
Distrib. Comput. (2007) 20:279–304
DOI 10.1007/s00446-007-0040-2

The computational power of population protocols

Dana Angluin · James Aspnes · David Eisenstat ·
Eric Ruppert

Received: 14 August 2006 / Accepted: 24 July 2007 / Published online: 23 August 2007
© Springer-Verlag 2007

Abstract We consider the model of population protocols
introduced by Angluin et al. (Computation in networks of
passively mobile finite-state sensors, pp. 290–299. ACM,
New York, 2004), in which anonymous finite-state agents
stably compute a predicate of the multiset of their inputs via
two-way interactions in the family of all-pairs communica-
tion networks. We prove that all predicates stably computable
in this model (and certain generalizations of it) are semilin-
ear, answering a central open question about the power of
the model. Removing the assumption of two-way interac-
tion, we also consider several variants of the model in which
agents communicate by anonymous message-passing where
the recipient of each message is chosen by an adversary and
the sender is not identified to the recipient. These one-way
models are distinguished by whether messages are delivered
immediately or after a delay, whether a sender can record
that it has sent a message, and whether a recipient can queue

James Aspnes was supported in part by NSF grants CNS-0305258 and
CNS-0435201.
David Eisenstat was supported in part by a National Defense Science
and Engineering Graduate Fellowship and by a Gordon Y. S. Wu
Graduate Fellowship.
Eric Ruppert was supported in part by the Natural Sciences and
Engineering Research Council of Canada.

D. Angluin (B) · J. Aspnes
Yale University, New Haven, CT, USA
e-mail: dana.angluin@yale.edu

J. Aspnes
e-mail: james.aspnes@yale.edu

D. Eisenstat
Princeton University, Princeton, NJ, USA
e-mail: deisenst@cs.princeton.edu

E. Ruppert
York University, Toronto, ON, Canada
e-mail: ruppert@cs.yorku.ca

incoming messages, refusing to accept new messages until
it has had a chance to send out messages of its own. We
characterize the classes of predicates stably computable in
each of these one-way models using natural subclasses of
the semilinear predicates.

1 Introduction

In 2004, Angluin et al. [3] proposed a new model of distrib-
uted computation by very limited agents called a population
protocol. In this model, finite-state agents interact in pairs
chosen by an adversary, with both agents updating their state
according to a joint transition function. For each such tran-
sition function, the resulting population protocol is said to
stably compute a predicate on the initial states of the agents
if, after sufficiently many interactions in a fair execution,
all agents converge to having the correct value of the predi-
cate. Motivating scenarios include models of the propagation
of trust in populations of agents [17] and interactions of pas-
sively mobile sensors [3,4]. Similar models of pairwise inter-
action have been used to study phenomena in other fields, for
example, the propagation of diseases [13] and rumors [20]
in human populations. In chemistry, a model consisting of a
finite population of molecules of a fixed number of differ-
ent kinds with stochastic rules to select pairs of molecules
to interact and to determine the products of their interaction
has been used to justify the Chemical Master Equation and
to simulate specific, biologically relevant systems of mole-
cules [24,25]. These results suggest that the model of popula-
tion protocols may be fundamental in several fields of study.

Because the agents in a population protocol have only a
constant number of states, independent of the population size,
it is impossible for them to adopt distinct identities, making
them effectively anonymous. An agent encountering another

123

280 D. Angluin et al.

agent cannot tell in general whether it has interacted with
that agent before. Despite these limitations, populations of
such agents can compute surprisingly powerful predicates on
their initial states under a reasonable global fairness condi-
tion. When each agent may interact with every other agent,
any predicate over the counts of initial states definable in
Presburger arithmetic is computable [3,4]. When each agent
has only a bounded set of neighbors with which it can inter-
act, linear-space computable predicates are computable [1].

In this paper we give exact characterizations of the class of
stably computable predicates in the family of all-pairs inter-
action graphs for the original population protocol model and
certain natural variants of it that we introduce to model the
limitations of one-way communication. Most of the results
in this paper have appeared in extended abstract form in the
two conference papers [6,7]. (In Sect. 7 we also correct an
erroneous claim in [7].)

1.1 Stably computable predicates are semilinear

Angluin et al. [3,4] showed that various common predicates
such as parity of the number of agents, whether agents in
some initial state a outnumber agents in another initial state
b, and so forth, could be stably computed by simple popula-
tion protocols. They further showed that population protocols
could in fact compute any semilinear predicate, which are
precisely those predicates definable in first-order Presburger
arithmetic [38]. But it was not known whether there were
other, stronger predicates that could also be computed by a
population protocol, at least in the simplest case where every
agent was allowed to interact with every other agent. We show
that this is not the case: that the semilinear predicates are pre-
cisely the predicates that can be computed by a population
protocol if there is no restriction on which pairs of agents can
interact with each other. This gives an exact characterization
of the predicates stably computable by population protocols,
answering the major open question of [3,4].

These results also answer an open question in [1]: whether
requiring population protocols to deal with stabilizing inputs
(rather than assuming all inputs are available at the start of
computation) reduces their computational power. We show
that the answer is no; in both cases, the stably computable
predicates are precisely the semilinear predicates.

The semilinearity theorem is proved for a generalization
of the model of population protocols, and applies to stable
computation in other models that have the property that a par-
titioned subpopulation can still run on its own (in the sense
that agents do not have any mechanism to detect if additional
agents are present but not interacting). Other models with this
property include vector addition systems [28], some forms
of Petri nets, and 1-cell catalytic P-systems.

Semilinearity is strongly tied to the notion of stable com-
putation, in which a correct and stable output configuration

must always be reachable at any step of the computation.
Mere reachability of a desired final configuration is not
enough: the reachability sets of population protocols are not
in general semilinear. An example of this phenomenon
may be derived from the construction given by Hopcroft
and Pansiot of a non-semilinear reachability set for a
six-dimensional vector addition system [28]. Ibarra et al. [29]
study 1-cell catalytic P-systems, in which all state-changing
interactions occur between an unmodified catalyst and at
most one non-catalyst agent. In contrast to the general case,
they show that the reachability sets of 1-cell catalytic
P-systems are semilinear.

1.2 One-way communication

We also introduce variants of the population protocol model
that use forms of one-way communication analogous to tra-
ditional asynchronous message-passing models, and exactly
characterize their computational power in the family of all-
pairs communication graphs in terms of natural subclasses of
the semilinear predicates. In the one-way models, pairwise
interactions are split into separate send and receive events
that each affect at most a single agent. These models may bet-
ter reflect communication in the context of sensor networks,
where radio communication may not be bidirectional, even
between nearby sensors. Moreover, one-way message-pass-
ing primitives may be easier to implement in practice.

For the one-way models, we consider the following attri-
butes. The sender may be allowed to change its state as a
result of sending a message (transmission models), or not
(observation models). The send and receive events for a mes-
sage may occur simultaneously (immediate delivery models)
or may be subject to a variable delay (delayed delivery and
queued delivery models). In the queued delivery model, a
receiver may choose to postpone incoming messages until it
has had a chance to send a message of its own; in the sim-
pler delayed delivery models, the receiver does not have this
option. Thus, we consider five one-way models: immediate
and delayed observation, immediate and delayed transmis-
sion, and queued transmission.

The immediate models are perhaps best understood in
terms of interactions between agents, while the delayed and
queued models are better thought of in terms of messages
sent from one agent to another. In the transmission models,
the sender is aware that it has sent a message, and may update
its state accordingly. In the observation models, the sender is
unaware of being observed by the receiver, and therefore does
not update its state. For example, consider a passive radio fre-
quency tag that does not update its state in response to being
read; this is an example of immediate observation, in which
the message (tag data) is immediately delivered (read), but
the state of the sender is unchanged. A web page that updates
a counter in response to a visit can be thought of as an example

123

The computational power of population protocols 281

of immediate transmission: the message (web page contents)
is immediately delivered (viewed), and the web page is aware
of the transaction and updates its state accordingly.

We give exact characterizations of the classes of predi-
cates that can be stably computed in each of the one-way
models we consider, which are summarized in Fig. 2. We
show that the model of queued transmission stably computes
exactly the semilinear predicates and is equivalent in power to
the standard population protocol model with two-way inter-
actions. The other models are strictly weaker, and can be
characterized in terms of natural subclasses of the semilinear
predicates. Weakest of all is the delayed observation model,
which allows only the detection of the presence or absence
of each possible input symbol. Next is the immediate obser-
vation model, which allows counting of input symbols up
to an arbitrary constant limit. The immediate and delayed
transmission models are equivalent to each other in power,
and add the ability to count input symbols modulo an arbi-
trary constant. These results give us a precise and detailed
understanding of the capabilities of the one-way models.

