may be committed to be empty and they certainly do not
transmit. (In fact, there is no point on behalf of the algorithm
to schedule some cell c to transmit if the algorithm already
knows that c does not contain a node.) The rest of the nodes
in T are still uncommitted and the adversary may have to
commit some of them (to be either empty or occupied) in
order to support its policy. The adversary makes sure that a
target cell z j does not hear any message unless it is already
committed to be empty. Therefore under the conditional wake
up model, we may assume that T ⊆ 
 ∪ {s}.

At the end of the round, the adversary reports to the algo-
rithm on the delivery status of the round which may take one
of the following three values:

(1) silence, if all cells in T are (or eventually will be) empty;
(2) hearing, if exactly one cell in T is (or eventually will

be) occupied; or
(3) collision, if at least two cells in T are (or eventually will

be) occupied.

This report may be employed by the algorithm to design its
next moves. The adversary is designed to guarantee that the
delivery status reports it makes throughout the execution are
consistent with the network N revealed in round τ . Note that
under the first or last delivery status reports, neither the auxi-
liary nodes nor the source heard anything in that particular
round.

Recall that the auxiliary cells are arranged in τ blocks,
each containing τ cells. A block is said to be active as long
as it contains at least one uncommitted cell. The adversarial
policy maintains the following invariant for every 1 ≤ t < τ :
at the end of round t , at least τ− t blocks are still active, each
one of them contains at least τ−t uncommitted cells. Moreo-
ver, the target cells corresponding to active blocks are always
uncommitted; whenever a block becomes inactive, the cor-
responding target cell is committed to be empty. It follows
that in round τ we are left with at least one active block Bk ,
0 ≤ k < τ , whose corresponding target cell is uncommitted.
The network N is then determined by committing the yet

uncommitted auxiliary cells in Bk and the target cell zk to be
occupied.

2.2.3 The adversarial policy

We will need the following notation (refer to Table 1 for a
brief summary). Let T t be the set of cells that were scheduled
to transmit on round t of the execution (recall that T t ⊆

 ∪ {s}). Let T t

j = T t ∩ B j for every 0 ≤ j < τ . Let U t

be the subset of cells that are uncommitted at the beginning
of round t and let U t

j = U t ∩ B j (note that U t may contain
auxiliary cells and target cells, while U t

j contains auxiliary
cells only). Let Qt

j = T t
j ∩U t

j be the set of uncommitted cells
in the block B j that were scheduled to transmit in round t .
Let Xt = { j | Qt

j �= ∅}. Recall that the block B j is active

at the beginning of round t if U t
j �= ∅. Otherwise, the block

is said to be inactive. Clearly, the set Xt contains indices of
active blocks only.

Let Ot (respectively, E t ) be the set of cells that are occu-
pied (resp., empty) at the beginning of round t . Let O∞
(respectively, E∞) be the set of cells that are occupied (resp.,
empty) at the end of the execution. (In fact, since the exe-
cution lasts for τ rounds, we have O∞ = Oτ+1 and E∞ =
Eτ+1.) Define ht to be a variable indicating the delivery sta-
tus decided by the adversary in round t . The adversary will
ensure that

ht =
⎧
⎨

⎩

Silence, if T t ⊆ E∞,
Hearing, if |T t ∩ O∞| = 1,
Collision, otherwise.

Throughout the execution, the adversary maintains a
collection C j ⊆ 2B j of constraints for each block B j . At any
given time, each constraint consists of uncommitted cells.
The existence of the constraint χ ⊆ B j in C j indicates that
the adversary must eventually commit the cells in χ so that
|χ ∩O∞| �= 1. If this is the case, then we say that χ is satis-
fied. Intuitively, if T t

j is a constraint in C j , then the target
cell z j could not hear the message in round t , as the round
yielded either silence or collision (in z j ). Let Ct

j denote the
constraints collection C j at the beginning of round t . We say
that Ct

j is in canonical form if |χ | > 1 for every χ ∈ Ct
j ,

i.e., Ct
j does not contain singleton constraints. Note that a

constraint consisting of a single (uncommitted) cell c implies
that c must eventually be empty, i.e., c ∈ E∞. On the other
hand, if Ct

j is in canonical form, then the adversary can satisfy
all constraints in Ct

j by either (a) committing all cells in U t
j

to be empty (this is trivial); or (b) committing all cells in
U t

j to be occupied (this is because there are no singleton
constraints).

The adversary maintains the constraints collections in
canonical form as follows. Given a collection of constraints
C j in canonical form, and a new constraint χ that should
be added to it, if χ consists of a single cell c, then the
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resulting constraints collection C j ∪ {χ} is not in canoni-
cal form. In that case we can canonize it by committing the
cell c to be empty and erasing it from all the constraints
in which it appears. Consequently, some other constraints
may now become singleton and this process is repeated with
each of them. The above process is referred to as Proce-
dure Canonize. This procedure is invoked at the end of
each round so that the constraints collections are always in
canonical form (at least at the beginning of each round). Note
that Procedure Canonize does not contradict any existing
constraint.

Intuitively, we would like to maintain as many active
blocks as possible, each with as many uncommitted cells
as possible, as this will allow the adversary to force the
algorithm to long executions. In every round the adversary
reveals at most one active block, i.e., at most one active block
becomes inactive. Moreover, at the end of round t , each active
block contains at least τ − t uncommitted auxiliary cells, so
that in an amortized manner, in every round at most one
uncommitted cell in each active block is committed.

In attempt to prevent the algorithm from gaining infor-
mation, the adversary ensures that ht = silence or ht =
collision whenever possible. Clearly, the decisions of the
adversary must depend on the current action of the algorithm,
that is, on the set of cells T t that are scheduled to transmit.
An adversarial decision is not required when Xt = ∅, as
all cells scheduled to transmit are already committed (to be
either occupied or empty), so in the following discussion we
assume that Xt �= ∅.

