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Abstract We study the feasibility and cost of implementing
Ω—a fundamental failure detector at the core of many
algorithms—in systems with weak reliability and synchrony
assumptions. Intuitively, Ω allows processes to eventually
elect a common leader. We first give an algorithm that imple-
ments Ω in a weak system S where (a) except for some
unknown timely process s, all processes may be arbitrarily
slow or may crash, and (b) only the output links of s are
eventually timely (all other links can be arbitrarily slow and
lossy). Previously known algorithms for Ω worked only in
systems that are strictly stronger than S in terms of reliability
or synchrony assumptions.We next show that algorithms that
implement Ω in system S are necessarily expensive in terms
of communication complexity: all correct processes (except
possibly one) must send messages forever; moreover, a quad-
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ratic number of links must carry messages forever. This result
holds even for algorithms that tolerate at most one crash.
Finally, we show that with a small additional assumption to
system S—the existence of some unknown correct process
whose links can be arbitrarily slow and lossy but fair—there
is a communication-efficient algorithm for Ω such that
eventually only one process (the elected leader) sends
messages. Some recent experimental results indicate that
two of the algorithms for Ω described in this paper can
be used in dynamically-changing systems and work well in
practice [Schiper, Toueg in Proceedings of the 38th Inter-
national Conference on Dependable Systems and Networks,
pp. 207–216 (2008)].

1 Introduction

Failure detectors are basic tools of fault-tolerant distributed
computing that can be used to solve fundamental problems
such as consensus, atomic broadcast, and group membership.
For this reason there has been growing interest in the imple-
mentation of failure detectors [2,4,5,10,12,19,20,22,23,27–
31,35].

One failure detector of particular interest is Ω [8]. Rough-
ly speaking, with Ω every process p has a local variable,
denoted leader p, that contains the identity of a single process
that p currently trusts to be operational (p considers this
process to be its current leader). Initially, different processes
may have different leaders, but Ω guarantees that there is
a time after which all processes have the same, non-faulty
leader.

Failure detector Ω is important for both theoretical and
practical reasons: it is the weakest failure detector for solv-
ing consensus and consensus-like problems such as atomic
broadcast [8], and it is at the core of several consensus algo-
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rithms that are used in practice [7,21,25]. It is also used in
the solution of other problems, such as non-blocking atomic
commit [14]. In this paper, we study the problem of imple-
menting Ω in systems with weak reliability and synchrony
assumptions. We also investigate in which systems such
implementations can be communication-efficient.

Our starting point is a system where (a) all processes can
be arbitrarily slow and crash, but they have a maximum exe-
cution speed, and (b) all links can be arbitrarily slow and
lossy. We denote such a system by S−. Since all messages
can be lost or arbitrarily delayed in S−, it is clear that Ω

cannot be implemented in S−.
Thus, we consider a system that is slightly stronger than

S−, namely a system S− with the following additional
assumption: there is at least one process that is timely and
whose output links are eventually timely. Roughly speaking,
this means that the process has a minimum execution speed,
and there is a bound δ and a time after which every message
sent from that process is delivered within δ time. We call such
a process an eventually timely source, and we denote by S a
system S− with at least one eventually timely source. Note
that in system S processes do not know the identity of the
eventually timely source(s), the time after which the output
links of the eventually timely source(s) become timely, or the
corresponding bounds on message delivery time.

S is a very weak type of partially synchronous system in
terms of the timeliness of processes and the timeliness and
reliability of links. In S, only the links from the eventually
timely source(s) are reliable; all other links, including those
to the eventually timely source(s), can drop messages arbi-
trarily. Thus, processes cannot use eventually timely sources
as “forwarding nodes” to communicate reliably with each
other. Moreover, in S, the timeliness assumptions apply only
to the unknown eventually timely source(s) and their output
links. All other processes and links can be arbitrarily slow.

Can one implement Ω in system S? Note that Ω requires
that processes eventually agree on a common leader, and it
is not obvious how to achieve such an agreement when some
processes cannot even communicate, as it may happen in
system S. For example, consider a system S with 5 processes,
denoted s1, s2, s3, p and q, that behaves as follows (see
Fig. 1): (a) all the processes are correct and timely, (b) all
the output links of p and q are lossy and drop every message
that p and q send (hence p and q cannot communicate at all),
(c) all the output links of s2 are timely, i.e., they are reliable
and deliver all the messages sent by s2 in a timely way (so
s2 is a an eventually timely source), (d) all the output links
of s1 are timely, except for the link from s1 to q which loses
all messages, and (e) all the output links of s3 are timely,
except for the link from s3 to p which loses all messages.
Note that for process p, the natural leader candidates are the
two processes from which it gets timely messages, namely
s1 and s2. Symmetrically, for q the natural leader candidates

p q

s1

s2
s3

Fig. 1 Processes p and q cannot communicate but must agree on the
leader among s1, s2 and s3

are s2 and s3. Any implementation of Ω must ensure that
p and q eventually agree on the same leader—a non-trivial
task here since p and q cannot communicate with each other
(or with any other process).

Our first result is an algorithm that implements Ω in sys-
tem S. Previously known implementations of Ω in partially
synchronous systems [2,25,28,34] require stronger reliabil-
ity or synchrony assumptions than those of S. In fact, these
implementations assume systems that are strong enough to
support the implementation of the eventually perfect failure
detector �P .1 In contrast, it is easy to see that S is too weak
for implementing �P .

Our algorithm that implements Ω in system S, however,
has a serious drawback: all the processes periodically send
messages forever. This communication overhead is undesir-
able, and a natural question is whether it can be avoided.
Intuitively, after a process becomes the common leader,2 it
must periodically send messages forever (because if it crash-
es, processes must be able to notice this failure and choose
a new leader); but thereafter no other process needs to be
monitored. Thus, after processes agree on a common leader,
no process other than the leader should have to send mes-
sages. This motivates the following definition and leads us
to a related question. An algorithm for Ω is communication-
efficient if there is a time after which only one process sends
messages. Is there a communication-efficient algorithm for
Ω in system S?

To answer this question we investigate the communication
complexity of algorithms for Ω in system S, and we derive
two types of lower bounds: one on the number of processes
that must send messages forever, and one on the number of
links that must carry messages forever. Specifically, we show
that for any algorithm for Ω in system S, (a) in every run all
correct processes, except possibly one, must send messages
forever; and (b) in some run at least (n2 − 1)/4 links must
carry messages forever, where n is the number of processes
in S. These lower bounds hold even for algorithms that toler-

1 Informally, �P ensures two properties: (a) any process that crashes
is eventually suspected by every correct process, and (b) there is a time
after which correct processes are never suspected.
2 Note that processes may never know whether this has already
occurred.
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System Properties
S− Links can be arbitrarily slow and lossy

Processes can be arbitrarily slow and can crash, but they have a maximum execution speed
S S− with at least one eventually timely source

(i.e., a timely correct process whose output links are eventually timely)
S+ S− with at least one eventually timely source and at least one fair hub

(i.e., a correct process whose input and output links are fair)
S++ S− with at least one eventually timely source and such that all the links are fair

Fig. 2 Systems considered in this paper (in increasing order of strength)

ate only one process crash (and even if we assume that all the
processes in S are synchronous). We conclude that there is no
communication-efficient algorithm for Ω in S that tolerates
one process crash.

We next consider how to strengthen system S so that com-
munication efficiency can be achieved. Specifically, since
our complexity lower bounds are based on the lack of reli-
able communication in S, we make the following additional
assumption: there is at least one unknown correct process
such that the links to and from that process are fair. A fair
link may lose messages, but it satisfies the following prop-
erty: messages can be partitioned into types, and if messages
of some type are sent infinitely often, then messages of that
type are also received infinitely often [1]. A correct process
whose input and output links are fair is called a fair hub.
Note that a fair hub need not be a timely process: it can be
arbitrarily slow. We denote by S+ a system S with at least
one fair hub (whose identity is not known).3

S+ is a weak type of partially synchronous system because
it does not ensure timely communication between every pair
of processes. In fact, in S+ only messages sent from the even-
tually timely source(s) are guaranteed to be eventually timely.
All other messages, including all those sent to the eventually
timely sources, can be arbitrarily delayed (thus, processes
cannot use eventually timely sources as intermediate nodes
to communicate with each other in a timely way). This is
in contrast to the partially synchronous systems defined in
[9,17] in which every pair of processes is connected by a
link that is eventually timely in both directions.

Our next result is a communication-efficient algorithm for
Ω in system S+. We derive this algorithm in two stages: we
first give a simpler algorithm that works in a system denoted
S++ that is stronger than S+, and then modify it so that it
works in S+. System S++ is a system S where all the links are
fair. Figures 2 and 3 summarize our results on the existence
and communication efficiency of algorithms for Ω in systems
S−, S, S+, and S++.

3 So S+ is a system S− with at least one eventually timely source and
at least one fair hub, whose identities are not known. Note that the
eventually timely source and the fair hub could be the same process.

System Ω algorithm Communication-efficient
Ω algorithm

S− No No
S Yes No

S+, S++ Yes Yes

Fig. 3 Existence of algorithms and communication-efficient algo-
rithms for Ω in different systems

In summary, we investigate the feasibility and cost of
implementations of Ω—a fundamental failure detector at
the core of many algorithms—in systems with weak relia-
bility and synchrony assumptions. Our contributions are the
following:

1. We give the first algorithm that implements Ω in a weak
partially synchronous system where only one unknown
correct process needs to be timely (all other processes can
be arbitrarily slow) and only the links from that process
need to be eventually reliable and timely (all other links
can be arbitrarily slow and lossy). Previous algorithms
for Ω required stronger reliability or synchrony assump-
tions.

2. We show that algorithms for Ω in this weak system are
inherently expensive: all correct processes (except pos-
sibly one) must send messages forever; moreover, a qua-
dratic number of links must carry messages forever. This
holds even for algorithms for Ω that tolerate at most one
process crash.

3. We then show that with a small additional assumption—
the existence of some unknown correct process whose
links can be arbitrarily slow and lossy but fair—there are
efficient algorithms for Ω such that eventually only one
process (the elected leader) sends messages.

It is worth noting that the results of this paper partially
answer some questions questions posed by Keidar and
Rajsbaum in their 2002 PODC tutorial [24] (this is explained
in Sect. 7).

As a final remark, two of the algorithms presented in
this paper (namely, the algorithm for S given in Sect. 4
and the one for S++ described in Sect. 6.1) were imple-
mented and evaluated in a dynamically changing system,
where application processes may join, leave, crash or recover,
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and communication links may lose messages or completely
disconnect for extended periods of time [36]. Experimental
results presented in [36] indicate that these algorithms work
well in practice: they are quite robust and inexpensive to run
even in dynamic systems with high processor and link failure
rates.

The rest of the paper is organized as follows. We first
describe related work (Sect. 2). We next give an informal
model of systems S−, S, S+, and S++ (Sect. 3). We then
describe an algorithm for Ω in S (Sect. 4), and show that
algorithms for Ω in S cannot be communication efficient
(Sect. 5). We next give a communication-efficient algorithm
for Ω in a system S++ (Sect. 6.1). Finally, we modify this
algorithm so that it works in a system S+ (Sect. 6.2). A brief
discussion concludes the paper (Sect. 7).

2 Related work

Related work concerns the use of Ω to solve agreement prob-
lems and the implementation of Ω in various types of par-
tially synchronous systems. Our paper is also related to the
seminal work in [15,17] that identifies (weak) partial syn-
chrony assumptions under which one can solve consensus.
In [15,17], however, partial synchrony assumptions are uni-
form (i.e., they apply to all processes and/or all links) and
message-efficiency is not a concern.

As we mentioned earlier, Ω is necessary to solve con-
sensus and atomic broadcast [8,9,13,18] and it is used in
several consensus algorithms [6,16,21,25,26,29,30,32]. It
is also a component of the weakest failure detector for the
non-blocking atomic commit problem [14].

A simple implementation of Ω consists of implement-
ing �P first and outputting the smallest process currently
not suspected by �P [25,34]. However, this approach has
serious drawbacks. In particular, it requires a system that is
strong enough to implement �P (a failure detector that is
strictly stronger than Ω), and it requires all processes to send
messages forever (just to implement �P).

Several papers have focused on reducing the communi-
cation overhead of failure detector implementations. Larrea
et al. [27] describe algorithms for several failure detectors,
including �S 4 and �P , such that in the worst-case only
2n links carry messages forever. These algorithms, however,
assume very strong system properties, namely, that no mes-
sage is ever lost, all links are eventually timely, and all correct
processes are timely. Larrea et al. [28] give an algorithm for
Ω such that only n−1 links carry messages forever, but they
also assume a strong system where no messages are lost,

4 Informally, �S ensures two properties: (a) any process that crashes
is eventually suspected by every correct process, and (b) there is a time
after which some correct process is never suspected.

all links are eventually timely, and all correct processes are
timely.

Aguilera et al. [2] give another algorithm for Ω such that
only n−1 links carry messages forever. This algorithm works
in a system where all correct processes are timely, but only
the links to and from some (unknown) correct process need
to be eventually timely, all other links can be arbitrarily slow
and lossy. This system is stronger than the system S+ con-
sidered in this paper: indeed it is strong enough to allow the
implementation of �P (which cannot be implemented in
S+).

Mostefaoui et al. [31] give an implementation of Ω that
works under an assumption on the ordering of message replies
More precisely, the implementation uses a query-response
mechanism, with which a process broadcasts a query mes-
sage and then waits for responses. Links are reliable and
the implementation works provided that the query-response
mechanism satisfies the following property: there exist a cor-
rect process p, a set S of f +1 processes (where f is a bound
on the number of faulty processes), and a time after which,
if a process q ∈ S broadcasts a query, then q receives a reply
from p among the first n − f replies that q receives.

The present paper is a revised version of an extended
abstract that appeared in [3]. To strengthen the algorithmic
results, the partially synchronous models considered here are
slightly weaker than the ones described in [3]. Specifically,
in [3], all the correct processes are assumed to be timely; in
this paper, only one process is required to be timely. It is also
worth noting that the algorithm that implements Ω in system
S given here is different from the one given in [3]: the new
algorithm reduces the number of messages by a factor of n.

Since [3] was published, several papers have proposed
other algorithms for Ω that work in various types of weak
systems [4,19,22,23,30,33]. We now briefly describe these
results.

In [4], all links are fair and the algorithm for Ω works with
the following synchrony assumption: there is some correct
process p with f output links that are eventually timely,
where f is a bound on the number of faulty processes (such
a process is called an eventual f -source).

In [30], all links are reliable and the Ω implementation
uses query-response mechanism with the following synchro-
ny assumption: there exist δ, a correct process p and a time
after which, if p broadcasts a query then p receives replies
from at least f other processes within δ time. Note that the
f processes that reply to p in a timely fashion can vary over
time.

In [22], all links are fair and the Ω implementation uses a
send-to-all primitive with the following synchrony assump-
tion: there exist δ, a correct process p and a time after which,
if p sends a message to all then at least f recipients receive
the message within δ time. Note that the f recipients may
change from message to message of p.
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In [33], all links are reliable and the Ω implementation is
based on the query-response mechanism of [31]. The imple-
mentation works under the conditions in [31] or the system
has an eventual f -source.