2 Related work

2.1 Population protocols and related models

Stable computation by population protocols was introduced
in [3,4]. It was shown that all semilinear predicates are sta-
bly computable by population protocols in the family of all-
pairs interaction graphs. It was also shown that the all-pairs
interaction graph has the least computational power, in the
sense that it may be simulated in any other connected inter-
action graph with the same number of agents. This work was
inspired by models of the propagation of trust studied by Dia-
madi and Fischer [17]. Related models of automata with a
central finite control and storage consisting of an unordered
multiset of tokens was studied in [2].

Angluin et al. [3,4] also introduced probabilistic popula-
tion protocols, in which a uniform random choice of pairs to
interact replaces the fairness condition; this enables quanti-
fication of the probability of error and the number of interac-
tions to convergence as a function of n, the number of agents
in the population. It was shown that each semilinear predicate
can be computed in an expected O(n2 log n) interactions,
and that a register machine with a constant number of regis-
ters with O(log n) bits per register could be simulated with
inverse polynomial error probability and polynomial slow-
down. Recent work [5] has given faster protocols for these
problems under the assumption that a unique leader is present
in the population: each semilinear predicate can be computed
in an expected O(n log4 n) interactions, and an improved reg-
ister machine simulation can be done with inverse polynomial
error in O(n polylog(n)) interactions per step.

The question of what properties of the interaction graph
are stably computable by population protocols was studied
in [1]. It was shown that for any d, there is a population
protocol that organizes any connected interaction graph of
maximum degree at most d into a linear memory of�(n) bits,
which is asymptotically optimal. In the same paper, the pop-
ulation protocol model was extended to stabilizing inputs,
in which each agent has an input that may change finitely
many times over the course of the computation before stabi-
lizing to a final value; this permits composition of protocols,
in which the stabilizing outputs of one protocol become the
stabilizing inputs of another protocol. It was shown that all
the semilinear predicates can be computed with stabilizing
inputs in the family of all-pairs interaction graphs. Thus, the
present paper shows that precisely the same predicates are
stably computable with or without stabilizing inputs in the
family of all-pairs interaction graphs.

Self-stabilizing population protocols were studied in [8],
which gives self-stabilizing protocols for token circulation in
a directed ring, directing an undirected ring, local addressing
in a degree bounded interaction graph, and leader election in a
ring with a constant bound k on the smallest nondivisor of the
ring size. Self-stabilizing leader election assuming an oracle
for eventual leader detection was studied in [22], which gives
self-stabilizing leader election protocols for complete graphs
and rings. The question of resilience to crash faults and tran-
sient faults was considered by Delporte-Gallet et al. [18],
who give a general method to transform a population pro-
tocol into one that can withstand up to c crash faults and t
transient faults. The problem of stabilizing consensus was
defined and studied in [9].

2.2 Comparison with asynchronous message-passing

In an asynchronous message-passing model, agents commu-
nicate by sending messages. An agent may spontaneously
send a message at any time, which is delivered to a recipient at
some later time. The recipient may respond to the message by
updating its state and possibly sending one or more messages.
In the standard asynchronous model, senders can choose the
recipients of their messages, and recipients are aware of the
identities of the senders of messages they receive; however,
in the population protocol models we consider, these assump-
tions are dropped.

Agents in the population protocol models are assumed to
be finite-state. Moreover, algorithms in this model are uni-
form: the description of the protocol cannot depend on the
number of agents in the system. Together with a transition
rule that depends only on the states of the two interacting
agents, these assumptions naturally yield a model in which
agents are effectively anonymous. In this respect, the pop-
ulation protocol models are weaker than a typical message-
passing model, where processes have identities. In addition,

123

282 D. Angluin et al.

not only does a receiver not learn the identity of the sender,
but a sender cannot direct its message to a particular receiver.
This is unusual even in anonymous message-passing models,
which typically assume that a process can use some sort of
local addressing to direct messages to specific neighbors.

The question of what computations can be performed in
anonymous systems, where processes start with the same
state and the same programming, has a long history in theoret-
ical distributed computing. Many early impossibility results
such as [11] assume both anonymity and symmetry in the
communication model, which limits what can be done with-
out some mechanism for symmetry-breaking. See [23] for a
survey of many such impossibility results. More recent work
targeted specifically at anonymity has studied what prob-
lems are solvable in message-passing systems under various
assumptions about the initial knowledge of the processes [15,
16,39], or in anonymous shared-memory systems where the
properties of the supplied shared objects can often (but not
always, depending on the details of the model) be used to
break symmetry and assign identities [10,12,14,21,26,31,
32,35,37,40]. This work has typically assumed few limits
on the power of the processes in the system other than the
symmetry imposed by the model.

Asynchronous message-passing systems may be vulnera-
ble to a variety of failures, including failures at processes such
as crashes or Byzantine faults, and failures in the message
delivery system such as dropped or duplicated messages. In
this paper we assume fault-free executions; however,
Delporte-Gallet et al. [18] characterize the power of pop-
ulation protocols in the presence of crash faults and transient
faults.

Because message delivery is asynchronous, making any
sort of progress requires adopting some kind of fairness con-
dition to exclude executions in which indefinitely-postponed
delivery becomes equivalent to no delivery. A minimal fair-
ness condition might be that if some process sends a particular
message m infinitely often, then each other process receives
the same message m infinitely often. In Sect. 15, we show
that even with unbounded states and message lengths, this
minimal fairness condition provides only enough power to
detect the presence or absence of each possible input because
of the very strong anonymity properties of the model. Instead
we adopt a stronger global fairness condition derived from
that used in [3,4], which is defined and further discussed in
Sect. 4.

Considering the communication capabilities of the pop-
ulation protocol models, the two-way population protocol
model is stronger than a typical message-passing model:
communication between two interacting agents is instan-
taneous and bidirectional. Instantaneous communication is
also a feature of the immediate transmission and immediate
observation models. The observation models are weaker than
message-passing in that the sender is not aware of sending

a message. In the immediate and delayed transmission mod-
els, an agent must be prepared to receive and react to a mes-
sage at all times. In the queued transmission model, which
most closely approximates asynchronous message-passing,
an agent may postpone receiving a message until it has sent
messages of its own, and we show that this capability is essen-
tial to achieve the full power of the model.

3 Preliminaries

In this section we introduce a vector notation that will be
used to represent the multiset of states of agents in a given
configuration of the population: indices are states, and the
value indexed is the number of agents in that state.

Let N denote the set of natural numbers, 0, 1, 2, The
set of all functions from a set X to a set Y is denoted Y X . Let
E be a finite nonempty set. For all f, g ∈ R

E , we define the
usual vector space operations

(f + g)(e) := f (e)+ g(e) ∀e ∈ E
(f − g)(e) := f (e)− g(e) ∀e ∈ E
(c f)(e) := c f (e) ∀c ∈ R, e ∈ E

f · g :=
∑

e∈E

f (e)g(e).

Abusing notation, we define a 0 vector and standard basis
vectors

0(e) := 0 ∀e ∈ E

e(e′) := [e = e′] ∀e, e′ ∈ E,

where [condition] is 1 if condition is true and 0 otherwise.
We define a natural partial order on R

E componentwise:

f ≤ g ⇔ (∀e ∈ E) f (e) ≤ g(e).

Next we define the set of populations on E :

Pop(E) := N
E \ {0}.

These may be interpreted as the nonempty multisets on E :
for any f ∈ Pop(E) and e ∈ E , f (e) represents the mul-
tiplicity of the element e in the multiset represented by f .
Then, the partial order ≤ corresponds to the subset order on
multisets. The cardinality of a population is the sum of the
multiplicities of its elements.

4 A unified framework

In each of the models we consider subsequently, a protocol
can be considered as determining five components: a count-
able set C of configurations; a set of input symbols �; a
binary relation → on C that captures when the first config-
uration can reach the second in one step; a function I :
Pop(�) → C that takes inputs to initial configurations; and
a partial function O : C → {0, 1} that gives the output of

123

The computational power of population protocols 283

each configuration on which it is defined. We take
∗→ to be

the reflexive-transitive closure of →. We say c′ is reachable
from c if c

∗→ c′. In this unified framework, we make the
following definitions.

A configuration c is output stable with output b if

O(c) = b and for every d such that c
∗→ d, O(d) = b.

We define Sb to be the set of configurations that are output
stable with output b, for b ∈ {0, 1}, and define S = S0∪S1 to
be the set of all output stable configurations. Thus a config-
uration is output stable if and only if its output is defined, and
every configuration reachable from it has the same defined
output.

An execution is a (finite or infinite) sequence of configu-
rations c0, c1, . . . such that for all j , we have c j → c j+1. An
execution c0, c1, . . . is fair if for all c ∈ C, either there exist
infinitely many j such that c j = c or there exists j such that

c j 	 ∗→ c. Consequently, any global configuration that is infi-
nitely often reachable in a fair execution must occur infinitely
often in that execution. Another straightforward consequence
is that if D is a finite set of configurations such that for each j

there is some d ∈ D such that c j
∗→ d, then there exists some

d ∈ D such that c j = d for infinitely many j . This condition
may be viewed as an attempt to capture useful probability 1
properties in a probability-free model.