If a cell c was committed to be occupied, then the
algorithm may learn about it in a logarithmic number of
rounds (actually, under our assumptions, the algorithm learns
about it right away) and schedule c to transmit alone so that
the message will be heard in the corresponding target cell.
Therefore, whenever the adversary is forced to commit some
cells in the block B j to be occupied, it commits all other
(uncommitted) cells in B j to be occupied as well, and at
the same time it commits the corresponding target z j to be
empty. Hence the block B j becomes inactive. Consequently
the adversary maintains the following property.

Property 1 If the block B j is active at the beginning of round
t , then B j ∩ Ot = ∅.

We now turn to describe the adversarial policy in round
t for every 1 ≤ t < τ such that Xt �= ∅. The choice of the
network N ∈ N , performed in round τ , will be discussed
afterwards. In what follows, we define j∗ to be an index in
Xt that maximizes |Qt

j∗ | (so that |Qt
j∗ | ≥ |Qt

j | for every
0 ≤ j < τ ). We first consider the case where T t contains
two (or more) cells that are already committed to be occupied,
namely, |T t ∩ Ot | ≥ 2. Collision is ensured in 
 ∪ {s} (that
is, ht = collision) and the adversary need not commit on
any (new) occupied cells (at least not immediately). In that

case, the adversary adds the constraint Qt
j to C j for every

j ∈ Xt . By Property 1, the cells in T t
j \ Qt

j are all empty
at the beginning of round t , thus the message was not heard
in z j during that round (recall that such a constraint implies
that there was either silence or collision in the target cell).

Next, if T t contains exactly one cell that is already com-
mitted to be occupied, then the adversary guarantees that
ht = collision by occupying the (still uncommitted) cells
of one block B j∗ , thus making this block inactive. The tar-
get cell z j∗ is committed to be empty. For all other indices
j ∈ Xt , the adversary ensures that no message was heard in
z j by adding the constraint Qt

j to C j . Note that in principle,
occupying the cells in Qt

j∗ is sufficient to ensure collision, but
if the cells in U t

j∗ \ Qt
j∗ remain uncommitted (and hence the

block B j∗ remains active), then Property 1 will be violated
in round t + 1.

The last case is where T t does not contain any cell that
is committed to be occupied. We distinguish between two
subcases. First, if Qt

j is a singleton for every j ∈ Xt , then
the adversary guarantees that ht = silence by adding the
constraint Qt

j to C j for every j ∈ Xt , thus committing all
cells in T t ∩U t to be empty (at most one cell in each block).
Otherwise, |Qt

j∗ | ≥ 2 (as j∗ = argmax{|Qt
j | : j ∈ Xt })

and the adversary guarantees that ht = collision by occu-
pying the (still uncommitted) cells of B j∗ , which turns this
block inactive. The target cell z j∗ is committed to be empty.
For all other indices j ∈ Xt , the adversary ensures that no
message was heard in z j by adding the constraint Qt

j to
C j . The complete adversarial policy is described formally in
Fig. 7.

We would like to show that the adversary forces the algo-
rithm to long executions. In particular, we prove that there
exists a network N ∈ N such that (1) all cells in Oτ are
occupied in N ; (2) all cells in Eτ are empty in N ; and (3)
when the algorithm is invoked on N , it agrees with the deli-
very status ht for every round 1 ≤ t < τ (see Lemma 5).
This will be used to prove that the algorithm requires at
least τ rounds in order to complete a successful broadcasting
on N .

Before we can describe the choice of the network N , we
have to prove the following two lemmas.

Lemma 3 Consider some 0 ≤ j < τ and 1 ≤ t ≤ τ such
that block B j is active at the beginning of round t. Then
|U t

j | ≥ τ − t + 1.

Proof Consider round t ′ for some 1 ≤ t ′ ≤ t . Clearly, since
B j is active at the beginning of round t , B j is also active at
the beginning of round t ′. Let qt ′

j = |U t ′
j | and let r t ′

j = |Ct ′
j |.

We would like to show that

qt ′
j ≥ τ + 1 + r t ′

j − t ′ (2)

as this validates the assertion by taking t ′ = t .
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Fig. 7 The policy of the adversary in the conditional wake up model

In order to establish inequality (2), we first argue that if
j ∈ Xt ′−1 and the adversary adds the constraint Qt ′−1

j toC j in

round t ′−1, then qt ′
j −r t ′

j ≥qt ′−1
j −r t ′−1

j −1. Indeed, by adding

the constraint Qt ′−1
j to C j , the cardinality of C j increases by

1. At the end of round t ′ − 1, Procedure Canonize is invo-
ked which may cause some constraints to vanish and some
uncommitted cells to become committed, but each uncom-
mitted cell that becomes committed accounts for at least one
vanishing constraint. The argument follows.

Inequality (2) can now be proved by induction on t ′. The
inequality trivially holds at the beginning of round 1 as q1

j =
τ and r1

j = 0. Assume that the inequality holds at the begin-

ning of round t ′ − 1. If j /∈ Xt ′−1, then qt ′
j = qt ′−1

j and

r t ′
j = r t ′−1

j , hence, by the inductive assumption, inequa-
lity (2) holds at the beginning of round t ′. In what follows
we assume that j ∈ Xt ′−1.

The adversary could not have occupied the cells in B j in
round t ′ −1 (see line 4(b)i of Fig. 7) as this implies that B j is
inactive at the beginning of round t ′. Therefore the adversary
added the constraint Qt ′−1

j to C j in round t ′ − 1. By the

above argument, we have qt ′
j ≥ qt ′−1

j − r t ′−1
j − 1 + r t ′

j . By
plugging the inductive assumption into the last inequality,
we get qt ′

j ≥ τ + r t ′
j − t ′ + 1, hence inequality (2) holds at

the beginning of round t ′. ��
Lemma 3 is employed in order to establish the following

lemma.

Lemma 4 At the beginning of round τ there exists at least
one active block.