In [19], all links are reliable and all the correct processes
regularly broadcast an alive(r) message, where r is an
increasing integer (a “round number”). The synchrony
assumption is defined in terms of the alive(r) messages:
there exist a δ, a correct process p, and a suitable subset R
of integers such that, for each r ∈ R, there is a set S(r) of f
processes such that p �∈ S(r) and for each process q ∈ S(r),
either (1) q has crashed, or (2) the alive(r) message sent by
p is received by q within δ time, or (3) the alive(r) message
sent by p is received by q among the first n − f alive(r)

messages received by q.
Note that the algorithms for Ω described in [2,4,19,22,

28,30,31,33] assume that every pair of correct processes can
communicate with each other either directly via a reliable
or fair link, or indirectly via a path of reliable or fair links.
The only algorithms that work even if some correct processes
cannot communicate with each other (i.e., even if there is no
path of reliable or fair links between them) are an algorithm
given in [3], one described in this paper (namely, the algo-
rithm for system S), and the algorithm presented in [23]—a
paper that we now briefly describe.

In [23], processes may not know the identity of other
processes and processes communicate via a send-to-all prim-
itive. Links can lose or delay messages, and the algorithm for
Ω works with the following synchrony assumption: there
is a correct process that can reach all other correct process
through paths of eventually timely links.

As a final remark, note that one can implement Ω in a
given system by first implementing �S in that system, and
then transforming �S to Ω using the algorithm in [11].
This approach, however, cannot be used to implement Ω

in system S: this is because the transformation algorithm in
[11] requires all processes to reliably communicate with each
other (which may not be possible in S). Furthermore, this
approach does not seem to help deriving a communication-
efficient algorithm for Ω in system S+: to use it, one must first
derive a communication-efficient algorithm for �S in S+,
and it is not clear that this algorithm would be significantly
simpler than our algorithm for implementing Ω in S+.

3 Informal model

We consider distributed systems with n ≥ 2 processes Π =
{0, . . . , n−1} that can communicate with each other by send-
ing messages through a set of directed links. In our model,
time values are taken from the set R+ of positive real num-
bers; time interval (t1, t2] is the set of times {t ∈ R+ : t1 <

t ≤ t2}.

Processes. Processes are (finite or infinite) deterministic
automata that execute by taking steps. In each step, a process
p can do one of the following three things (according to p’s
state transition function): (1) p tries to receive a message
from another process (as explained below) and then changes
state, or (2) p sends a message to another process and then
changes state, or (3) p just changes state.5 A step need not
be instantaneous, but we assume that each step takes effect at
some instantaneous moment during the execution of the step.

A process p is correct if it executes infinitely many steps.
If p executes only a finite number of steps, we say that p
crashes.

We assume that processes have a maximum speed, i.e.,
there is an upper bound on the rate of execution of every
process. More precisely, in every run every process p satisfies
the following property:

− Maximum rate of execution: There exists M1 > 0 such
that for every time t , p executes at most one complete
step during time interval (t, t + M1].

There may be a lower bound on the rate of execution of
some processes. More precisely, we say that a process p is
timely (in a run) if it satisfies the following property (in that
run):

− Minimum rate of execution: There exists M2 > 0 such
that for every time t , p executes at least one complete
step during time interval (t, t + M2].

Note that a timely process takes an infinite number of steps,
and hence it must be correct. If a process is not timely, it may
be intermittently or arbitrarily slow, or it may crash. Also
note that M1 and M2 can vary per run and are not known to
processes.

Links. Processes can send messages over a set of directed
links. The network is fully connected, that is, for any two
processes p �= q, there is a directed link from p to q. The
link from p to q, denoted p→ q, is an output link of p and
an input link of q.

A message m carries a type T in addition to its data
D: m = (T, D) ∈ {0, 1}∗ × {0, 1}∗. For each input link
q → p of process p and each type T, p has a message
buffer, denoted bufferp[q, T], that can hold a single mes-
sage of type T. Initially, bufferp[q, T] is empty, denoted
bufferp[q, T] = ⊥. If q sends a message m of type T to
p, and the link q → p does not lose m, then eventually
bufferp[q, T] is set to m. When this happens, we say that
message m is delivered to p from q. If bufferp[q, T] was
already set to some previous message from q, that message
is overwritten by m.

5 Our lower bounds also hold in a stronger model in which each process
can receive, change state, and send a message in a single atomic step.

123



290 M. K. Aguilera et al.

When a process p takes a step, it may choose a process
q and a type T to read the contents of bufferp[q, T]. If
bufferp[q, T] has a message m �= ⊥ then we say that p
receives message m from q, and bufferp[q, T] is automatically
reset to ⊥. Otherwise p does not receive any message at
that step. In either case, p may change its state to reflect the
outcome.

Note that even if a message m of type T is delivered
to p from q, there is no guarantee that p will eventually
receive m. First, it is possible that p never chooses to check
bufferp[q, T]. Second, it is also possible that bufferp[q, T] is
overwritten by a subsequent message from q of type T before
p checks bufferp[q, T]. Finally, p may crash before reading
the content of bufferp[q, T].

To define link properties, it is convenient to assume that
messages are unique (this can be achieved by associating a
sequence number and sender id to each message).

Every link p→ q satisfies the following property in every
run:

− Integrity: A message m is delivered to q from p at most
once, and only if p previously sent m to q.

Some links may satisfy additional properties which are
described below.

We say that a link p → q is eventually timely (in a run)
if it satisfies the following property (in that run):

− Eventual timeliness: There exists a δ and a time t such
that if p sends a message m to q at a time t ′ ≥ t , then m
is delivered to q from p by time t ′ + δ.

The maximum message delay δ and the time t above can vary
per run and are not known to processes.

A link that is not eventually timely can be arbitrarily slow
and/or it can lose messages. A lossy link may satisfy the
following fairness property: if a process sends an infinite
number of messages of a type through a link then the link
delivers an infinite number of messages of that type.6

More precisely, we say that a link p→ q is fair (in a run)
if it satisfies the following property (in that run):

− Type fairness: For every type T, if p sends infinitely many
messages of type T to q, then infinitely many messages
of type T are delivered to q from p.

Eventually timely sources and fair hubs. A process p
is an eventually timely source in a run if in that run (1) p is
timely, and (2) the output links of p are eventually timely.
Only the output links need to be eventually timely, hence the
word “source”. A process p is a fair hub in a run if in that

6 This kind of fairness property of links, which we call “type fairness”,
is new and is further discussed in [1].

run (1) p is correct, and (2) the input and output links of p
are fair. Note that a fair hub and its input and output links can
be arbitrarily slow.

Systems. We consider four systems, denoted S−, S, S+
and S++, which differ on the properties of their processes
and links. All these systems have the following properties: in
every run, every process satisfies the Maximum Rate of Exe-
cution property and every link satisfies the Integrity property.
System S− has no other requirements. In system S, in every
run, there is at least one eventually timely source. In system
S+, in every run, there is at least one eventually timely source
and at least one fair hub. In system S++, in every run, there
is at least one eventually timely source and all the links are
fair.

3.1 Failure detector Ω

The formal definition of failure detector Ω is given in [8,9].
Informally, Ω outputs, at each process p, a single process
denoted leader p, such that the following property holds:7

− There is a correct process � and a time after which, for
every correct process p, leader p = �.

Note that, at any given time, processes do not know if there
is a commonly agreed leader; they only know that eventually
there will be a common leader.

3.2 Communication efficiency

We are interested in failure detector algorithms that minimize
the usage of communication links. Note that in any reason-
able implementation of a failure detector, some process needs
to send messages forever. However, not every process needs
to do that. We say that an implementation of failure detector
Ω is communication-efficient if there is a time after which
only one process sends messages.

4 Implementing Ω in system S

We now describe an algorithm that implements Ω in S. This
algorithm, shown in Fig. 5, ensures that processes eventu-
ally agree on a common leader, even though most pairs of
processes may be unable to communicate with each other
(recall that in S all links can be arbitrarily slow and lossy,
except for the output links of some timely process whose
identity is unknown).

In all the algorithms described in this paper, processes use
local timers. In particular, each process p uses a local timer

7 Henceforth, when we say that there is a time after which some property
C holds, we mean that there is a time t such that for every time t ′ ≥ t ,
property C holds at time t ′.
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denoted SendAliveTimer to periodically send Alive
messages to other processes. Moreover, for each process
q �= p, p uses a local timer denoted timer[q] to determine
whether it has “recently” received an Alive message from
process q. Process p implements its local timers as simple
count-down counters as follows. Process p can “turn on” a
local timer T by setting it to any non-negative integer k, that
is, by executing the statement T← k, where k ≥ 0 is the
“timeout” constant. As long as T > 0, process p periodi-
cally decrements T by one, and it does so at p’s own pace.
So, unless p first resets T , the value of T eventually reaches
0. When this occurs, we say that timer T expires.

A naïve attempt at implementing Ω is as follows. Each
process periodically (a) sends Alive messages to the other
processes, (b) computes the set of currently “alive” processes,
as the set of processes from which it directly received an
Alive message recently, and (c) selects as its leader the
process with the smallest id in this set. But this algorithm
does not work: in system S almost all links may suffer from
arbitrary delays and/or losses, and this gives rise to several
problems. In particular, (1) different processes may have dif-
ferent views of which processes are currently alive, and the
different views may never converge, (2) a process with a small
id may repeatedly alternate between appearing to be alive and
crashed, and continue to do so forever. Such problems com-
plicate the task of selecting a common and permanent leader:
problem (1) may cause different processes to have different
leaders (forever), and problem (2) may cause a process to
repeatedly change its leader forever.

To overcome these and other similar difficulties, we use
the following ideas. First, instead of selecting the leader
according to the smallest process id, processes keep track of
(roughly) how many times each process was previously sus-
pected of having crashed, and they select as their leader the
process with the fewest number of suspicions so far (among
a set of alive processes). Second, the set of alive processes
from which each process selects its leader is constructed in
two stages. In the first stage, every process p periodically: (1)
sends an Alive message to the other processes, (2) recom-
putes the set processes from which it directly received an
Alive message recently (this set is denoted active), and (3)
selects its “local” leader, denoted localLeader[p], among the
processes in its active set. In the second stage, every process p
periodically: (1) sends its current localLeader[p] to the other
processes, (2) recomputes the set localLeaders of the local
leaders of the processes in its active set, and (3) selects its
(global) leader among the processes in localLeaders. These
two stages are actually done concurrently. We now explain
the algorithm in more detail.

The algorithm, shown in Fig. 5, is structured as a repeat
forever loop. In this loop, p first executes the updateLeader
procedure to recompute its local leader and its (global) leader
as described above. More precisely, p maintains a vector of

“accusation” counters, denoted counter, where counter[q]
is p’s rough estimate of how many times q’s was previously
suspected of having crashed. In the updateLeader procedure,
p first selects its local leader as the process r with the small-
est (counter[r ], r) tuple, in lexicographical order, among the
processes in its active set. Then p forms the set localLeaders
consisting of all the local leaders of the processes in its active
set. Finally, p selects its (global) leader as the process � with
the smallest (counter[�], �) tuple among the processes in its
localLeaders set.

After updating its local and global leaders, p checks
whether its SendAliveTimer has expired, i.e., whether
SendAliveTimer = 0. If it has expired, then (a) p sends an
Alive message to every process q �= p (each such message
contains p’s current local leader, the counter of this local
leader according to p, and p’s own counter), and (b) p resets
its SendAliveTimer to some constant integer η ≥ 1. Constant
η is a “message efficiency” parameter that controls the rate at
which p sends its Alive messages: p sends them once every
η iterations of its repeat forever loop.

Then, for each process q, process p checks whether an
Alive message was delivered from q, i.e., whether the cor-
responding buffer from q is non-empty. If so, p receives this
message, it adds q to its active set, and it stores the local leader
of q in the variable localLeader[q]. Process p also updates
the counters of q and of the local leader of q. Finally, p resets
timer[q] by setting it to timeout[q] (intuitively, p expects to
receive the next Alive message from q within timeout[q]
iterations of its repeat forever loop).

If timer[q] expires (before p receives another Alive mes-
sage from q), then p removes q from its active set, and it
sends an Accusation message to q to tell q that it suspects
q of having crashed. Process p also increments timeout[q],
and it restarts timer[q] with this larger timeout. Intuitively,
p increases the timeout on q because it does not know the
speed of the eventually timely sources and the delay of their
output links.

Then p checks whether an Accusation message was
delivered. If so, p receives it, and p increases its own accu-
sation counter counter[p]. Finally, at the end of the repeat
forever loop, p decrements by one every timer that it uses,
namely, SendAliveTimer and timer[q] for every q �= p.

Note that this algorithm uses only two message types:
Alive and Accusation.

Figure 5 describes the algorithm by giving the pseudo-
code of an (arbitrary) process p, and Fig. 4 describes the
local variables of p. Recall that in our model, p is a deter-
ministic automaton that takes steps, but it is easy to trans-
late the pseudo-code of p given here into such an automa-
ton. Without loss of generality, we can assume that: (1) for
some integer b, each iteration of the repeat forever loop (lines
8–29) takes at most b automaton steps (this is because there
are no infinite loops, waiting statements, or similar constructs
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Variable Intuitive description
active set of processes that p considers to be currently alive

counter[q] p’s estimate of q’s accusation counter
(the number of times processes previously timed out on q)

SendAliveTimer count-down timer used to send an ALIVE message every η iterations of the repeat forever loop
timer[q] count-down timer used to determine whether q is currently alive

(timer[q] is initialized to timeout[q] and it is decremented by one in each iteration
of the repeat forever loop; if/when timer[q] reaches 0, it is reset to timeout[q])

timeout[q] length of p’s timeout on q
localLeader[q] p’s estimate of q’s local leader

(q chooses its local leader to be the process r with the smallest tuple (counter[r], r)
among all the processes in q’s active set)

localLeaders p’s estimate of the set of local leaders of all the processes in p’s active set
leader the leader of p

(p chooses its leader to be the process with the smallest tuple (counter[ ] )
among all the processes in p’s localLeaders set)

Fig. 4 Local variables of process p in the algorithm of Fig. 5

CODE FOR EACH PROCESS p:
procedure updateLeader()

localLeader[p] ← r such that (counter[r], r) = min{(counter[q], q) : q ∈ active}
localLeaders ← {localLeader[q] : q ∈ active}
leader ← such that (counter[ ] ) = min{(counter[q], q) : q ∈ localLeaders}

main code

{ Initialization }

for each q ∈ Π do counter[q] ← 0 ; localLeader[q] ← q
for each q ∈ Π \ {p} do timeout[q] ← η + 1; timer[q] ← timeout[q]
active ← {p}
SendAliveTimer ← 0 { p sets SendAliveTimer = 0 to start sending ALIVE messages }

repeat forever
updateLeader()

if SendAliveTimer = 0 then
send (ALIVE, localLeader[p], counter[localLeader[p]], counter[p]) to every process except p
SendAliveTimer ← η

for each q ∈ Π \ {p} do
if receive (ALIVE, r, rcntr, qcntr) from q then

active ← active ∪ {q}
localLeader[q] ← r
counter[q] ← max{counter[q], qcntr}
counter[r] ← max{counter[r], rcntr}
timer[q] ← timeout[q]

if timer[q] = 0 then
send ACCUSATION to q
active ← active − {q}
timeout[q] ← timeout[q] + 1
timer[q] ← timeout[q]

if receive ACCUSATION from q then
counter[p] ← counter[p] + 1

if SendAliveTimer > 0 then SendAliveTimer ← SendAliveTimer− 1
for each q ∈ Π \ {p} do

if timer[q] > 0 then timer[q] ← timer[q]− 1
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Fig. 5 Implementation of Ω for system S

123



On implementing omega in systems with weak reliability and synchrony assumptions 293

in lines 9–29), and (2) each iteration of the repeat forever loop
takes at least two complete automaton steps.