This fairness condition is generalized from the original
one defined in [3,4]. That original condition specifies that an
infinite execution is fair if whenever c → c′ and c = ci for
infinitely many i , then also c′ = c j for infinitely many j .

An infinite execution that is fair with respect to the new
definition is fair with respect to the original definition,
because one-step reachability is a special case of reachabil-
ity. The converse implication does not hold in general, but
does hold when (as in [3,4]), the configurations in an execu-
tion are drawn from a finite subset of C. To see this, suppose
c0, c1, c2, . . . is an infinite execution that is fair with respect
to the original definition and all ci are from some finite sub-
set D of C. Because D is finite, there must be some d ∈ D
such that d = c j for infinitely many j . For any c ∈ C,

either for some c j , c j 	 ∗→ c, or for all c j , c j
∗→ c and there-

fore d
∗→ c. In the latter case, choose some finite execution

d = d0, d1, . . . , dr = c reaching c from d; then, by finite
induction from 0 to r and the assumption that c0, c1, c2, . . .

is fair with respect to the original definition, each dk occurs
infinitely often in c0, c1, c2, . . ., and therefore, c occurs infi-
nitely often in the execution.

To see that the converse implication does not hold in
general, consider a system in which agents can generate
an unbounded number of delayed messages. Let ci be a
configuration with i undelivered messages, so that the one-
step reachability relation is ci → ci+1 and ci+1 → ci

for all natural numbers i . Then the execution c1, c2, c3, . . .

is fair under the original definition (because no configura-

tion occurs infinitely often), but not with respect to the new
definition (because c0 is infinitely often reachable but never
reached).

Our new stronger definition of fairness is intended to deal
with the extension of the definition of configuration, which
in [3,4] includes only the states of the agents in the popula-
tion, to allow also an arbitrary finite number of messages
in transit. However, this extension also allows us to deal
with interaction rules that may create or delete agents in the
population.1

Because C is countable, any finite execution is a prefix of
a fair execution, which can be constructed as follows. Fix
an enumeration of C where each configuration appears infi-
nitely often. Then, starting with the finite execution, repeat-
edly extend it with a sequence of configurations that reaches
the next configuration in the enumeration that is reachable
from the last configuration of the execution constructed in
the previous step.

In Sect. 15 we show that a weaker, but plausible, fairness
condition severely limits the power of the model. Compari-
sons of several different fairness conditions may be found in
Hong Jiang’s Ph. D. thesis [30].

A fair execution c0, c1, . . . converges with output b if
there exists an m such that for all j ≥ m, the function O is
defined on c j and O(c j) = b. In particular, a fair execution
converges with output b if and only if it reaches an output
stable configuration with output b. A protocol is well-spec-
ified if, for all initial configurations c0 ∈ I (Pop(�)), there
exists a b such that all fair executions c0, c1, . . . converge
with output b. In a well-specified protocol, every fair execu-
tion starting from an input configuration converges with an
output that is determined by that input configuration.

A well-specified protocol induces a predicateψ : Pop(�)
→ {0, 1}. We say that this protocol stably computes ψ .
We remark that by interchanging 0 and 1 in the range of the
output function O , we obtain a protocol that stably computes
the complement of ψ . The results in this paper characterize
the predicatesψ stably computable in various models of finite
local state distributed computing.

5 Definitions of models

In this section we define the standard model of two-way pop-
ulation protocols in the family of all-pairs interaction graphs
and certain one-way variants of it, as well as a new model
of message transmission with queuing and certain restricted
variants of it, and finally the Abstract Model, which subsumes
all of these. For each model, we specify the configurations,

1 We remark that our proof of semilinearity goes through as long as
the definition of fairness guarantees that for any input x there exists an
output value b such that any configuration c reachable from I (x) can
reach an output-stable configuration with output b.

123

284 D. Angluin et al.

input alphabet, one-step reachability relation, input map and
output map required by the unified framework above.

5.1 Two-way

In the two-way model there is a finite population of agents
that may interact in ordered pairs, in which one agent is the
initiator and the other is the responder. In this interaction,
each agent learns its role in the interaction (whether initiator
or responder) and the state of the other agent, and updates its
own state accordingly. In this paper we consider the case in
which every ordered pair of agents may interact (although the
general definition [3,4] permits any weakly connected inter-
action graph). The states of the agents come from a finite set
which is independent of the number of agents in the popula-
tion. There is a finite set of input symbols; we assume that the
input to a computation is an assignment of one input symbol
to each agent, indicated by the initial state of the agent.

We study what predicates of the multiset of input symbols
can be stably computed in this model. If the input symbols
are {a, b}, examples of such predicates are “at least one a
occurs” or “an odd number of as occur” or “there are twice
as many as as bs” or “the number of as is the square of the
number of bs.” It has been shown [3,4] that the first three
of these predicates are stably computable in this model; one
consequence of the current paper is that the fourth one is not.

To indicate an output, the states are mapped to the output
symbols 0 and 1. To stably compute the correct value (0 or 1)
of the predicate of the multiset of input states, we require that
after some finite execution, every agent remains in some state
with the correct output in every possible continuation of the
execution. This does not require the state of an agent to stop
changing, only its output value. Nor does it mean that any
particular agent will be able to tell when convergence to the
correct output has occurred. The formal definition follows.

A two-way protocol is specified by five components: Q,
a finite set of states; �, a finite set of input symbols; δ :
Q × Q → Q × Q, a joint transition function; ι : � → Q,
the initial state mapping; and o : Q → {0, 1}, the individual
output function.

We define

C := Pop(Q)

I (x) :=
∑

σ∈�
x(σ)ι(σ)

O(c) := b if for all q ∈ Q, c(q) ≥ 1 ⇒ o(q) = b

We define c → c′ if q1 + q2 ≤ c, c′ = c − q1 − q2 + q ′
1 + q ′

2
and δ(q1, q2) = (q ′

1, q ′
2).

A configuration in this model is a multiset that gives the
states of all the agents. Because agents do not have identifiers
and we are considering the all-pairs communication graph,
agents in the same state are interchangeable; thus, the mul-
tiset of their states completely specifies the global state of

the population. An initial configuration sets the state of each
agent according to the input symbol assigned to it. A step is an
interaction between two agents and simultaneously updates
both of their states according to the value of the joint tran-
sition function of their current states. If the transition used
is δ(q1, q2), we refer to the agent in state q1 as the initiator
and the other agent as the responder.

Each agent has an individual output of 0 or 1 determined
by its current state via the function o. The configuration out-
put function is 0 (respectively, 1) if all the individual outputs
are 0 (respectively, 1). If the individual outputs are mixed 0s
and 1s, then the configuration output function is undefined.
Note that interchanging 0 and 1 in the range of the individual
output function o interchanges 0 and 1 in the configuration
output map O because mixed configurations remain mixed.
Thus, the complements of stably computable predicates are
stably computable in this model.

In fact, all boolean combinations of stably computable
predicates are stably computable in this model [3,4]. We give
the construction and verify that it works correctly with our
fairness condition.

Lemma 1 The class of predicates stably computable by
two-way protocols is closed under boolean combinations.

Proof Given two protocols stably computingψ1 andψ2 over
a common input alphabet and a binary boolean function f ,
we take a direct product of the two protocols: the state space
is the Cartesian product of the two state spaces, the combined
transition function is δ((q1, q2), (q ′

1, q ′
2)) := (δ1(q1, q ′

1),

δ2(q2, q ′
2)), the input map is ι(σ) := (ι1(σ), ι2(σ)), and the

output map is o(q1, q2) := f (o1(q1), o2(q2)).
We show that this construction correctly computes

f (ψ1, ψ2). The key claim is that a fair execution of the direct
product protocol projects down to fair executions of the origi-
nal protocols. This guarantees that they individually reach an
output stable configuration with the correct output, and thus
that the direct product protocol does the same. To see the
claim, fix a fair execution c0, c1, c2, . . . of the direct product
protocol, and let c′

0, c′
1, c′

2, . . . be the projection onto its first
component; this is an execution of the first protocol. Let e′
be any configuration of the first protocol. Either there exists

some j such that c′
j 	 ∗→ e′ or there exist infinitely many j

such that c′
j

∗→ e′. In the second case, because there are only
finitely many possibilities for configurations c j , there exists
a configuration d such that there are infinitely many j for

which c j = d and d ′ ∗→ e′, where d ′ is the projection of d.