Proof It is sufficient to prove that at most one (active) block
becomes inactive in every round 1 ≤ t < τ . It is obvious

from the adversarial policy that at most one block B j∗ is
explicitly inactivated (see line 4(b)i of Fig. 7). Thus we have
to show that every block B j , j �= j∗, which was active at the
beginning of round t remains active at the beginning of round
t + 1 and this is guaranteed by Lemma 3 since t + 1 ≤ τ .

��
Recall that if the target cell z j is committed in round

1 ≤ t < τ , then the block B j is inactive at the beginning
of round t + 1. Therefore Lemma 4 guarantees that at the
beginning of round τ there exists some 0 ≤ k < τ such that
the block Bk is active and the target cell zk is uncommitted.
The network N ∈ N is constructed as follows. The source
cell s is occupied. If the adversary committed some cell c
to be occupied (respectively, empty) in some round t < τ ,
then c is occupied (resp., empty) in N . The target cell zk is
occupied and so are the cells in U τ

k . All other cells in U τ

are empty. Now that the sets O∞ and E∞ are determined (to
contain the occupied and empty cells in N , respectively), we
can establish the consistency of the adversary.

Lemma 5 Consider the execution of the algorithm on N.
For every round 1 ≤ t < τ , we have

(i) if ht = silence, then none of the nodes in N transmit;
(ii) if ht = hearing, then exactly one node in N transmits;

and
(iii) if ht = collision, then at least two of the nodes in N

transmit.

Proof The assertion clearly holds if Xt = ∅ as the deli-
very status in such rounds t is determined by cells which
are already committed (known to the algorithm). Therefore
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we can assume that Xt �= ∅. The proof is by case analysis.
The first case is when |T t ∩ Ot | ≥ 2. This case is trivial as
Ot ⊆ O∞ and since the adversary reports collision. Ano-
ther case is when |T t ∩ Ot | = 1. In this case the adversary
occupies at least one cell in T t ∩ U t , thus |T t ∩ Ot+1| ≥ 2.
The assertion holds as Ot+1 ⊆ O∞ and since the adversary
reports collision.

The last case is when |T t ∩ Ot | = 0. Now we have to
consider two subcases. If |Qt

j∗ | = 1, then Qt
j is a singleton

for every j ∈ Xt . Therefore, by adding the constraint Qt
j

to C j for every j ∈ Xt , the adversary ensures that T t ⊆
E t+1 ⊆ E∞ (recall that Procedure Canonize commits a
cell that appears in a singleton constraint to be empty) and
indeed the adversary reports silence. Else (|Qt

j∗ | > 1), the
adversary occupies the cells in Qt

j∗ (there are at least two

of them), thus |T t ∩ Ot+1| ≥ 2. Once again, the asser-
tion holds as Ot+1 ⊆ O∞ and since the adversary reports
collision. ��

Since the adversary maintains either collision or silence
on every round t such that Xt �= ∅, it follows that the source
node and the auxiliary nodes do not hear any message on
such rounds. For the target node, we prove the following
lemma.

Lemma 6 Let j be some index in [0, τ ) and consider some
1 ≤ t ≤ τ such that B j is active at the beginning of round t. If
all the constraints in Ct

j are satisfied, namely, if |χ∩O∞| �= 1
for every χ ∈ Ct

j , then no message was heard at the target
cell z j in any round t ′ < t .

Proof We first observe that by Property 1, no message is
heard at z j in any round t ′ < t such that j /∈ Xt ′ . Consider
round t ′ for some t ′ < t such that j ∈ Xt ′ . The adver-
sary could not have occupied the cells in B j in round t ′ (see
line 4(b)i of Fig. 7) as this implies that B j is no longer active
after round t ′ and in particular it is not active at the beginning
of round t . It follows that the adversary must have added the
constraint Qt ′

j to the constraints collection C j in round t ′. If
this constraint is still in C j at the beginning of round t , then it
is satisfied and no message was heard at z j in round t ′, so the
assertion holds. Otherwise, the constraint Qt ′

j must have been

reduced to some Qt ′
j ⊃ χ ∈ Ct

j or it was erased entirely. The

latter case implies that Qt ′
j ⊆ E t , thus the assertion holds. In

the former case, the cells in Qt ′
j \χ were all committed to be

empty, therefore (the constraint) Qt ′
j is satisfied if and only

if χ is satisfied. ��
We complement Lemma 6 with the observation that for

every 0 ≤ j < τ , the constraints C j are not contradicted in
any round t < τ . This fact is established simply by noticing
that neither occupying all uncommitted cells in a block (see
line 4(b)i of Fig. 7) nor invoking Procedure Canonize (see

line 5 of Fig. 7) contradict the constraints in C j , and since the
adversary manipulates C j only via one of these two actions.

The network N is a valid network in N and Lemma 5
implies that when the algorithm is invoked on N , the out-
come of every round 1 ≤ t < τ agrees with the delivery
status ht reported by the adversary. Recall that zk is the (sole)
occupied target cell in N . Since Cτk is in canonical form, it
does not contain any singleton constraint, hence by commit-
ting all cells in U τ

k to be occupied, the constraints in Cτk are
all satisfied. Therefore, by Lemma 6, the message was never
heard at zk . It follows that when the algorithm is invoked on
N , it requires at least τ rounds to ensure that the message
was heard by the target node zk .

The networks of N can be concatenated, identifying the
target of one segment with the source of the next, to form a
concatenation network of arbitrary diameter D. A determi-
nistic broadcasting algorithm A requires τ rounds to deliver
the message through any segment in this network. Since the
concatenation network contains D/2 segments altogether,
the broadcasting process cannot be accomplished in less than
τD/2 rounds. As τ is proportional to

√
g, the following theo-

rem is established.

Theorem 3 For every deterministic broadcasting algorithm
A, there exists a UDG radio network N such that A requires
�(D

√
g) rounds to broadcast in N under the conditional

wake up model.

