
Distrib. Comput. (2008) 21:141–161
DOI 10.1007/s00446-008-0061-5

Compact separator decompositions in dynamic trees
and applications to labeling schemes

Amos Korman · David Peleg

Received: 1 October 2007 / Accepted: 4 March 2008 / Published online: 1 April 2008
© Springer-Verlag 2008

Abstract This paper presents an efficient scheme maintain-
ing a separator decomposition representation in dynamic
trees using asymptotically optimal labels. In order to main-
tain the short labels, the scheme uses relatively low message
complexity. In particular, if the initial dynamic tree contains
only the root, then the scheme incurs an O(log4 n) amortized
message complexity per topology change, where n is the
current number of vertices in the tree. As a separator decom-
position is a fundamental decomposition of trees used exten-
sively as a component in many static graph algorithms, our
dynamic scheme for separator decomposition may be used
for constructing dynamic versions to these algorithms. The
paper then shows how to use our dynamic separator decom-
position to construct efficient labeling schemes on dynamic
trees, using the same message complexity as our dynamic
separator scheme. Specifically, we construct efficient rout-
ing schemes on dynamic trees, for both the designer and the
adversary port models, which maintain optimal labels, up to a
multiplicative factor of O(log log n). In addition, it is shown
how to use our dynamic separator decomposition scheme to
construct dynamic labeling schemes supporting the ancestry
and NCA relations using asymptotically optimal labels, as
well as to extend a known result on dynamic distance label-
ing schemes.

Supported in part at the Technion by an Aly Kaufman fellowship.
Supported in part by a grant from the Israel Science Foundation.

A. Korman (B)
Information Systems Group, Faculty of IE&M,
The Technion, Haifa 32000, Israel
e-mail: pandit@tx.technion.ac.il

D. Peleg
Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot 76100, Israel
e-mail: david.peleg@weizmann.ac.il

Keywords Distributed algorithms · Dynamic networks ·
Routing schemes · Graph decompositions · Informative
labeling schemes

1 Introduction

Background : A distributed representation scheme is a
scheme maintaining global information using local data
structures (or labels). Such schemes play an extensive and
sometimes crucial role in the fields of distributed comput-
ing and communication networks. Their goal is to locally
store useful information about the network and make it read-
ily and conveniently accessible. As a notable example, the
basic function of a communication network, namely, mes-
sage delivery, is performed by its routing scheme, which
in turn requires maintaining certain topological knowledge.
Often, the performance of the network as a whole may be
dominated by the quality of the routing scheme and the accu-
racy of the topological information. Representation schemes
in the static (fixed topology) setting were the subject of exten-
sive research, cf. [1,5,6,9,13,15]. The common measure for
evaluating a static representation scheme is the label size, i.e.,
the maximum number of bits used in a label. In this paper,
a representation scheme with asymptotically optimal label
size is termed compact.

The more realistic (and more involved) distributed
dynamic setting, where processors may join or leave the net-
work or new connections may be established or removed,
has received much less attention. Clearly, changes in the
network topology may necessitate corresponding changes in
the representation. Consequently, in the distributed dynamic
setting, an update protocol is activated where the topology
change occurs, and its goal is to update the vertices, by trans-
mitting messages over the links of the underlying network.

123

142 A. Korman, D. Peleg

Ideally, the update protocol maintains short labels using only
a limited number of messages.

In this paper we consider representation schemes in
dynamic trees, operating under the leaf-dynamic tree model,
in which at each step, a leaf may either join or leave the tree.
We consider the controlled dynamic model, which was also
considered in [3,16], in which the topological changes do
not occur spontaneously. Instead, when an entity wishes to
implement a topology change at some vertex u, it enters a
request at u, and performs the change only after the request
is granted a permit from the update protocol. See Sect. 2 for a
formal definition. The controlled model may be found useful
in Peer to Peer applications and in other popular overlay net-
works. See [16] for more details and motivations regarding
the controlled model.

We present several dynamic representation schemes,
which are efficient in both their label size and their commu-
nication complexity. In particular, if the initial tree contains
only the root, then all our dynamic schemes incur O(log4 n)

amortized message complexity, per topological change. We
first present a compact representation scheme of a separa-
tor decomposition in dynamic trees, and then use this basic
compact scheme to derive compact labeling schemes sup-
porting the ancestry and NCA relations on dynamic trees. In
addition, we present dynamic routing schemes which have
optimal label size up to O(log log n) multiplicative factor,
for both the adversary and the designer port models. Finally,
we show how to use our dynamic separator decomposition to
extend a known result on dynamic distance labeling schemes.

Related work : An elegant and simple compact labeling
scheme was presented in [13], for supporting the ancestry
relation on static n-vertex trees using labels of size 2 log n.
Applications to XML search engines motivated various
attempts to improve the constant multiplicative factor in the
label size, see [1,2].

Static compact labeling schemes were presented for two
types of NCA relations on trees. For the id-based NCA rela-
tion (which is the type of NCA relation we consider in this
paper), a static labeling scheme was developed in [21] using
labels of �(log2 n) bits on n-vertex trees. A static label-
ing scheme supporting the label-based NCA relation using
labels of �(log n) bits on n-vertex trees was presented in
[5]. In addition, [5] gave a survey on applications and pre-
vious results concerning NCA queries on trees, in both the
distributed and centralized settings.

Labeling schemes for routing on static trees were inves-
tigated in a number of papers until finally optimized in [9,
10,26]. For the designer port model, in which the designer
of the scheme can freely enumerate the port numbers of the
vertices, [9] shows how to construct a routing scheme using
labels of size O(log n) on n-vertex trees. In the adversary
port model, where the port numbers are fixed by an adversary,

it is shown how to construct a routing scheme using labels of
size O(log2 n/ log log n) on n-vertex trees. In [10] it is shown
that both label sizes are asymptotically optimal. Indepen-
dently, a routing scheme for trees of label size (1+o(1)) log n
was given in [26] for the designer port model.

Dynamic data structures for trees have been studied exten-
sively in the centralized model, cf. [7,23,24]. For compre-
hensive surveys on centralized dynamic graph algorithms see
[11,22].

A survey on popular link state dynamic routing protocols
(e.g., OSPF) can be found in [25]. Compared to our dynamic
routing schemes, these routing schemes are more robust on
weaker dynamic models, such as ones which allow sponta-
neous faults; however, their message complexity is higher.

The controlled model is presented in [3], which also estab-
lishes an efficient dynamic controller that can operate in the
leaf-increasing tree model, where the only topology change
allowed is that of a leaf joining the tree. This controller
can, in particular, be used to maintain a constant approx-
imation of the number of vertices in the (leaf-increasing)
tree, using O(n log2 n) messages, where n is the final (and
maximum) number of vertices. In [16] an extended control-
ler was derived for the controlled model, which can operate
under both insertions and deletions of both leaves and inter-
nal vertices. In particular, that controller can be used to effi-
ciently maintain a constant approximation of the number of
vertices in the dynamic tree, undergoing both deletions and
additions of vertices, using low message complexity. Spe-
cifically, the approximation scheme incurs O(n0 log2 n0) +
O

(∑
j log2 n j

)
messages, where n0 is the initial tree size,

and n j is the size of the tree immediately after the j’th topol-
ogy change. Note that if the initial tree contains just the root,
then this complexity can be considered as O(log2 n) amor-
tized message complexity per topology change. Moreover, if
the tree can only grow, then the message complexities of the
schemes in [3,16], are the same.

A dynamic routing scheme in the leaf-increasing tree
model was given in [4] using identities of size O(log2 n),
database size O(� log3 n) (where � is the maximum degree
in the tree) and message complexity O(n log n), where n is
the final number of vertices. In our terminology, the scheme
of [4] uses label size O(� log3 n) and message complexity
O(n log n).

Dynamic distance labeling schemes on trees were pre-
sented in [17,19] for the serialized model, in which it is
assumed that the topology changes are spaced enough so
that the update protocol can complete its operation before the
next topology change occurs (the serialized model is a more
restricted model than the controlled model, considered in
this paper). A compact distance labeling scheme with amor-
tized message complexity O(log2 n) for unweighed dynamic
trees operating under the leaf-dynamic tree model was pre-
sented in [19]. For the case where the tree is weighted, two

123

Compact separator decompositions in dynamic trees and applications to labeling schemes 143

dynamic β-approximate distance labeling schemes (in which
given two labels, one can infer a β-approximation to the dis-
tance between the corresponding vertices) were presented
in [17]. The first scheme applies to a model in which the
tree topology is fixed but the edge weights may change,
and the second applies to a model in which the only topo-
logical event that may occur is that of an edge increasing
its weight by one. The amortized message complexity of
the first scheme depends on the local density parameter of
the underlying tree and the amortized message complexity
of the second scheme is polylogarithmic. Both schemes have
label size O(log2 n+log n log W) where W denotes the larg-
est edge weight in the tree.

Two general translation methods for extending static label-
ing schemes on trees to the dynamic setting were considered
in [14,19], also for the (rather restrictive) serialized model.
Both approaches fit a number of natural functions on trees,
such as ancestry relation, routing, NCA relation etc. The
translation methods incur some overheads over the static
scheme, in both the label size and the message complex-
ity. Specifically, the method of [14] yields dynamic compact
labeling schemes, although the amortized message complex-
ity is high, namely, O(nε). On the other hand, the label sizes
of the dynamic labeling schemes in [14], which use polyloga-
rithmic amortized message complexity, have a multiplicative
overhead factor of O(log n/ log log n) over the optimal size.

Our contributions : In this paper we consider a dynamic tree
T operating under the leaf-dynamic tree model and the con-
trolled model, and present several efficient dynamic schemes
for T . All our schemes incur O(n0 log4 n0)+O

(∑
j log4 n j

)

messages, where n0 is the initial number of vertices and n j

is the number of vertices immediately after the j’th topology
change. Note that if the initial tree contains only the root (as
assumed in [14]), then the amortized message complexity
is O(log4 n) per topological change, where n is the current
number of vertices in T .

We first present an efficient protocol maintaining a com-
pact separator decomposition representation in T . Let us
note that the general translation method of [14] may also
yield such a dynamic compact scheme, however, the resulting
scheme uses high amortized message complexity, namely,
O(nε).

Our basic dynamic separator scheme is then used in order
to construct several other dynamic labeling schemes for the
dynamic tree T , which improve known results. Specifically,
we present dynamic compact labeling schemes supporting
the ancestry and the NCA relations, and establish routing
schemes for both the designer and the adversary port mod-
els, which use optimal label size up to a multiplicative O(log
log n) factor. For any of the above mentioned functions f , the
best known label size for dynamic labeling schemes
supporting f , that use polylogarithmic amortized message

complexity, has a multiplicative overhead of O(log n/ log
log n) over the optimal label size. In addition, the best known
amortized message complexity for dynamic compact label-
ing schemes supporting f is O(nε).

Finally, we show that our dynamic separator decomposi-
tion can also be used to allow the dynamic distance labeling
schemes of [17] to operate under a more general dynamic
model. In addition to allowing the edges of the underlying
tree to change their weight, the extended dynamic model
allows also leaves to be added to or removed from the tree.
The extended scheme incurs an extra O

(
n0 log4 n0

) +
O

(∑
j log4 n j

)
additive factor to the message complexity.

Overview : Our compact separator scheme is based on an
adaptation of our static scheme (described in Sect. 3) which
also uses �(log n) bit labels. The adaptation requires main-
taining estimates on the sizes of the various subtrees man-
aged in the decomposition, manipulating and reorganizing
these subtrees, and maintaining the corresponding labels and
topological data. Generally speaking, each separator v main-
tains a constant approximation to the number of vertices in
the subtree T ∗(v) for which v was chosen as a separator.
Whenever, the size of T ∗(v) grows by some constant factor,
the main Protocol Dyn_Sep invokes Protocol Shuffle on
T ∗(v), which calculates a new separator decomposition on
T ∗(v) that is consistent with the global separator decompo-
sition. The correct operation of these protocols relies on the
assumption that certain properties hold at the beginning of
their execution, and in turn, each of these components guar-
antees that certain properties hold upon their termination.
Hence the correctness proof of the entire algorithm depends
on establishing an intricate set of invariants and showing that
these invariants hold throughout the execution.

Our dynamic ancestry and routing labeling schemes are
based on simple modifications of our dynamic separator
scheme. Specifically, in the ancestry scheme, we modify the
label of each vertex v by adding two bits per separator s of
v, indicating whether s is a descendant of v, ancestor of v

or neither. Then, given the labels of two vertices u and v,
we first find the last separator slast common to both u and v,
using the separator scheme. This separator slast must be on
the path connecting u and v and therefore, we can now deter-
mine whether u is an ancestor of v, according to whether u
is an ancestor of slast and whether v is a descendant of slast.
Moreover, since the labels of the separator scheme are only
slightly modified, the label size remains O(log n), which is
asymptotically optimal. It turns out that maintaining these
slightly modified labels requires only a minor change in the
update protocol of our dynamic separator scheme, and does
not effect its asymptotic message complexity.