Thus there exists some configuration e such that d
∗→ e and

e projects to e′; e can be obtained from d by applying the
steps that produce e′ from d ′ in the first protocol, and arbi-
trarily chosen steps in the second protocol. By the fairness of
c0, c1, c2, . . ., e must occur infinitely often in this execution,
and therefore e′ occurs infinitely often in c′

0, c′
1, c′

2, �

123

The computational power of population protocols 285

5.2 Transmission with queuing

We define a related new model of message transmission with
queuing. Once again there is a finite population of agents,
but we consider that they communicate by sending messages
rather than by direct interaction with each other. In this model,
when a sender sends a message it does not learn the state of the
eventual recipient of the message. The set of possible states
of the agents and the set of possible messages are both finite,
independent of the size of the population of agents; thus, the
identity of the sender cannot necessarily be deduced from
a message. Also, rather than direct a message to a particu-
lar recipient, a sender “launches” a message, which remains
in the multiset of messages in transit until it is received by
some agent enabled to receive it. Instead of a joint transition
function, there are separate transition functions for sending a
message and for receiving a message. The transition function
for receiving messages may be partial; that is, in some states
an agent may refuse delivery of some or all messages. As
we show, this ability is necessary for the full power of this
model.

We assume that inputs from a finite alphabet are assigned
to the agents at the start of the computation, and ask what
predicates of the multiset of inputs can be stably computed
in this model. A configuration in this model specifies the
multiset of the states of the agents, and the multiset of mes-
sages in transit, that is, messages that have been sent but not
received. The formal definition follows.

A queued transmission protocol is specified by seven
components: Q, a finite set of states; M , a finite set of
messages that is disjoint from Q; �, a finite set of input
symbols; δs : Q → M × Q, a transition function for sent
messages; δr : Q × M → Q, a partial transition function for
received messages; ι : � → Q, the initial state function; and
o : Q → {0, 1}, the individual output function. We define

C := {c ∈ N
Q∪M : c(q) > 0 for some q ∈ Q}

I (x) :=
∑

σ∈�
x(σ)ι(σ)

O(c) := b if for all q ∈ Q, c(q) ≥ 1 ⇒ o(q) = b.

We have c → c′ if for some state q ∈ c and some mes-
sage m, c′ = c − q + q ′ + m where (m, q ′) = δs(q); or if
there exists a message m ∈ c and a state q ∈ c such that
c′ = c − q − m + δr (q,m). In the latter case, δr (q,m) must
be defined.

A configuration in this model is the multiset of all agents’
states and all messages in transit. (They cannot be confused,
because Q and M are disjoint.) An input configuration has
no messages in transit and sets the state of each agent accord-
ing to the input symbol assigned to it. A step is either a send
event, in which an agent in state q adds a message m to the
multiset of messages in transit and goes to state q ′ (according
to δs(q) = (m, q ′),) or a receive event, in which a message

m is removed from the multiset of messages in transit and is
delivered to an agent in state q, which updates its state to q ′
(according to δr (q,m) = q ′). If δr (q,m) is not defined, then
message m cannot be delivered to an agent in state q; this
permits agents to refuse to receive messages temporarily.

The class of predicates stably computable in this model
is closed under complement, by interchanging 0 and 1 in the
range of o. Because we ultimately characterize this class as
the class of semilinear predicates, it is closed under general
boolean operations. However, we note that the direct prod-
uct construction in the proof of Lemma 1 cannot be used
directly to show closure under general boolean operations
in this model. This is because an infinite number of differ-
ent configurations may occur in an execution (as there is no
bound on the size of the multiset of messages in transit). This
property means that extra care is required in the use of the
fairness condition in this model.

5.3 Immediate transmission and observation

We consider two progressively more restricted versions of
the two-way model in which the initiator does not learn the
state of the responder. This one-way communication may
more accurately model certain situations, and may be eas-
ier to implement in practice. However, as we show, these
restrictions limit the computational power of the models.

Immediate transmission is a special case of the two-way
model in which the state of the initiator is updated indepen-
dent of the state of the responder. That is, there exist func-
tions δ1 : Q → Q and δ2 : Q × Q → Q such that for all
q1, q2 ∈ Q, we have δ(q1, q2) = (δ1(q1), δ2(q1, q2)). Thus,
the initiator (or sender) is aware of the fact that an interaction
has taken place (or of sending a message), and may update
its state accordingly, but it is not aware of the state of the
responder (or receiver).

Immediate observation is a special case of immediate
transmission in which δ1 is the identity function. This is the
situation in which the initiator (or sender) is not aware of
being “observed” by the responder (or recipient) and there-
fore does not have an opportunity to update its state.

Note that when the direct product construction in the proof
of Lemma 1 is applied to two immediate transmission proto-
cols, it yields an immediate transmission protocol. Therefore,
the class of predicates stably computable by immediate trans-
mission protocols is closed under general boolean operations.
The same holds of immediate observation protocols.

5.4 Delayed transmission and observation

We also consider two progressively more restricted versions
of the queued transmission model, which help us understand
which features of the model affect its computational power.

123

286 D. Angluin et al.

Delayed transmission is a special case of queued
transmission, with the requirement that δr be a total func-
tion. In this case, the recipient does not have the option of
temporarily refusing to receive messages, which means that it
is in danger of being “overwhelmed” by incoming messages.
Our characterization results show that this indeed limits the
power of protocols in this model.

Delayed observation is a special case of delayed trans-
mission in which for all q ∈ Q, we have δs(q) = (q,m)
for some m ∈ M . In this model, the weakest of those we
consider, an agent can neither refuse incoming messages nor
update its state when it has sent a message.

We note that because an agent in an observation model
does not change state upon being observed, there would be
no way for it to leave a non-receive enabled state; thus we do
not consider a queued observation model.

When we remove the possibility of refusing incoming
messages, we ensure that it is always possible to reach a
configuration in which all the messages have been delivered,
that is, the multiset of undelivered messages is empty. Com-
bining that fact with fairness, we have the following.

Lemma 2 Let c0, c1, c2, . . . be a fair execution of a delayed
transmission protocol. Then there is a configuration d with
no undelivered messages such that d = c j for infinitely
many j .

Proof Let D be the set of configurations d with no messages

in transit such that for some j , c j
∗→ d. Then D is finite

and for every j there exists d ∈ D such that c j
∗→ d, by

delivering all the messages. Because of fairness, this implies
that there is some d ∈ D such that c j = d for infinitely
many j . �

This in turn means that a variant of the direct product con-
struction of Lemma 1 can be successfully applied to delayed
transmission protocols.

Lemma 3 The class of predicates stably computable by
delayed transmission protocols is closed under boolean
operations.

Proof Given two delayed transmission protocols stably com-
putingψ1 andψ2 and a binary boolean function f , we define
a direct product of the two protocols that stably computes
f (ψ1, ψ2). The state space is the Cartesian product {1, 2} ×
Q1 × Q2, where the first component alternates between 1
and 2 and indicates which protocol will next send a message.
The message space is the disjoint union of the two message
spaces M1 and M2, so that messages can be uniquely associ-
ated with their respective protocols. The input map is ι(σ) :=
(1, ι1(σ), ι2(σ)) and the output map is o(t, q1, q2) :=
f (o1(q1), o2(q2)), where f is the given boolean function.
The transition function for sent messages is defined for

(t, q1, q2) by using t to determine which protocol is to send
a message, adding the appropriate message for that protocol
to the multiset of messages in transit, and updating the state
of that protocol accordingly (leaving the state of the other
protocol unchanged), and then flipping t between 1 and 2.
The transition function for received messages is defined for
a message m and a state (t, q1, q2) by delivering the message
to whichever protocol is appropriate (according to whether
m belongs to M1 or M2) and updating the state of that proto-
col accordingly, leaving the turn indicator t and the state of
the other protocol unchanged. Note that the resulting proto-
col is a delayed transmission protocol, but is not in general
a delayed observation protocol because of the need to flip
between t = 1 and 2.

To see that this direct product protocol correctly com-
putes f (ψ1, ψ2) we argue as in the proof of Lemma 1 that
suitably projecting a fair execution of the direct product pro-
tocol yields a fair execution of the first protocol, and similarly
for the second protocol. Thus, both must reach correct output
stable configurations, which means the direct product proto-
col reaches a correct output stable configuration.