3 Spontaneous wake up

3.1 Broadcasting algorithm

In this section we address the problem of broadcasting in
UDG radio networks assuming that stations may transmit
even before they received the source message for the first
time. We present two broadcasting algorithms: one working
in time O(D + g2) and the other in time O(D log g). While
these algorithms are based on completely different ideas and,
depending on parameter values, one or the other of them may
be more efficient, it turns out that as a pair of algorithms wor-
king together (implemented as an algorithm interleaving their
steps, and thus working in time O

(
min

{
D + g2, D log g

})
),

they achieve asymptotically optimal broadcasting time.

3.1.1 An O(D + g2)-time algorithm

Our algorithm relies on three types of grids (refer to
Sect. 2.1.1 for the definition of grid): the first grid, whose
boxes are called tiles, is of precision g

√
2; the second grid,

whose boxes are called blocks, is of precision
√

2; and the
third grid, whose boxes are called 5-blocks, is of precision√

2/5. We assume without loss of generality that g is inte-
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Fig. 8 Two adjacent 5-blocks

2
1

2
5

g2 tiles

>2

gral, hence every block consists of g2 tiles and every 5-block
consists of 25 blocks (see Fig. 8).

Enumerate all tiles in each block by integers 1, . . . , g2,
row by row from left to right, and all blocks in each 5-block
by integers 1, . . . , 25, also row by row from left to right. Fix
some enumeration of the 5-blocks in the infinite plane (the
origin may serve as a starting point). All nodes know these
partitions, and since every node knows its own coordinates,
it also knows its hierarchical address 〈i, j, k〉, where k is the
index of the 5-block where it resides, 1 ≤ j ≤ 25 is the index
of the block it belongs to in this 5-block, and 1 ≤ i ≤ g2 is
the index of the tile it belongs to in this block. Notice that
by the granularity assumption, at most one node resides in
each tile, hence the hierarchical address is unique. Moreover,
the Euclidean diameter of each block is 1, thus all nodes in
a block are in each other’s range. Also, if nodes u and v are
each in the j th block of different 5-blocks, then the distance
between them is greater than 2 and hence they do not create
collisions while transmitting simultaneously (see Fig. 8).

Algorithm Elect&Transmit.

The algorithm consists of two parts: preprocessing and source
message transmission.
Preprocessing: The preprocessing part consists of two
phases, each lasting 25g2 rounds. The rounds in a phase
are enumerated by integer pairs (i, j) ordered lexicographi-
cally, where 1 ≤ i ≤ g2 and 1 ≤ j ≤ 25. In round (i, j)
of the first phase, all nodes of hierarchical address 〈i, j, k〉
for some k transmit their coordinates. In round (i, j) of the
second phase, all nodes of hierarchical address 〈i, j, k〉 for
some k transmit all the information received in the first phase.
Due to the properties of the three grids, no collisions occur
in those phases. Upon completion of the second phase, for
any two blocks B1 and B2, all nodes in B1 and B2 know all
pairs of nodes u, v such that u ∈ B1, v ∈ B2 and (u, v) is an
edge in the UDG (i.e., u and v are in each other’s transmis-
sion range). Preprocessing terminates by selecting one such
adjacent pair for any pair of blocks in which adjacent pairs

exist (e.g., the lexicographically first pair). In that case, we
say that the nodes u and v are paired.
Source message transmission: The source message
transmission part is similar to that in Algorithm Elect-and-
Broadcast in [15]. It is divided into identical phases repea-
ted indefinitely, each consisting of 600 two-round steps. The
steps in each phase are enumerated by integer pairs ( j, ĵ),
where 1 ≤ j �= ĵ ≤ 25. Consider step ( j, ĵ). If some node v
(1) resides in the j th block of a 5-block; (2) was paired with
some node residing in a ĵ th block of a 5-block during pre-
processing; (3) has received the source message; and (4) has
not yet transmitted it, then v transmits the source message in
the first round of this step. If some node w (1) resides in the
ĵ th block of a 5-block; (2) was paired with some node resi-
ding in a j th block of a 5-block during preprocessing; (3) has
received the source message; and (4) has not yet transmitted
it, then w transmits the source message in the second round
of this step. Notice that no collisions occur in this part either.
Indeed, at most one node from a given block transmits in
each round, and nodes from different 5-blocks with the same
block index j are at distance greater than 2.

Lemma 7 Algorithm Elect&Transmit completes
broadcasting in any unknown UDG radio network of dia-
meter D and granularity g in time O(D + g2).

Proof The preprocessing part is completed in time O(g2).
We argue that if a node v hears the source message for the
first time in round t and w is in the transmission range of v,
then w hears the source message in round t + 3600 at the
latest. This will prove that the source message transmission
part is completed in time O(D), and all nodes of the network
hear the source message.

To prove the above argument, consider such nodesv andw.
Suppose that v resides in block B2 and it heard the source
message for the first time from a node u in block B1 in round t ,
which is in phase p. If B1 = B2, then all nodes in B2 hears
the source message by the end of phase p. Otherwise, all

123



346 Y. Emek et al.

nodes of B2 hears the source message by the end of phase
p + 1.

Suppose that w is in block B3. If B2 = B3, then we are
done. Otherwise, by phase p + 2, the node in B2 which was
elected to transmit to B3 will do so, and consequently, all
nodes in B3 hear the source message by the end of phase
p+2. The assertion follows as each phase lasts 1200 rounds.

��

3.1.2 An O(D log g)-time algorithm

The algorithm, named algorithm Log_Wave, relies on the
following procedure.

Procedure Conquer.

The input of the procedure consists of two blocks B1 and B2

and a node b1 ∈ B1. Block B1 is called conquered. If the
two blocks do not admit any pair of adjacent nodes, then the
procedure does nothing. Otherwise, the procedure elects a
node b2 ∈ B2 and B2 becomes conquered as well.