In our routing schemes, we modify the label of each vertex
v by also encoding, for each separator s of v, the port number

123

144 A. Korman, D. Peleg

at v leading from v to the next vertex on the (shortest) path
connecting v and s and the port number at s leading from
s to the next vertex on the path connecting s and v. Then,
given the labels of two vertices u and v, we first find the last
separator slast common to both, using the separator scheme.
If this separator slast is u, then the port number at u lead-
ing to the next vertex on the path from u to v, is found in
v’s label. Otherwise, if slast �= u, then the port number at u
leading to the next vertex on the path from u to v, is also
the port number at u leading to the next vertex on the path
from u to slast, which is found in u’s label. In the case where
the port numbers are given by an adversary, each label uses
O(log n) bits per separator, which sums to O(log2 n) bits per
label. However, in the designer port model, the sizes of the
labels can be reduced to O(log n · log log n). This gives a
multiplicative factor of O(log log n) over the optimal label
size in both port models. As in the dynamic ancestry label-
ing scheme, maintaining the slightly modified labels can be
done using the same asymptotic message complexity as our
dynamic separator scheme.

Finally, our dynamic NCA labeling scheme is based on an
adaptation of the static scheme of [21], using our dynamic
ancestry labeling scheme instead of the static ancestry
scheme used therein, and employing the dynamic heavy-
child decomposition from [19]. Our extended dynamic
distance labeling schemes are rather straightforward com-
binations of our dynamic separator scheme and the distance
labeling schemes in [17].

2 Preliminaries

Our communication network model is restricted to tree topol-
ogies. Let T be a tree rooted at vertex r and let T (v) denote
the subtree of T rooted at v. For every vertex v ∈ T , let D(v)

denote the depth of v, i.e., 1 plus the unweighed distance
between v and the root r (in particular, D(r) = 1). For a
non-root vertex v, denote by p(v) its parent in the tree. The
ancestry relation is defined as the transitive closure of the par-
enthood relation. Define the weight of the vertex v, denoted
ω(v), as the number of vertices in T (v), i.e., ω(v) = |T (v)|.
Let n denote the number of vertices in the tree, i.e., n = ω(r).
The ports at each vertex (leading to its different neighbors)
are assigned unique port-numbers. The enumeration of the
ports at a vertex v is known only to v.

For every two numbers a < b, let [a, b) denote the set
of integers a ≤ i < b. For every integer q ≥ −1 let Iq =
[2q+3, 2q+4) and for every m ≤ n and −1 ≤ q ≤ log m, let
Jq(m) = [m

2q+1 , m
2q) and let Ĵq(m) = [m

2q+2 , m
2q−1). In other

words, Ĵq(m) = Jq+1(m) ∪ Jq(m) ∪ Jq−1(m).

Separator decomposition : We first define a separator
decomposition of a tree T recursively as follows. At the first

T (v)

T

T (v)

zx

u

v

w

r

2

1

u

z

x

w

v

r

sep
T

Fig. 1 In the depicted tree T , rooted at r , the vertex v is the level-1
separator of T . Deleting v breaks T into T 1(v) and T 2(v). Similarly,
w is the separator of T 1(v) and u is the separator of T 2(v), therefore w

and u are the children of v in T sep. Deleting u breaks T 2(v) into three
subtrees, one of which contains z as its separator. We have T ∗(v) = T ,
T ∗(w) = T 1(v) and T ∗(u) = T 2(v)

stage we choose some vertex v in T to be the level-1 sepa-
rator of T . Removing v breaks T into disconnected subtrees
which are referred to as the subtrees formed by v. Each such
subtree is decomposed recursively by choosing some vertex
to be a level-2 separator, etc.

Let T subtrees be the collection of all subtrees obtained by
the resulting partitioning, on all levels of the recursion. Note
that the trees on each level are disjoint but the entire collec-
tion contains overlapping trees. Moreover, in this partition-
ing, each vertex v in T belongs to a unique subtree Tl(v) ∈
T subtrees on each level l of the recursion, up to the level l(v)

in which v itself is selected as the separator. The subtrees
T = T1(v), T2(v), . . . , Tl(v)(v) are referred to as the ances-
tor subtrees of v. Define the separator tree T sep to be the
tree rooted at the level-1 separator of T , with the level-2 sep-
arators as its children, and generally, with each level j + 1
separator as the child of the level- j separator above it in the
decomposition. For a vertex v in T , let s j (v) denote the level-
j separator of v, i.e., the ancestor of v in T sep at depth j . We
associate each vertex v with the subtree T ∗(v) = Tl(v)(v) for
which v is chosen as its separator. If v is a level- j separator,
then T ∗(v) is referred to as a level- j subtree (see Fig. 1).

For 1/2 ≤ δ < 1, a δ-separator of T is a vertex v whose
removal breaks T into disconnected subtrees of at most δ|T |
vertices each. It is a well known fact that every tree has a
δ-separator (even for δ = 1/2), and that one can recursively
partition the tree by δ-separators. Such a decomposition is
termed δ-separator decomposition. It is easy to see that the
depth of the corresponding separator tree T sep is O(log |T |).
In the special case where δ = 1/2, the separator vertex is
called a perfect separator, and the decomposition is called a
perfect separator decomposition.

123

Compact separator decompositions in dynamic trees and applications to labeling schemes 145

Representations for separator decompositions : One may define
a distributed representation for separator decompositions in
trees in various ways. For our purposes, we define a separa-
tor decomposition representation as follows. Each vertex v

in a tree T is given a label L(v) so that the following hold.

1. Each vertex has a unique label, i.e., L(u) �= L(v) for
every two vertices u, v ∈ T .

2. Given the label L(v) of some vertex v and an integer
1 ≤ i ≤ l(v), one can extract the label L(u) where u is
the level-i separator of v.

Note that by the first requirement, the maximum number of
bits in a label in an n-vertex tree is �(log n) for any separator
decomposition representation.

The supported functions : We consider labeling schemes for
supporting the following functions F on pairs of vertices u, v

of a rooted tree.

(a) Routing: F(u, v) is the port number at u leading to the
next vertex on the (shortest) path from u to v.

(b) Ancestry relation: F(u, v) = 1 if u is an ancestor of v

in the tree, else F(u, v) = 0.
(c) NCA relation: assuming each vertex z has a unique

identifier id(z) (encoded using O(log n) bits), F(u, v)

is the identifier id(z) of the nearest common ancestor
(NCA) z of u and v, i.e., the common ancestor of u and
v of maximum depth.

Labeling schemes : An F-labeling scheme π = 〈Mπ ,Dπ 〉
is composed of the following components:

1. A marker algorithm Mπ that given a tree, assigns a label
L(v) to each vertex v in the tree.

2. A polynomial time decoder algorithm Dπ that given the
labels L(u) and L(v) of two vertices u and v in the tree,
outputs F(u, v).

We note that in our schemes, the labels given to the vertices
may contain several fields. In order to distinguish between
the different fields of some label one can use an additional
label L ′(v) for v, which has the same number of bits as L(v)

and whose 1’s mark the locations where the fields of L(v)

begin. Clearly, adding L ′(v) does not increase the asymptotic
label size.

The dynamic models : The following types of topology
changes are considered.

Add-leaf: A new vertex u is added as a child of an existing
vertex v.

Remove-leaf: A leaf u of a tree is deleted.

Subsequent to a topology change, both relevant vertices
u and v are informed of it. When a new edge is attached to
a vertex v, the corresponding port at v is assigned (either by
an adversary or by v) a unique port-number (i.e., at any time,
the port numbers at v are distinct), encoded using O(log n)

bits.
All of the results in this paper, except for those on routing,

concern the weak adversary model, in which an adversary
can freely select and change the port numbers at any vertex
(as long as they remain disjoint at that vertex). Our dynamic
routing schemes consider the following two port models. In
the designer port model, each vertex v is allowed to freely
select and change the port numbers on its incident ports at
any time (as long as they remain disjoint), while in the adver-
sary port model, the port numbers at each vertex are fixed by
an adversary (once the adversary assigns a port number, the
number remains unchanged).

Various dynamic models are considered in the literature. In
the leaf-increasing tree model, cf. [4,14,19], the only topol-
ogy change allowed is that of a leaf joining the tree, and
in the more general leaf-dynamic tree model, cf. [3,14,19],
leaves can either be added to or removed from the tree. All the
results in this paper apply for the leaf-dynamic tree model.

In this paper, we consider the controlled model (consid-
ered also in [3,16,18], see [16] for more details and motiva-
tions). In this model, prior to a topological change at vertex v,
a request to perform it arrives at v. The arrival of the request
triggers the activation of an update protocol U at v, which
is allowed to exchange messages over edges of the underly-
ing graph. The update protocol maintains the labels of the
vertices to fit the requirements of the corresponding prob-
lem. In addition, the update protocol must grant a permit to
the request at v, after finite time. Vertex v implements the
topological change only after the corresponding request is
granted a permit from the update protocol.

In the leaf-increasing model (where no deletions occur),
our dynamic schemes can operate under the weak uncon-
trolled model, in which the topological changes (insertions
of leaves) may occur spontaneously, without being delayed
by the update protocol.

Our schemes are required to be correct only at quiet times,
i.e., times for which all necessary updates concerning the
previous topological changes have occurred. It can easily be
shown that no dynamic separator decomposition scheme can
be expected to operate correctly also in non-quiet times. For
example, if s is a separator of some level of some vertex u,
then if the label of s changes at some time t , then the label
L(u) of u must also change at the same time t , since given
the label L(u) one should be able to extract L(s).

For a static scheme π on n-vertex trees, we are interested
in the following complexity measures.

The label size, LS(π, n), is the maximum number of bits
in L(v) taken over any vertex v.

123

146 A. Korman, D. Peleg

The message complexity, MC(π, n), is the maximum
number of messages (of size O(log n)) sent by a distribute
algorithm assigning the labels of π .

In the leaf-dynamic tree model, where both additions and
deletions of vertices are allowed, instead of measuring the
message complexity in terms of the maximal number of ver-
tices in the scenario, we use more explicit time references
employing the notation n̄ = (n1, n2, . . . , nt) where, for each
1 ≤ j ≤ t , n j is the size of the tree immediately after the
j’th topology event takes place. The definition of LS(π, n)

remains as before, and the definition of the message com-
plexity changes into the following.

Message Complexity, MC(π, n̄): the maximum number
of messages sent by U during the labeling process in any
scenario where n j is the size of the tree immediately after
the j’th topological event takes place.

3 The static separator representation scheme πStat_Sep

Let us first note that a static compact separator represen-
tation scheme is implicitly described in [12]. However, we
were not able to extend that scheme to the dynamic scenario.
Instead, in this section we present a new static compact sepa-
rator decomposition representation scheme πStat_Sep (which
is in some sense a relaxation of the scheme in [12]), which
we find easier to extend to the dynamic scenario. Scheme
πStat_Sep enjoys label size �(log n) and message complex-
ity O(n log n).

3.1 Informal description

Recall that in a δ-separator decomposition of the tree T ,
each vertex v is a separator of some level. Given a δ-sep-
arator decomposition, a simple way of constructing a rep-
resentation for it is to assign each vertex a disjoint identity
and then to label each vertex by the list of identities of v’s
ancestors in T sep. However, this simple scheme has label
size O(log2 n). In order to reduce the label size to O(log n)

we exploit the liberty of choosing the labels of the separa-
tors. As in the simple scheme described above, our marker
algorithm assigns each vertex v a different label Lsep(v)

containing l(v) fields. However, in contrast to the simple
scheme mentioned above, for any 1 < l ≤ l(v), the l’th
field Lsep

l (v) of Lsep(v) does not contain the identity of the
level-l separator of v. Instead, it contains the binary rep-
resentation of a number proportionate to |Tl−1(v)|/|Tl(v)|.
Moreover, the label of the level-k separator of v is the pre-
fix of Lsep(v) containing the first k fields in Lsep(v). Infor-
mally, these properties are achieved in the following manner.
Define the labels Lsep(v) of the separators v by induction on
their level. The label of the level-1 separator is set to be 〈0〉.
Assume that we have defined the labels of all the level-(l −1)

separators. For each level-(l − 1) separator v, we now define
the labels of its children v1, v2, . . . in T sep as follows. For
each k, vk is first assigned a unique number ρ(vk) (in the
sense that if k �= k′ then ρ(vk) �= ρ(vk′)), such that ρ(vk) ∈
[2q+3, 2q+4) iff |T ∗(v)|/2q+1 < |T ∗(vk)| ≤ |T ∗(v)|/2q ,

or in other words, ρ(vk) ∈ Iq iff |T ∗(vk)| ∈ Jq(|T ∗(v)|).
Note that for each q, there could be at most 2q+1 chil-

dren vk of v in T sep such that |T ∗(v)|/2q+1 < |T ∗(vk)| ≤
|T ∗(v)|/2q . Therefore, the interval Iq = [2q+3, 2q+4) con-
tains sufficiently many integers so that every separator vk

satisfying |T ∗(vk)| ∈ Jq(|T ∗(v)|) can be issued a distinct
integer in Iq .

For every k, after assigning the vertex vk a number ρ(vk)

as described above, the label of vk is set to be the concatena-
tion Lsep(vk) = Lsep(v) ◦ ρ(vk). The fact that the labels are
disjoint follows from the fact that for each k, ρ(vk) is unique.
Note that the label of a level-l separator u can be considered
as a sequence of l fields Lsep(u) = Lsep

1 (u) ◦ · · · ◦ Lsep
l (u).

Moreover, for each 1 ≤ j < l, the label of the level- j sep-
arator of u is simply Lsep

1 (u) ◦ · · · ◦ Lsep
j (u). In addition,

for 1 ≤ j ≤ l, the j + 1’st field Lsep
j+1(u) is proportionate

to |Tj (u)|/|Tj+1(u)|. This property is used to show that the
label size is O(log n).