Suppose c0, c1, c2, . . . is a fair execution of the direct
product protocol. By Lemma 2, there is some configuration
d with no undelivered messages such that c j = d for infi-
nitely many j . We construct a sequence c′

0, c′
1, c′

2, . . . by
projecting c0, c1, c2, . . . onto the first protocol’s component,
and deleting the steps in which the second protocol sends
or receives a message (which leaves the configuration of the
first protocol unchanged). For an arbitrary configuration e′

of the first protocol, either c′
j 	 ∗→ e′ for some j , or c′

j
∗→ e′

for infinitely many j . In the second case, e′ must be reach-
able from d ′, where d ′ is the projection of d onto the first
protocol’s component. Thus, there must be a configuration e
reachable from d in which the first protocol’s component is
e′; e may be obtained from d by using the same sequence of
sends and receives for the first protocol that reaches e′ from
d ′, with arbitrarily chosen sends for the second protocol. By
the fairness of c0, c1, c2, . . ., because e is reachable from d
and d occurs infinitely often, ci = e for infinitely many i ,
and therefore c′

j = e′ for infinitely many j , establishing the
fairness of c′

0, c′
1, c′

2, �

5.5 The abstract model

In order to present our semilinearity characterization in full
generality, we introduce another model. All of the preced-
ing single step rules can be described in terms of replacing
one collection of elements (states or messages) with another
without regard to the other elements in the configuration. In
this model it is also convenient to identify input symbols with
the states they map to, dispensing with the need for an initial
state map ι.

123

The computational power of population protocols 287

E is a set of elements, which may be either states or mes-
sages; � ⊆ E is a set of input symbols; → is a relation on
Pop(E) such that if c → c′, then for all d ∈ Pop(E), we
have c+d → c′ +d; o : E → {0, 1} is the individual output
map. Then,

C := Pop(E)
I (x) := x, and
O(c) := b if for all e ∈ E, c(e) ≥ 1 ⇒ o(e) = b.

We note that the class of predicates stably computable by a
protocol in the Abstract Model is closed under complement,
because we may exchange 0 and 1 in the range of o. To see
that this model generalizes the two-way model, we take E to
be the disjoint union of the input symbols and states of the
two-way model, and treat the input symbol σ as equivalent
to the state ι(σ), extending the individual output map o to
� by o(σ) = o(ι(σ)). To see that the Abstract Model also
generalizes the queued transmission model, we define E to
be the disjoint union of the input symbols, states, and two
copies of the messages of the queued transmission model.
Having two copies of each message m allows us to desig-
nate one copy as having output 0 and the other as having
output 1. Again we treat input symbol σ as equivalent to the
state ι(σ), and extend the individual output map o to � by
o(σ) = o(ι(σ)). Also, we extend o to the two copies of each
message by defining it to be the designated output of that
copy. To ensure that outputs propagate from agent states to
messages, we add rules that take a state of an agent and a
copy of a message, and change (if necessary) the designated
output of the message to be the same as the output of the
state. Each send rule is modified to send a message with the
same output value as the sender, and the receive rules ignore
the output values of the messages. These changes guarantee
that when the outputs of the agents stabilize, the designated
outputs of the messages stabilize to the same thing. Thus,
every predicate stably computable in either the two-way or
the queued transmission model is stably computable in the
Abstract Model.

5.6 Mirrors and messages to self

Separating message transmission and receipt creates the pos-
sibility that an agent may receive its own message. Because
senders are not identified, such an agent will in general not
be able to recognize the message as its own. This can be
thought of as including mirrors, or self-loops in the interac-
tion graph controlling which agents can communicate, which
we otherwise take to consist of all ordered pairs of agents.
In general, we assume that this does not occur in the two-
way and immediate delivery models, which are perhaps best
thought of as interaction models, but may occur in the delayed
and queued delivery models, on the principle that once an
anonymous message is sent it may be delivered to anyone.

This has at most a minor effect on the computational power of
the models we consider, which we note below as appropriate.

6 Predicate classes

We now define the classes of predicates used in our character-
izations. Although stably computable predicates are defined
only on Pop(�), our proofs are facilitated by defining pred-
icate classes on Z

� . The support of a predicate is the set of
all inputs that make it true.

6.1 Semilinear predicates

The most important class of predicates we consider is the
class of semilinear predicates, which we write SLIN. This
class can be defined in several equivalent ways.

A linear set is a set of the form {b + k1 p1 + k2 p2 +
· · · + kn pn | k1, k2, . . . , kn ≥ 0}, where b, p1, p2, . . . , pn

are vectors. The vector b is the base of the linear set, and the
vectors pi are the period vectors. A semilinear set is a finite
union of linear sets. A (semi)linear predicate is a predicate
whose support is (semi)linear predicate.

Semilinear sets are also precisely the sets definable by
first-order formulas in Presburger arithmetic [38] which
are formulas in arithmetic that use only <, +, 0, 1, and the
standard logical quantifiers and connectives. Here the set
consists of all satisfying assignments of the free variables;
for example, the semilinear set S = {(1, 0) + k1(0, 1) +
k2(2, 1)} ∪ {(0, 2) + k3(2, 0)}, depicted in Fig. 1, consists
precisely of the satisfying assignments (x, y) of the formula

(∃z : (z ≥ 0) ∧ (x = z + z + 1) ∧ (y ≥ z))

∨ (∃z : (z ≥ 0) ∧ (x = z + z) ∧ (y = 1 + 1)) , (1)

where x = y abbreviates ¬((x < y) ∨ (y < x)) and x ≥ y
abbreviates ¬(y < x). It follows immediately from the corre-
spondence between semilinear sets and Presburger formulas
that the semilinear sets are closed under complement, finite
intersection and finite union. Thus a predicate is semilinear
if and only if its complement is semilinear.

(1,0)

(0,2)

Fig. 1 A semilinear set S, equal to the union of the linear set of all
points {(1, 0) + k1(0, 1) + k2(2, 1)} (dark circles) and the linear set
{(0, 2)+ k3(2, 0)} (shaded circles)

123

288 D. Angluin et al.

A curious and useful property of Presburger formulas is
that all quantifiers (and their bound variables) can be elim-
inated by the addition of binary relations ≡m that test for
equality modulo m for any nonnegative integer m [38]. For
example, the formula (1) defining S can be rewritten without
quantifiers as

((x ≥ 0) ∧ (x ≡2 1) ∧ (x ≤ y + y + 1)) ∨ ((x ≥ 0) ∧
(x ≡2 0) ∧ (y = 1 + 1)).

This yields another characterization: a semilinear predi-
cate is a boolean combination of threshold predicates, whose
support takes the form {x | x · v ≥ r} for some v ∈ Z

� and
r ∈ Z, and modulo predicates, whose support takes the form
{x | x ·v ≡ r (mod m)} for some v ∈ Z

� and r,m ∈ Z with
m > 0. Viewed geometrically, sets of the first type consist
of points on one side of a hyperplane, and sets of the second
type are lattices. As an example of a predicate of the first
type, consider comparison, which is true if the number of
as in the input exceeds the number of bs in the input. As an
example of a predicate of the second type, consider parity,
which is true if the number of as in the input is odd.

In yet another characterization, Parikh’s Theorem [36]
shows that a subset S of N

d is semilinear if and only if there
is a context-free language L over an alphabet of d symbols
such that S consists of the vectors of multiplicities of alphabet
symbols of strings in L . Moreover, the same statement holds
with regular languages in place of context-free languages.
Using this characterization, it is not difficult to see that the
following predicates on the number of as and bs in the input
are not semilinear: the number of as is a prime, the number
of as is the square of the number of bs, the number of as is
a power of 2, and the number of as is bounded above by

√
2

times the number of bs.

6.2 The classes MOD and coreMOD

We write MOD for the class of boolean combinations of
modulo predicates only. This class includes the predicates
true and false, as well as such predicates as the number of as
is congruent to 3 or 4 modulo 5 and the number of bs is not
congruent to 1 modulo 17.

We next need a technical notion of similarity of two predi-
cates with respect to subalphabets of their input alphabet. Let
�′ ⊆ � be any nonempty subset of the input alphabet. Then
x ∈ Z

� is a k-rich profile with respect to �′ if x(σ ′) ≥ k
for all σ ′ ∈ �′ and x(σ) = 0 for all σ ∈ � \�′. Let ψ and
ψ ′ be predicates on Z

� . If ψ(x) = ψ ′(x) for every x that is
a k-rich profile with respect to�′, then we say that ψ and ψ ′
are k-similar with respect to �′.

The class coreMOD is the class of predicates ψ such that
for every nonempty �′ ⊆ �, there exists a ψ ′ ∈ MOD and
k ≥ 0 such thatψ is k-similar toψ ′ with respect to�′. Clearly

MOD ⊆ coreMOD, so the parity predicate is in coreMOD.
The comparison predicate is not in coreMOD because it is
not k-similar to any modulo predicate with respect to {a, b}
for any k ≥ 0. However, if we define the exactly-one c com-
parison predicate ψ over the alphabet {a, b, c} to be true
when there is exactly one c and the number of as exceeds the
number of bs, then ψ is in coreMOD. To see this, note that
ψ is false when the number of cs is 0 or at least 2. Thus, if
�′ is any nonempty subalphabet of {a, b, c}, ψ is 2-similar
to the false predicate with respect to �′.