The procedure works in two steps. The first step begins
with a round in which the nodes in {b1}∪B2 transmit a control
message. Let C be the set of nodes in B1 that did not hear
anything on that round. Observe that every node in C must
have a neighbor in B2 (as otherwise it would have heard
the control message transmitted by b1). Next, we employ
Procedure Echo with b1 serving as the distinguished node
λ (see Sect. 2.1.1) to appoint a single node u ∈ C within
O(log g) rounds. In the last round of the first step the newly
appointed node u ∈ C transmits its coordinates so that every
node in B1 knows it. If C is empty, then the nodes in B1

learns about it by not hearing any message on that last round,
in that case, b1 itself is appointed.

The second step of Procedure Conquer is dedicated to
electing a node b2 in B2 such that b2 is a neighbor of the
appointed node (either u ∈ C or b1). (Note that the appointed
node may have many neighbors in B2. On the other hand, if
b1 was appointed, then it may be the case that it does not
have any neighbor in B2. This implies that the two blocks
do not admit any pair of adjacent nodes and the procedure
is not assumed to do anything.) Once again, this is done in a
logarithmic number of rounds via an application of Procedure
Echo with the appointed node serving as the distinguished
node λ. Altogether, Procedure Conquer requires O(log g)
rounds.

Algorithm Log_Wave.

In the first round, the source transmits the source message
and the block containing the source is conquered. The rest of
the algorithm is divided into identical phases repeated inde-
finitely, each consisting of 600 subphases, organized simi-
larly as the source message transmission part of Algorithm
Elect&Transmit. The subphases in each phase are enu-

merated by integer pairs ( j, ĵ), where 1 ≤ j �= ĵ ≤ 25.
Consider subphase ( j, ĵ). This subphase involves pairs of
blocks B1 and B2, where B1 is a j th block in some 5-block,
that was first conquered in the preceding phase, and B2 is
a ĵ th block in some 5-block. The node b1 ∈ B1 needed as
input to ProcedureConquer is the one that was elected when
block B1 was first conquered. Subphase ( j, ĵ) consists of the
parallel execution of Procedure Conquer on all such inputs.
Notice that for every j th block B1 in some 5-block there is at
most one ĵ th block B2 in some 5-block such that B2 can be
conquered from B1. As in Algorithm Elect&Transmit,
there are no collisions between transmissions from different
blocks during a subphase, i.e., no collisions between parallel
executions of Procedure Conquer. On the last round of the
subphase the newly elected node in B2 transmits the source
message.

Lemma 8 AlgorithmLog_Wave completes broadcasting in
any unknown UDG radio network of diameter D and granu-
larity g in time O(D log g).

Proof Procedure Conquer is executed in time O(log g).
Hence one phase of Algorithm Log_Wave takes time
O(log g) as well. After t phases, any node at (hop) distance t
from the source gets the source message. Consequently, after
time O(D log g), all nodes get the source message. ��

Finally, consider the algorithm that results from interlea-
ving the steps of the two algorithms described in this sec-
tion: in even rounds it executes the steps of the O(D + g2)

algorithm and in odd rounds the steps of the O(D log g)
algorithm.

Theorem 4 There exists a deterministic algorithm that
completes broadcasting in any unknown UDG radio network
of diameter D and granularity g in time O

(
min

{
D + g2,

D log g
})

under the spontaneous wake up model.

3.2 Lower bound

We prove that for any choice of parameters D and g, and for
every deterministic algorithm A, there exists a UDG radio
network N of diameter D and granularity g such that A
requires �

(
min

{
D + g2, D log g

})
rounds to broadcast in

N under the spontaneous wake up model. The UDG radio
networks that serve us to prove this lower bound are of a
specific type that we call chain networks.

For ease of reference, the reader may use Table 2 which
summarizes the notations used throughout this section. Fix
δ = √

1/17 and let ρ = �gδ� + 1. A chain network of
diameter D and granularity g consists of a source cell, which
is always occupied by a source node, and Dρ2 chain cells that
may be occupied with chain nodes (refer to Sect. 2.2 for the
definition of cells). The chain cells are arranged in pairwise
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Table 2 A table of notations for Sect. 3.2

Notation Definition

δ
√

1/17

ρ �gδ� + 1


1, . . . , 
D Subsets of chain cells

Ck, j A chain cell

L1, . . . , Lk Clusters of chain nodes

L0 The designated source cluster

λk The first round in which exactly one node
in Lk transmitted

T t The subset of cells that were scheduled to
transmit on round t

T t
k T t ∩ 
k

#O(A) Number of occupied cells in A

Xk, j The variable determined by whether Ck, j
is occupied or not

Sk A system of linear equations over G F(2)
associated with Lk

MkXk = hk The linear system Sk in vector notation

S t
k Sk at the beginning of round t

V(A)T A binary row vector with 1’s in the entries
corresponding to A

V(C)T Short for V({C})T

µ �2 log ρ� − �log log ρ
 − 2

ϕk min
{
µ

⌊ k−1
2

⌋
,
⌊
ρ2

2

⌋}

Bk A basis for the row space of Mk

Rk The linear system that corresponds to Bk

disjoint subsets 
1, . . . , 
D , each of size ρ2. We index the
chain cells so that 
k = {Ck, j | 0 ≤ j < ρ2} for every
1 ≤ k ≤ D. The chain nodes occupying the chain cells in 
k

constitute the cluster Lk . For simplicity, we assume that the
source node is the unique node in a designated cluster L0.
The clusters are arranged in a chain, such that a node in Lk

neighbors precisely the nodes in the clusters Lk−1, Lk, Lk+1

(if exist). This is guaranteed by positioning the source cell in

(0, 0) and the chain cell Ck, j in
(

3kδ +
⌊

j
ρ

⌋
d, ( j mod ρ) d

)

for every 1 ≤ k ≤ D and 0 ≤ j < ρ2. The embedding of a

chain network in the Euclidean plane is illustrated in Fig. 9.
We leave it to the reader to verify that the Euclidean distance
between any two cells Ck, j ∈ 
k and Cl, j ′ ∈ 
l is at most
1 if and only if |k − l| ≤ 1. Each cluster contains at least
one node, namely, there exists at least one occupied cell in

k for every 1 ≤ k ≤ D. Consequently, the chain network is
connected and has diameter D.