In order to implement the scheme πStat_Sep by a distrib-
uted protocol, when the separator v wishes to assign a unique
value ρ(vk) ∈ Iq to one of its children (in T sep), it somehow
needs to know which values it had already assigned in the
range Iq . For this purpose, for every −1 ≤ q ≤ �log n�,
v maintains a counter cq(v) counting the number of values
ρ(vk) ∈ Iq that were already assigned by it. Whenever v

wishes to assign a new value ρ(vk) ∈ Iq , it simply selects
2q+3 + cq(v) and then raises cq(v) by 1. The fact that ρ(vk)

indeed belongs to Iq is ensured by the following invariant,
which holds throughout the execution at every vertex v.
Counters invariant at v:

For every −1 ≤ q ≤ �log n�, the set of currently assigned
values in Iq is a prefix of Iq , namely, [2q+3, 2q+3+cq(v)−1].

The description of Protocol Stat_Sep(T), which assigns
each vertex v the label Lsep(v), is rather straightforward.
However, we still prefer to describe it formally, in order
to ease the understanding of the more involved Protocol
Shuffle presented later on.

3.2 Protocol Stat_Sep(T)

We now give a formal description and analysis of the distrib-
uted Protocol Stat_Sep(T), which is initiated at the root of
a given tree T and assigns each vertex v the label Lsep(v).

Before starting the protocol we initialized all labels to be
〈0〉. For each vertex v of level l(v), the recursive Protocol
Stat_Sep(T) assigns v the l + 1′st field in its label, during
the l’th level of the recursion, for every 1 ≤ l < l(v). Thus,

123

Compact separator decompositions in dynamic trees and applications to labeling schemes 147

the label of v which consists of l(v) fields (the first field is
0) is assigned during the first l(v) − 1 recursive calls to the
protocol.

We would like to point out that Protocol Shuffle which is
described later on, invokes Protocol Stat_Sep on different
proper subtrees T ′ of T . When that protocol calls Protocol
Stat_Sep, the vertices in the proper subtree T ′ may already
have labels (that contain certain fields). In this case, the labels
in T ′ are not initialized to 〈0〉, and the recursive protocol Pro-
tocol Stat_Sep is executed ‘on top’ of the existing labels in
T ′, i.e., the output label of the protocol at a vertex u is con-
catenated with the initial label at u.

On the l’th level of the recursion, Protocol Stat_Sep(T)

operates on the subtrees T ∗(u) which correspond to the level-
l separators u. Let v be a level-l separator of T and let
T 1(v), T 2(v), . . . be the subtrees formed by v. For every i , let
vi be the separator of T i (v). Note that the vertices v1, v2, . . .

are precisely v’s children in T sep. On the l’th level of the
recursion, v sets the l + 1’st field of the labels in each T k(v)

to be the number ρ(vk) assigned to vk by v according to the
method described earlier. Since this value ρ(vk) of the l+1’st
field of the labels of all the vertices T k(v) is the same, we
may also refer to this value as ρ(T k(v)).

Before giving the formal description of Protocol
Stat_Sep, we first define a δ-heavychild decomposition of
T , for 1/2 ≤ δ < 1. In such a decomposition, each non-leaf
vertex v marks a heavy edge, i.e., an edge leading to one
of its children, h(v), such that every other child u satisfies
ω(u) ≤ δ · ω(v). A heavy path is a path consisting solely of
heavy edges.

We now give the formal description of Protocol Stat_Sep,
starting by describing its Sub-protocols Find_Sep and
Sort_Weight. Sub-protocol Find_Sep(T) is the straight-
forward protocol for computing a perfect separator. It is ini-
tialized at the root r of an n-vertex tree T and its output is a
perfect separator of T . In addition, following the execution
of this sub-protocol, each vertex v knows its weight ω(v).
The distributed implementation of the protocol employs stan-
dard broadcast and convergecast techniques for disseminat-
ing information from the root and collecting weight counts
from the leaves upwards toward the root (cf. [20]).

Sub-protocol Find_Sep(T)

1. The root r broadcasts a signal instructing all the tree
vertices to calculate their exact weight through a con-
vergecast process for collecting weight counts. During
the convergecast process, each vertex v keeps a pointer
h(v) to its heaviest child, i.e., a child u of v such that no
other child of v has more descendants than u.

2. The root initiates a broadcast, informing the vertices
about n, the correct number of vertices in the entire tree.

3. The root sends a signal along the heavy path containing
it, until it reaches a vertex v (possibly r itself) such that
the child h(v) satisfies ω(h(v)) < n/2.

4. The output is v.

The proof of the following claim is straightforward.

Claim Sub-protocol Find_Sep(T) outputs a perfect separa-
tor of T using O(n) messages.

Given a separator v, let N∗(v) denote the set of neighbors
of v that belong to T ∗(v), and for each x ∈ N∗(v), let Tx be
the subtree formed by v that contains x . (I.e., after remov-
ing v, the subtree T ∗(v) breaks into subtrees, and Tx is the
subtree among these subtrees that contain x .)

We now describe Sub-protocol Sort_Weight(m, v),
which is initiated at a separator v of some m-vertex sub-
tree T ∗(v) of T . When this sub-protocol terminates, every
neighbor x ∈ N∗(v) of v is assigned a unique number ρ(x)

which is proportionate to m/|Tx |.
We assume that each vertex x ∈ N∗(v) initially holds the

number nx = |Tx |.

Sub-protocol Sort_Weight(m, v)

1. The initiating separator v sends a signal to each of its
neighbors. Upon receiving this signal, each neighboring
vertex x ∈ N∗(v) returns a message to v containing nx .

2. Upon receiving the value nx from x , vertex v sets q(x) to
be the integer satisfying nx ∈ Jq(x)(m), returns to x the
number ρ(x) = 2q(x)+3 + cq(x)(v) and sets cq(x)(v) =
cq(x)(v) + 1.

Claim For every 1 ≤ q ≤ �log n�, at any time during the
execution of the sub-protocol, the following hold.

1. cq(v) < 2q+1,
2. If x ∈ N∗(v) has already been assigned a number ρ(x),

then ρ(x) ∈ Iq iff nx ∈ Jq(m),
3. The counters invariant is satisfied.

Proof We prove the claim by induction on the number of
times Step 2 is applied in Sub-protocol Sort_Weight(m, v).
Assume by induction that the claim holds after the k’th appli-
cation of Step 2 and consider the k + 1’st application of Step
2, in which some vertex x ∈ N∗(v) satisfies nx ∈ Jq(x)(m).

By our induction hypothesis and by the second and third
parts of the claim we obtain that cq(x)(v) − 1 vertices y ∈
N∗(v) have already been assigned a number ρ(y) ∈ Iq(x),
and that for each such vertex y, ny ∈ Jq(x)(m). Together
with x we obtain that there exist at least cq(x)(v) neighbors
w ∈ N∗(v) such that nw ∈ Jq(x)(m). Since every two neigh-
bors u, w ∈ N∗(v) satisfy Tu ∩ Tw = ∅, we obtain the first

123

148 A. Korman, D. Peleg

part of the claim. The second and third parts of the claim
follow directly from the first part and from the description of
Sub-protocol Sort_Weight(m, v). The claim thus follows
by induction. ��
The proof of the following claim is straightforward.

Claim MC(Sort_Weight(n, v)) = O(deg(v)).

We now describe Protocol Stat_Sep(T). Initially all the
labels are identical; for every vertex v ∈ T , Lsep(v) = 〈0〉.
Protocol Stat_Sep(T) recursively calls Protocol Stat_Sep
(T ′), where T ′ is a subtree of T rooted at some vertex s.

Protocol Stat_Sep(T) (for T rooted at r)

1. The root r invokes Sub-protocol Find_Sep(T), which
calculates the value ω(v) for every vertex v and outputs
a perfect separator v of T .

2. The root r broadcasts ω(r) = |T | to all the tree vertices.
3. Upon receiving ω(r), every vertex x ∈ N∗(v) creates

the number nx as follows.
If x is a child of v in T then it sets nx = ω(x) (as
calculated by Protocol Find_Sep),
If x is a parent of v in T then it sets nx =ω(r)−ω(x)+1.

4. The chosen separator v invokes Sub-protocol Sort_
Weight(ω(r), v), after which every vertex x ∈ N∗(v)

is given a unique number ρ(x).
5. For every vertex x ∈ N∗(v) and every vertex w ∈ Tx ,

set Lsep(w) = Lsep(w) ◦ ρ(x).
6. Each vertex x ∈ N∗(v) recursively invokes Protocol

Stat_Sep(Tx) at x .

Figure 2 illustrates an example of the labels assigned by
Protocol Stat_Sep on some tree T .

The following lemma follows directly from the descrip-
tion of Protocol Stat_Sep(T) and from the second part of
Claim 3.2.

Lemma 1 After Protocol Stat_Sep(T) is invoked, the fol-
lowing properties are satisfied for every 1 ≤ k and every two
vertices v and u in T .
Static separator properties:

SS1: If u �= v then Lsep(u) �= Lsep(v),
SS2: If u is the level-k separator of v then Lsep(u) =

Lsep
1 (v) ◦ Lsep

2 (v) ◦ · · · ◦ Lsep
k (v),

SS3: If Lsep
k+1(v) ∈ Iq then |Tk+1(v)| ∈ Jq(|Tk(v)|).

The correctness and complexity bounds of Protocol
Stat_Sep(T) are described in the following lemma.

Lemma 2 The labels assigned by Protocol Stat_Sep(T) to
the vertices of T form a separator decomposition representa-
tion of T . Moreover, Protocol Stat_Sep(T)has the following
complexities.

u

w

v

r

x

p

L(v)=<0>

L(w)=<0,16>

L(u)=<0,17>

L(x)=<0,17,64>

L(p)=<0,17,16>

T L(r)=<0,17,16,16>

Fig. 2 An example of the labels assigned by Protocol Stat_Sep on
some tree T . In the depicted tree T , rooted at r , the vertex v is the level-1
separator of T . Therefore, the label of v is L(v) = 〈0〉. The size of T is
19. Deleting v breaks T into two subtrees, both of size 9; the separator
of one of them is w and the separator of the other is u. Assuming that the
label of w is assigned before the label of u, we get L(w) = 〈0, 23+1〉 =
〈0, 16〉 and L(u) = 〈0, 17〉. Deleting u from T ∗(u) breaks it into three
subtrees, of sizes 1, 3 and 4 respectively. The subtree of size 1 formed
by u is T ∗(x). Since |T ∗(u)| = 9, the vertex x , which is the separa-
tor of T ∗(x), is assigned the label L(x) = L(u) ◦ 26 = 〈0, 17, 64〉.
The separator of the subtree of size 4 formed by u is p. Its label is
L(p) = L(u) ◦ 24 = 〈0, 17, 16〉. By removing p, the subtree T ∗(p)

breaks into three subtrees, each of size 1. One of them is the subtree
containing only the vertex {r}. Since the size of T ∗(p) is 4, we get that
the label of r is L(r) = L(p) ◦ 24 = 〈0, 17, 16, 16〉

1. LS(Stat_Sep, n) = O(log n),
2. MC(Stat_Sep, n) = O(n log n).

Proof The fact that Protocol Stat_Sep(T) imposes a sep-
arator decomposition representation is clear from the sta-
tic separator properties SS1 and SS2 (which are guaranteed
by Lemma 1). We now show that the static property SS3
implies that for every vertex v, the number of bits in Lsep(v)

is O(log n).
Fix a level-l vertex v. For every 1 ≤ k ≤ l, let m(k) =

|Tk(v)| and let q(k) be such that Lsep
k (v) ∈ Iq(k). By the

static separator property SS3 we obtain that for every 1 <

k ≤ l, m(k) ≤ m(k −1)/2q(k). Therefore
∏

{k|1≤k≤l} 2q(k) ≤
m(1) = n, yielding

∑
{k|1≤k≤l} q(k) ≤ log n. Since Lsep

k (v)∈
Iq(k), we get that Lsep

k (v) can be encoded using q(k) + 4b
its and therefore Lsep(v) can be encoded using

∑
{k|1≤k≤l}

(q(k)+4) ≤ log n+4·l bits. Since the depth of a perfect sep-
arator decomposition is �log n�, we obtain that l = �log n�
and the first part of the lemma follows.

Let T sep be the separator tree defined by Protocol
Stat_Sep. At the l’th level of the recursion, Protocol Stat_
Sep acts on the subtrees T ∗(v), which correspond to the

123

Compact separator decompositions in dynamic trees and applications to labeling schemes 149

vertices v at depth l in T sep. In particular, Protocol Stat_Sep
acts on disjoint subtrees in each level of its recursion. When
Protocol Stat_Sep is invoked on some subtree T ∗(v), it fol-
lows from Claims 3.2 and 3.2 that O(|T ∗(v)|) messages are
sent by Protocol Stat_Sep. Since the depth of T sep is at most
�log n�, the second part of the lemma follows. ��

4 Protocol Shuffle

4.1 Overview

Protocol Shuffle is invoked in the dynamic scenario on sub-
trees T ′ ∈ T subtrees that are suspected to violate some bal-
ance properties required in order to maintain the compact
separator decomposition on the entire tree T . The goal of
Protocol Shuffle(T ′) is to recompute a separator decompo-
sition representation on T ′ while keeping it consistent with
the global separator decomposition representation on T .