We now give an intuitive outline of the algorithm’s proof
of correctness. Recall that in each run there is at least one
eventually timely source s. It is easy to see that there is a time
after which processes (a) stop timing out on s, (b) consider s
to be active, and (c) stop sending Accusation messages to s.
Thus, eventually s stops increasing its own counter. Consider
all the correct processes with a counter that stops increasing,
and let � be the correct process with the smallest final counter.
This is the process that is eventually elected as leader. To
see this, first note that eventually s stops timing out on
� (otherwise s would keep sending Accusation messages to
�, causing �’s counter to increase without bounds). Therefore,
there is a time after which s considers � to be active. Since
� is eventually the correct process with the smallest counter,
there is a time after which s picks � as its local leader. Since s
can communicate with all other correct processes, eventually
all correct processes learn that � is s’s local leader. There-
after � is a candidate for (global) leadership at every correct
process.

Now consider an arbitrary correct process p and any
process q that may compete with � for global leadership at
p. We claim that q eventually loses this competition for one
of two reasons: either there is a time after which p does not
consider q to be active (in this case p removes q from the
competition even if q has a lower counter than �), or p even-
tually realizes that q’s counter is larger than �’s counter. So
there is a time after which � becomes the leader at p.

We now give the detailed proof that the algorithm in Fig. 5
implements Ω in system S. Henceforth, we consider an arbi-
trary run of this algorithm in system S, and s is an eventually
timely source in this run.

In the following, the local variable var of a process p is
denoted by varp. The value of varp at time t is denoted by
var t

p.8

Lemma 1 For every correct process p and every process
q �= p, the following holds:

(a) If q ∈ activep holds infinitely often9 then p receives
Alive messages from q infinitely often.

(b) If q ∈ localLeadersp holds infinitely often then
p receives Alive messages from q infinitely often, or p
receives (Alive, q,−,−) messages infinitely often.

Proof Consider two processes p and q such that p is correct
and q �= p.

8 If a step of p takes effect at time t , then var t
p is the value of varp just

after this step.
9 A condition C holds infinitely often if for every time t , there is a time
t ′ > t such that C holds at time t ′. Note that “C holds infinitely often”
is the opposite of “there is a time after which C does not hold”.

(a) Assume that q ∈ activep holds infinitely often. Since
q �= p, p receives at least one Alive from q that
causes p to first insert q in activep. If there is a time after
which p does not receive Alive from q, then eventually
timerp[q] expires (i.e., timerp[q] reaches 0), p removes
q from activep, and p never inserts q back into this set
again—a contradiction that shows part (a).

(b) Assume that q ∈ localLeadersp holds infinitely often.
Since p resets localLeadersp to {localLeaderp[u] : u ∈
activep} infinitely often (in the updateLeader proce-
dure that p executes in line 9), there must be at least
one process r such that localLeaderp[r ] = q and r ∈
activep infinitely often. There are two possible cases:
(1) r = p. In this case, localLeaderp[p] = q infinitely
often. Since p resets localLeaderp[p] infinitely often to
a process in activep, then q ∈ activep infinitely often.
By part (a) of the lemma, p receives Alive messages
from q infinitely often.
(2) r �= p. Suppose, for contradiction, that there is a
time t after which p does not receive (Alive, q,−,−)

messages. Since r ∈ activep infinitely often and r �=p,
by part (a) of the lemma, p receives Alive messages
from r infinitely often. After time t , none of these mes-
sages are (Alive, q,−,−) message. So there is a time
after which localLeaderp[r ] �= q—a contradiction.
Thus, p receives (Alive, q,−,−) messages infinitely
often. 
�

Observation 2 For all processes p and q, counterp[q] is
monotonically nondecreasing with time.

Lemma 3 For every two processes p �= q, if

(a) p receives Alive messages from q infinitely often, or
(b) p receives (Alive, q,−,−) messages infinitely often

then (c) q is correct, and for every time t, there is a time after
which counterp[q] ≥ countert

q [q].
Proof Part 1: (a)⇒(c). Consider two processes p �= q, and
suppose that p receives Alive messages from q infinitely
often. Then q sends such messages infinitely often, and so q
is correct. Consider any time t . Eventually p receives a mes-
sage m = (Alive,−,−, qcntr) that is sent by q after time t .
Since q sends m after time t and counterq [q] is monotonically
nondecreasing, qcntr ≥ countert

q [q]. So, when p receives
m from q, p sets counterp[q] to a value v ≥ qcntr ≥
countert

q [q]. Thereafter, counterp[q] ≥ countert
q[q] (because

counterp[q] is monotonically nondecreasing).
Part 2: (b)⇒(c). Consider two processes p �= q, and sup-

pose that p receives (Alive, q,−,−) messages infinitely
often. Then, for some process r , p receives (Alive, q,−,−)

from r infinitely often. If r = q then condition (c) holds by
part 1 of this proof, and we are done.
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Now assume r �= q. Consider any time t , and let C =
counter t

q [q]. Note that r sends (Alive, q,−,−) to p infi-
nitely often. Each time r sends such a message in line 11,
localLeaderr [r ] = q, and so q ∈ activer at that time (this is
because r resets localLeaderr [r ] to a process in activer just
before r sends (Alive, q,−,−)). Thus, q ∈ activer holds
infinitely often. Since r �= q, then by Lemma 1 part (a), r
receives Alive messages from q infinitely often. By part 1 of
this proof, q is correct and there is a time after which process
r has counterr [q] ≥ C . So p eventually receives a mes-
sage m = (Alive, q, qcntr,−) from r such that qcntr ≥ C .
When p receives m, p sets counterp[q] to a value v ≥
qcntr ≥ C . Thereafter, counterp[q] ≥ countert

q [q] (because
counterp[q] is monotonically nondecreasing). 
�
Lemma 4 For every correct process p and every process q,

if

(a) q ∈ activep holds infinitely often, or
(b) q ∈ localLeadersp holds infinitely often

then (c) q is correct, and for every time t, there is a time after
which counterp[q] ≥ counter t

q [q].
Proof If p = q, condition (c) holds because p is correct and
counterp[p] is monotonically nondecreasing.

Now assume that p �= q. If (a) or (b) holds, then by
Lemma 1, p receives Alive messages from q infinitely often,
or p receives (Alive, q,−,−) messages infinitely often. By
Lemma 3, condition (c) holds. 
�

Recall that s is an eventually timely source in the run under
consideration.

Lemma 5 There is a constant α > 0 such that, for all
k ≥ 0 and every time t, process s executes at least k com-
plete iterations of its repeat forever loop during time interval
(t, t + kα].
Proof The lemma follows directly from two facts: (1) there
is an integer b such that each complete iteration of the repeat
forever loop of s takes at most b automaton steps, and (2) s
satisfies the Minimum Rate of Execution property (because
s is a timely process). 
�
Definition 6 Let α > 0 be a constant that satisfies Lemma 5.

Recall that η ≥ 1 is the “timeout” value of SendAliveTimer
(see line 12).

Definition 7 Let ∆′ = (η + 1)α.

Lemma 8 For every process p �= s, if s sends an Alive
message to p at some time t, then s sends another Alive
message to p during time interval (t, t +∆′].

Proof Suppose s sends an Alive message to p �= s at some
time t (this occurs in line 11). Then, when s executes line
12(in the same iteration of its repeat forever loop) s sets Send-
AliveTimer to η ≥ 1. Since s decrements SendAliveTimer by
one in each iteration of its repeat forever loop (in line 27),
s sets SendAliveTimer to 0 by the time it completes η such
iterations. By Lemma 5, this takes at most ηα units of time.
So by time t + ηα, s sets SendAliveTimer to 0. Thus, by the
time s completes one more iteration of the repeat forever
loop, i.e., by time t + ηα + α = t + ∆′, s executes line 10
with SendAliveTimer = 0 and sends another Alive message
to p. 
�
Lemma 9 For every process p �= s, there is a time t ′ such
that for every t ≥ t ′, s sends an Alive message to p during
time interval (t, t +∆′].
Proof Let p �= s. When s executes its initialization code
(lines 4–7), s sets its SendAliveTimer to 0. Thus, in its first
execution of the repeat forever loop (lines 8–29), s executes
line 10 with SendAliveTimer = 0 and sends an Alive mes-
sage to p at some time t1. By Lemma 8, s sends another
Alive message to p at time (t1, t1+∆′]. The lemma follows
by repeated applications of Lemma 8. 
�
Lemma 10 There is a constant ∆ and a time t∆ such that,
for all processes p, if s sends a message m to p at some time
t ≥ t∆, then m is delivered to p from s by time t +∆.

Proof This follows immediately from the fact that s is an
eventually timely source, and therefore all its output links
are eventually timely. 
�
Definition 11 Let ∆ be a constant that satisfies Lemma 10.

Lemma 12 For every process p �= s, there is a time t ′ such
that for every t ≥ t ′, there is an Alive message delivered to
p from s during time interval (t, t +∆′ +∆].
Proof Follows directly from Lemmas 9 and 10. 
�
Lemma 13 There is a constant ε > 0 such that, for every
k ≥ 1 and every process p, p takes at least kε time to execute
k complete iterations of its repeat forever loop.

Proof The lemma follows from the following facts: (1) each
complete iteration of p’s repeat forever loop takes at least two
complete automaton steps, and (2) p satisfies the Maximum
Rate of Execution property. We now explain this proof in
more detail.

Let k ≥ 1 and consider some process p . To execute a
complete iteration of the repeat forever loop, p takes at least
two complete automaton steps. Thus, to execute k complete
iterations of the loop, p takes at least 2k complete steps.
By the Maximum Rate of Execution property, there exists
a constant M1 > 0 such that for every time t , p executes
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at most one complete step during time interval (t, t + M1].
Thus, for every time t and every k ≥ 1, p executes at most
2k − 1 complete steps during time interval (t, t + k M1]. Let
ε = M1. We conclude that p takes at least k M1 = kε time
to execute k complete iterations of the repeat forever loop.


�
Definition 14 Let ε be a constant that satisfies Lemma 13.

Note that, by Lemma 13, p takes at least ∆′ + ∆ time
to execute (∆′ + ∆)/ε� complete iterations of the repeat
forever loop.

Definition 15 Let ζ = (∆′ +∆)/ε� + 2.

Lemma 16 For every correct process p �= s, there is a time
after which p receives an Alive message from s at least once
every ζ consecutive iterations of p’s repeat forever loop.

Proof Consider a correct process p �= s. By Lemma 12,
there is a time t ′ such that for every t ≥ t ′, there is an
Alive message delivered to p from s during time interval
(t, t +∆′ +∆].

Thus, there are infinitely many Alive messages that are
delivered to p from s. Since p is correct, it executes its repeat
forever loop infinitely often. In each iteration of this loop, p
tries to receive an Alive message from every process q �= p
(including s), so p receives Alive messages from s infinitely
often.

Suppose p receives an Alive message from s at some
time t > t ′. From Lemma 12, another Alive message is
delivered from s during the period (t, t + ∆′ + ∆]. Thus,
by Lemma 13, this Alive message is delivered to p before
p completes (∆′ +∆)/ε� + 1 consecutive iterations of its
repeat forever loop. So p receives this Alive message by the
time it completes (∆′ +∆)/ε� + 2 iterations of the loop.

We conclude that there is a time after which p receives
an Alive message from s at least once every ζ = (∆′ +
∆)/ε� + 2 consecutive iterations of its repeat forever loop.


�
Observation 17 For every correct process p, there is a time
after which p ∈ activep.

Proof When p executes its initialization code, it sets activep

to {p}. Thereafter, p never removes itself from activep. 
�
Lemma 18 For every correct process p, there is a time after
which s ∈ activep.

Proof Let p be any correct process. If p = s then, by Obser-
vation 17, there is a time after which s ∈ activep. Now
assume that p �= s. By Lemma 16, there is a time t1 after
which p receives an Alive message from s at least once every
ζ consecutive iterations of its repeat forever loop. Each time
p receives such a message, p adds s to activep. We claim

that p removes s from activep only a finite number of times,
which concludes the proof. Suppose, for contradiction, that
p removes s from activep infinitely often (line 22). Then, p
increments timeoutp[s] infinitely often (line 23), and so there
is a time t2 after which timeoutp[s] > ζ . We now consider
p’s execution after time t = max(t1, t2).

After time t , each time p receives an Alive message from
s, p resets timerp[s] to timeoutp[s] > ζ . After each iteration
where timerp[s] is reset this way, timerp[s] can decrease to
0 only if p completes at least ζ consecutive iterations of its
repeat forever loop without receiving any Alive message
from s (in each such iteration p decreases timerp[s] by one).
But after time t process p receives an Alive message from
s at least once every ζ consecutive iterations of its repeat
forever loop. So there is a time after which timerp[s] �= 0.
Note that p removes s from activep only if it executes line
20 with timerp[s] = 0. Thus there is a time after which p
does not remove s from activep—a contradiction. 
�
Lemma 19 counters[s] is bounded.

Proof Consider any correct process p �= s. Each time p
sends an Accusation message to s, p removes s from
activep. By Lemma 18, there is a time after which p does
not remove s from activep. So there is a time after which
p does not send any Accusation messages to s. More-
over, s never sends Accusation messages to itself. Thus
there is a time after which no process (whether correct or
faulty) sends Accusation messages to s. Since s increases
counters[s] only when it receives such messages, counters[s]
is bounded. 
�
Definition 20 For every process p, let cp be the largest value
of counterp[p] in the run that we consider (cp = ∞ if
counterp[p] is unbounded). Let � be the process such that
(c�, �) = min{(cp, p) : p is a correct process}.
By definition, � is a correct process. Furthermore, by
Lemma 19, counters[s] is bounded, i.e., cs < ∞. Thus,
c� <∞, i.e., counter�[�] is bounded.

Lemma 21 For every correct process p,

(a) if there is a time after which � ∈ activep then there is a
time after which localLeaderp[p] = �, and

(b) if there is a time after which � ∈ localLeadersp then
there is a time after which leaderp = �.