6.3 Simple threshold predicates

We define a simple threshold predicate to be a threshold
predicate with support {x | x · v ≥ r} in which v = σ for
some input symbolσ . An example of a simple threshold pred-
icate is one that is true when the number of as is at least 5.
Then we define COUNTk to be the class of boolean combi-
nations of simple threshold predicates in which the threshold
value r ≤ k. A predicate in COUNTk is completely deter-
mined by the counts of the input symbols truncated at k. For
example, when k = 1, such a predicate depends only on the
presence or absence of each input symbol. Finally, COUNT∗
is the union of the classes COUNTk for k = 1, 2, 3, The
comparison predicate is an example of a threshold predicate
that is not in COUNT∗.

7 Summary of characterizations

The computational power of the population protocol mod-
els we consider is summarized in Fig. 2. For each model
we give the class of predicates on Pop(�) that can be sta-
bly computed by protocols in the model. Protocols in the
Abstract Model, which subsumes the two-way and queued
transmission models, stably compute exactly the semilinear
predicates. The immediate and delayed transmission models
are equal in power, and stably compute exactly those semi-
linear predicates that are in coreMOD; they cannot stably
compute the comparison predicate. Immediate observation

Model Power

Abstract SLIN
Two-way SLIN

Queued Transmission SLIN
Immediate Transmission SLIN∩ coreMOD
Delayed Transmission SLIN ∩ coreMOD

Immediate Observation COUNT∗
Delayed Observation COUNT1

Fig. 2 The power of population protocols

123

The computational power of population protocols 289

protocols stably compute exactly those predicates determined
by the counts of the input symbols truncated at k for some k;
they cannot stably compute the comparison predicate or the
parity predicate. Delayed observation protocols stably com-
pute exactly those predicates determined by the presence or
absence of each input symbol; they cannot stably compute the
comparison predicate, the parity predicate or simple thresh-
old predicates for thresholds greater than 1.

The results in [7] incorrectly claimed that any predicate
ψ that is k-similar with respect to � to a predicate in MOD
is stably computable in the immediate and delayed transmis-
sion models. To see that this is false, consider the at-most-
one c comparison predicate ψ over the alphabet {a, b, c}
defined to be true if there is at most one c in the input and the
number of as exceeds the number of bs. Then ψ is 2-similar
to the constant false predicate with respect to {a, b, c}, but
the characterization results we shall prove show that it is not
stably computable in the immediate and delayed transmis-
sion models. In particular, ψ is not in the class coreMOD,
because when we consider the subalphabet {a, b}, ψ is not
k-similar to any predicate in MOD with respect to {a, b} for
any k ≥ 0. This is the reason for the extra quantification over
all the non-empty subalphabets of � in the definition of the
class coreMOD.

We note the contrast between the exactly-one c compari-
son predicate (defined in Sect. 6.2), which is in coreMOD ∩
SLIN, and the at-most-one c comparison predicate, which
is not in coreMOD ∩ SLIN. As we shall see, the ability to
assume that there is exactly one (or any fixed number) of
some symbol(s) in the input can be exploited computation-
ally by the immediate and delayed transmission models.

8 Protocols

We first give protocols for each model in Fig. 2 to establish
that each model is at least as powerful as claimed.

8.1 The two-way model

From [3,4] we have the following.

Theorem 4 Every semilinear predicate on Pop(�) is stably
computable by a two-way population protocol.

To help us describe protocols in the one-way models,
we here give specific two-way protocols for simple thresh-
old, modulo and general threshold predicates. Because the
class of predicates stably computable by two-way protocols
is closed under boolean operations, it is sufficient to give
algorithms for these base predicates.

Simple threshold predicates. The following protocol com-
putes the simple threshold predicate ψ(x) := [x · σ ≥ k],

which is true when there are at least k occurrences of the
input symbol σ in the input x .

Q := {0, 1, . . . , k}

δ(q1, q2) :=

⎧
⎪⎨

⎪⎩

(q1, k) if q1 = k

(q1, q2 + 1) if 1 ≤ q1 < k and q1 = q2

(q1, q2) otherwise

ι(σ ′) := [σ ′ = σ]
o(q) := [q = k]

Initially, agents with input σ are in state 1 and all other agents
are in state 0. As this protocol runs, the states of the agents
make a “tower”. All but one of the agents in state i advance
to state i + 1 in each case. This tower will extend to k if
and only if there are initially at least k agents in nonzero
states. We note that this is an immediate observation proto-
col because the state of the initiator remains unchanged by
each interaction.

Active and passive agents. In the protocols for the modulo
predicate ψ(x) = [x · v ≡ r (mod m)] and the threshold
predicate ψ(x) = [x · v ≥ r] agents fall into one of two
categories: active or passive. Every agent is initially active,
and there is at least one active agent at all times. Each active
agent also has a data value, initially σ · v, where σ is the
input symbol for this agent. When a passive responder meets
an active initiator, it copies the output of the active initiator.
When two passive agents meet, nothing happens. When two
active agents meet, they attempt to combine their data values,
and one of them may become passive.

Modulo predicates. For a modulo predicate, ψ(x) = [x ·
v ≡ r (mod m)], the data values of active agents combine
by sum modulo m. The initiator becomes passive while the
responder remains active and keeps the combined data value.
Eventually, exactly one agent is active and has the correct sum
modulo m, and distributes the correct output to all of the other
agents. We note that this is an immediate transmission pro-
tocol because the state of the initiator is updated uniformly,
independent of the state of the responder.

As a concrete example, we specify a protocol over the
alphabet {a, b, c} that computes whether the number of occur-
rences of a in the input is congruent to 2 modulo 3. The states
of the agents are of the form (x, y), where x ∈ {A, P} indi-
cates whether the agent is active or passive, and y ∈ {0, 1, 2}
is a data value modulo 3. The input map ι maps the input
symbol a to the state (A, 1) and the input symbols b and c to
the state (A, 0). The output map o maps the state (x, y) to 1 if
y = 2 and to 0 otherwise. The transition function is defined
as follows, where + denotes addition modulo 3. Note that the
initiator’s state is updated independently of the responder’s
state.

123

290 D. Angluin et al.

δ((x1, y1), (x2, y2))

:=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

((P, y1), (A, y1 + y2)) if x1 = A,

x2 = A

((P, y1), (A, y1)) if x1 = A,

x2 = P

((P, y1), (x2, y2)) otherwise

Threshold predicates. The situation for a threshold predi-
cate, ψ(x) = [x · v ≥ r], is more complicated. In the end
there may be multiple active agents, but they will all agree on
the output. We assume without loss of generality that r ≥ 0.
The active states are a range of values that include all pos-
sible initial data values and 2r − 1. The output is 1 if and
only if the data value is at least r . Suppose y1 and y2 are
the data values when two active agents meet. If y1 + y2 is
representable by an active state, one agent remains active
with this data value; the other becomes passive. Otherwise,
both agents remain active and they average their data values,
that is, one becomes � y1+y2

2 � and the other becomes � y1+y2
2 �.

These transitions maintain the invariant that the sum of all
the active agents’ data values is x · v. Note that this protocol
involves updates of both states depending on both states; it
is not an immediate transmission protocol.

To show correctness, we distinguish three cases based on
the sum of all the initial data values. In the first case, the sum
is negative. Eventually, no active agent will have a positive
data value. In the second case, the sum is between 0 and r −1.
There will eventually be exactly one active agent with this
data value. In the third case, the sum is at least r . The number
of active agents with data value less than r never increases.
The only way it can increase is after an interaction involving
an active agent with value at least r where both agents remain
active. This will happen, however, only in the case when the
two agents average their values, which never happens with
an agent with value at least r unless the result is both agents
having value at least r . After there are no more agents with
negative values, any interaction with an agent whose value
is less than r will decrease the number of such agents.

As a concrete example, we specify a protocol over the
alphabet {a, b, c} to determine whether the number of occur-
rences of a exceeds three times the number of occurrences
of b by at least 2. Thus v is the vector (1,−3, 0) and r is
the value 2. Hence the required range of data values is D =
{−3,−2,−1, 0, 1, 2, 3}, because the initial data values may
be 1, −3 or 0, and the range must include 2r − 1 = 3. States
consist of pairs (x, y) where x ∈ {A, P} indicates whether
the agent is active or passive, and y ∈ D. Then ι maps a to
(A, 1), b to (A,−3) and c to (A, 0), and o maps (x, y) to 1
if y is at least 2, and 0 otherwise. The transition function is
defined as follows. Note that the case resulting in averaging
means that the update to the initiator depends on the state of

the responder.