During the dynamic scenario, multiple Shuffle proto-
cols may be invoked at the same time. Whenever a vertex is
asked to simultaneously participate in more than one Protocol
Shuffle, it continues to participate only in the Shuffle pro-
tocol, operating on the lowest level subtree among them, and
the data structure at that vertex corresponding to the higher
level Shuffle Protocol is erased. (Observe that this lowest
level subtree contains all the higher level subtrees.)

We note that, as shown later, the main Protocol Dyn_Sep
ensures that if, during the time period that some Protocol
Shuffle(T ′) operates, no other Protocol Shuffle operates
on a subtree containing T ′, then the subtree T ′ remains fixed
(i.e., no topology change occurs in T ′) throughout the oper-
ation of Protocol Shuffle(T ′).

We assume that each separator v keeps ω∗
0(v), the num-

ber of vertices in T ∗(v) after the last application of Proto-
col Shuffle on a subtree containing T ∗(v). In addition, we
assume that all vertices know some upper bound N on the
number of vertices in T . (The value of N may change from
time to time as described in the next section.)

The correct operation of Protocol Shuffle relies on the
fact that the following invariants are maintained for every
level-l separator v.

The balance invariant:
The number of topology changes that occurred in T ∗(v)

from the last application of Protocol Shuffle on some sub-
tree containing T ∗(v) is at most �ω∗

0(v)/8�.

The growth property:
If Protocol Shuffle(T ∗(v)) is invoked at time t , then at

least �ω∗
0(v)/16� topology changes occurred in T ∗(v) from

time t ′ to time t , where t ′ is the last time prior to t that another
execution of Protocol Shuffle was completed on some sub-
tree containing T ∗(v).

The fact that these properties are indeed maintained is
proved in Lemma 6.1.

4.2 Informal description

Let us start with an informal description of Protocol Shuffle
(T ′). If T ′ is the entire tree T , then Protocol Shuffle(T ′)
consists of simply initializing all labels to 〈0〉, and then run-
ning Protocol Stat_Sep(T). Otherwise, if T ′ ∈ T subtrees

is a proper subtree of T , then let v be its forming separa-
tor, i.e., the separator whose removal from the subtree T ∗(v)

formed T ′. Let l be the level of v and let T 1(v), T 2(v), . . . be
the subtrees formed by v. Without loss of generality assume
T ′ = T 1(v).

As mentioned, the goal of Protocol Shuffle(T ′) is to
recompute a separator decomposition representation on T ′
while keeping it consistent with the global separator decom-
position representation on T . One way of achieving this goal
is by simply initializing the labels in T ∗(v) to Lsep(v) and
then running Protocol Stat_Sep on T ∗(v). However, this
method would yield undesirably large message complexity,
which relates to the size of T ∗(v) rather than to the size of
T ′. Instead, we propose a slightly more complicated method,
which yields only O(|T ′| log |T ′|) message complexity.

Protocol Shuffle(T ′) is conceptually composed of three
stages. In the first stage, all the labels in T ′ are initialized
to be Lsep(v) (which contains l fields). At the second stage,
the l + 1’st field of the labels in T ′, ρ(T ′), is initialized so
that it is proportionate to ω∗

0(v)/|T ′| and distinct from ρ(T i)

for every i > 1. At the third stage, Protocol Stat_Sep is
invoked on T ′ to initialize the subsequent (l + 2’nd, l + 3’rd,
etc) fields of the labels in T ′ according to a perfect separator
decomposition of T ′.

Note that as T ∗(v) is of level l, the subtree T ′ is of level
l+1, and when Protocol Stat_Sep is called on T ′ in the third
stage of Protocol Shuffle(T ′), the labels in T ′ are already
assigned l +1 fields. This is consistent with the case that T ′ is
the whole tree, in the sense that the whole tree is a subtree of
level 1, and before calling Protocol Stat_Sep(T), the labels
are initialized to contain a single field, namely, 〈0〉. Thus, no
matter whether T ′ is a proper subtree of T or whether T ′ is
T itself, when we call Protocol Stat_Sep(T ′), the labels in
T ′ are already assigned l ′ fields, where l ′ is the level of the
subtree T ′. Moreover, observe that the label of the separa-
tor of T ′ (which is of level l ′) does not change during the
application of Protocol Stat_Sep(T ′), and that the label of
any other vertex u in T ′ (which contains l(u) > l ′ fields) is
assigned during the first l(u)− 1 recursive levels of Protocol
Stat_Sep(T ′).

It is relatively easy to implement the first and third stages
of Protocol Shuffle(T ′). Let us now describe informally
how Protocol Shuffle implements the second stage. In order
for the new assigned value ρnew(T ′) to be proportionate to

123

150 A. Korman, D. Peleg

ω∗
0(v)/|T ′|, it may need to be in some different interval Iq

than before. We use the counters cq(v) (described in the
previous section) to count the number of values in Iq that
were already assigned. When vertex v wishes to assign T ′ a
new value ρnew(T ′) ∈ Iq , it selects the value 2q+3 + cq(v)

and then raises cq(v) by 1. However, in contrast to Protocol
Stat_Sep, the counters invariant is not necessarily main-
tained. Instead, the fact that 2q+3 + cq(v) ∈ Iq results from
the following more involved argument. Let S be the last exe-
cution of Protocol Shuffle on a subtree containing v. After
applying S, cq(v) was relatively small. Let T ′′ be one of the
subtrees T i (v) that received a new value in Iq after S was
invoked and let S ′′ be the Shuffle protocol applied on T ′′
after which T ′′ received this value. By combining the balance
invariant (for the separator of T ′′) with the growth property
(for T ′′), we obtain that the number of topology changes that
occurred in T ′′ from the time S was invoked until the time S ′′
was invoked is proportionate to ω∗

0(v)/2q . On the other hand,
by the balance invariant, the total number of vertices joining
T ∗(v) from the time S was invoked is at most ω∗

0(v)/8. Com-
bining these two observations, we obtain that the number of
subtrees that received a new value in Iq after S was invoked
is small enough to guarantee that 2q+3 + cq(v) ∈ Iq .

4.3 Formal description

We now give a formal description of Protocol Shuffle(T ′)
by first describing Sub-protocol Init(T ′). We distinguish
between two cases. The first case is when T ′ is the entire
tree T . In this case, Sub-protocol Init(T) is initiated at the
root (as is Protocol Shuffle(T)), and for every vertex v, it
merely initializes its label Lsep(v) to be 〈0〉, and sets cq(v),
for every −1 ≤ q ≤ �log N�, to be the counter cq at v (which
is also used by Protocol Stat_Sep). The other case is when
T ′ ∈ T subtrees and T ′ is a proper subtree of T . In this case, let
v be the forming separator of T ′, and let l be its level. Recall,
T ′ was formed after removing v from the subtree T ∗(v). In
particular, this implies that T ′ contains a single neighbor of v.
Let x(T ′) denote this neighbor of v. Sub-protocol Init(T ′) is
initiated at x(T ′) (as is Protocol Shuffle(T ′)). Throughout
this subsection we consider the proper subtree T ′ as rooted
in x(T ′).

Protocol Init(T ′)

1. The vertex x(T ′) initiating the protocol calculates |T ′|
through a convergecast operation on T ′, and delivers a
message to v containing the value |T ′|.
Let q be the integer satisfying |T ′| ∈ Jq(ω∗

0(v)). (Note
that such −1 ≤ q ≤ �log N� must exist since by the
balance invariant, |T ′| ≤ |T ∗(v)| < 2 · ω∗

0(v).)

2. The separator v broadcasts a message containing 〈Lsep

(v), ρ(T ′)〉, where ρ(T ′) = 2q+3 + cq(v), to every ver-
tex u ∈ T ′.

3. Every vertex u ∈ T ′ sets Lsep(u) = Lsep(v) ◦ ρ(T ′),
and sets cq(u) = 0 for every −1 ≤ q ≤ �log N�.

4. Vertex v updates its counter cq(v) to be cq(v) + 1.

Let x ′ be the initiator of Protocol Shuffle(T ′). As men-
tioned before, this initiator is the root if T ′ is the entire tree
and x(T ′) otherwise. The description of Protocol Shuffle
(T ′) now becomes very simple.

Protocol Shuffle(T ′)

1. The initiator x ′ invokes Init(T ′).
2. Next, x ′ invokes Protocol Stat_Sep(T ′) (recall, in this

application of Protocol Stat_Sep(T ′), we consider T ′
as rooted at x ′).

Since Protocol Init(T ′) incurs O(|T ′|) messages, we obtain
the following lemma using Lemma 2.

Lemma 3 MC(Shuffle(T ′)) = O(|T ′| log |T ′|).
Lemma 4 Assume that the balance invariant and the growth
property are maintained throughout the dynamic scenario.
Let T ′ be one of the subtrees formed by a level-l separator
v. Consider some application of Protocol Shuffle(T ′) and
assume that during its operation, no other Protocol Shuffle
operates on a subtree strictly containing T ′, and that no
topology changes occur in T ′. Then, after the application
of Protocol Shuffle(T ′), the following Shuffle properties
are satisfied for every k ≥ l and every two vertices u and w

in T ′.
Shuffle properties:

Sh1: If u �= w then Lsep(u) �= Lsep(w).
Sh2: If u is the level-k separator of w then Lsep(u) =

Lsep
1 (w) ◦ Lsep

2 (w) ◦ · · · ◦ Lsep
k (w).

Sh3: For every vertex w ∈ T ′, if Lsep
l+1(w) ∈ Iq for some q

then |T ′| ∈ Jq(|ω∗
0(v)|).

Sh4: For k > l, if Lsep
k+1(u) ∈ Iq then |Tk+1(u)| ∈ Jq

(|Tk(u)|).

Proof Consider some execution of Protocol Shuffle(T ′) as
in the lemma. Since no other protocol was operating on a
subtree containing T ′ during this execution, the labels of
the vertices in T ′ may have changed only due to Protocol
Shuffle(T ′). We also assume that the number of vertices in
T ′ remains the same, hence after the application of Protocol
Shuffle(T ′), the Shuffle properties Sh1, Sh2 and Sh4 are
clearly satisfied by Step 3 of Protocol Init(T ′), Step 2 of Pro-
tocol Shuffle(T ′) and Lemma 1. Let us now show that the

123

Compact separator decompositions in dynamic trees and applications to labeling schemes 151

Shuffle property Sh3 holds as well. Fix some w ∈ T ′ and
let t be the time that some Protocol Shuffle(T ′) assigned
w the l + 1’st field in its label Lsep(w). By Steps 1 and 2 of
Protocol Init(T ′), Lsep

l+1(w) = ρ(T ′) = 2q+3 +cq(v), where
q is such that |T ′| ∈ Jq(ω∗

0(v)) at time t . It is therefore left
to prove that at time t , 2q+3 + cq(v) ∈ Iq .

Let t0 be the last time before time t that some protocol
Shuffle completed its operation on a subtree containing
T ∗(v). By the first part of Claim 3.2, at time t0, the counter
cq(v) satisfies cq(v) < 2q+1. Let
 be the set of Shuffle pro-
tocols that were invoked between time t0 and time t on a sub-
trees T i (v) formed by v, and satisfying |T i (v)|∈
Jq(ω∗

0(v)) at the time the protocol took place. For every
S ∈
, let T (S) denote the subtree on which S was invoked.
Note that between time t0 and time t , no Protocol Shuffle
was operating on a subtree containing v. Therefore, between
time t0 and time t , the value cq(v) can only change due
to an application of some protocol Shuffle ∈
, which
increases the value cq(v) by 1 (this happens in Step 4 of Pro-
tocol Init(T (S))). Since at time t0, the counter cq(v) satisfies
cq(v) < 2q+1, it is enough to show that |
| ≤ 2q+3−2q+1 =
6 · 2q .

Fix some S ∈
. Let t s be the time in which S was invoked
and let t s

0 be the last time before t s that some other Shuffle
protocol was completed on a subtree containing T (S).
Clearly t0 ≤ t s

0 ≤ t s ≤ t . Let φ(S) be the number of topol-
ogy changes that occurred in T (S) from time t s

0 until time
t s . Let ωs (respectively, ωs

0) be the number of vertices in
T (S) at time t s (resp., t s

0). Note that since S ∈
, we have

that ωs ∈ Jq(ω∗
0(v)), and in particular,

ω∗
0(v)

2q+1 ≤ ωs . By the

balance invariant, ωs < 9
8ωs

0 and therefore 8
9 · ω∗

0(v)

2q+1 < ωs
0.

On the other hand, by the growth property, φ(S) ≥ ωs
0

16 and
therefore, we obtain

φ(S) ≥ ωs
0

16
≥ ω∗

0(v)

36 · 2q
.

By the balance invariant, we obtain that
∑

S∈
 φ(S) ≤ ω∗
0(v)

8
and therefore

|
| · ω∗
0(v)

36 · 2q
≤ ω∗

0(v)

8
.

This yields that |
| ≤ 36
8 ·2q < 6 ·2q as desired. The lemma

follows. ��

5 Controllers and reset protocols

As mentioned before, Protocol Dyn_Sep invokes Protocol
Shuffle(T ∗(v)) whenever the number of topology changes
in T ∗(v) becomes proportionate to the size of T ∗(v). For
this purpose, we make use of a variant of the 〈M, W 〉-con-
trollers from [16], which allows us to control and estimate
the number of topology changes in the subtrees T ∗(v).