We present an adversary whose goal is to slow down any
deterministic algorithm broadcasting a message from the
source node in chain networks. For every 1 ≤ k ≤ D, let
λk be the first round in which exactly one node in Lk trans-
mitted. The adversary is designed to guarantee that λk is (at
least) proportional to min

{
ρ2, k log ρ

}
for every 1 ≤ k ≤ D.

This implies the desired lower bound on the time required for
broadcasting in chain networks as the source message cannot
be heard at cluster L D prior to time λD−1. (Clearly, broad-
casting cannot be completed in less than D rounds.)

In each round, the algorithm schedules a subset T of the
cells in

⋃D
k=0 
k to transmit. The adversary then decides, for

every 0 ≤ k ≤ D, whether the nodes in the cluster Lk heard
any message. This information is reported to the algorithm
that can employ it to design its next moves. Let T t be the
subset of cells that were scheduled to transmit in round t and
let T t

k = T t ∩
k for every 0 ≤ k ≤ D. Clearly, the nodes in
Lk heard a message in round t if and only if there is exactly
one occupied cell in T t

k−1 ∪ T t
k ∪ T t

k+1.
We say that the algorithm can distinguish between two

scenarios if there may exist some node in receiving mode
under the two scenarios that hears some message in one sce-
nario and does not hear anything (silence or collision) in the
other. Given a subset A ⊆ ⋃D

k=0 
k , we denote the num-
ber of occupied cells in A by #O(A). Consider round t of
the execution and suppose that #O(T t

k ) = 1 for some k.
For every k′ ∈ {k − 2, k − 1, k + 1, k + 2}, there exists a
scenario in which the algorithm distinguishes between the
case #O(T t

k′) = 0 and the case #O(T t
k′) ≥ 2. For example,

assume that #O(T t
k+1) = 0. Then a node in Lk+1 hears the

message transmitted by the unique occupied cell in T t
k if

#O(T t
k+2) = 0 and does not hear anything if #O(T t

k+2) > 0.
On the other hand, we have the following proposition.

Fig. 9 The first four clusters of
a chain network
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Proposition 1 If t < min{λk+i | −2 ≤ i ≤ 2}, then the
algorithm does not distinguish between the case #O(T t

k ) = 0
and the case #O(T t

k ) ≥ 2.

Given some 1 ≤ k ≤ D and 0 ≤ j < ρ2, let Xk, j be the
variable determined by whether the cell Ck, j is occupied or
not, namely, Xk, j = 0 if Ck, j is empty, and Xk, j = 1 if Ck, j is
occupied. Throughout the execution, the adversary maintains
a system Sk of linear equations over G F(2) associated with
the cluster Lk , for every 1 ≤ k ≤ D. Each linear equation in
Sk is of the form Xk, j1 + · · · + Xk, jr = b, where 0 ≤ j1 <
· · · < jr < ρ2 and b ∈ {0, 1}. (Recall that summation over
G F(2) is equivalent to binary exclusive or.)

The linear equation Xk, j1 + · · · + Xk, jr = 0 implies that
the number of occupied cells in {Ck, j1, . . . ,Ck, jr } is even
and in particular �= 1. Therefore, if T t

k = {Ck, j1, . . . ,Ck, jr },
then a message that was scheduled to be transmitted in round
t by some cell in 
k could not have been heard anywhere, as
either this cell is empty or the message collided with some
message transmitted from another occupied cell in 
k . Let
S t

k denote the linear system Sk at the beginning of round t .
In vector notation, we write MkXk = hk , where Mk is the

matrix of coefficients, Xk is the column vector of variables
and hk is the column vector of non-homogeneous terms, all
corresponding to the linear system Sk . Note that Xk uniquely
determines which cells in 
k are occupied and which cells
are empty. We define the rank of the linear system Sk to
be rank (Sk) = rank (Mk), i.e., the dimension of the row
space of Mk . Generally speaking, we will make sure that
rank (Sk) <ρ

2 which enables us to compute a non-trivial
solution, thus ensuring that each cluster contains at least one
occupied cell.

Consider a subset A ⊆ 
k . Let V(A)T be a binary
ρ2-dimensional row vector with 1’s in the entries corres-
ponding to the cells in A, that is, V(A)T[ j] = 1 if and only if
Ck, j ∈ A for every 0 ≤ j < ρ2. When A is a singleton, say
A = {C}, we may write V(C)T instead of V({C})T. Initially,
the system Sk does not contain any equation, i.e., S1

k = ∅. On
round t , the adversary may add to Sk some linear equations
on the variables corresponding to the cells in T t

k . Therefore
the system S t+1

k contains the linear equations of S t
k plus (pos-

sibly) some new equations of the form V(A)TXk = b, where
A ⊆ T t

k and b ∈ {0, 1}.
Let µ = �2 log ρ�−�log log ρ
− 2. The adversary treats

each cluster Lk in three phases. The first phase lasts from the

beginning of the execution until round ϕk = min
{
µ

⌊ k−1
2

⌋
,

⌊
ρ2

2

⌋ }
. On round t , for every 1 ≤ t ≤ ϕk , the adversary adds

the linear equation V(T t
k )

TXk = 0 to Sk , thus ensuring that
#O(T t

k ) �= 1 and messages scheduled to be transmitted from
cells in 
k are not heard anywhere. We will show later on
that ϕk < min{λk+i | −2 ≤ i ≤ 2}, hence, by Proposition 1,
there is no need for the adversary to decide at this stage whe-

ther #O(T t
k ) = 0 (meaning the round results in silence) or

#O(T t
k ) ≥ 2 (resulting in a collision). Consequently, in each

round of the first phase the adversary reports #O(T t
k ) �=1.