δ((x1, y1), (x2, y2))

:=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((P, y1), (A, y1 + y2)) if x1 = A, x2 = A

and y1 + y2 ∈ D

((A, � y1+y2
2 �), (A, � y1+y2

2 �)) if x1 = A, x2 = A

and y1 + y2 	∈ D

((P, y1), (A, y1)) if x1 = A, x2 = P

((x1, y1), (x2, y2)) otherwise

8.2 Queued transmission

When combined with Theorem 4, the following theorem
implies that every semilinear predicate on Pop(�) is stably
computable in the queued transmission model.

Theorem 5 Every predicate on Pop(�) stably computable
in the two-way model is stably computable in the queued
transmission model.

Proof Given any protocol in the two-way model, we describe
a simulation of it by a protocol in the queued transmission
model. Each agent can store up to two states from the two-
way protocol. Initially, each agent has one simulated state,
which is determined from the input symbol for that agent by
the initial state map of the simulated protocol. Agents trans-
fer states by sending a message. An agent called upon to send
will send a message containing the state it has been holding
longest. If it is not currently holding any states, it sends a null
message. Whenever an agent receives a null message ignores
it, that is, does not change its state. Any agent with free space
is eligible to receive a non-null message. Whenever an agent
receives its second state, it uses the transition function from
the two-way protocol to have the two interact, with the state
it already has acting as the initiator.

The simulated configuration cannot make any steps that
were impossible under the two-way model. Conversely, any
sequence of interactions made under the two-way model can
be achieved by first having every agent launch all states it
holds, and then by repeating the following actions: deliver
two states to a particular agent, and then have the agent
release both in messages. Therefore, the simulation is
faithful.

To see that every fair execution of the simulating protocol
is a fair execution of the simulated protocol, we consider a
fair execution c0, c1, c2, . . . of the simulating protocol. Let
D be the set of all configurations d with no null messages

in transit such that c0
∗→ d; then D is finite and for each j ,

some element of D is reachable from c j (by delivering all the
null messages). Thus by fairness, there exists some d ∈ D
such that c j = d for infinitely many j .

123

The computational power of population protocols 291

Now consider c′
0, c′

1, c′
2, . . ., obtained by projecting out

the simulated states (whether held by simulating agents or
in the multiset of undelivered messages) and deleting steps
that do not correspond to steps in the simulated protocol. Let
d ′ be the projection of d; then c′

j = d ′ for infinitely many
j . For any configuration e′ of the simulated protocol either

c′
j 	 ∗→ e′ for some j , or c′

j
∗→ e′ for infinitely many j . In

the second case, d ′ ∗→ e′ via some sequence of steps. Sim-
ulating that sequence of steps starting with d reaches some
configuration e of the simulating protocol. By the fairness of
c0, c1, c2, . . ., we must have c j = e for infinitely many j ,
and therefore c′

i = e′ for infinitely many i , establishing the
fairness of the projected execution c′

0, c′
1, c′

2,
Thus, if the two-way protocol stably computes the predi-

cate ψ , then for every input x and every fair execution of the
simulating protocol from the input configuration, the simu-
lated protocol experiences a fair execution and must reach
a correct output stable configuration, which is also a correct
output stable configuration for the simulating protocol for ψ
on input x . �

8.3 Immediate and delayed transmission

Theorem 6 Every predicate on Pop(�) in the class SLIN∩
coreMOD is stably computable in the immediate transmis-
sion model and also in the delayed transmission model.

Proof We first show that in both models, the class of sta-
bly computable predicates is closed under boolean opera-
tions and includes all the simple threshold predicates and
predicates in MOD. For immediate transmission, as we pre-
viously noted, the construction in Lemma 1 implies closure
under boolean operations. Also, the two-way protocols given
in Sect. 8.1 for simple threshold and modulo predicates are
immediate transmission protocols.

For the delayed transmission model, Lemma 3 shows clo-
sure under boolean operations. To see that simple thresh-
old and modulo predicates are computable in this model,
we describe protocols as follows. Every agent state is active
or passive; all are initially active. A sender sends its state
and becomes passive, preserving its previous output. Passive
messages are received and ignored by all agents. An active
receiver combines its data with the data from an active mes-
sage, remaining active. (The data values u andv are combined
as (u+v) mod m for a modulo predicate or min(k, u+v) for
a simple threshold predicate.) A passive receiver sets its state
equal to an active message, becoming active again. Consider
a fair execution c0, c1, c2, . . . from the input configuration
I (x) and the set D of configurations of this population in
which there is exactly one active agent and no messages in
transit and every agent has the same output. The set D is
finite and some element of D is reachable from every c j ,
so by fairness there is some d ∈ D such that c j = d for

infinitely many d. Once d is reached, the agents all compute
the correct output value for the input x , and the configuration
is output stable.

Supposeψ ∈ SLIN∩coreMOD. For each nonempty sub-
set �′ of the input alphabet �, we describe a protocol that
computes ψ assuming that �′ is exactly the set of symbols
present in the input x . We can “and” this protocol with one
that verifies this assumption (it is a boolean combination of
simple threshold predicates, and therefore stably computable
in both models), and “or” together the resulting protocols for
each choice of �′, and the result will stably compute ψ .

Because ψ ∈ coreMOD, there is a predicate ψ ′ ∈ MOD
and an integer k ≥ 0 such that ψ is k-similar to ψ ′ with
respect to�′. Thenψ ′ is stably computable by an immediate
(or delayed) transmission protocol, as is the predicate that
is true if x is k-rich with respect to �′, so the conjunction
of these predicates correctly computes ψ when there are at
least k occurrences of each input symbol from �′ and no
occurrences of any other symbol.

In the remaining cases, some σ ∈ �′ occurs between 1
and k − 1 times. Because ψ ∈ SLIN, it is stably computable
by a two-way protocol. For each input symbol σ ∈ �′ we
describe below how to adapt the simulation of the two-way
protocol in the proof of Theorem 5 to show that the pred-
icate that is the conjunction of ψ and the predicate that is
true when there are between 1 and k − 1 occurrences of σ in
the input is stably computable in the immediate (or delayed)
transmission models. Then we “or” these protocols together
for all choices of σ ∈ �′. The simulation of a two-way pro-
tocol by a queued transmission protocol requires queuing in
order to prevent agents’ storage from being overwhelmed by
messages. Suppose it may be assumed, however, that at least
1 and at most k − 1 copies of σ can appear in the input.
The agents distinguished by receiving input σ then allow a
protocol to simulate flow control.

Each agent keeps a queue of simulated states, contain-
ing initially the simulated state determined by that agent’s
input and the input map from the simulated protocol. Agents
also keep an additional 1-bit value that represents the mini-
mum number of simulated states that they must keep in their
queues; agents with input σ have value 0, and all others have
value 1. No interactions cause agents to change these 1-bit
values. When an agent transmits, if it can dequeue a simu-
lated state without violating the above invariant, it does so
and sends the state out. Otherwise, it sends a “trigger” mes-
sage. On the other end, when an agent receives a state, it
enqueues it. When an agent receives a trigger message, if it
has at least two states in its queue, it simulates an interaction
initiated by the state at the head of the queue with the state
just behind it; otherwise, it does nothing.

We must check several properties of this simulation. First,
no agent can ever have more than k states in its queue, so
the simulation can be carried out by finite-state agents. In a

123

292 D. Angluin et al.

population of n agents, at least n − (k − 1) agents, namely
those whose input was not σ , have at least one state in their
queue by the invariant. There are at most k − 1 remain-
ing states, which may be distributed arbitrarily, but it is not
possible to exceed the maximum of k for any agent. Sec-
ond, at every step the simulated configuration can always be
reached from the input under the protocol being simulated,
because the simulation ensures that the number of simulated
agents remains constant, and the only changes to the sim-
ulated population are made in accordance with the transi-
tion rules of the protocol. Third, the fairness condition holds
with respect to the simulated populations, which, together
with the first two propositions, ensures that the simulation is
faithful.

In the case of immediate transmission, the set of config-
urations reachable from a particular input is finite, and it
suffices to show that any configuration reachable by the sim-
ulated population can be reached by the simulation. Assume
without loss of generality that the population has at least two
agents, and induct on the number of steps needed to reach
the desired configuration. Choosing a simulated initiator and
responder, the first objective is for the initiator to be alone in
some agent’s queue. If there are simulated agents ahead of the
initiator, send them to another agent. If the initiator is at the
head of the queue with one or more simulated agents behind
it, some agent’s queue is empty by an averaging argument,
and the initiator can be sent to that agent.

The second objective is to move the responder behind the
initiator. In the event that the initiator occupies the only agent
with value 0, the initiator should be sent to an agent with value
1, and all of the simulated agents now ahead of it should be
sent elsewhere. If there are only two agents, the responder
now resides in the queue of an agent with value 0 and can be
sent to the initiator’s queue. Otherwise, all simulated agents
ahead of the responder should be sent to a third agent. Now,
either the responder can be sent to the initiator’s queue, or it
is alone in the queue of an agent with value 1. In the latter
case, some other agent besides the one with the initiator has an
extra agent that can be sent to the responder’s queue to release
the responder. Finally, once the initiator and responder share
a queue in the right order, some agent has no simulated agents
and can trigger an interaction.