〈M, W 〉-controllers and κ-controllers

The 〈M, W 〉-controller of [16] is a distributed protocol that
can operate in the leaf-dynamic model. The input to the con-
troller comes in form of a sequence of requests arriving online
at different vertices. In our setting, each request is for imple-
menting a topology change at a vertex. After a finite time,
from the time a request arrives, the controller answers the
request by assigning it a permit. Each permit may be assigned
to at most one request. A topology change at a vertex u takes
place only after the corresponding request at u receives a
permit from the controller protocol. Moreover, it is assumed
that the topology change indeed occurs eventually, after the
corresponding request receives a permit.

We would like to point out that the requests arriving at
a node w are handled by the controller one by one, in the
order of their arrival to w. If a request τ is being handled by
the controller, and has not been granted a permit yet, then
all subsequent requests arriving at w are put in a queue at
w. When τ is finally granted a permit, the requests from the
queue are dequeued one by one, according to the First In First
Out discipline, and are then handled by the controller.

In one variation, the 〈M, W 〉-cController of [16] may ter-
minate at some time t , which implies in particular, that no
request is granted a permit after time t , and hence no topol-
ogy change occurs after that time. The 〈M, W 〉-controller
guarantees the following, for every sequence of requests.

– At most M permits are given to requests, and therefore at
most M topology changes occur.

– If the controller terminates at some time t , then at least
M − W topology changes have occurred by that time. On
the other hand, if the controller does not terminate even-
tually, then every requested topology change eventually
occurs.

Note that the above conditions imply that if the controller
does not terminate eventually, then the scenario of requests
consists of at most M requests. The message complexity of
the 〈M, W 〉-controller is O(n0 log2 n0 · log M

W+1) +
O

(∑
j log2 n j · log M

W+1

)
. In particular, if M = O(W) and

M =O(n0) then the message complexity is O(n0 log2n0).
The controllers used in this paper are almost always 〈�κ�,

�κ/2�〉-
controllers for real κ > 0, hereafter referred to simply as
κ-controllers. In particular, for a vertex v, let

κ(v) = ω∗
0(v)/8 .

Protocol Dyn_Sep applies a κ(v)-Controller on every sub-
tree T ∗(v). When considering the operation of the κ(v)-con-
troller on the subtree T ∗(v), we assume that this subtree is
rooted at v. In particular, a vertex u participates in multiple

123

152 A. Korman, D. Peleg

controllers, one operating on each ancestor subtree Ti (u) of
u. The permits issued by a controller operating on a level-i
subtree are called level-i permits. In Protocol Dyn_Sep, a
topology change at a vertex u of level l(u) occurs only after
receiving a level-i permit for each 1 ≤ i ≤ l(u).

In fact, the κ(v)-controller used by Protocol Dyn_Sep
is a slightly modified variant of the controller of [16] men-
tioned above. Let us first note that just before the controller
of [16] terminates, it performs a downcast and upcast oper-
ation, for making sure that all the permits that were sup-
posed to be delivered by the controller to requests reach their
destination, and that subsequently, all corresponding topol-
ogy changes occur. Since in Protocol Dyn_Sep a topology
change may occur only after receiving a level-i permit for
each 1 ≤ i ≤ l(u), we let the κ(v)-controller employ a
slightly modified version of this downcast and upcast opera-
tion. Specifically, the operation is modified to guarantee the
following conditions.

– All the level-l permits that were supposed to be deliv-
ered by the κ(v)-controller to requests, reach their des-
tination. Moreover, if some vertex u received the level-l
permit, and has not yet received some level-i permit for
l(u) ≥ i > l, then the broadcast operation delivers it also
a level-i permit.

– All the topology changes corresponding to requests in
T ∗(v) that were granted a level-l permit, indeed occur.
Note that for this condition to hold, the broadcast may
need to wait for a level-i permit to be delivered to the
request, for every 1 ≤ i < l.

The controller terminates when the upcast is completed (and
therefore the above conditions hold). The following claim
follows.

Claim Using O(ω∗
0(v) log2 ω∗

0(v)) messages, the κ(v)-con-
troller, operating on T ∗(v), guarantees the following, for the
time period it operates.

– At most �κ(v)� topology changes occur in T ∗(v),
– If the κ(v)-controller terminates, then the number of

topology changes that occurred in T ∗(v) is at least
�κ(v)/2�.

The Reset protocol

Note that it might happen that a controller starts to handle
a request, but does not grant it a permit eventually (since
it terminates before granting the request). We refer to such
requests as unanswered.

As described later, after the controller on T ∗(v) termi-
nates, Protocol Shuffle is invoked on T ∗(v). When the
Shuffle protocol is completed, T ∗(v) is decomposed

according to a new separator decomposition. In many cases,
a new controller will then start on each of the decomposed
subtrees in T ∗(v) (including, in particular, on T ∗(v) itself).
Therefore, each vertex w ∈ T ∗(v) will start participating in a
new controller on Tj (w), for every level l(w) ≤ j ≤ l(v). If
there exists an unanswered request τ at the node w at the time
it starts participating in a new controller, then with regard to
this controller, node w starts handling the request τ from
scratch.

Note that we must still guarantee that whenever a topology
change is requested, it will indeed occur eventually. Poten-
tially, the unanswered request τ , which was not granted a
permit by the previous controller on Tj (w), might again fail
to receive an answer from the new controller on Tj (w), due
to the asynchronous nature of the setting. If this happens
repeatedly, then the request might remain unanswered for-
ever. In order to prevent such a phenomenon from happening,
we employ Protocol Reset(T), which is applied whenever
Protocol Shuffle completes its operation on the entire tree
T . The protocol consists of a simple broadcast and upcast
operation that starts at the root and enables the occurrence
of all the topology changes that correspond to unanswered
requests. When Protocol Reset(T) completes its operation,
Protocol Shuffle is invoked again on the entire tree T .

6 Dynamic separator decomposition

We now describe the main Protocol Dyn_Sep, whose goal is
to maintain a compact separator decomposition representa-
tion in the dynamic tree T . Protocol Dyn_Sep occasionally
invokes Protocol Shuffle on different subtrees. Informally,
the correctness of Protocol Dyn_Sep depends on the fact
that the Shuffle properties hold when a Shuffle protocol
is completed. However, these are only guaranteed assum-
ing that the balance invariant and the growth property are
maintained when the Shuffle protocols take place. Protocol
Dyn_Sep guarantees these assumptions by invoking Protocol
Shuffle(T ∗(v)) whenever the number of topology changes
in T ∗(v) becomes proportionate to the size of T ∗(v).

Let N be twice the size of the tree T after the last appli-
cation of Protocol Shuffle(T) was completed. We assume
that every vertex v keeps the value ω∗

0(w) for each of its
separators w. (This assumption can be removed by slightly
modifying Protocol Shuffle.) In particular, each vertex in
T knows N .

Protocol Dyn_Sep

1. Initially, Protocol Shuffle is invoked on the entire initial
tree T .

2. The root broadcasts a signal allowing every vertex u to
participate in the κ(v)-Controller operating on T ∗(v), for
every separator v of u (for any such controller, T ∗(v) is

123

Compact separator decompositions in dynamic trees and applications to labeling schemes 153

considered to be rooted at v). A permit issued by a con-
troller operating on a level-l subtree is called a level-l
permit. A topology change at vertex u occurs only after
receiving a level-i permit for each 1 ≤ i ≤ l(u). Once
the topology change occurs, the corresponding level-i
permits are consumed.
The requests arriving at a node u are kept in a queue at
u. Once a topology change (which corresponds to the last
granted request at u) occurs at u, a request from the queue
at u is dequeued according to the First In First Out disci-
pline and is handled by all corresponding controllers.

3. Whenever some κ(v)-Controller on T ∗(v) terminates,
the following happens.
(a) Vertex v invokes Protocol Shuffle(T ∗(v)). When-

ever a vertex is asked to simultaneously participate
in more than one Protocol Shuffle, it continues to
participate only in the Shuffle protocol operating
on the lowest level subtree among them, and the data
structure at that vertex corresponding to the higher
level Shuffle Protocol is erased. In addition, when-
ever a vertex u participates in some level-l Shuffle
protocol, it stops participating in the level-i con-
trollers for any i > l, and the corresponding data
structure at u is erased.

(b) Consider some application of Protocol Shuffle
(T ∗(v)) which was not applied by Step 1 above.
Once Protocol Shuffle(T ∗(v)) is completed, the
following happens.
– If T ∗(v) is a proper subtree of T , then v broad-

casts a signal to all nodes w in T ∗(v). When a
node w ∈ T ∗(v) receives this signal, the fol-
lowing happen.
For every separator u ∈ T ∗(v) of w (i.e., for
every separator u ofw of level j such that l(w) ≥
j ≥ l(v)), node w starts participating in a new
κ(u)-Controller on T ∗(u), where κ(u)=ω∗

0(u),
for the new value of ω∗

0(u). (Recall that the new
value of ω∗

0(u) was calculated during the oper-
ation of Protocol Shuffle(T ∗(v)).)
When u starts participating in new controllers,
then, if there exists an unanswered request at u,
then the controllers start handling this request
from scratch (and all other requests at u con-
tinue to wait in the queue). Otherwise, a request
from the queue is dequeued according to the
First In First Out discipline, and is then handled
by the controllers.

– Otherwise (T ∗(v) = T), v invokes Protocol
Reset(T) (which enables all topology changes
that correspond to unanswered requests to
occur). When Protocol Reset(T) is completed,
the current tree is considered as the new
initial tree and Protocol Dyn_Sep is then invoked

on this (new) initial tree (in particular, in Step
1 of Protocol Dyn_Sep, Protocol Shuffle is
invoked on the entire tree).

4. Consider the case that a new vertex u is added as a child of
a level-l separator v, and that this topology change does
not occur as a part of Protocol Reset(T). In this case, u
becomes the separator of the new l + 1’st-level subtree
Tu = {u}. We consider u to be a child of v in the sepa-
rator decomposition tree T sep. When u joins the tree it
invokes Protocol Shuffle({u}) after which u is assigned
the label Lsep(u). When the protocol is completed, Step
3.b above is applied. (In particular, this means that u
invokes the (1, 0)-Controller on Tu .)

6.1 Correctness

We consider the protocol as running in iterations, which are
separated by Reset(T) protocols. More precisely, an itera-
tion starts with the completion of Protocol Shuffle on the
entire tree T and ends with the completion of the consec-
utive application of Protocol Shuffle(T) (if one exists).
The next iteration starts only after the following Reset(T)

and Shuffle(T) protocols are completed. (The first itera-
tion starts after the first Shuffle protocol on the initial tree
is completed.)

Recall that correctness is required only for quiet times, and
note that between iterations, the system is not quiet (because
at any time between iterations, either Protocol Reset(T) or
Protocol Shuffle(T) is running). Therefore, we only need
to prove that the scheme is correct during the quiet times in
each iteration.

We say that a vertex v is quiet at time t if no Protocol
Shuffle is operating at that time on a subtree strictly con-
taining T ∗(v).

Claim Fix some Protocol Shuffle(T ∗(v)) and assume that
v remains quiet during the time period T in which Protocol
Shuffle(T ∗(v)) operated. Then no topology change occurs
in T ∗(v) during the time period T .

Proof Since v remains quiet during the time period T , a
topology change at a vertex w ∈ T ∗(v) may occur only
after the corresponding request at w receives a level-l per-
mit from a controller which is operating on T ∗(v) during the
time period T . However, at that time period, no controller is
operating on T ∗(v), and therefore during that time period,
no topology change can occur in T ∗(v). ��
Claim Every invoked protocol Reset is eventually com-
pleted, and every invoked Protocol Shuffle(T ∗(v)) is either
completed eventually or v is not quiet at some time during
its operation.

Proof Consider first an invocation of Protocol Shuffle
(T ∗(v)), such that v remains quiet throughout its opera-

123

154 A. Korman, D. Peleg

tion. By the previous claim, the subtree T ∗(v) remains fixed
throughout the operation of this Protocol Shuffle(T ∗(v)).
Thus, the protocol is eventually completed.

Consider now an invocation of protocol Reset(T). The
only way such a protocol may not be completed, is if verti-
ces are constantly being inserted to the tree. Note, that dur-
ing the time period in which Protocol Reset operates, only
topology changes that correspond to unanswered requests
may occur. Moreover, observe that there is at most one unan-
swered request at each node w. Thus, the number of nodes
during the operation of a Protocol Reset(T) is at most twice
the number of nodes that were when the protocol was ini-
tiated. It follows that the invocation of Protocol Reset is
completed eventually. ��
Claim Every requested topology change eventually occurs.

Proof Recall that the requests arriving at a node u are han-
dled by the controllers one by one, in the order of their arrival
to u. Assume, by contradiction that there exists a request such
that the corresponding topology change did not occur even-
tually. Let τ be the first such request, and let u be the vertex
to which τ arrived. It follows from the previous claim, that
since all the topology changes that correspond to requests
that arrived to u prior to τ have occurred, the request τ was
dequeued and handled by the corresponding controllers at
some time t .