The second phase lasts from round ϕk + 1 until round
ϕk+µ. The adversarial policy in this phase is a little bit trickier
since now, the clusters Lk−1 and Lk−2 may transmit without
collisions.1 Consider round t , for some ϕk < t ≤ ϕk + µ,
and let i = t −ϕk . Let Q be the collection of linear equations
over G F(2) that contains the equation V(Ck, j )

TXk = 0 for
every Ck, j ∈ T t

k . The adversary tests whether

rank (Sk ∪ Q) ≤ rank (Sk)+ 2�2 log ρ�−i−1. (3)

If inequality (3) holds, then the adversary adds the linear
equations of Q to Sk , thus ensuring that the cells in T t

k
are all empty. Otherwise, the adversary adds the equation
V(T t

k )
TXk = 0 to Sk and marks T t

k as ‘noisy’. This latter
action can be interpreted as a commitment that the adver-
sary makes to satisfy the inequality #O(T t

k ) ≥ 2, hence to
ensure collision. We will see below how this is done. There-
fore on each round of the second phase the adversary reports
#O(T t

k ) = 0 if inequality (3) holds, and #O(T t
k ) ≥ 2 if

inequality (3) does not hold.
Note that up to this stage, the linear system Sk is homo-

geneous, namely, the vector hk consists of zeros only. When
the second phase ends (at the end of round ϕk +µ), the adver-
sary performs the following process (referred to as the “noise
producing” process). It first computes a basis Bk for the row
space of Mk and replaces the system Sk by the (equivalent)
system Rk that consists of the linear equations UTXk = 0 for
all UT ∈ Bk . Next, for every ϕk < t ′ ≤ ϕk +µ such that T t ′

k

is marked ‘noisy’, the adversary finds some Ck, j ∈ T t ′
k such

that V(Ck, j )
T is linearly independent with Bk (we will prove

soon that such Ck, j exists). The adversary then adds the linear
equation V(Ck, j )

TXk = 1 to Rk and the row vector V(Ck, j )
T

to Bk . Note that since the equation V(T t ′
k )

TXk = 0 (which
implies an even number of occupied cells) was already added
to Sk (on round t ′), and since Ck, j ∈ T t ′

k , the equation

V(Ck, j )
TXk = 1 implies #O(T t ′

k ) ≥ 2.
Finally, the adversary computes a non-trivial solution for

Rk and reveals it to the algorithm (we will prove soon that a
non-trivial solution exists). Consequently, in the third phase,
that lasts from round ϕk + µ + 1 until the end of the exe-
cution, the adversary does not make any decisions regarding
the cluster Lk (as the algorithm is fully aware of the occupied
and empty cells in 
k). The adversarial policy is described
formally in Fig. 10.

We now turn to establish the validity of the noise produ-
cing process.

1 Note that once the cluster Lk−1 can transmit without collisions, the
algorithm may be able to run Procedure Echo (see Sect. 2.1.1) and to
select a unique node in Lk (which in turn, can transmit alone) within a
logarithmic number of rounds.
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Fig. 10 The policy of the adversary in the spontaneous wake up model

Lemma 9 The adversary succeeds in maintaining a linear
system Rk that eventually (at the end of the noise producing
process) admits a non-trivial solution Xk for every 1 ≤ k
≤ D.

Proof We first show that for every ‘noisy’ T t ′
k , there exists

some Ck, j ∈ T t ′
k such that V(Ck, j )

T is not spanned by the
vectors in Bk (recall that this is essential for the operation
of the adversary in the noise producing process). Consider
round t ′ for someϕk< t ′ ≤ϕk+µ and let Q ={

V(Ck, j )
TXk =

0 | Ck, j ∈T t ′
k

}
. Suppose that rank

(
S t ′

k ∪ Q
)
> rank

(
S t ′

k

)
+

2�2 log ρ�−i ′−1, where i ′ = t ′ − ϕk , so that T t ′
k is marked

‘noisy’. The system S t ′+1
k is obtained by adding the (sole)

linear equation V(T t ′
k )

TXk = 0 to S t ′
k , thus rank

(
S t ′+1

k

)
≤

rank
(
S t ′

k

)
+ 1 and rank

(
S t ′+1

k ∪ Q
)

≥ rank
(
S t ′+1

k

)
+

2�2 log ρ�−i ′−1.
On each round t ′ < t ≤ ϕk , some more homogeneous

linear equations might have been added to Sk , but by the
time the noise producing process begins (at the end of the
second phase), the rank of Sk increases by at most
µ∑

i=i ′+1

2�2 log ρ�−i−1 =
�2 log ρ�−i ′−2∑

i=�log log ρ
+1

2i

= 2�2 log ρ�−i ′−1 − 2�log log ρ
+1

≤ 2�2 log ρ�−i ′−1 − 2 log ρ ,

hence upon initialization of the linear system Rk , we have
rank (Rk ∪ Q) ≥ rank (Rk)+ 2 log ρ. The rank of Rk incr-
eases by at most µ < 2 log ρ due to the linear equations we

add during the noise producing process, thus when we come
to deal with T t ′

k , we still have rank (Rk ∪ Q) > rank (Rk)

and there must be at least one unit row vector in
{
V(Ck, j )

T |
Ck, j ∈ T t ′

k

}
that is not spanned by the vectors in Bk .

It remains to show that at the end of the noise producing
process the linear system Rk admits a non-trivial solution.
First, note that when the second phase begins, there are at
most

⌊
ρ2/2

⌋
equations in Sk . The number of equations added

to Sk in the second phase may be large but the rank of Sk

increases by at most

µ∑

i=1

22 log ρ−i−1 =
�2 log ρ�−2∑

i=�log log ρ
+1

2i

= 2�2 log ρ�−1 − 2�log log ρ
+1

≤ ρ2

2
− 2 log ρ ,

thus upon construction of Rk , its rank is at most ρ2 −2 log ρ.
Since the total number of equations added to Rk during the
noise producing process is at mostµ < 2 log ρ, it follows that
the rank of Rk at the end of this process is smaller thanρ2 (the
number of variables). Therefore, as the algorithm succeeds
in maintaining the vector collection Bk linearly independent,
the linear system Rk must admit a non-trivial solution. The
lemma follows. ��

Next, we prove that the reports made by the adversary
throughout the execution are consistent with (future) deci-
sions relating to which cells are occupied and which cells are
empty.
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Lemma 10 For every 1 ≤ k ≤ D, the solution Xk agrees
with all the reports made by the adversary throughout the
execution.