Proof (a) Let p be any correct process, and suppose that
there is a time after which � ∈ activep. We claim that for
every q �= �, (i) there is a time after which q �∈ activep,
or (ii) there is a time after which (counterp[�], �) <

(counterp[q], q). From the way p sets localLeaderp[p]
in the updateLeader procedure, this claim implies there
is a time after which localLeaderp[p] = �.
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To show the claim, consider any process q �= �, and
suppose that condition (i) does not hold, i.e., suppose
that q ∈ activep holds infinitely often. We now show
that condition (ii) is satisfied. By Lemma 4 part (a), q is
correct, and for every time t , there is a time after which
counterp[q] ≥ counter t

q [q]. There are two cases:

(1) counterq [q] is bounded. In this case, cq < ∞,
and so there is a time t when countert

q [q] = cq .
So there is a time after which counterp[q] ≥ cq .
Recall that q is correct and q �= �, and so by the
definition of �, we have (c�, �) < (cq , q). Since
counterp[�] ≤ c� (always), there is a time after
which (counterp[�], �) ≤ (c�, �) < (cq , q) ≤
(counterp[q], q).

(2) counterq [q] is unbounded. In this case, counterp

[q] is also unbounded. So there is a time after
which counterp[�] ≤ c� < counterp[q].

Therefore, in both cases there is a time after which
(counterp[�], �) < (counterp[q], q), i.e., condition (ii)
holds.

(b) (Similar to the proof of part (a).)
Let p be any correct process, and suppose that there
is a time after which � ∈ localLeadersp. We claim
that for every q �= �, (i) there is a time after which
q �∈ localLeadersp, or (ii) there is a time after which
(counterp[�], �) < (counterp[q], q). From the way p
sets leader p in the updateLeader procedure, this claim
implies there is a time after which leader p = �.
To show the claim, consider any process q �= �, and
suppose that condition (i) does not hold, i.e., suppose
that q ∈ localLeadersp holds infinitely often. We now
show that condition (ii) is satisfied. By Lemma 4 part
(b), q is correct, and for every time t , there is a time
after which counterp[q] ≥ countert

q [q]. The rest of the
proof now proceeds identically to cases (1) and (2) of
part (a) above. 
�

We now proceed to show that for every correct process p
there is a time after which � ∈ localLeadersp (and hence, by
the above lemma, there is a time after which leaderp = �).

Lemma 22 There is a time after which � ∈ actives .

Proof If � = s then, by Observation 17, there is a time after
which � ∈ actives . Now suppose � �= s. There are three pos-
sible cases: (1) there is a time after which � ∈ actives , (2)
� is added to and removed from actives infinitely often, or
(3) there is a time after which � �∈ actives . We now show
that cases (2) or (3) cannot occur. In case (2), every time s
removes � from actives , s sends an Accusation message to
�, and so s sends Accusation messages to � infinitely often.
In case (3), there is a time after which s does not receive
Alive messages from �. Thus, timers[�] expires infinitely

often at s (this is because s initially sets timers[�] to some
positive value, and each time this timer expires, s resets it
to a positive value). Therefore, s sends Accusation mes-
sages to � infinitely often. So, in both cases (2) and (3), s
sends Accusation messages to � infinitely often. Since the
output links of s are eventually timely, and � tries to receive
an Accusation message from s infinitely often (specifically
once in each iteration of its repeat forever loop), � receives
Accusation messages from s infinitely often. Thus, � incre-
ments counter�[�] infinitely often, and so counter�[�] is not
bounded—a contradiction. Thus, only case (1) is possible.


�
Lemma 23 There is a time after which localLeaders[s] = �.

Proof By Lemma 22, there is a time after which � ∈ actives .
Therefore, by Lemma 21 part (a), there is a time after which
localLeaders[s] = �. 
�
Lemma 24 For every correct process p, there is a time after
which localLeaderp[s] = �.

Proof Consider any correct process p. If p = s then the
result is immediate from Lemma 23 . Now assume that p �= s.
In this case, from Lemma 16, p receives Alive messages
from s infinitely often. By Lemma 23, there is a time t after
which localLeaders[s] = �. So after time t , all the Alive
messages that s sends to p are of the form (Alive, �,−,−).
Thus, there is a time after which all the Alive messages
that p receives from s are of the form (Alive, �,−,−). So
there is a time after which localLeaderp[s] = �. 
�
Corollary 25 For every correct process p, there is a time
after which � ∈ localLeadersp.

Proof From Lemmas 18 and 24, there is a time after which
s ∈ activep and localLeaderp[s] = �. Since p repeatedly
sets localLeadersp to {localLeaderp[q] : q ∈ activep}, there
is a time after which � ∈ localLeadersp. 
�
Lemma 26 For every correct process p, there is a time after
which leaderp = �.

Proof Immediate from Lemma 21 part (b) and Corollary 25.

�

From Lemma 26 and the fact that � is a correct process, we
have

Theorem 27 The algorithm in Fig. 5 implements Ω in sys-
tem S.

5 Impossibility of communication-efficient Ω

in system S

We now consider the communication complexity of imple-
mentations of Ω in system S. Specifically we give two types
of lower bounds: one is on the number of processes that send
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messages forever, and the other is on the number of links that
carry messages forever. A corollary of these lower bounds is
that there is no communication-efficient implementation of
Ω in system S. The lower bounds that we derive here hold
even if we assume that all processes in S are synchronous
(i.e., all processes have the same, constant execution speed)
and at most one process may crash.

Theorem 28 Consider any algorithm A for Ω in a system S
with n ≥ 2 processes such that all processes are synchronous
and at most one process may crash.

1. In every run of A , all correct processes, except possibly
one, send messages forever.

2. In some run of A , at least � n2

4 � links carry messages
forever.

Proof Henceforth we consider an algorithm A that imple-
ments Ω in a system S with n ≥ 2 processes such that all
processes are synchronous and at most one them may crash.
We first show the following

Claim: For any run of A and any correct process p, if
there is a time after which p does not receive any message
from other processes, then there is a time after which the
leader of p is p.

To prove the Claim, suppose there is a run R of A , a
correct process p, and a time t after which p does not receive
any message. Without loss of generality, we can assume that
no process crashes in R. This is because if some process f
crashes at some time t ′ (i.e., f stops taking steps after time t ′)
in R, we can modify R to get a similar run where f never
crashes, but all its output links crash permanently at time t ′
(i.e., they lose all the messages that f sends after time t ′);
this modified run is indistinguishable from R to all processes,
except for process f who is now correct.

Since R is a run of an algorithm that implements Ω , and
process p is correct, in run R there is a correct process q and
a time after which the leader of p is q. We now show that
q = p (which proves the above Claim).

Suppose, for contradiction, that q �= p. Let R′ be a run of
A that is identical to R up to time t , and such that after time t :
(a) process q crashes, and (b) all the input links of p crash
permanently, while the output links of p become timely and
stop losing messages (p is the eventually timely source in run
R′). Since process p receives exactly the same messages at
the same times in R and R′, p cannot distinguish between R
and R′, and so it behaves exactly the same way in R and R′.10

Thus, in run R′ of A there is a time after which the leader
of p is q, even though q crashes—a contradiction that con-
cludes the proof of the Claim.

10 Note that even if the algorithm A that p executes is non-
deterministic, we can chose run R′ such that p behaves the same in
R′ and in R.

We now prove part (1) of the theorem. Let R be an arbitrary
run of algorithm A , and correct(R) be the number of correct
processes in R. To prove Part (1) of the theorem, we must
show that at least correct(R)−1 correct processes send mes-
sages forever (*). To do so, consider the following two cases:

(a) correct(R) ≤ 1. In this case, (*) trivially holds.
(b) correct(R) ≥ 2. Suppose, for contradiction, that (*)

does not hold, i.e., at most correct(R)− 2 correct processes
send messages forever. Thus in R there are at least two dis-
tinct correct processes that do not send messages forever. In
other words, in R there are two distinct correct processes p
and q and a time t such that p and q do not send any message
after time t .

Without loss of generality, we can assume that in R: (a)
all the output links of p and q are eventually timely (and so
both p and q are eventually timely sources in R), and (b) no
process crashes (the argument is as before: we can “replace”
the crash of a process, by the simultaneous and permanent
crash of all its output links).

We first show that in R there is a time after which the leader
of q is not p. To see this, let R′ be a run of A that is identical
to R except that p crashes in R′ after time t . Note that, except
for p, processes cannot distinguish between runs R and R′,
and so they behave the same in R and R′. Since p is faulty in
R′, in R′ there is a time after which the leader of q is not p;
thus, in R there is a time after which the leader of q is not p.

Now let R′′ be a run of A that is identical to R, except
that in R′′ after time t , (1) all the output links of p crash per-
manently, and (2) all the input links of p crash permanently,
except for the link from q to p which, as in run R, is eventually
timely (so q is the eventually timely source of run R′′). Note
that, except for p, processes cannot distinguish between runs
R and R′′, and so they behave the same in R and R′′. Thus,
in R′′ there is a time after which the leader of q is not p (as it
was the case in run R). In R′′, p ceases to receive messages,
and so, by the Claim, there is a time after which the leader of
p is p. Thus, in run R′′ of A correct processes p and q do not
reach agreement on a common leader—a contradiction. So
(*) holds, and this concludes the proof of part (1) the theorem.

We now prove part (2) of the theorem. Partition the set of
processes of S into set A with  n

2 � processes, and set B with
� n

2 � processes. Consider run R of A such that: (a) all the n
processes are correct, (b) all the links between processes in A
are eventually timely, (c) A has an eventually timely source s,
so all the links from s to processes in B are eventually timely,
(d) for every process r �= s in A, all the links from r to
processes in B are permanently crashed, and (e) all the out-
put links of every process in B are permanently crashed. So
in run R, any process p ∈ B can receive messages only from
process s: all messages sent by other processes to p are lost.

Note that in run R, for every process q ∈ A and every
process p ∈ B, there is a time after which the leader of q
is not p. Intuitively, this is because p may eventually crash,
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and since p’s output links are permanently crashed, q would
not be able to notice p’s crash (we omit this proof as it is
similar to one given above).

We claim that in R, every process in A sends messages
forever to every process in B. Suppose, for contradiction, that
in R some process q ∈ A does not send messages forever to
some process p ∈ B. We consider two possible cases.

Suppose q = s. Recall that in R, p can receive messages
only from q (= s). Since in R there is a time after which q
does not send messages to p, then eventually p stops receiv-
ing messages. So, by the Claim, in R there is a time after
which the leader of p is p. Recall that in R there is a time
after which the leader of q is not p. Thus, in run R correct
processes p and q do not reach agreement on a common
leader—a contradiction.

Now suppose q �= s. Let R′ be a run of A which is similar
to R, except that the eventually timely source is q rather
than s. More precisely, R′ is like R, except that all the links
from s to processes in B are permanently crashed, and all the
links from q to processes in B are eventually timely. Since no
process in B can communicate with anyone (their output links
are permanently crashed in both R and R′), processes in A
cannot distinguish between runs R and R′, and so they behave
the same in R and R′. Thus, in R′ (as in R) there is a time
after which (a) the leader of q is not p, and (b) q does not send
messages to p. Since the link from q to p is the only input
link of p that is not permanently crashed in R′, then there is
a time after which p does not receive any message in R′. So,
by the Claim, in R′ there is a time after which the leader of
p is p. Thus, in run R′ of A correct processes p and q do
not reach agreement on a common leader—a contradiction.

Thus we proved our claim that in run R every process in
A sends messages forever to every process in B. Since |A| =
 n

2 � and |B| = � n
2 �, this implies that at least  n

2 �·� n
2 � = � n2

4 �
links carry messages forever in run R. 
�

From Theorem 28 part (1), we immediately get the fol-
lowing result:

Corollary 29 There is no communication-efficient algorithm
for Ω in a system S with n ≥ 3 processes, even if we assume
that all processes are synchronous and at most one process
may crash.

6 Communication-efficient implementations of Ω

We now seek algorithms for Ω that require only one process
to send messages forever (this also implies that the num-
ber of links that carry messages forever is linear rather than
quadratic in n). In order to achieve this, Theorem 28 implies
that we must strengthen the system model S. In this section,
we first give a communication-efficient algorithm for Ω for
system S++ (i.e., a system S where all links are fair), and then

we modify this algorithm so that it works in system S+ (i.e.,
a system S where only the links to and from some unknown
timely process are fair).

6.1 Implementing Ω in system S++

We now give a communication-efficient algorithm for Ω in
system S++. Recall that in S++ there is an eventually timely
source and all the links are fair.

One simple attempt to get communication efficiency is as
follows. Each process (a) sends Alive messages only if it
thinks it is the leader, (b) maintains a set of processes, called
active, from which it received an Alive message recently
(an adaptive timeout is used to determine the current set of
active processes), and (c) chooses as leader the process with
smallest id in its set active.11 Such a simple algorithm would
work in a system where all correct processes are eventually
timely sources. But in system S++, it would fail: for exam-
ple, if S++ has only one eventually timely source and this
process happens to have a large id, the leadership could for-
ever oscillate among the correct processes that have a smaller
id.

To fix this problem, we use a similar technique as in our
previous algorithm (in Fig. 5): a process uses accusation
counters, not process ids, to select the leader among processes
in its active set. More precisely, each process keeps a counter
of the number of times it was previously suspected of having
crashed, and includes this counter in the Alive messages that
it sends. Every process keeps the most up-to-date counter
that it received from each process, and picks as its leader
the process with the smallest counter among processes in its
active set (using the process ids to break ties). If a process
p times out on a process q in activep, p removes q from
activep and it sends an “accusation” message to q, which
causes q to increment its own accusation counter. The hope
here is that, as with the previous algorithm, the counter of
each eventually timely source remains bounded (because it
is timely and all its output links are eventually timely), and
so the correct process with the smallest bounded counter is
eventually selected as the leader by all.

The above algorithm, however, does not work in system
S++: this is because the accusation counter of all correct
processes may keep increasing forever, causing the leader-
ship to keep oscillating forever. To see this, consider the fol-
lowing scenario in a system with n = 2 processes, namely,
p and s. (We can extend this scenario to any number of
processes.) Process s is the eventually timely source, while
process p is correct but its output links are not always timely.
Suppose that the accusation counters of p and s are 1 and 3,

11 A process always considers itself to be active, so if it does not have
recent Alive messages from any other process, the process picks itself
as leader.
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respectively, but, because s has not received a recent message
from p, s considers itself to be the leader. Then, s receives
an Alive message from p, and so p joins s’s active set.
Since p’s accusation counter is smaller than the counter of s,
the leader of s becomes p. When s gives up the leadership,
it stops sending Alive messages (for communication effi-
ciency). Unfortunately, this triggers p to time out on s and so
p sends an Accusation message that causes s to increment
its accusation counter to 4. Now p’s Alive messages become
slow, causing the following chain of events: (a) s times out on
p, (b) s sends an Accusation to p, causing p to increment
its accusation counter to 2, (c) s removes p from its active
set, causing s to consider itself to be the leader again. Now,
the accusation counters of p and s are 2 and 4, respectively,
and this scenario can repeat itself forever. This results in a
run where the accusation counters of p and s keep increasing
and the leader of s keeps oscillating between p and s.

To fix this problem, a process p should increment its own
accusation counter only if it receives a “legitimate” accusa-
tion, i.e., one that was caused by the delay or loss of one of
the Alive messages that it previously sent (and not by the
fact that p voluntarily stopped sending them). To determine
whether an accusation is legitimate, each process p keeps
track of the number of times it has voluntarily given up the
leadership in the past—this is its current phase number—and
it includes this number in each Alive message that it sends.
If any process q times out on p and wants to accuse p, it
must now include its own view of p’s current phase number
in the Accusation message that it sends to p; p consid-
ers this Accusation message to be legitimate only if the
phase number that it contains matches its own. Furthermore,
whenever p gives up the leadership and stops sending Alive
messages voluntarily, p increments its own phase number
(and it does not communicate this new phase number to any
process): this effectively causes p to ignore all the spurious

Accusation messages that may result if/when p voluntarily
stops sending Alive messages.