If the request τ received a level-i permit for each 1 ≤
i ≤ l(u), then the corresponding topology change would
have occurred eventually, contradicting our assumption. We
therefore get that τ never received a level-i permit for some
1 ≤ i ≤ l(u). Thus, from time t , the request τ was not
answered by any controller that was operating on Ti (u). If
Protocol Reset(T) was applied after time t , then the corre-
sponding topology change would have occurred since τ is
unanswered. Therefore, no Protocol Reset(T) was applied
after time t .

Recall that if a controller on Ti (u) was not terminated
eventually and was not stopped (in Step 3(a) of Protocol
Dyn_Sep) by some Protocol Shuffle (operating on a sub-
tree containing Ti (u)), then all the requests in vertices of
Ti (u) eventually receive a level-i permit. It therefore follows
that there exists a level j such that the number of controllers
that were operating on Tj (u) after time t and were terminated,
is infinite. By Claim 5 it follows that the number of topology
changes in T is infinite, and therefore, again by Claim 5, the
controller that operates on the entire tree T at time t must
terminate at some later time. Therefore, by Step 3(b) in Pro-
tocol Dyn_Sep, Protocol Reset(T) must be applied at least
once after time t , contradiction. ��

The following claim follows from Claim 5 and from the
fact that during the execution of a given iteration, the only
cases where Protocol Shuffle(T ∗(v)) is applied are imme-
diately after the corresponding κ(v)-Controller terminates.

Claim Fix an iteration of the protocol. The balance invariant
and the growth property are maintained at all times during
the execution of the iteration.

Recall that N/2 is the size of tree T after the last applica-
tion of Protocol Shuffle(T) was completed. The following
claim is obtained by the growth property and the balance
invariant (applied on the entire tree T). Recall that n denotes
the current number of vertices in T .

Claim During a given iteration, n satisfies N/4 < n < N .

By Lemma 4, Claims 6.1, and 6.1, we obtain the following
lemma.

Lemma 5 Consider an application of Protocol Shuffle
(T ∗(v)) and assume that v remains quiet during its oper-
ation. Then after Protocol Shuffle(T ∗(v)) completes its
operation, the Shuffle properties are satisfied for every
k ≥ l and for every two vertices u and w in T ∗(v).

Recall that by item 3(a) in Protocol Dyn_Sep, whenever
a vertex is asked to simultaneously participate in more than
one Protocol Shuffle, it continues to participate only in
the Shuffle protocol operating on the lowest level subtree
among them. Therefore, if v does not remain quiet during
the application of Protocol Shuffle(T ∗(v)), then before the
next quiet time (in which the whole system is quiet), all nodes
in T ∗(v) will participate in some Protocol Shuffle(T ∗(u)),
where T ∗(u) strictly contains T ∗(v), and u remains quiet
during the application of Protocol Shuffle(T ∗(u)). By this
observation and by the above lemma we obtain the following
corollary.

Corollary 1 At any quiet time, the following properties are
satisfied for any two vertices u and w.

– If u �= w, then Lsep(u) �= Lsep(w),
– If u is the level-k separator of w, then Lsep(u) = Lsep

1 (w)

◦ Lsep
2 (w) ◦ · · · ◦ Lsep

k (w).

Corollary 2 At any quiet time, Protocol Dyn_Sep maintains
a separator decomposition representation on T .

6.2 Analysis

6.2.1 Label size

Before showing that the label size of the scheme is O(log n),
we need the following lemma, which is a relaxation of the
static separator property SS3.

Lemma 6 Fix an iteration, a vertex v and a time t during
the iteration, such that no Shuffle protocol is operating on
a subtree containing T ∗(v) at time t. Let T 1(v), T 2(v) . . .

123

Compact separator decompositions in dynamic trees and applications to labeling schemes 155

be the subtrees formed by v (at time t). Then, at time t, for
every i ≥ 1 and for every w ∈ T i (v), if Lsep

l+1(w) ∈ Iq then
|T i (v)| ∈ Ĵq(ω∗

0(v)).

Proof Fix some i and let T ′ = T i (v). Let w be some vertex
in T ′ and denote by S the Shuffle protocol in which the
current value of Lsep

l+1(w) was assigned. Let T (S) denote the
subtree on which S was invoked (note that T (S) contains
T ′). Let t0 be the time when S assigned w its label. Let q
be the integer such that Lsep

l+1(w) ∈ Iq at time t0. Note that
between time t0 and time t , the value of Lsep

l+1(w) remains
the same, and therefore, in particular, remains in Iq . Let T ′

0
be the subtree T ′ at time t0. Let s be the separator of T ′, i.e,
T ′ = T ∗(s).

We now claim that s is quiet throughout the time period
T (S) that S operates. Otherwise, some Protocol Shuffle
is operating at some time during T (S), on a subtree T ′′
strictly containing T ′, i.e., T ′′ ⊇ T ∗(v). By the choice of
S, Protocol Shuffle(T ′′) assigned w a label after time t .
Therefore, Protocol Shuffle(T ′′) was operating in time t ,
contradicting the assumptions of the lemma. We therefore
get that s is quiet throughout the time period T (S). There-
fore, by Lemma 5, the shuffle properties hold on T (S) when
S completes its operation. Note also, that by Claim 6.1, the
number of vertices in T (S) remains the same throughout
the operation of S. We thus have |T ′

0| ∈ Jq(ω∗
0(v)), i.e.,

ω∗
0(v)/2q+1 ≤ |T ′

0| < ω∗
0(v)/2q .

By the balance invariant, at time t we have 7
8 |T ′

0| ≤ |T ′| ≤
9
8 |T ′

0|, implying that

ω∗
0(v)

2q+1 ≤ |T ′
0| ≤ 8

7
|T ′| ≤ 9

7
· |T ′

0| < 2|T ′
0| <

ω∗
0(v)

2q−1 ,

and therefore

ω∗
0(v)

2q+2 ≤ |T ′| <
ω∗

0(v)

2q−1 .

In other words, |T ′| ∈ Ĵq(ω∗
0(v)) and the lemma follows. ��

Lemma 7 LS(Dyn_Sep, n) = O(log n).

Proof Let us first prove that there exists a fixed constant c,
such that during any iteration, |Lsep(v)| < c log n for any
vertex v and any time t , in which no Shuffle protocol is
operating on a subtree containing v.

Fix a vertex v and consider such a time t . Let l = l(v).
Recall that T1(v), T2(v), . . . , Tl(v) = {v} are the ancestor
subtrees of v. For every 1 ≤ k ≤ l, let m(k) = |Tk(v)| at
time t and let m0(k) be the value of |Tk(v)| after the last
Shuffle operation took place on a subtree containing Tk(v).

We first show that m(i) ≤ 5
7 m(i − 1), for any i > 1. Fix

i > 1, and let S be the last Shuffle protocol that was invoked
on a subtree containing Ti−1(v) before time t . Note that by the
assumption on t , S was completed before time t . Recall that

Ti−1(v), the subtree on which S was applied, was decom-
posed by S into a perfect separator decomposition, hence
m0(i) ≤ m0(i − 1)/2. By the balance invariant, the number
of topology changes occurring in Ti−1 between times t0 and
t is at most m0(i − 1)/8, and in particular, 7

8 · m0(i − 1) ≤
m(i − 1) and m(i) − m0(i) ≤ m0(i − 1)/8 at time t . Conse-
quently,

m(i) ≤ 1

8
· m0(i − 1) + m0(i) ≤ 5

8
· m0(i − 1)

≤ 5

8
· 8

7
· m(i − 1) = 5

7
· m(i − 1).

It follows that m(i) ≤ 5
7 m(i − 1), i.e., |Ti (v)| ≤ 5

7 |Ti−1(v)|.
Since this inequality is satisfied for every i > 1, we get that
l(v) < c′ log n for some fixed constant c′.

For every 1 ≤ k ≤ l, let q(k) be such that Lsep
k (v) ∈ Iq(k).

By Lemma 6, we have m(k) < m0(k − 1)/2q(k)−1 for every
1 < k ≤ l, and by the balance invariant, m0(k − 1) <

2m(k − 1). It follows that m(k) < 2m(k − 1)/2q(k)−1 =
m(k − 1)/2q(k)−2 for every 1 < k ≤ l. Therefore∏

{k|1≤k≤l} 2q(k)−2 ≤ m(1) = n, yielding
∑

{k|1≤k≤l}(q(k)−
2) ≤ log n. Since Lsep

k (v) ∈ Iq(k), we get that Lsep
k (v) can

be encoded using q(k) + 4 bits and therefore Lsep(v) can be
encoded using

∑
{k|1≤k≤l}(q(k) + 4) = 6 · l + ∑

{k|1≤k≤l}
(q(k) − 2) ≤ 6 · l + log n bits. Since l(v) < c′ log n, we
obtain that at time t , |Lsep(v)| ≤ c log n for c = 1 + 6c′.
Therefore, during an iteration, at any time t in which no
Shuffle protocol is operating on a subtree containing v, we
have |Lsep(v)| < c log n.

Consider now the case that there exist some Shuffle pro-
tocols that are operating at time t on subtrees containing v,
and let S be the Shuffle protocol operating on the largest
subtree among them. Note, that if |Lsep(v)| ≥ c log n at time
t , then S has not yet assigned v a label by time t . Otherwise
an adversary can delay any new Shuffle protocol, so that
when S is completed, the value of Lsep(v) remains as it was
in time t , but no Shuffle protocol is operating on a subtree
containing v, leading to contradiction.

It follows that if |Lsep(v)| ≥ c log n at some time t ,
then either Protocol Reset(T) is running at time t or that
there exists a Shuffle protocol that is operating at time t
on a subtree containing v, and this Shuffle protocol has not
assigned v a new label by time t .

Consequently, if at some time t the size of the label at v

exceeds c log n, then v simply erases its label. This way, the
label size is always O(log n). Moreover, erasing the label at
time t does not effect the correctness of the protocol, since
correctness is only required for quiet times, and by the above
discussion, at the next quiet time, v will have a new label of
the appropriate size. The lemma follows. ��

123

156 A. Korman, D. Peleg

6.2.2 Message complexity

Lemma 8 MC(Dyn_Sep, n̄) = O(n0 log4 n0) + O
(∑

j

log4 n j
)
.

Proof First note, that the number of messages resulting from
the different applications of Protocol Reset is bounded from
above by the number of messages resulted from the different
applications of Protocol Shuffle.

Fix an iteration, and let T be the time period in which
the iteration was executed. Let us now bound the number of
messages sent during the time period T . Recall first that by
Claim 6.1, the value N held at each vertex during this time
period satisfies N/4 < n < N

There are three types of controllers which are applied dur-
ing the time period T . The first type consists of controllers
that terminated, the second consists of controllers that are
active at the end ofT , and the third type consists of controllers
that were stopped by some Protocol Shuffle operating on a
lower level subtree (see item 3(a) in Protocol Dyn_Sep). Note
that when T is a complete time window, i.e., the second appli-
cation of Protocol Shuffle(T) took place within the time
period T , there are no controllers of the second type, since
all the controllers that where active when the Shuffle(T)

protocol took place, were stopped by that protocol and are
therefore considered as type three controllers.

Let us first bound the number of messages resulting from
the different applications of the controllers of the first type.
Fix a level l. A level-l controller is a controller operating on a
level-l subtree. Each level-l κ(v)-Controller incurs O(ω∗

0(v)

log2 N) messages. By the growth property, the fact that the
controller terminated implies that �(ω∗

0(v)) topology
changes occurred in T ∗(v) during its operation. This gives
O(log2 N) amortized message complexity per topology
change per level. Since there are O(log N) levels and O(N)

topology changes during the time period T , it follows that
the total number of messages sent by such controllers during
the time period T is O(N log3 N).

Let us now turn to bounding the number of messages
resulting from applications of controllers of the second type.
Fix a level l and consider the first time t just before the time
period T ended. At time t , different controllers (of the second
type) where active on the level-l subtrees. Since each of them
was applied on a different subtree (at any given time the level-
l subtrees are disjoint), we obtain that the total number of
messages resulted from all these controllers is O(N log2 N).
Since there are O(log N) levels, were obtain that the total
number of messages sent by controllers of the second type
during the time period T , is O(N log3 N).

Finally, let us now bound the number of messages resulting
from controller applications of the third type. In particular,
fixing two levels l and l ′ such that l ′ < l, we consider the
messages sent by applications of level-l controllers that were

stopped by an application of some Protocol Shuffle(T ′) on
a level-l ′ subtree T ′. Fix a Protocol Shuffle(T ′), where T ′
is a level-l ′ subtree. Let t be the time Protocol Shuffle(T ′)
was completed, and let t0 be the time the previous applica-
tion of a Shuffle protocol on a subtree containing T ′ was
completed. The level-l controllers that were stopped by this
Shuffle protocol operated between time t0 and time t . These
controllers operate on disjoint subtrees, and therefore incur
O(|T ′| log2 N) messages in total. Summing over all levels
l such that l > l ′, we obtain that O(|T ′| log3 N) messages
in total are used by the third type of controllers operating in
T ′ between times t0 and t . On the other hand, by the growth
property (applied on T ′), the number of topology changes
occurring in T ′ from time t0 until time t is �(|T ′|). This
yields O(log3 N) amortized message complexity per topol-
ogy change, for controllers of the third type that were stopped
by a level-l ′ Shuffle protocols. Summing over the O(log N)

levels l ′ and O(N) topology changes during the time period
T , the total number of messages sent by the different con-
trollers during the time period T is O(N log4 N).