Proof Clearly, if Xk solves the equation V(A)TXk = 0, then
#O(A) �= 1. Moreover, since the linear system Sk at the end
of the second phase is homogeneous, any solution for Rk

also solves the linear system Sk . Therefore the reports made
during the first phase (all of the form #O(T t

k ) �= 1) are valid.
To see that the reports of the form #O(T t

k ) = 0 (made during
the second phase) are valid, observe that the linear system
Sk now contains the equation V(Ck, j )

TXk = 0, for every
Ck, j ∈ T t

k . The validity of the #O(T t
k ) ≥ 2 reports (the other

case of the second phase) is justified as the linear equation
V(T t

k )
TXk = 0 was added to Sk in round t , and since the

linear equation V(Ck, j )
TXk = 1 was added to Rk during the

noise producing process for some Ck, j ∈ T t
k . ��

As Lemmas 9 and 10 imply #O(T t
k ) �= 1 for every 1 ≤

k ≤ D and t ≤ ϕk +µ, the next corollary can be established.

Corollary 1 The adversary guarantees λk > ϕk + µ for
every 1 ≤ k ≤ D.

Recall that we required ϕk < min{λk+i | −2 ≤ i ≤ 2}
so that during the first phase the adversary does not have to
distinguish between #O(T t

k ) = 0 and #O(T t
k ) ≥ 2. This

requirement is satisfied by Corollary 1 and since ϕk + µ ≥
ϕk+i for all −2 ≤ i ≤ 2.

Let z be a node in L D . We prove that A requires �
(

min{
D + g2, D log g

})
rounds until z can hear the source mes-

sage. First observe that z hears the source message for the first
time after�(D) rounds as the shortest path (in hops) from the
source to z is of length D. Thus the�

(
min

{
D+g2, D log g

})

lower bound holds if g2 < D. Assume that g2 ≥ D. In this
case we have to show that A requires�

(
min

{
D log g, g2

})

rounds to deliver the source message to z. This holds due
to Corollary 1 by the definition of ϕD−1, and since z cannot
hear the source message prior to time λD−1.

Theorem 5 For every deterministic broadcasting algorithm
A, there exists a UDG radio network N such that A requires
�

(
min

{
D + g2, D log g

})
rounds to broadcast in N under

the spontaneous wake up model.

4 Conclusion

We presented upper and lower bounds on the time of broad-
casting in ad hoc radio networks modeled as unit disc graphs.
While in the spontaneous wake up model our bounds match,
thus establishing an optimal broadcasting time of�

(
min

{
D

+g2, D log g
})

, in the case of the conditional wake up model
a gap is left between the O(Dg) upper bound and the �

(D
√

g) lower bound. After the publication of the conference
version of this paper, the problem of closing this gap has been
addressed in the forthcoming paper [18]: the lower bound
has been strengthened to �(Dg), thus establishing �(Dg)
as optimal broadcasting time is this model. This shows that
the separation between the conditional and the spontaneous
wake up models for broadcasting in UDG radio networks is
even more significant than established in the current paper.

Another issue deserving further discussion is the
assumptions underlying our models of radio networks. Some
of them, such as synchronous steps in which nodes of the
network transmit, or lack of the ability to detect collisions,
are common in many papers in the literature on algorith-
mic aspects of radio communication. Among others, more
particular to the present paper, are the knowledge of the gra-
nularity (or, equivalently, the density) of the network and
the knowledge of exact own Euclidean coordinates by every
node.

First recall that, for our results to hold, we do not need
the exact value of the density d, but rather some linear lower
bound on d. It might be argued that such a lower bound is
usually provided, e.g., by the physical size of the sensors
of which the wireless network is composed. The question
of whether the minimum distance between such sensors is
comparable with their physical size may depend on parti-
cular applications. Nevertheless, it is interesting to study if
our broadcasting time can be preserved in the absence of any
knowledge of density (and of diameter) of the network. Like-
wise, the assumption of the availability of exact Euclidean
coordinates is fairly strong. It may be argued that, since such
coordinates are obtained using a positioning device like GPS,
an error is inherent in the perceived position. So, it is interes-
ting to investigate how such an error in perceived coordinates
affects the broadcasting time.

Both above issues (the total lack of knowledge of the den-
sity and the imprecise reading of coordinates by each node)
have been recently addressed in the forthcoming paper [19],
for the spontaneous wake up model. It turns out that it is
the combination of lack of knowledge of the density and of
imprecise perception of node positions that causes a major
problem in preserving our broadcasting time. Nevertheless, a
broadcasting algorithm (significantly different from the one
presented in this paper) has been shown to work in the same
time bound of O

(
min

{
D + g2, D log g

})
, under this much

weaker scenario, for a large class of networks. In some other
cases it has been shown that optimal broadcasting time may
even be exponentially larger.

Our final comment concerns the use of unit disc graphs
for modeling radio networks. While the geometric character
of these graphs is a reasonable approximation of wireless
networks deployed on flat terrains without large obstacles,
it may be argued that the dichotomic assumption underlying
their definition (the presence of an edge between nodes at
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distance at most 1 and the absence of such an edge between
nodes at distance larger than 1) is too “sharp”. One may argue
that it is more realistic to introduce some “gray zone”, such
that nodes at distance in this zone may be joined by an edge or
not, and the decision is made by an adversary in such cases.
This idea is behind the notion of quasi unit disc graphs, cf.,
e.g., [30]. It would be interesting to extend our study to these
more general graphs modeling radio networks.
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