As we mentioned above, as long as a process p considers
itself to be the leader, p periodically sends an Alive mes-
sage to every process except itself. If p considers that some
other process is the leader, it does not send any Alive mes-
sages. This is done using a timer, denoted SendAliveTimer, as
follows. Whenever p changes its active set or the accusa-
tion counter of a process, p recomputes its leader by exe-
cuting the updateLeader() procedure. If the leader of p
changes, p checks whether it has just gained or lost the
leadership.

1. If p gained the leadership, p turns on its SendAliveTimer
by setting it to 0 (in line 4). Note that p periodically
checks whether SendAliveTimer = 0 (line 15). If it is,
then p sends an Alive message to every process q �= p,
and it resets SendAliveTimer to η to schedule its next
sending of Alive messages (lines 16–17).

2. If p lost the leadership, p increases its phase number
and p turns off its SendAliveTimer by setting it to −1
(line 7)—this causes p to stop sending Alive messages.

Figure 7 describes the algorithm by giving the pseudo-
code of an (arbitrary) process p, and Fig. 6 describes the
local variables of p. It is easy to translate the pseudo-code of
p into an automaton for p. Without loss of generality, we can
assume that: (1) for some integer b, each iteration of the repeat
forever loop (lines 13–34) takes at most b automaton steps
(this is because there are no infinite loops, waiting statements,
or similar constructs in lines 14–34), and (2) each iteration of
the repeat forever loop takes at least two complete automaton
steps.

We now give an intuitive outline of the algorithm’s proof
of correctness. Recall that in each run there is at least one

Variable Intuitive description
active set of processes that p considers to be currently competing for leadership

counter[q] p’s estimate of q’s accusation counter
(the number of times processes previously timed out on q)

phase[q] p’s estimate of the number of times that q voluntarily relinquished the leadership
SendAliveTimer count-down timer used to periodically send ALIVE messages

(if it is set to −1 it is deactivated)
timer[q] count-down timer used to determine whether q is currently active

(if it is set to −1 it is deactivated)
timeout[q] length of p’s timeout on q

leader the leader of p
(p chooses its leader to be the process with the smallest tuple (counter[ ] )
among all the processes in p’s active set)

newleader temporary variable for storing a newly computed leader of p

Fig. 6 Local variables of process p in the algorithm of Fig. 7
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CODE FOR EACH PROCESS p:

procedure updateLeader()
newleader ← such that (counter[ ] ) = min{(counter[q], q) : q ∈ active}
if newleader = leader then { if the leader of p changes then }

if newleader = p then { if p gains the leadership then }
SendAliveTimer ← 0 { p sets SendAliveTimer = 0 to start sending ALIVE messages }

if leader = p then { if p loses the leadership then }
phase[p] ← phase[p]+1 { p increases its phase number and }
SendAliveTimer ← − 1 { p sets SendAliveTimer = − 1 to stop sending ALIVE messages }

leader ← newleader { p updates its leader variable }

main code

{ Initialization }

for each q ∈ Π do counter[q] ← 0; phase[q] ← 0
for each q ∈ Π \ { p} do timeout[q] ← η +1; timer[q] ← − 1
active ← {p}
leader ← ⊥

repeat forever
updateLeader()

if SendAliveTimer = 0 then
send (ALIVE, counter[p], phase[p]) to every process except p
SendAliveTimer ← η

for each q ∈ Π \ {p} do
if receive (ALIVE, qcntr, qph) from q then

active ← active ∪ {q}
counter[q] ← max{counter[q], qcntr}
phase[q] ← max{phase[q], qph}
timer[q] ← timeout[q]

if timer[q] = 0 then
send (ACCUSATION, phase[q]) to q
active ← active − { q}
timeout[q] ← timeout[q]+1
timer[q] ← − 1

if receive (ACCUSATION, ph) from q then
if ph = phase[p] then

counter[p] ← counter[p]+1

if SendAliveTimer > 0 then SendAliveTimer ← SendAliveTimer− 1
for each q ∈ Π \ {p} do

if timer[q] > 0 then timer[q] ← timer[q] − 1
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Fig. 7 Communication-efficient implementation of Ω for a system S where all links are fair

eventually timely source s. Unlike the previous algorithm
(in Fig. 5), in this algorithm we cannot immediately argue
that there is a time after which processes stop timing out
on s, since processes may time out on s because s decides
to stop sending Alive messages. However, when s stops
sending Alive messages, it increments its phase number and
ignores any subsequent Accusation messages with previ-
ous phase numbers. Thus, eventually s stops increasing its
own counter. Consider all the correct processes with a counter
that stops increasing, and let � be the correct process with
the smallest final counter. Then, there is a time after which
� considers itself as leader, since � finds that other processes
either have a higher counter or are not active. Thus, there is

a time after which � sends Alive messages periodically to
other processes. Because all links are fair, correct processes
receive Alive messages from � infinitely often. Moreover,
eventually processes stop timing out on � (otherwise, they
would keep sending Accusation messages to � with an
up-to-date phase number, causing �’s counter to increase
without bounds). Therefore, there is a time after which all
correct processes consider � to be active. Since eventually
� is the correct process with the smallest counter, there is a
time after which all correct processes pick � as their leader.
So the algorithm implements Ω .

The communication efficiency of the algorithm follows
from the fact that (a) after a process p �= � elects � as
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its leader, p stops sending Alive messages, (b) processes
eventually stop sending Accusation messages to �, and (c)
processes eventually stop sending Accusation messages to
any process p �= � because they stop receiving Alive mes-
sages from p.

We now give the detailed proof that the algorithm in Fig. 7
implements Ω in system S++ and that it is communication-
efficient. Henceforth, we consider an arbitrary run of this
algorithm in system S++, and s is an eventually timely source
in this run.

Lemma 30 For every correct process p and every process
q �= p, if q ∈ activep holds infinitely often then p receives
Alive messages from q infinitely often.

Proof Identical to part (a) of the proof of Lemma 1. 
�

Observation 31 For all processes p and q, counterp[q] and
phasep[q] are monotonically nondecreasing with time.

Lemma 32 For every two processes p �= q, if p receives
Alive messages from q infinitely often then q is correct, and
for every time t, there is a time after which counterp[q] ≥
countert

q [q] and phasep[q] ≥ phaset
q [q].

Proof (Similar to the proof of Lemma 3 part 1.) Consider two
processes p �= q, and suppose that p receives Alive mes-
sages from q infinitely often. Then q sends such messages
infinitely often, and so q is correct. Consider any time t .
Eventually p receives a message m = (Alive, qcntr, qph)

that is sent by q after time t . Note that counterq [q] and
phaseq [q] are monotonically nondecreasing. Since q sends
m after time t , qcntr ≥ countert

q [q] and qph ≥ phaset
q [q].

When p receives m from q, p sets counterp[q] to a value v ≥
qcntr ≥ countert

q [q], and p sets phasep[q] to a value v′ ≥
qph ≥ phaset

q [q]. Thereafter, counterp[q] ≥ counter t
q [q]

and phasep[q] ≥ phaset
q [q] (because counterp[q] and

phasep[q] are monotonically nondecreasing). 
�

Lemma 33 For every correct process p and every process q,
if (a) q ∈ activep holds infinitely often then (b) q is correct,
and for every time t, there is a time after which counterp[q] ≥
counter t

q [q] and phasep[q] ≥ phaset
q [q].

Proof (Similar to the proof of Lemma 4.) If p = q, con-
dition (b) holds because p is correct, and counterp[p] and
phasep[p] are monotonically nondecreasing. Now assume
that p �= q and q ∈ activep holds infinitely often. By
Lemma 30, p receives Alive messages from q infinitely
often. By Lemma 32, condition (b) holds. 
�

Lemma 34 For every distinct correct processes p and q, if p
sends a message of type T to q infinitely often, then q receives
a message of type T from p infinitely often.

Proof Let p and q be distinct correct processes, and suppose
that p sends a message of type T to q infinitely often. Since
the link p→ q is fair, a message of type T is delivered to
q from p infinitely often. Since q is correct, q executes an
infinite number of iterations of its repeat forever loop. In
each such iteration, q tries to receive one message of each
type from every process other than q, including p. Therefore,
q receives a message of type T from p infinitely often. 
�

Recall that s is an eventually timely source in the run under
consideration.

Lemma 35 There is a constant α > 0 such that, for all
k ≥ 0 and every time t, process s executes at least k com-
plete iterations of its repeat forever loop during time interval
(t, t + kα].
Proof Identical to the proof of Lemma 5. 
�
Definition 36 Let α > 0 be a constant that satisfies Lem-
ma 35.

Recall that η ≥ 1 is the “timeout” value of SendAliveTimer
(see line 17).

Definition 37 Let ∆′ = (η + 1)α.

Lemma 38 For every process p �= s and every k ≥ 0, if s
sends an (Alive,−, k) message to p at some time t then s
sends another (Alive,−, k) message to p during time inter-
val (t, t +∆′], or phases[s] > k holds at time t +∆′.

Proof After s executes its initialization code (lines 9–12),
s starts its first execution of the repeat forever loop (lines
13–34). Suppose that s sends an (Alive,−, k) message to a
process p �=s at some time t (line 16). Note that phases[s]=k
at time t , and that in line 17 of the same iteration of its repeat
forever loop, s sets SendAliveTimers to η ≥ 1.

Consider the first (η + 1) iterations of the repeat forever
loop that s finishes to execute after time t (including the
iteration that s is executing at time t). Let t ′ be the time when
s completes the last one of these iterations. By Lemma 35, for
every time t , s executes at least (η+1) complete iterations of
its repeat forever loop during time interval (t, t + (η+ 1)α].
And so, we have t ′ ≤ t + (η + 1) α, i.e., t ′ ≤ t + ∆′. Now
consider time interval [t, t ′]. There are two possible cases:

1. During [t, t ′], s does not set SendAliveTimers to −1 in
line 7 in the updateLeader procedure. In this case, it is
clear that s does not modify its phases[s] during [t, t ′]
(this is because s modifies phases[s] only in line 6 in the
updateLeader procedure), and so phases[s] = k during
the entire time interval [t, t ′].
We claim that by the end of the η-th iteration of the
(η + 1) iterations that we are considering, s sets Send-
AliveTimers to 0. In fact, either s does this by executing
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line 4 of the updateLeader procedure in one of the first
η iterations, or s decrements its SendAliveTimers from
η by 1 (in line 32) in each one of the first η iterations.
In either case, by the end of the η-th iteration, s sets
SendAliveTimers ← 0.
Thus, by the end of the (η + 1)-th iteration, s finds
that SendAliveTimers = 0 (in line 15), and it sends an
(Alive,−, k) message to p (in line 16). This sending
must occur at least one step after s sends the
(Alive,−, k) message to p at time t , so, by the Maxi-
mum Rate of Execution property, it must occur after time
t . Moreover, this sending occurs by time t ′ ≤ t +∆′. So
s sends an (Alive,−, k) message to p during interval
(t, t +∆′].

2. During [t, t ′], s sets SendAliveTimers to −1 in line 7 in
the updateLeader procedure. Note that during the execu-
tion of this procedure, s increments phases[s] in line 6.
This increment must occur at least one step after s sends
the (Alive,−, k) message to p at time t (because after
sending and before incrementing, s executes steps to try
to receive Alive and Accusation messages). Thus, by
the Maximum Rate of Execution property, the increment-
ing must occur after time t . Moreover, this increment
must occur by time t ′, so it happens during time interval
(t, t ′], which is contained in interval (t, t + ∆′]. Since
phases[s] = k at time t , phases[s] is incremented during
interval (t, t +∆′], and it is monotonically nondecreas-
ing, we have phases[s] > k at time t +∆′.

From the above, it follows that s sends an (Alive,−, k)

message to p during interval (t, t + ∆′], or phases[s] > k
holds at time t +∆′. 
�
Lemma 39 There is a constant ∆ and a time t∆ such that,
for all processes p, if s sends a message m to p at some time
t ≥ t∆, then m is delivered to p from s by time t +∆.

Proof This follows immediately from the fact that s is an
eventually timely source, and therefore all its output links
are eventually timely. 
�
Lemma 40 There is a constant ε > 0 such that, for every
k ≥ 1 and every process p, p takes at least kε time to execute
k complete iterations of its repeat forever loop.

Proof Identical to the proof of Lemma 13. 
�
Definition 41 Let ∆, t∆ and ε be constants that satisfy
Lemmas 39 and 40, respectively.

Definition 42 Let ζ = (∆′ +∆)/ε� + 3.

We now show that at the eventually timely source s,
counters[s] is bounded. To prove this, (1) we note that s
increments counters[s]only if a process times out on s, (2) we

distinguish two types of such timeouts on s, which we call
“‘proper” and “improper”, (3) we prove that proper timeouts
on s do not affect counters[s] (so only improper timeouts
on s can cause s to increment counters[s]), and (4) we show
that the number of improper timeouts on s is finite. We now
proceed with this proof (Lemmas 44–47).

Suppose that a process p times out on s. If this timeout
was started after time t∆ and its value was at least ζ , we say
that it is “proper”; otherwise we say it is “improper”. More
precisely,

Definition 43 Suppose that

(1) a process p executes line 24 with q=s and timerp[s]=0
at some time te,

(2) p sets timerp[s] to timeoutp[s] in line 23 at some time
ts ≤ te, and

(3) p does not set timerp[s] in line 23 during time interval
(ts, te].

We say this timeout of p on s is proper if and only if (a)
ts ≥ t∆ and (b) timeoutp[s] ≥ ζ at time ts . A timeout that is
not proper is improper.

Lemma 44 For every process p, the number of improper
timeouts of p on s is finite.

Proof Let p be any process. If p times out on s only finitely
often, the lemma trivially holds. Now suppose p times out on
s infinitely often, i.e., p executes line 24 with timerp[s] = 0
infinitely many times. Note that each time this occurs, p
increases timeoutp[s] (in line 27). So there is a time after
which timeoutp[s] > ζ . Thus, there is a time after which
every timeout of p on s is proper. 
�
Definition 45 An (Accusation, ph) message that is sent to
s is outdated if ph < phases[s] at the time this message is
sent.

Note that any outdated (Accusation, ph) message that
s receives does not affect counters[s]. In fact, if s receives
an (Accusation, ph) message that is outdated, then
phases[s]> ph at the time t this message was sent to s, so
phases[s] > ph also holds at the time when s executes line
30 of its code (because phases[s] is monotonically nonde-
creasing). Thus, s does not execute line 31, i.e., it does not
modify counters[s].
Lemma 46 Suppose a process p times out on s (in line 24).
If this timeout is proper, then the (Accusation,−) message
that p sends to s as a consequence of this timeout (in line 25)
is outdated.