Let us now bound the number of messages resulting from
the different applications of Protocol Shuffle. By Lemma 3,
the number of messages resulting from the different appli-
cations of the Shuffle protocols in the iteration is asymp-
totically bounded from above by the number of messages
used by the first type of controllers, which is O(N log3 N).
Combined, the total number of messages sent during the time
period T is O(N log4 N).

Let Tγ be time period corresponding to the γ ’th iteration.
Let Mγ be the number of messages sent during Tγ and let
Nγ be the number of vertices at the beginning of Tγ . By the
discussion above, Mγ = O(Nγ log4 Nγ).

Let k ≥ 1 be the number of iterations. For every 1 ≤
γ ≤ k, the number of messages send during the Reset(T)

and Shuffle(T) protocols which were invoked just before
the γ ’th iteration started is bounded by O(Nγ log Nγ). We
therefore have,

MC(Dyn_Sep, n̄) = O

⎛

⎝
k∑

γ=1

Mγ

⎞

⎠

= O

⎛

⎝
k∑

γ=1

Nγ log4 Nγ

⎞

⎠ . (1)

Note that if k > 1 then for all 1 ≤ γ < k, the number
of topology changes occurring during Tγ is �(Nγ). Hence
Nγ log4 Nγ = O(

∑
i log4 nγi) for every 1 ≤ γ ≤ k − 1,

where nγi is the number of vertices when the i’th topol-
ogy change during Tγ takes place. It follows that if k > 1
then O(

∑k−1
γ=1 Nγ log4 Nγ) = O(

∑
j log4 n j), where n j is

the number of vertices when the j’th topology change takes
place. In addition, for k ≥ 1, we clearly have Nk log4 Nk =
O(n0 log4 n0) + O(

∑
j log4 n j). Altogether, we get that

123

Compact separator decompositions in dynamic trees and applications to labeling schemes 157

∑k
γ=1 Nγ log4 Nγ = O(n0 log4 n0) + O(

∑
j log4 n j),

which implies by Equation 1 that

MC(Dyn_Sep, n̄) = O(n0 log4 n0) + O(
∑

j

log4 n j).

The lemma follows. ��
By Corollary 2 and Lemmas 7 and 8, we obtain the fol-

lowing theorem.

Theorem 1 At any quiet time, Protocol Dyn_Sep maintains
a separator decomposition representation. Moreover, Proto-
col Dyn_Sep has the following complexities.

1. LS(Dyn_Sep, n) = O(log n)

2. MC(Dyn_Sep, n̄) = O(n0 log4 n0) + O(
∑

j log4 n j).

7 Applications: dynamic labeling schemes for trees

In this section we describe our improved dynamic labeling
schemes, all of which use O(n0 log4 n0) + O(

∑
j log4 n j)

message complexity. We begin with describing our dynamic
compact ancestry labeling scheme.

7.1 Improved ancestry labeling scheme on dynamic trees

We first introduce a new static compact labeling scheme,
πStat_Anc = 〈MS A,DS A〉, supporting the ancestry relation,
and then show how to extend it to obtain Scheme πDyn_Anc =
〈MD A,DD A〉 for the dynamic setting. Scheme πStat_Anc

uses the separator decomposition representation obtained by
Scheme πStat_Sep. For every two vertices v and u, let s(v, u)

denote the NCA of v and u in T sep. Scheme πStat_Anc is
based on the fact that a vertex v is an ancestor of a vertex
u iff v is an ancestor of s(v, u) and u is a descendant of
s(v, u). The label L(v) given by the marker algorithm MS A

to a vertex v is composed of two sublabels, namely, the sepa-
ration sublabel, Lsep(v), and the relative sublabel , Lrel(v).
The separation sublabel Lsep(v) is the label given to v by
the scheme πStat_Sep. The relative sublabel Lrel(v) is com-
posed of l(v) fields. The j’th field of Lrel(v) contains two
bits indicating whether s j (v), the level- j separator of v, is
an ancestor of v in T , descendant of v in T or neither.

Given two labels L(v) and L(u), of two vertices v and u,
one can extract the level i of s(v, u) using the correspond-
ing separation sublabels and then find whether in T , v is an
ancestor of s(v, u) and whether u is a descendant of s(v, u),
using the i’th field of the corresponding relative sublabels.

In the dynamic scenario, the separation sublabels are main-
tained using the dynamic scheme πDyn_Sep. In order to main-
tain the relative sublabels, we slightly modify Protocol
Shuffle so that whenever a vertex v is assigned a new level-
j separator, the j’th field in its relative sublabel is updated

appropriately, according to whether v is an ancestor, descen-
dant or neither of this separator. By Theorem 1 we therefore
obtain the following theorem.

Theorem 2 Scheme πDyn_Anc maintains a compact ances-
try labeling scheme using O(n0 log4 n0) + O(

∑
j log4 n j)

messages.

7.2 Improved dynamic routing labeling schemes

We now briefly describe our dynamic routing schemes πrout

which have optimal label size up to a multiplicative factor of
O(log log n). I.e., the label size of πrout is O(log n ·log log n)

for the designer port model, and O(log2 n) for the adversary
port model.

Let v be some vertex, and let l(v) be the level for which v

was chosen as a separator. For each 1 ≤ i ≤ l(v), let si (v) be
the i’th separator of v. The label of v given by πrout is com-
posed of three sublabels. The first is the separator sublabel
Lsep(v) which is the label given to v by πDyn_Sep (recall that
Lsep(v) contains l(v) fields). The second and third sublabels
are the port-to-separator sublabel Lto−sep(v) and the port-
from-separator sublabel L f rom−sep(v). Each of these subla-
bels also contains l(v) fields. The i’th field in Lto−sep(v),
namely Lto−sep

i (v), is the port number at v, leading from v

to the next vertex on the shortest path connecting v and si (v).
The i’th field in L f rom−sep(v), namely L f rom−sep

i (v), is the
port number at si (v), leading from si (v) to the next vertex on
the shortest path connecting si (v) and v. By slightly modify-
ing Protocol Shuffle, we can ensure that whenever Protocol
Dyn_Sep updates the i’th field in Lsep(v), the i’th fields in
the sublabels Lto−sep(v) and L f rom−sep(v) are also updated
appropriately.

Given the labels L(u) and L(v) of two vertices u and
v, the port number at u, leading from u to the next vertex
on the shortest path connecting u and v, is determined as
follows. If Lsep(u) is a prefix of Lsep(v) and Lsep(u) con-
tains i fields, then u = si (v) and therefore the desired port
number is L f rom−sep

i (v). If, on the other hand, Lsep(u) is
not a prefix of Lsep(v) then let i be the last index such that
Lsep

i (u) = Lsep
i (v). In this case, the i’th separator of u, si (u),

must be on the path connecting u and v and must be different
than u. Therefore, the desired port number is Lto−sep

i (u).
Schemeπrout is clearly a correct dynamic routing schemes.

Let us now analyze its label size. First, for each vertex v, the
separator sublabel Lsep(v) contains O(log n) bits. Both the
port-to-separator sublabel Lto−sep(v) and the port-from-sep-
arator sublabel L f rom−sep(v) contain O(log n) fields, where
each such field contains a port number. Recall that it is
assumed that each port number is encoded using O(log n)

bits. It follows that in the adversary port model, the label size
of Scheme πrout is O(log2 n).

123

158 A. Korman, D. Peleg

Let us now consider the designer port model and describe
the method by which each vertex u chooses its port numbers,
so that the label size of Scheme πrout is O(log n · log log n).
Let Esep(u) be the set of edges leading from u to the next ver-
tex on the shortest path connecting u and one of its ancestors
in T sep. Since u has l(u) = O(log n) such ancestors, Esep(u)

contains O(log n) edges. For each edge e ∈ Esep(u), vertex
u chooses a unique port number in the range {1, 2, . . . , l(u)}.
Therefore, each such port number can be encoded using
O(log log n) bits. We therefore immediately get that for every
vertex v, the port-to-separator sublabel Lto−sep(v) can be
encoded using O(log n · log log n) bits. We now describe the
method by which each vertex u chooses its remaining port
numbers, i.e., the port numbers of the edges not in Esep(u).
For each such edge e, let T i (u) be the corresponding sub-
tree formed by u. The corresponding port number at u is
set to be the number l(u) + ρ(T i (u)), where ρ(T i (u)) is
the number given to T i (u) by Protocol Dyn_Sep. We there-
fore obtain that the port numbers incident to u are disjoint.
As mentioned, for a fixed vertex v and i ≤ l(v), the port
number L f rom−sep

i (v) is leading from si (v) to x , the next
vertex on the shortest path connecting si (v) and v. If the
edge (si (v), x) belongs to Esep(si (v)) then L f rom−sep

i (v) is
encoded using O(log log n) bits. Otherwise, the number of
bits in L f rom−sep

i (v) is O(log log n) plus the number of bits
used to encode the i + 1’st subfield in Lsep(v). Therefore,
the number of bits used to encode L f rom−sep(v) is at most
O(log n · log log n) + O(log n) = O(log n · log log n). The
proof of the following theorem follows.

Theorem 3 Scheme πrout is a correct dynamic routing
scheme that with message complexity MC(πrout , n̄) = O(n0

log4 n0) + O(
∑

j log4 n j). Moreover, the labels it produces
are of optimal length, up to a multiplicative factor of O(log
log n). I.e., the label size of πrout is O(log2 n) for the adver-
sary port model, and O(log n ·log log n) for the designer port
model.

7.3 Improved NCA labeling schemes: sketch

In this subsection we sketch the ideas behind our improved
dynamic compact NCA labeling scheme. We first describe a
static labeling scheme πStat_NC A supporting the NCA rela-
tion on trees. The labels assigned by πStat_NC A are almost
identical to the labels given by the corresponding NCA label-
ing scheme in [21], with the restriction that in [21] they use
the DFS ancestry labeling scheme as a building block to their
NCA scheme while we use our πStat_Anc ancestry scheme
instead. (In [21], the id-based NCA problem is referred to as
the LCA problem.) Then, using our dynamic ancestry label-
ing scheme πDyn_Anc and Protocol Heavy_Child from [19]
(which maintains a dynamic δ-heavychild decomposition),

we extend the static NCA labeling scheme πStat_NC A to the
dynamic setting.

Let us note that the NCA problem assumes that each ver-
tex has a unique identifier that is encoded using O(log n)

bits, where n is the current number of vertices in the tree. We
assume that the identifiers are assigned by an adversary, and
that it is maintained that

(1) once an identifier is assigned, it may no longer be
changed, and

(2) each identifier is encoded using O(log n) bits, where n
is the current number of vertices in the tree.

Alternatively, we note that our scheme can be slightly
modified so that it will also work correctly assuming that
the identifiers are chosen by the designer of the algorithm.
This can be done using the method in [16], that shows how to
assign and maintain disjoint identifiers in the range [1, 2n] at
the vertices of the dynamic tree, using message complexity
O(n0 log2 n0)+O(

∑
j log2 n j). One problem that may arise

is that in the method of [16], the identifiers are changed occa-
sionally. However, since the changes are made only when the
entire tree is rearranged, the NCA scheme may be initialized
at that time to overcome this problem. For simplicity of pre-
sentation, we do not give a formal description of how to
implement this, and assume, instead, that the identifiers are
given by an adversary, as discussed above.

For each vertex v, let id(v) denote the identifier of v.

7.3.1 The static NCA labeling schemes πStat_NC A

In this subsection we describe our static NCA labeling
scheme πStat_NC A = 〈MStat_NC A,DStat_NC A〉.

We first define the following definitions which are sim-
ilar to the ones used for the description of the NCA label-
ing scheme in [21]. For every vertex v and every 0 ≤ i ≤
depth(v), let αi (v) denote v’s ancestor at depth i . In partic-
ular, α0(v) = r and αdepth(v)(v) = v. Given a δ-heavychild
decomposition of T , a non-root vertex is called small is the
edge leading to its parent in T is light. For every vertex v, the
“small ancestor” levels of v are the levels above it in which
its ancestor is small,

S AL(v) = {i | 1 ≤ i ≤ depth(v), αi (v) is small},
the small ancestors of v are:

S A(v) = {αi (v) | i ∈ S AL(v)}.
For a vertex v and 1 ≤ i ≤ depth(v), the i -triple of v con-
sists of the identifiers of its ancestors on level i − 1, i and
i + 1,

Qi (v) = 〈(i − 1, id(αi−1(v))), (i, id(αi (v))),

×(i + 1, id(αi+1(v)))〉.

123

Compact separator decompositions in dynamic trees and applications to labeling schemes 159

Let Anc(v) be the label assigned to v by our static ancestry
labeling scheme πStat_Anc. For every vertex v we define the
light sublabel of v to be:

Llight (v) = {Qi (v) | 1 ≤ i < depth(v), i ∈ S AL(v)}.
The label L(v) assigned to v by the marker algorithm
MStat_NC A is

L(v) = 〈id(v), Anc(v), Llight (v)〉.
The decoder DStat_NC A is identical to the decoder DLC A

described in [21] with the restriction that DStat_NC A uses
the decoder DStat_Anc of our static ancestry labeling scheme
instead of the decoder of the DFS ancestry labeling scheme
which is use by the decoder DLC A. By applying Lemma 3.9
and Corollaries 3.12 and 3.14 from [21] to πStat_NC A, we
obtain the following lemma.

Lemma 9 πStat_NC A is a correct NCA labeling scheme with
label size O(log2 n). Moreover, this label size is asymptoti-
cally optimal.