Proof Suppose some process p times out on s, and that this
timeout is proper. More precisely, suppose that

123



On implementing omega in systems with weak reliability and synchrony assumptions 303

Fig. 8 Timeline of events in
proof of Lemma 46

s k

timer [s]=timeout [s]p p

timer [s]=0p

kp

timet ts te ta

(1) p executes line 24 with q = s and timerp[s] = 0 at
some time te,

(2) p sets timerp[s] to timeoutp[s] in line 23 at some time
ts ≤ te,

(3) p does not set timerp[s] in line 23 during time interval
(ts, te], and

(4) ts ≥ t∆ and timeoutp[s] ≥ ζ at time ts .

Suppose that the above timeout causes p to send some
(Accusation, k) message to s, and let ta ≥ te be the time
when this occurs (in line 25). Figure 8 shows a timeline with
times ts , te, and ta . We must prove that this (Accusation, k)

is outdated, that is, we must show that phases[s] > k at time
ta . Suppose, for contradiction, that phases[s] ≤ k at time ta .
Since phases[s] is monotonically nondecreasing and te ≤ ta ,
phases[s] ≤ k also holds at time te.

We first note that p executes at least ζ − 1 complete iter-
ations of its repeat forever loop during time interval [ts, te].
This follows from assumptions (1), (2), (3) and (4) above,
and the fact that p decreases timerp[s] by exactly 1 in each
repeat forever loop iteration (in line 34).

By Lemma 40, p takes at least ε(ζ − 1) time to execute
(ζ − 1) complete iterations of its repeat forever loop. Thus,
from the above, te ≥ ts+ε(ζ−1). Since ζ = (∆′+∆)/ε�+
3, we have te ≥ ts +∆′ +∆+ 2ε.

Claim 1: p does not receive any (Alive,−,−) messages
from s during time interval (ts, te]. To see this, note that such
a receipt would cause p to set timerp[s] in line 23, and this
would happen during (ts, te] since, at time te, p executes line
24. This would violate assumption (3).

Since p sends an (Accusation, k) message to s at time
ta in line 25, phasep[s] = k at time ta . So phasep[s] = k
also holds at time te when p executes line 24.

Claim 2: p receives at least one (Alive,−, k) message
from s by time ts . Indeed, if k > 0 then the only way for p to
have phasep[s] = k at time te is by receiving (Alive,−, k)

from s by time te. By Claim 1, p must receive such a message
by time ts . For k = 0, note that by time ts , p must receive
some (Alive,−, k′) message from s that causes p to set
timerp[s] in line 23 at time ts . Moreover, k′ cannot be greater
than 0 otherwise phasep[s] > 0 at time ts , so phasep[s] > 0
at time te (since phasep[s] is monotonically nondecreasing),
contradicting that phasep[s] = k = 0 at time te. Thus k′ = 0.
This proves Claim 2.

From Claim 2, s sends an (Alive,−, k) message to p at
some time t ≤ ts . This implies that phases[s] = k at time

t . Since phases[s] ≤ k at time te (where te > ts ≥ t), and
phases[s] is monotonically nondecreasing, we conclude that
phases[s] = k during the entire time interval [t, te].

Thus, by repeated applications of Lemma 38 starting at
time t , it is clear that from time t and up to time te, s sends
an (Alive,−, k) message to p at least once every ∆′ time;
more precisely, s sends at least one (Alive,−, k) message to
p during each time interval (τ, τ +∆′] contained in interval
[t, te].

Since time interval (ts, ts +∆′] is contained in time inter-
val [t, te] (because t ≤ ts and ts + ∆′ ≤ te), s sends an
(Alive,−, k) message to p during (ts, ts+∆′] . By assump-
tion (4), ts ≥ t∆. Thus, by Lemma 39 and the definitions of
t∆ and ∆, this (Alive,−, k) message is delivered to p from
s during time interval (ts, ts +∆′ +∆].

Claim 3: p executes at least one complete iteration of its
repeat forever loop during time interval [ts +∆′ +∆, te]. To
see this, recall that p executes at least ζ − 1 complete iter-
ations of its repeat forever loop during time interval [ts, te].
Moreover, during time interval [ts, ts +∆′ +∆], p executes
at most (∆′ + ∆)/ε� = ζ − 3 complete iterations of its
repeat forever loop (this follows from the definition of ε).
This implies Claim 3.

Since an (Alive,−, k) message is delivered to p from s
during time interval (ts, ts +∆′ +∆], and p executes at least
one complete iteration of its repeat forever loop during time
interval [ts +∆′ +∆, te], we conclude that p receives some
(Alive,−,−) message from s during interval (ts, te]—a
contradiction to Claim 1. 
�

Lemma 47 counters[s] is bounded.

Proof Note that s increases its counters[s] only if it receives
an (Accusation,−) message (lines 29–31). There are two
kinds of such (Accusation,−) messages: (a) those that are
sent to s as a consequence of a proper timeout on s, and (b)
those that are sent to s as a consequence of an improper time-
out on s. By Lemma 46, all the (Accusation,−) messages
of kind (a) are outdated. As we previously observed, such
messages do not affect counters[s]. Thus only those mes-
sages of kind (b) may cause s to increment counters[s]. By
Lemma 44, the number of improper timeouts on s is finite.
Since each timeout on s causes at most one (Accusation,−)

message to be sent to s, the number of (Accusation,−)

messages of kind (b) is finite. Therefore counters[s] is
bounded. 
�
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Definition 48 For every process p, let cp be the largest value
of counterp[p] in the run that we consider (cp = ∞ if
counterp[p] is unbounded). Let � be the process such that
(c�, �) = min{(cp, p) : p is a correct process}.
By definition, � is a correct process. Furthermore, by
Lemma 47, counters[s] is bounded, i.e., cs < ∞. Thus,
c� <∞, i.e., counter�[�] is bounded.

Lemma 49 For every correct process p, if there is a time
after which � ∈ activep, then there is a time after which
leaderp = �.

Proof (Similar to the proof of Lemma 21.) Let p be any
correct process, and suppose that there is a time after which
� ∈ activep. We claim that for every q �= �, (i) there is a time
after which q �∈ activep, or (ii) there is a time after which
(counterp[�], �) < (counterp[q], q). From the way p sets
leaderq in the updateLeader procedure, this claim implies
there is a time after which leaderp = �.

To show the claim, consider any process q �= �, and
suppose that condition (i) does not hold, i.e., suppose that
q ∈ activep holds infinitely often. We now show that condi-
tion (ii) is satisfied. By Lemma 33, q is correct, and for every
time t , there is a time after which counterp[q] ≥ counter t

q [q].
There are two cases:

(1) counterq [q] is bounded. In this case, cq < ∞, and so
there is a time t when countert

q [q] = cq . So there is
a time after which counterp[q] ≥ cq . Recall that q is
correct and q �= �, and so by the definition of �, we have
(c�, �) < (cq , q). Since counterp[�] ≤ c� (always),
there is a time after which (counterp[�], �) ≤ (c�, �) <

(cq , q) ≤ (counterp[q], q).
(2) counterq [q] is unbounded. In this case, counterp[q]

is also unbounded. So there is a time after which
counterp[�] ≤ c� < counterp[q].

So, in both cases, there is a time after which
(counterp[�], �) < (counterp[q], q), i.e., condition (ii)
holds. 
�
Observation 50 For every correct process p, there is a time
after which p ∈ activep.

Proof When p executes its initialization code, it sets activep

to {p}. Thereafter, p never removes itself from activep. 
�
Corollary 51 There is a time after which leader� = �.

Proof By Observation 50, there is a time after which � ∈
active�. The result now follows from Lemma 49. 
�
Corollary 52 There is a time after which phase�[�] stops
changing.

Proof Note that � changes phase�[�] only when it considers
that it lost the leadership (in lines 5–6), and each time this
occurs � sets leader� �= � (in line 8). By Corollary 51, this
can happen only a finite number of times. 
�
Definition 53 Let �phase be the final value of phase�[�].
Note that since phase�[�] is monotonically nondecreasing,
�phase is also the largest value of phase�[�].
Lemma 54 For every correct process q, there is a time after
which � ∈ activeq .

Proof Let q be any correct process. If q = � then, by Corol-
lary 51, there is a time after which � ∈ active�. Now suppose
q �= �. By Corollary 51 and the definitions of �phase and
�, � sends messages of form (Alive,−, �phase) to q infi-
nitely often, and these are the only messages of type Alive
that � sends to q infinitely often. By Lemma 34, q receives
messages of type Alive from � infinitely often. Thus, q
receives messages of form (Alive,−, �phase) from � infi-
nitely often. Therefore, (*) there is a time after which q has
phaseq [�] = �phase. Moreover, q adds � to activeq infinitely
often. We claim that q removes � from activeq only finitely
often, and so the lemma follows. Suppose, for contradic-
tion, that q removes � from activeq infinitely often. Then, q
sends (Accusation,−) messages to � infinitely often. By
Lemma 34, � receives (Accusation,−) messages from q
infinitely often. By (*), there is a time after which the only
(Accusation,−) messages that q sends are (Accusation,

�phase) messages. Thus, � receives (Accusation, �phase)
messages from q infinitely often. So, � eventually increments
counter�[�] to a value greater than c�—a contradiction to the
definition of c�. 
�
By Lemmas 49 and 54, we have

Lemma 55 For every correct process q, there is a time after
which leaderq = �.

Lemma 56 There is a time after which only � sends mes-
sages.

Proof There are only two types of messages: Alive and
Accusation. When a process p considers that it lost the
leadership, it stops sending Alive messages (by setting its
SendAliveTimer to −1 in line 7). Furthermore, p resumes
sending messages only if it considers itself to be the leader
again (lines 3–4) and it sets leaderp = p (in line 8). So, by
Lemma 55, there is a time after which only � sends Alive
messages.

We claim that only a finite number of Accusation mes-
sages are sent. To see this, note that when a process p sends
an Accusation message to a process q (in line 25), p “turns
off” timerp[q] by setting it to −1 (in line 28). After this
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occurs, p can send another Accusation message to q only
if p “turns on” timerp[q] again (in line 23), and this hap-
pens only if p receives an Alive message from q (in line
19). Thus, p can send an infinite number of Accusation
messages to q only if p receives an infinite number of Alive
messages from q. Since there is a time after which only �

sends Alive messages, p can send an infinite number of
Accusation messages only to �. But p sends only a finite
number of Accusation messages to �: This is because each
time p sends an Accusation message to �, p removes �

from activep, and from Lemma 54, this can happen only a
finite number of times. Thus each process p sends only a
finite number of Accusation messages to every process. 
�

From Lemmas 55 and 56, we get the following result:

Theorem 57 The algorithm in Fig. 7 implements Ω in sys-
tem S++, and it is communication-efficient.

6.2 Implementing Ω in system S+

We now describe a communication-efficient algorithm for Ω

for system S+. Recall that in S+ there is an eventually timely
source and a correct process whose input and output links are
fair.

Our starting point is the algorithm for system S++ that we
gave in the previous section (Fig. 7). We first note that this
algorithm does not work in system S+ because in S+ some
links can experience arbitrary message losses (in contrast to
S++ where all the links are fair). The most obvious problem,
and also the easiest one to solve, is that the Accusation
messages sent by a process p to another process q may never
reach q, because the link p→ q may have crashed. The obvi-
ous solution is for p to send each Accusation of q to all
processes (including the unknown fair hub); any process that
receives such a message relays it once to q. This scheme pre-
serves communication efficiency: after the permanent leader
emerges, there are no new accusations, and so the relaying
stops.

A more subtle problem, and a tougher one to solve, is that
two leader contenders p and q may partition the processes
in two sets Πp and Πq , such that processes in Πp (includ-
ing p) and those in Πq (including q) have p and q as their
permanent leader, respectively. This scenario, illustrated in
Fig. 9, can occur as follows: (a) the eventually timely source
s and the fair hub h are in Πp, and they are distinct from
p, (b) processes in Πq receive timely Alive messages from
q, but they never hear from p, (c) processes in Πp receive
timely Alive messages from p, but, except for h, they never
hear from q, and (d) h receives timely Alive messages from
both p and q, but chooses p as its permanent leader. In
this scenario, nobody ever sends Accusation messages to
p or q. Moreover, p and q never hear from each other. So

s

p

h
q

p q

Fig. 9 Partitioning that may occur if we run the algorithm of Fig. 7 in
system S+

both p and q keep thinking of themselves as the leader,
forever.

One attempt to solve this problem is to relay all the Alive
messages (like the Accusation messages) so that the con-
tenders for leadership, such as p and q in the above sce-
nario, can all hear from each other. Although this solution
works, it is not communication-efficient because it forces all
processes to send messages forever: the elected leader does
not stop sending Alive messages, and each Alive is relayed
by all.

To prevent partitioning while preserving communication
efficiency, we use the following idea: roughly speaking, if a
process r has p as its current leader, but receives an Alive
message from a process q �= p, then r sends a Check mes-
sage telling q about the existence of p (and some other rele-
vant information about p). Check messages can be lost, but
if (a) r is the fair hub h, (b) q keeps sending Alive messages
to h, and (c) h continues to prefer p as its leader, then q will
eventually receive a Check message from h and find out
about its “rival” p. If this happens, q “challenges” the lead-
ership of p by sending accusations to p if p does not appear
to be timely. This scheme prevents the problematic scenario
mentioned above, and it can be shown to work while pre-
serving communication efficiency: after the common leader
is elected, all the Alive messages come from that leader, and
so there are no more Check messages.

The algorithm that incorporates the above ideas is shown
in Fig. 10. In this algorithm, there are n + 2 message types:
Alive, Check, and Accusation-p for each process p.

Figure 10 describes the algorithm by giving the pseudo-
code of an arbitrary process p, and Fig. 6 describes the local
variables of p (this algorithm has the same variables with
the same meaning in as in the previous algorithm). It is easy
to translate the pseudo-code of p into an automaton for p.
Without loss of generality, we can assume that: (1) for some
integer b, each iteration of the repeat forever loop (lines 13–
43) takes at most b automaton steps (this is because there are
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Fig. 10 Communication-efficient implementation of Ω for system S+

no infinite loops, waiting statements, or similar constructs in
lines 14–43), and (2) each iteration of the repeat forever loop
takes at least two complete automaton steps.

We now give an intuitive outline of the algorithm’s proof
of correctness. Recall that in each run there is at least one
eventually timely source s. As in the previous algorithm (in
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Fig. 7), note that eventually s stops increasing its own counter
(because eventually the only Accusation messages that s
receives are messages with old phase numbers). Consider all
the correct processes with a counter that stops increasing, and
let � be the correct process with the smallest final counter.
Then, there is a time after which � considers itself as leader,
since � finds that other processes either have a higher counter
or are not active. Thus, there is a time after which � sends
Alive messages periodically to other processes. Unlike the
previous algorithm, with this algorithm we cannot argue now
that correct processes receive Alive messages from � infi-
nitely often, because not all links are fair. However, recall
that there exists at least one fair hub h whose input and out-
put links are fair, and so h receives Alive messages from �

infinitely often. Moreover, eventually h stops timing out on
� (otherwise, h would keep sending Accusation messages
to � with an up-to-date phase number, causing �’s counter
to increase without bounds). Therefore, there is a time after
which h considers � to be active. Since eventually � is the
correct process with the smallest counter, there is a time after
which h picks � as its leader.

Moreover, no process other than � keeps sending Alive
messages forever. This is because, if some process p �= �

kept sending Alive messages forever then h would receive
infinitely many such messages and h would send back
infinitely many Check messages telling p that � is its leader.
These Check messages would cause p to time out on �

infinitely often, and p would send Accusation messages
for � infinitely often. These messages would be relayed
through h to �, causing the counter of � to grow without
bounds.

Therefore, � is the only process that keeps sending Alive
messages forever. Thus, for any correct process
p �= �, there is a time after which the leader of p can be
only p or �. Since p eventually stops sending Alive mes-
sages, there is a time after which the leader of p is not p.
So there is a time after which the leader of p is �. Thus the
algorithm implements Ω .

The communication efficiency of the algorithm follows
from the fact that (a) after a process p �= � elects � as its
leader, p stops sending Alive messages, (b) processes even-
tually stop sending Check messages, because after electing
� as its leader, a process does not send Check messages to �,
and it sends a Check message to a process p �= � only if it
receives an Alive message from p, (c) processes eventually
stop generating Accusation messages, because they gener-
ate such a message only when a timer expires, but a timer is
turned on only after the receipt of an Alive or Check mes-
sage, and (d) processes relay each generated Accusation
message only once.

We now give the detailed proof that the algorithm in Fig. 10
implements Ω in system S+, and that it is communication-
efficient. Henceforth, we consider an arbitrary run of this

algorithm in system S+. Let s be an eventually timely source
and h be a fair hub, in this run.

Lemma 58 For every correct process p and every process
q �= p, if q ∈ activep holds infinitely often then p receives
Alive messages from q infinitely often.

Proof Identical to part (a) of the proof of Lemma 1. 
�
Observation 59 For all processes p and q, counterp[q] and
phasep[q] are monotonically nondecreasing with time.

Lemma 60 For every two processes p �= q, if p receives
Alive messages from q infinitely often then q is correct, and
for every time t, there is a time after which counterp[q] ≥
counter t

q [q] and phasep[q] ≥ phase t
q [q].

Proof Identical to the proof of Lemma 32. 
�
Lemma 61 For every correct process p and every process q,
if (a) q ∈ activep holds infinitely often then (b) q is correct,
and for every time t, there is a time after which counterp[q] ≥
countert

q [q] and phasep[q] ≥ phaset
q [q].

Proof (Similar to the proof of Lemma 33.) If p = q, con-
dition (b) holds because p is correct, and counterp[p] and
phasep[p] are monotonically nondecreasing. Now assume
that p �= q and q ∈ activep holds infinitely often. By
Lemma 58, p receives Alive messages from q infinitely
often. By Lemma 60, condition (b) holds. 
�
Lemma 62 For every correct process p �= h, (1) if p sends
a message of type T to h infinitely often, then h receives a
message of type T from p infinitely often, and (2) if h sends
a message of type T to p infinitely often, then p receives a
message of type T from h infinitely often.

Proof (Similar to the proof of Lemma 34.) Let p be a correct
process such that p �= h. (1) First, suppose that p sends a
message of type T to h infinitely often. Since h is fair hub, h
is correct and link p→ h is fair. Thus, a message of type T
is delivered to h from p infinitely often. Since h is correct, h
executes an infinite number of iterations of its repeat forever
loop. In each such iteration, h tries to receive one message
of each type from every process other than h, including p.
Therefore, h receives a message of type T from p infinitely
often.

(2) Now suppose that h sends a message of type T to p
infinitely often. This case is identical to case (1) except that
we exchange the roles of p and h. 
�

Recall that s is an eventually timely source in the run under
consideration.

Lemma 63 There is a constant α > 0 such that, for all
k ≥ 0 and every time t, process s executes at least k com-
plete iterations of its repeat forever loop during time interval
(t, t + kα].
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Proof Identical to the proof of Lemma 5. 
�
Definition 64 Let α > 0 be a constant that satisfies Lem-
ma 63.

Recall that η ≥ 1 is the “timeout” value of SendAliveTimer
(see line 17).

Definition 65 Let ∆′ = (η + 1)α.

Lemma 66 For every process p �= s and every k ≥ 0, if s
sends an (Alive,−, k) message to p at some time t then s
sends another (Alive,−, k) message to p during time inter-
val (t, t +∆′], or phases[s] > k holds at time t +∆′.

Proof (Similar to the proof of Lemma 38 noting that, in
case 1 of that proof, s cannot modify phases[s] in line 28
because no process ever sends (Check, s,−) to s.)

After s executes its initialization code (lines 9–12), s starts
its first execution of the repeat forever loop (lines 13–43).
Suppose that s sends an (Alive,−, k) message to a process
p �= s at some time t (line 16). Note that phases[s] = k at
time t , and that in line 17 of the same iteration of its repeat
forever loop, s sets SendAliveTimers to η ≥ 1.

Consider the first (η + 1) iterations of the repeat forever
loop that s finishes to execute after time t (including the
iteration that s is executing at time t). Let t ′ be the time when
s completes the last one of these iterations. By Lemma 63, for
every time t , s executes at least (η+1) complete iterations of
its repeat forever loop during time interval (t, t + (η+ 1)α].
And so, we have t ′ ≤ t + (η + 1)α, i.e., t ′ ≤ t + ∆′. Now
consider time interval [t, t ′]. There are two possible cases:

1. During [t, t ′], s does not set SendAliveTimers to −1 in
line 7 in the updateLeader procedure. In this case, s does
not modify its phases[s] during [t, t ′]: the only places
where s could possibly modify phases[s] is in lines 6 or
28, but s does not execute line 6 during [t, t ′] since s
does not execute line 7 by assumption, and s does not
modify phases[s] in line 28 because no process ever
sends (Check, s,−) to s due to the check in line 24.
Therefore, phases[s] = k during the entire time interval
[t, t ′].
We claim that by the end of the η-th iteration of the (η+1)

iterations that we are considering, s sets SendAliveTimers

to 0. In fact, either s does this by executing line 4 of the
updateLeader procedure in one of the first η iterations,
or s decrements its SendAliveTimers from η by 1 (in line
41) in each one of the first η iterations. In either case, by
the end of the η-th iteration, s sets SendAliveTimers← 0.
Thus, by the end of the (η + 1)-th iteration, s finds
that SendAliveTimers = 0 (in line 15), and it sends
an (Alive,−, k) message to p (in line 16). This send-
ing must occur in a subsequent step after s sends the
(Alive,−, k) message to p at time t , so, by the

Maximum Rate of Execution property, it must occur after
time t . Moreover, this sending occurs by time t ′ ≤ t+∆′.
So s sends an (Alive,−, k) message to p during interval
(t, t +∆′].

2. During [t, t ′], s sets SendAliveTimers to −1 in line 7 in
the updateLeader procedure. Note that during the execu-
tion of this procedure, s increments phases[s] in line 6.
This increment must occur at least one step after s sends
the (Alive,−, k) message to p at time t (because after
sending and before incrementing, s executes steps to try
to receive Alive and Accusation messages). Thus, by
the Maximum Rate of Execution property, the increment-
ing must occur after time t . Moreover, this increment
must occur by time t ′, so it happens during time interval
(t, t ′], which is contained in interval (t, t + ∆′]. Since
phases[s] = k at time t , phases[s] is incremented during
interval (t, t +∆′], and it is monotonically nondecreas-
ing, we have phases[s] > k at time t +∆′.

From the above, it follows that s sends an (Alive,−, k)

message to p during interval (t, t + ∆′], or phases[s] > k
holds at time t +∆′. 
�

Lemma 67 There is a constant ∆ and a time t∆ such that,
for all processes p, if s sends a message m to p at some time
t ≥ t∆, then m is delivered to p from s by time t +∆.

Proof This follows immediately from the fact that s is an
eventually timely source, and therefore all its output links
are eventually timely. 
�

Lemma 68 There is a constant ε > 0 such that, for every
k ≥ 1 and every process p, p takes at least kε time to execute
k complete iterations of its repeat forever loop.

Proof Identical to the proof of Lemma 13. 
�

Definition 69 Let ∆, t∆ and ε be constants that satisfy
Lemmas 67 and 68, respectively.

Definition 70 Let ζ = (∆′ +∆)/ε� + 3.

Lemma 71 For all processes p and r and every k ≥ 0, if p
receives a (Check, r, k) message at some time t then r sends
an (Alive,−, k) message by time t.

Proof Let p and r be processes and k ≥ 0. Suppose that p
receives a (Check, r, k) message at some time t . For contra-
diction, suppose r does not send an (Alive,−, k) message
by time t . Let r ′ be the process to first send a (Check, r, k)

message, and let t ′ be the time when this happens. Note that
t ′ ≤ t and, at time t ′, phaser ′ [r ] = k. Then r ′ �= r since a
process does not send a Check message for itself due to the
check in line 24. There are now two possibilities.
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− If k > 0 then, at time t ′, phaser ′ [r ] = k ≥ 1. There are
only two places where r ′ can set phaser ′ [r ] to k: line 22 or
28. In the first case, r ′ previously receives (Alive,−, k)

from r , which contradicts the assumption that r does not
send an (Alive,−, k) message by time t . In the second
case, r ′ previously receives (Check, r, k), which means
some process sends (Check, r, k) before time t ′, which
contradicts the choice of r ′.

− If k = 0 then, at time t ′, leaderr ′ = r , and so r ′ previ-
ously set leaderr ′ to r . When this happened, r ∈ activer ′
(because the leader is picked among processes in active).
Since r ′ �= r , r ′ previously added r to active, and so
r ′ previously received a (Alive,−, k′) message from r
for some k′. Then, k′ = 0 (otherwise upon receiving
such a message r ′ sets phase[r ] > 0, and so at time
t ′, phaser ′ [r ] > 0, contradicting the fact that at time t ′,
phaser ′ [r ] = k = 0). Thus, r ′ receives a (Alive,−, k)

message from r by time t , which contradicts the fact that
r does not send an (Alive,−, k) message by time t . 
�

Definition 72 Suppose that

(1) a process p executes line 30 with q=s and timerp[s]=0
at some time te,

(2) p sets timerp[s] to timeoutp[s] in line 23 or 29 at some
time ts ≤ te, and

(3) p does not set timerp[s] in line 23 or 29 during time
interval (ts, te].

We say this timeout of p on s is proper if and only if (a)
ts ≥ t∆ and (b) timeoutp[s] ≥ ζ at time ts . A timeout that is
not proper is improper.

Lemma 73 For every process p, the number of improper
timeouts of p on s is finite.

Proof Identical to the proof of Lemma 44. 
�
Definition 74 An (Accusation-s, ph) message is outdated
if ph < phases[s] at the time this message is sent.

Note that any outdated (Accusation-s, ph) message that
s receives does not affect counters[s]. In fact, if s receives
an (Accusation-s, ph) message that is outdated, then
phases[s] > ph at the time t this message was sent to s,
so phases[s] > ph also holds at the time when s executes
line 38 of its code (because phases[s] is monotonically non-
decreasing). Thus, s does not execute line 39, i.e., it does not
modify counters[s].
Lemma 75 Suppose a process p times out on s (in line 30).
If this timeout is proper, then every (Accusation-s,−) mes-
sage that p sends in line 31 as a consequence of this timeout
is outdated.

Proof Suppose some process p times out on s, and that this
timeout is proper. More precisely, suppose that

(1) p executes line 30 with q = s and timerp[s] = 0 at
some time te,

(2) p sets timerp[s] to timeoutp[s] in line 23 or 29 at some
time ts ≤ te,

(3) p does not set timerp[s] in line 23 or 29 during time
interval (ts, te], and

(4) ts ≥ t∆ and timeoutp[s] ≥ ζ at time ts .

Suppose that this timeout causes p to send some
(Accusation-s, k) message, and let ta ≥ te be the time
when this occurs (in line 31). We must prove that this
(Accusation-s, k) is outdated, that is, we must show that
phases[s] > k at time ta . Suppose, for contradiction, that
phases[s] ≤ k at time ta . Since phases[s] is monotonically
nondecreasing and te ≤ ta , phases[s] ≤ k also holds at
time te.

We first note that p executes at least ζ − 1 complete iter-
ations of its repeat forever loop during time interval [ts, te].
This follows from assumptions (1), (2), (3) and (4) above,
and the fact that p decreases timerp[s] by exactly 1 in each
repeat forever loop iteration (in line 43).

By Lemma 68, p takes at least ε(ζ − 1) time to execute
(ζ − 1) complete iterations of its repeat forever loop. Thus,
from the above, te≥ ts+ε(ζ −1). Since ζ =(∆′+∆)/ε�+3,
we have te ≥ ts +∆′ +∆+ 2ε.

Claim 1: p does not receive any (Alive,−,−) messages
from s, or any (Check, s,−) messages, during time interval
(ts, te]. To see this, note that such a receipt would cause p to
set timerp[s] in line 23 or 29, and this would happen during
(ts, te] since, at time te, p executes line 30. This would violate
assumption (3).

Since p sends an (Accusation-s, k) message to s at time
ta in line 31, phasep[s] = k at time ta . So phasep[s] = k
also holds at time te when p executes line 30.

Claim 2: s sends at least one (Alive,−, k) message at
some time t ≤ ts . There are two possibilities:

− If k > 0 then the only way for p to have phasep[s] = k at
time te is by receiving (Alive,−, k) from s, or receiving
(Check, s, k) from some process, and this must happen
by time te. From Claim 1, this receipt must actually hap-
pen by time ts . If p receives (Alive,−, k) from s by
time ts then s sends (Alive,−, k) at some time t ≤ ts .
If p receives (Check, s, k) from some process by time ts
then, by Lemma 71, s also sends (Alive,−, k) at some
time t ≤ ts .

− If k = 0 then note that initially timerp[s] = −1 and at
time te, timerp[s] = 0. The only way for p to change
timerp[q] from −1 to a nonnegative value is for p to
receive (Alive,−, k′) from s or (Check, s, k′) from
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some process, for some k′. This happens by time te,
and so from Claim 1, it happens by time ts . Moreover,
k′ = 0, otherwise upon receiving such a message, p
sets phasep[s] to a positive value by time ts , and so
phasep[s] �= 0 at time ta , a contradiction. Thus, by time
ts , p receives (Alive,−, 0) from s or (Check, s, 0) from
some process. In the first case, s sends (Alive,−, 0) at
some time t ≤ ts . In the second case, by Lemma 71, s
also sends (Alive,−, 0) at some time t ≤ ts .

This shows Claim 2.
Claim 2 implies that phases[s] = k at time t . Since

phases[s] ≤ k at time te (where te > ts ≥ t), and phases[s] is
monotonically nondecreasing, we conclude that
phases[s] = k during the entire time interval [t, te].

Thus, by repeated applications of Lemma 66 starting at
time t , it is clear that from time t and up to time te, s sends
an (Alive,−, k) message to p at least once every ∆′ time;
more precisely, s sends at least one (Alive,−, k) message to
p during each time interval (τ, τ +∆′] contained in interval
[t, te].