We now describe Protocol Stat_NC A that is initiated at
the root r of a given static tree T and assigns the same
labels as πStat_NC A. Protocol Stat_NC A uses Sub-proto-
col Light_NCA(u) which is initiated at the root r of T
and assigns the light labels to the vertices of T . Let us first
describe Sub-Protocol Light_NCA(u), assuming a δ-heavy-
child decomposition is given on T .

Sub-protocol Light_NCA(u)

1. If u is a leaf then Sub-protocol Light_NCA(u) termi-
nates.

2. For every child y of u, let Llight (y) = Llight (u).
3. If u is a non-root vertex and u is a light child of a vertex

v then let i = depth(u) and for every child y of u let
Llight (y) = Llight (y) ◦ 〈(i − 1, id(v), (i, id(u)), (i +
1, id(y))〉.

4. Each child y of u, invokes Sub-protocol Light_NCA(y).

Clearly, sub-protocol Light_NCA can be implemented
using O(n) messages of size O(log2 n). Since we restricted
the message size to be O(log n), we obtain the following.

Lemma 10 MC(Light_NCA, n) = O(n log n).

Protocol Stat_NC A

1. The root broadcasts a signal instructing all the tree verti-
ces to calculate their exact weights and depths through a
convergecast process. During the convergecast process,
each vertex v keeps a pointer to its heaviest child h(v),
i.e., a child u of v such that no other child of v has more
descendants than u.

* A 1/2-heavychild decomposition is calculated. *
2. Invoke Protocol Stat_Ancest and for every vertex v, let

Anc(v) be the label assigned to v by Protocol
Stat_Ancest.

3. Invoke Protocol Light_NCA(r) after which every ver-
tex v is assigned the light sublabel Llight (v).

4. For every vertexv, let L(v)=〈id(v), Anc(v), Llight (v)〉.

By Lemmas 9 and 10, Theorem 2 and the fact that Pro-
tocol Stat_NC A assigns the same labels as πStat_NC A, we
obtain the following lemma.

Lemma 11 πStat_NC A is a correct NCA labeling scheme
with the following complexities.

1. LS(Stat_NC A, n) = �(log2 n),
2. MC(Stat_NC A, n) = O(n log n).

7.3.2 The dynamic NCA labeling scheme πDyn_NC A

In this subsection we present our dynamic NCA labeling
scheme πDyn_NC A = 〈MDyn_NC A,DDyn_NC A〉. For sim-
plicity of presentation, we describe the scheme assuming the
serialized model. We note however, that one can rather easily
adapt the scheme for the controlled model.

The decoder DDyn_NC A is the same as the decoder of the
corresponding static scheme DStat_NC A. Protocol
Dyn_NC A first runs Protocol Dyn_Anc that maintains the
ancestry label Anc(v) at each vertex v during the dynamic
scenario. In addition, Protocol Dyn_NC A runs Protocol
Heavy_Child from [19] in order to maintain a δ-heavychild
decomposition of the dynamic tree. We note that Protocol
Heavy_Child from [19] was designed for the leaf-increas-
ing tree model, however, one can obtain a similar protocol in
the leaf-dynamic setting, using the method of [16] (instead
of the method of [3] that the protocol of [19] is based upon).
The resulted Protocol Heavy_Child has message complex-
ity O(n0 log2 n0) + O(

∑
i log2 ni).

Protocol Dyn_NC A

1. Invoke Protocol Dyn_Ancest and for every vertex v, let
Anc(v) be the label assigned by Protocol Dyn_Ancest
to vertex v.

2. Invoke Protocol Heavy_Child.
3. Whenever a vertex v of depth i changes its pointer h(v)

from uold to unew in Protocol Heavy_Child then v ini-
tiates the following.

(a) Initialize Llight (uold) = Llight (unew) = Llight (v)

(b) Invoke sub-protocols Light_NCA(uold) and
Light_NCA(unew).

4. For every vertexv, let L(v)=〈id(v), Anc(v), Llight (v)〉.

123

160 A. Korman, D. Peleg

Theorem 4 πDyn_NC A is a correct dynamic labeling scheme
supporting the NCA relation and has the following complex-
ities.

1. LS(Dyn_NC A, n) = �(log2 n),
2. MC(Dyn_NC A, n̄) = O(n0 log4 n0)+O(

∑
i log4 ni).

Proof The correctness of πDyn_NC A follows from the cor-
rectness of πDyn_Anc and from the fact that at any quiet
time, given the current heavychild decomposition maintained
by Protocol Heavy_Child, the labels assigned by Protocol
Dyn_NC A are the same as the labels assigned by
Stat_NC A for the same heavychild decomposition. The fact
that LS(Dyn_NC A, n)) = �(log2 n) follows from Theo-
rem 2, Lemma 11 and from Claim 3.5 in [19] where they
prove that Protocol Heavy_Child maintains a 3/4-heavy-
child decomposition.

Let us now show why MC(Dyn_NC A, n̄) =
O(n0 log4 n0)+O(

∑
i log4 ni). The fact that Steps 1 and 2 in

Protocol Dyn_NC A incur O(n0 log4 n0) + O(
∑

i log4 ni)

messages follows from Theorem 2 and the fact that Proto-
col Heavy_Child incurs O(n0 log2 n0) + O(

∑
i log2 ni)

messages. The proof that Steps 3(a) and 3(b) in Protocol
Dyn_NC A incur O(n0 log n0) + O(

∑
i log ni) messages

throughout the dynamic scenario follows the same steps as
the proof of Lemma 3.6 in [19]. The theorem follows. ��

7.4 Extended distance labeling schemes on dynamic trees:
sketch

In [17], they assume the serialized dynamic model and give
two β-approximate distance labeling schemes on dynamic
trees assuming that the vertices are fixed but the edge weights
may change (as long as they remain positive). Informally,
both schemes are based on the following principle. In a pre-
processing stage, a (static) separator decomposition is calcu-
lated on the tree. In this decomposition, each vertex belongs
to O(log n) subtrees, one for each level of the recursion. A
mechanism for estimating the distance to the root is applied
separately to each of the decomposed subtrees. Therefore,
each vertex v participates in O(log n) such protocols, each
corresponding to a subtree that v belongs to. This enables v

to maintain estimates to the distances between v and the roots
of these subtrees. These distance estimates are then encoded
in v’s label. The distance between any two vertices in the
dynamic tree can be retrieved from their corresponding lists
of estimates, which are encoded in their labels.

Using our dynamic separator decomposition πDyn_Sep for
the leaf-dynamic model, and applying the above mentioned
principle on the resulted dynamic separator decomposition,
the schemes in [17] can be modified to operate correctly
under more general dynamic models, allowing also leaves
to be either added or removed from the tree. Moreover, the

extended dynamic schemes incur only an extra additive
O(n0 log4 n0) + O(

∑
j log4 n j) factor to the message com-

plexity of the original schemes.

8 Conclusion

Our improved ancestry, routing and NCA labeling schemes
apply for the controlled model, which is less restricted than
the serialized model, for which the previous schemes where
given. Moreover, in the leaf-increasing model, our dynamic
schemes can operate under the weak uncontrolled model in
which the topological changes may occur in rapid succession
or even concurrently (correctness, however, is still guaran-
teed only at quiet times). This can be achieved by simulating
the controllers assuming the controlled model, and ignoring
new vertices which have not received the proper permits for
entering the tree. It may be useful to design such schemes
for even weaker dynamic models, especially ones which are
more robust under faults (for example, using backup proce-
dures). In addition, it would be interesting to design dynamic
schemes which can operate under more types of topology
changes, for example, ones which can operate also under
additions and deletions of internal vertices. In does not seem
likely that a dynamic separator would operate efficiently
under such topology changes (for example, if the level 1 sep-
arator is removed, all vertices should be notified). However,
it does seem reasonable that one could find an efficient ances-
try scheme under such topology changes, especially since the
controller of [16] can operate under such topology changes.

The main factor influencing the message complexity of our
schemes is the message complexity of the (M, M/2)-Con-
trollers of [16] which is O(n0 log2 n0) + O(

∑
j log2 n j). A

slight improvement in the message complexity of such con-
troller (if possible) would immediately improve the message
complexity of all our schemes.

Regarding the label size, we were able to construct
dynamic labeling schemes on trees, with polylogarithmic
amortized message complexity and optimal label size for
the ancestry and NCA relations. However, it still remains to
show whether one can construct compact routing labeling
schemes on trees, with polylogarithmic amortized message
complexity. In addition, this paper does not consider labeling
schemes supporting the label-based NCA relation on trees.
Constructing an efficient compact scheme for that function
seems to be a challenging task. We leave these questions
open.

References

1. Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Com-
pact labeling scheme for ancestor queries. SIAM J. Com-
put. 35(6), 1295–1309 (2006)

123

Compact separator decompositions in dynamic trees and applications to labeling schemes 161

2. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for
ancestor queries. In: Proc. 12th ACM-SIAM Symp. on Discrete
Algorithms, January (2001)

3. Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.: Local manage-
ment of a global resource in a communication. J. ACM 43, 1–
19 (1996)

4. Afek, Y., Gafni, E., Ricklin, M.: Upper and lower bounds for
routing schemes in dynamic networks. In: Proc. 30th Symp. on
Foundations of Computer Science, pp. 370–375 (1989)

5. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest com-
mon ancestors: a survey and a new distributed algorithm. Theory
Comput. Syst. 37, 441–456 (2004)

6. Alstrup, S., Rauhe, T.: Small induced-universal graphs and com-
pact implicit graph representations. In: Proc. 43rd IEEE Symp. on
Foundations of Computer Science, November (2002)

7. Cole, R., Hariharan, R.: Dynamic LCA queries on trees. SIAM J.
Comput. 34(4), 894–923 (2005)

8. Eppstein, D., Galil Z., Italiano, G.F.: Dynamic graph algorithms.
In: M.J. Atallah, (ed.) Algorithms and Theoretical Computing
Handbook, Chap. 8. CRC Press, Boca Raton (1999)

9. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Proc. 28th Int.
Colloq. on Automata, Languages & Prog., LNCS, vol. 2076, pp.
757–772, July (2001)

10. Fraigniaud, P., Gavoille, C.: A space lower bound for routing in
trees. In: Proc. 19th Symp. on Theoretical Aspects of Computer
Science, pp. 65–75, March (2002)

11. Feigenbaum, J., Kannan, S.: Dynamic graph algorithms. In: Hand-
book of Discrete and Combinatorial Mathematics. CRC Press,
Boca Raton (2000)

12. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approxi-
mate distance labeling schemes. In: 9th European Symp. on Algo-
rithms, pp. 476–488, August (2001)

13. Kannan, S., Naor, M., Rudich, S.: Implicit Representation of
Graphs. SIAM J. Discrete Math. 5, 596–603 (1992)

14. Korman, A.: General Compact Labeling schemes for dynamic
trees. In Proc. 19th Symp. on Distributed Computing, September
(2005)

15. Korman, A.: Labeling Schemes for vertex connectivity. In: Proc.
34th Int. Colloq. on Automata, Languages and Prog., July (2007)

16. Korman, A. Kutten, S.: Controller and estimator for dynamic net-
works. In: Proc. 26th ACM Symp. on Principles of Distributed
Computing, August (2007)

17. Korman, A., Peleg, D.: Labeling schemes for weighted dynamic
trees. In: Proc. 30th Int. Colloq. on Automata, Languages & Prog.,
July (2003)

18. Korman, A., Peleg, D.: Dynamic routing schemes for general
graphs. In: Proc. 33rd Int. Colloq. on Automata, Languages &
Prog. (2006)

19. Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic
tree networks. Theory of Computing Systems 37(1), Special Issue
of STACS’02 papers, pp. 49–75 (2004)

20. Peleg, D.: Distributed Computing: a :ocality-sensitive Approach.
SIAM, Philadelphia (2000)

21. Peleg, D.: Informative labeling schemes for graphs. Theoretical
Computer Science 340, Special Issue of MFCS’00 papers, pp.
577–593 (2005)

22. Peterson, L.L., Davie, B.S.: Computer Networks: A Systems
Approach. Morgan Kaufmann, San Francisco (2007)

23. Schieber, B., Vishkin, U.: On finding lowest common ancestors:
simplification and parallelization. SIAM J. Comput. 17(6), 1253–
1262 (1988)

24. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees.
J. Comput. Syst. Sci. 26(1), 362–391 (1983)

25. Tanenbaum, A.S.: Computer Networks. Prentice Hall, Englewood
Cliffs (2003)

26. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th
ACM Symp. on Parallel Algorithms and Architecture, pp. 1–10,
July (2001)

123

	Compact separator decompositions in dynamic treesand applications to labeling schemes
	Abstract
	1 Introduction
	2 Preliminaries
	3 The static separator representation scheme Stat_Sep
	3.1 Informal description
	3.2 Protocol Stat_Sep(T)

	4 Protocol Shuffle
	4.1 Overview
	4.2 Informal description
	4.3 Formal description

	5 Controllers and reset protocols
	6 Dynamic separator decomposition
	6.1 Correctness
	6.2 Analysis

	7 Applications: dynamic labeling schemes for trees
	7.1 Improved ancestry labeling scheme on dynamic trees
	7.2 Improved dynamic routing labeling schemes
	7.3 Improved NCA labeling schemes: sketch
	7.4 Extended distance labeling schemes on dynamic trees: sketch

	8 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