Since time interval (ts, ts +∆′] is contained in time inter-
val [t, te] (because t ≤ ts and ts + ∆′ ≤ te), s sends an
(Alive,−, k) message to p during (ts, ts+∆′] . By assump-
tion (4), ts ≥ t∆. Thus, by Lemma 67 and the definitions of
t∆ and ∆, this (Alive,−, k) message is delivered to p from
s during time interval (ts, ts +∆′ +∆].

Claim 3: p executes at least one complete iteration of its
repeat forever loop during time interval [ts +∆′ +∆, te]. To
see this, recall that p executes at least ζ − 1 complete iter-
ations of its repeat forever loop during time interval [ts, te].
Moreover, during time interval [ts, ts +∆′ +∆], p executes
at most (∆′ + ∆)/ε� = ζ − 3 complete iterations of its
repeat forever loop (this follows from the definition of ε).
This implies Claim 3.

Since an (Alive,−, k) message is delivered to p from s
during time interval (ts, ts +∆′ +∆], and p executes at least
one complete iteration of its repeat forever loop during time
interval [ts +∆′ +∆, te], we conclude that p receives some
(Alive,−,−) message from s during interval (ts, te]—a
contradiction to Claim 1. 
�

The above lemma considers Accusation messages sent
in line 31. A process that receives such messages may forward
it in line 40. The next corollary says that if a timeout is proper
then any Accusation that it generates (whether in line 31
or 40) is outdated.

Corollary 76 Suppose a process p times out on s (in line
30). If this timeout is proper, then every (Accusation-s,−)

message that is sent to s (in line 31 or 40) as a consequence
of this timeout is outdated.

Proof By Lemma 75, if a process p times out on s (in line
30) and this timeout is proper, then every (Accusation-s,−)

message that p sends to all other processes in line 31 as a
consequence of this timeout is outdated. Let (Accusation-s,
ph) be the first such message that p sends, and let t be the
time at which it is sent. Since this message is outdated, then
every (Accusation-s, ph) that is sent at time t ′ ≥ t is also
outdated (this is because phases[s] is monotonically non-
decreasing). In particular, every (Accusation-s, ph) mes-
sage that is sent by a process to s in line 40 (after receiving
one of the (Accusation-s, ph) messages sent earlier by p
in line 31) is also outdated. 
�
Lemma 77 counters[s] is bounded.

Proof Note that s increases its counters[s] only if it receives
an (Accusation-s,−) message (lines 35–40). There are two
kinds of such (Accusation-s,−) messages: (a) those that
are sent to s as a consequence of a proper timeout on s, and (b)
those that are sent to s as a consequence of an improper time-
out on s. By Corollary 76, all the (Accusation-s,−) mes-
sages of kind (a) are outdated. As we previously observed,
such messages do not affect counters[s]. Thus only those
messages of kind (b) may cause s to increment counters[s].
By Lemma 73, the number of improper timeouts on s is finite.
Since each timeout on s causes at most n−1 (Accusation-s,
−)message to be sent to s, the number of (Accusation-s,−)

messages of kind (b) is finite. Therefore counters[s] is
bounded. 
�
Definition 78 For every process p, let cp be the largest value
of counterp[p] in the run that we consider (cp = ∞ if
counterp[p] is unbounded). Let � be the process such that
(c�, �) = min{(cp, p) : p is a correct process}.
By definition, � is a correct process. Furthermore, by
Lemma 77, counters[s] is bounded, i.e., cs < ∞. Thus,
c� <∞, i.e., counter�[�] is bounded.

Lemma 79 For every correct process p, if there is a time
after which � ∈ activep, then there is a time after which
leaderp = �.

Proof This proof is identical to the proof of Lemma 49
(except that it uses Lemma 61 instead of Lemma 33), and
hence we omit it here. 
�
Observation 80 For every correct process p, there is a time
after which p ∈ activep.

Proof When p executes its initialization code, it sets activep

to {p}. Thereafter, p never removes itself from activep. 
�
Corollary 81 There is a time after which leader� = �.

Proof By Observation 80, there is a time after which � ∈
active�. The result now follows from Lemma 79. 
�
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Corollary 82 There is a time after which phase�[�] stops
changing.

Proof Note that � changes phase�[�] only when it considers
that it lost the leadership (in lines 5–6), and each time this
occurs � sets leader� �= � (in line 8). By Corollary 81, this
can happen only a finite number of times. 
�
Definition 83 Let �phase be the final value of phase�[�].
Note that since phase�[�] is monotonically nondecreasing,
�phase is also the largest value of phase�[�].
Lemma 84 For every correct process p, there is a time after
which if leaderp = � then phasep[�] ≥ �phase.

Proof Let p be a correct process. If p = � then the lemma
follows by the definition of �phase. Now suppose p �= �.
If there is a time after which leaderp �= � then the lemma
follows vacuously. So, suppose that leaderp = � infinitely
often. Then, by the way leaderp is computed, � ∈ activep at
the beginning of infinitely many iterations of the repeat for-
ever loop. Note that initially � �∈ activep since � �= p, and so
� is added to activep at least once, and this happens in line 20.

We claim that � is added to activep in line 20 infinitely
often. Indeed, suppose not and consider the last time when
� is added to activep. When this happens, timerp[�] is set to
timeoutp[�]. Subsequently, each loop iteration decrements
timerp[�], until it finally reaches 0. Then, the next loop iter-
ation removes � from activep and thereafter � is never again
in activep—a contradiction that shows the claim.

By the claim, p receives (Alive,−,−) messages from
� infinitely often. Note that � sends only finitely many
(Alive,−, x) messages with x < �phase. Therefore, there is
a time after which the only (Alive,−, y) messages received
from � are those with y ≥ �phase. When p receives one such
message, p sets phasep[�] to y ≥ �phase. Then, phasep[�] ≥
�phase forever after, since phasep[�] is monotonically non-
decreasing. 
�
Lemma 85 A process p can send only finitely many
(Accusation-�, x) messages with x < �phase.

Proof Note that (1) � sends only finitely many (Alive,−, x)

messages with x < �phase. We now claim that (2) only
finitely many (Check, �, x) are sent with x < �phase.
Indeed, when some correct process q sends a (Check, �, x)

message, leaderq = � and phaseq [�] = x . By Lemma 84,
there is a time after which if leaderq = � then phaseq [�] ≥
�phase. Thus, there is a time after which any (Check, �, x)

message that q sends has x ≥ �phase. This shows the claim.
Consider any process r . We now claim that r sends

(Accusation-�, x) only finitely many times with x <

�phase in line 31. This claim immediately implies the lemma,
because a process can relay an Accusation message in line

40 only if another process previously sent this message in
line 31. To show the claim, suppose that process r sends
(Accusation-�, x) and (Accusation-�, x ′) in line 31 with
x, x ′ < �phase at two different times t1 and t2. Then, between
times t1 and t2, r must set timerr [�] to some value different
from −1. This can only happen in lines 23 and 29. There-
fore, between t1 and t2, r must either receive (Alive,−, x ′′)
from � or receive (Check, �, x ′′) from some process with
x ′′ < �phase. By (1) and (2), this can only happen finitely
many times. This shows the claim. 
�

Lemma 86 No process sends (Accusation-�, �phase)
messages infinitely often in line 31.

Proof Suppose, for contradiction, that some process p sends
infinitely many (Accusation-�, �phase) messages in line
31. Note that p �= �, because a process never sends
Accusation messages to itself. We claim that � receives
such messages infinitely often, which is a contradiction
because (1) every time � receives such a message, it incre-
ments counter�[�], and so (2) eventually counter�[�]becomes
greater than c�.

To show the claim, first assume that p �= h. Then p sends
(Accusation-�, �phase) to h infinitely often. By Lemma 85,
and the easy fact that no process sends (Accusation-�, y)

with y > �phase, there is a time after which (Accusation-�,
�phase) is the only Accusation-� message that p sends.
This implies, by Lemma 62, that h receives (Accusation-�,
�phase) from p infinitely often. If h = � then the claim
follows. Otherwise, every time h receives (Accusation-�,
�phase) from p, it sends (Accusation-�, �phase) to �. So
h sends (Accusation-�, �phase) to � infinitely often. By
Lemma 85, there is a time after which these are the only
Accusation-� messages that h sends. This implies, by
Lemma 62, that � receives (Accusation-�, �phase) from
h infinitely often, which shows the claim.

The argument for the case p = h is very similar. 
�

Lemma 87 No process p adds and removes � to and from
its set activep infinitely often.

Proof Suppose, for contradiction, that some process p adds
and removes � to and from activep infinitely often. This
implies that (a) p receives (Alive,−,−) messages from �

infinitely often, and (b) p sends (Accusation-�,−) mes-
sages infinitely often in line 31. From (a) and the definition
of �phase, p eventually receives (Alive,−, �phase) from �.
So, there is a time after which phasep[�] = �phase. Thus,
from (b), p sends infinitely many (Accusation-�, �phase)
messages in line 31—a contradiction to Lemma 86. 
�

Lemma 88 There is a time after which � ∈ activeh and
phaseh[�] = �phase.
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Proof If h = � the result follows by the definition of �phase
and the fact that � ∈ active�. Now assume h �= �. By Corol-
lary 81 and the definition of �phase, � sends an infinite num-
ber of (Alive,−, �phase) messages to all processes except
itself. Moreover,� sends only a finite number of (Alive,−, y)

with y �= �phase. Since h �= �, this implies by Lemma 62 that
h receives an infinite number of these (Alive,−, �phase)
messages from �. Therefore, there is a time after which h
has phaseh[�] = �phase. Moreover, h adds � to activeh infi-
nitely often. From Lemma 87, h removes � from activeh only
finitely often, and so the lemma follows. 
�
By Lemmas 79 and 88, we have

Lemma 89 There is a time after which leaderh = �.

Lemma 90 There is a time after which only � sends Alive
messages.

Proof Consider any correct process p �= �. From Lemma 87,
there are two possible cases:

1. There is a time after which � ∈ activep. In this case,
by Lemma 79, there is a time after which leaderp = �.
After this time, p does not send Alive messages.

2. There is a time after which � �∈ activep. This implies
that (a) there is a time after which p does not receive any
Alive message from � and (b) p �= h (by Lemma 88),
and (c) h �= � (because if h = � then, by Corollary 81,
h sends an infinite number Alive messages to p, and so
by Lemma 62, p receives an infinite number of Alive
messages from h, which contradicts (a)). Now, suppose,
for contradiction, that p sends Alive messages infinitely
often. By Lemma 62, h receives Alive messages from
p infinitely often. By Lemmas 88 and 89, there is a
time after which leaderh = � and phaseh[�] = �phase.
After that time, each time h receives an Alive mes-
sage from p, h sends a (Check, �, �phase) message to
p (since p �= � and h �= �). Thus, h sends infinitely
many (Check, �, �phase) messages to p, and there is a
time after which (Check, �, �phase) are the only
(Check,−,−) messages that h sends to p. By Lem-
ma 62, this implies that p receives (Check, �, �phase)
from h infinitely often. Therefore, we have the following:

(i) There is a time after which p has phasep[�]=
�phase,

(ii) p starts timerp[�] and times out on � infinitely
often (because of (a)), and

(iii) p sends infinitely many (Accusation-�, �phase)
messages to � in line 31—a contradiction to
Lemma 86.

Thus, in both cases (1) and (2) there is a time after which p
does not send Alive messages. 
�

Lemma 91 For every correct process p, there is a time after
which leaderp = �.

Proof Let p be any correct process. From Lemma 87, there
are two possible cases:

1. There is a time after which � ∈ activep. In this case, by
Lemma 79, there is a time after which leaderp = �.

2. There is a time after which � �∈ activep. Since a process
q �= p can remain in activep only if p keeps receiving
Alive messages from q, then, by Lemma 90 and the fact
that p ∈ activep (always), there is a time after which
activep = {p}. So there is a time after which leaderp =
p. From this time on, p repeatedly sends Alive forever—
a contradiction to Lemma 90.

Thus, only case (1) holds. 
�
Lemma 92 There is a time after which only � sends mes-
sages.

Proof There are n + 2 types of messages: Alive, Check,
and Accusation-q, for each process q.

1. By Lemma 90, there is a time after which only � sends
Alive messages.

2. Only a finite number of Check messages are sent. To
see this, note that a process p sends a Check message to
another process q only if p receives an Alive message
from q at a time when leaderp �= q. By Lemmas 90 and
91, there is a time after which this cannot occur.

3. For any process q, only a finite number of Accusation-q
messages are sent. To show this, let q be a process. It
is sufficient to prove that each process p sends a finite
number of Accusation-q messages in line 31 (this is
because p relays an Accusation-q message in line 40
only if another process previously sent this message in
line 31 of its code).
When a process p sends an (Accusation-q,−) mes-
sage in line 31, p “turns off” timerp[q] by setting it
to −1 in line 34. After this occurs, p can send another
(Accusation-q,−) message in line 31 only if p “turns
on” timerp[q] again in line 23 or line 29, and this can
happen only if (a) p receives an Alive message from q
(in line 19), or (b) p receives a (Check,−) message
(in line 26). Thus, p can send an infinite number of
(Accusation-q,−) messages in line 31 only if (a) p
receives an infinite number of Alive messages from q
or (b) p receives an infinite number of (Check,−) mes-
sages. From (1) and (2) above, we deduce that p can send
an infinite number of (Accusation-q,−) messages in
line 31 only for q = �. But p sends only a finite num-
ber of (Accusation-�,−) in line 31, because each time
p sends such a message, p removes � from activep (in
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line 32), and from Lemma 91, there is a time after which
� ∈ activep. Thus each process p sends only a finite
number of (Accusation-q,−) messages in line 31 for
every process q. 
�

From Lemmas 91 and 92, we get the following result:

Theorem 93 The algorithm in Fig. 10 implements Ω in sys-
tem S+, and it is communication-efficient.

7 Final remarks

In their 2002 PODC tutorial [24], Keidar and Rajsbaum pro-
pose several open problems related to the implementation of
failure detectors in partially synchronous systems. In partic-
ular, they ask what is the “weakest timing model where �S
and/or Ω are implementable but �P is not”. As a partial
answer to this question, we note that, in contrast to Ω , �P
is not implementable in system S. In fact, it is easy to show
that this holds even if we strengthen S by assuming that (a) all
the links in S are reliable (i.e., no message is ever lost), and (b)
processes know the identity of the eventually timely source(s)
in S. So S is an example of a partially synchronous system that
is strong enough to implement Ω but too weak to implement
�P . Similarly, S+ is strong enough for an efficient imple-
mentation of Ω , but still too weak for implementing �P .
Intuitively, this is because the level of synchrony in S and S+
is not sufficient to get �P: in both systems only the output
links of some correct process(es) are eventually timely. Note
that if we strengthen the synchrony of S by assuming that
both the input and output links of some correct process are
eventually timely, then �P becomes implementable [2].

In [24], Keidar and Rajsbaum also ask: “When is building
�P more costly than �S or Ω?”. Concerning this ques-
tion, note that any implementation of �P (even in a per-
fectly synchronous system) requires all alive processes to
send messages forever, while Ω can be implemented such
that eventually only the leader sends messages (even in a
weak system such as S+).

Finally, it is also worth pointing out that the above results
provide an alternative proof that �P is strictly stronger than
�S : this can be deduced from the fact that Ω (and hence
�S ) is implementable in system S but �P is not.
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