For the case of delayed transmission, we note that every
configuration reachable in the simulated population is reach-
able in the simulation by the same inductive argument as
for immediate transmission, because each immediate trans-
mission step can be accomplished by a send immediately
followed by a receive in the delayed transmission model. As
for the fairness condition, it is always the case by an aver-
aging argument that some agent has zero or one simulated
agents, and thus it is possible to deliver all trigger messages
in flight without causing an interaction. We finish along the
lines of Lemma 3. �

Note in particular that immediate and delayed transmis-
sion protocols can stably compute the exactly-one c com-
parison predicate over the alphabet {a, b, c}, which is true
if there is exactly one c and the number of as exceeds the
number of bs. The characterization in Sect. 14.1 shows that
the standard comparison predicate over {a, b}, which is true
if the number of as exceeds the number of bs, is not stably
computable by immediate or delayed transmission protocols,
essentially because no such control of incoming messages is
possible in this case.

8.4 Immediate observation

Theorem 7 Every predicate on Pop(�) in COUNT∗ is sta-
bly computable in the immediate observation model.

Proof Every predicate in COUNT∗ can be expressed as a
boolean combination of simple threshold predicates, each of
which depends only on the count of one input symbol. The
two-way protocol in Sect. 8.1 for the simple threshold predi-
cate [x · σ ≥ k] is in fact an immediate observation protocol
because only the responder’s state is updated in each case.
Also, the class of predicates stably computable by immedi-
ate observation protocols is closed under boolean operations.

�
The protocol from Sect. 8.1 uses k + 1 states, which can

be reduced to k (by removing state 0) if the input alphabet is
unary. It can be shown that k − 1 states are not sufficient to
stably compute this predicate in the immediate observation
model in the case of a unary alphabet; the proof is rather
involved and will appear elsewhere.

8.5 Delayed observation

Theorem 8 Every predicate on Pop(�) in COUNT1 is sta-
bly computable in the delayed observation model.

Proof The value of a predicateψ in COUNT1 is completely
determined by the set of symbols that occur in the input.
We define a protocol in which the states are subsets of the
set of input symbols, the initial state of an agent is {σ } if σ
is the input symbol assigned to that agent and the output is
determined by the value of ψ for the agent’s current state.
When called upon to send, an agent sends its current state and
does not update it, consistent with the observation restriction.
When an agent receives a message, it updates its state to be
the union of its current state and the message.

Consider any fair execution of this protocol, c0, c1, c2, . . .,
starting with the input configuration I (x), and let d be the
configuration of this population in which there are no unde-
livered messages and every agent’s state is equal to the set
of symbols that occur in the input x . Then d is reachable
from every c j , and by fairness, must occur infinitely often.

123

The computational power of population protocols 293

Because d is output stable and has the correct output, this
protocol stably computes ψ . �

Because an agent may receive its own message, it cannot
tell whether an input symbol occurs with multiplicity greater
than one. However, if agents do not receive messages from
themselves, then predicates in COUNT2 are stably comput-
able in the delayed observation model.

9 Characterization of the power of the abstract model

To complete the characterizations in Fig. 2, we have to dem-
onstrate that each model is limited to the indicated power. In
Sect. 14, we consider the one-way models. Here we consider
the Abstract Model, which includes the two-way model and
the queued transmission model as special cases, and prove
the following semilinearity theorem.

Theorem 9 Every predicate on Pop(�) that is stably com-
putable in the Abstract Model is semilinear.

Because the two-way and queued transmission models are
special cases of the Abstract Model, and both models can sta-
bly compute all the semilinear predicates over Pop(�), we
have the following characterizations.

Corollary 10 The predicates stably computable in (1) the
two-way model of population protocols, or (2) the queued
transmission model of population protocols are exactly the
semilinear predicates on Pop(�).

Stable computation of a predicate by a two-way popula-
tion protocol with stabilizing inputs was defined in [1]. We do
not repeat the definition here, but the idea is that each agent
has an input register that may change finitely many times
over the course of the execution before stabilizing to its final
value, and the goal is to compute a predicate on the multiset
of all the agents’ final input values. Because this is a more
restrictive definition, every predicate stably computable by
a two-way protocol with stabilizing inputs is stably comput-
able by a two-way protocol with fixed inputs, but whether the
converse held was left as an open problem. However, in [1]
it was shown that every semilinear predicate on Pop(�) is
stably computable by a two-way protocol with stabilizing
inputs. Thus we get the following corollary showing that
stabilizing inputs do not reduce the power of the standard
two-way model.

Corollary 11 The predicates stably computable by two-way
population protocols with stabilizing inputs are exactly the
semilinear predicates on Pop(�).

To prove Theorem 9, we must show that the support of
any stably-computable predicate is a semilinear set: in par-
ticular, that there is a finite set of base points each attached

to a finitely-generated cone such that the support is precisely
the elements of these cones. The first step, which requires the
development of the machinery of Sect. 10 and is completed
in Sect. 11, is to show that the support can be decomposed
into a finite collection of monoid cosets that are not necessar-
ily finitely generated. We then proceed, in Sects. 12 and 13,
to show that any such decomposition can be further decom-
posed into a finite covering by cosets of finitely generated
monoids, which gives us the full result.

10 Groundwork

We assume that ψ is a predicate stably computed by a proto-
col (E,→, �, o) in the Abstract Model and establish some
basic results. These will lead up to the Pumping Lemma of
Sect. 11.

10.1 Monoids, groups, and semilinearity

A subset M of Z
d is a monoid if it contains the zero and is

closed under addition; if it is also closed under subtraction,
M is a group. A monoid M ⊆ Z

d is finitely generated if
there exists a finite subset A ⊆ M such that every element
of M is a sum of elements from A. It is a classic result in
abstract algebra that every subgroup of Z

d is finitely gener-
ated [33], but submonoids are not always finitely generated.
For example, the following monoid is not finitely generated.

M√
2 = {(i, j) ∈ N

2 : i ≤ √
2 j}.

A subset H of Z
d is a group coset (resp., monoid coset) if

there exists an element v ∈ Z
d such that H = v + G and G

is a group (resp., monoid).
Then from the definitions in Sect. 6.1, we have yet another

characterization of linear and semilinear sets. A subset L of
Z

d is linear if it is a coset of a finitely generated monoid in
Z

d , and is semilinear if it is a finite union of linear sets.

10.2 Higman’s lemma

We shall make extensive use of some corollaries to Higman’s
Lemma [27], a fundamental tool in well-quasi-order theory.

Lemma 12 Every subset of N
d has finitely many minimal

elements under ≤.

Lemma 13 Every infinite subset of N
d contains an infinite

chain (i.e., an infinite totally ordered sequence) under ≤.

These both follow from the fact that Higman’s Lemma
implies that N

d ordered by ≤ is a well-quasi-order, that is,
a set in which any infinite sequence a1, a2, . . . contains ele-
ments ai , a j with i < j and ai ≤ a j . The special case of

123

294 D. Angluin et al.

Higman’s Lemma given in Lemma 12 was proved earlier by
Dickson [19].

10.3 Truncation maps and their properties

Recall from the description of the Abstract Model in Sect. 5.5
that E is the set of elements (states or messages) of a popu-
lation protocol, and that C denotes the set of configurations,
that is, the set of nonempty multisets of elements of E , which
we also think of vectors of natural numbers indexed by E .

For each k ≥ 1, we define a map τk from C to C by

τk(c)(e) := min(k, c(e)) for all e ∈ E .

This map truncates each component of its input to be at most
k; clearly τk(c) ≤ c for all c ∈ C. Two useful properties of τk

are that it respects both the inclusion ordering and addition.

Lemma 14 For all c, d ∈ C and k ≥ 1, if c ≤ d then
τk(c) ≤ τk(d).

Proof For each e ∈ E , we have c(e) ≤ d(e), so
min(k, c(e)) ≤ min(k, d(e)). Thus τk(c) ≤ τk(d). �

Lemma 15 For all c, c′, d ∈ C and k ≥ 1, if τk(c) = τk(c′),
then τk(c + d) = τk(c′ + d).

Proof For each e ∈ E , either c(e) = c′(e) or both are at least
k. In either case, min(k, c(e)+d(e)) = min(k, c′(e)+d(e)),
so τk(c + d) = τk(c′ + d). �

10.4 Truncation and stability

Truncation is important because membership of a configu-
ration c in the set of output stable configurations S can be
determined from a truncate of fixed size. Let U := C \S, the
set of output unstable configurations.

Lemma 16 For all c ≤ d, if c ∈ U , then d ∈ U (U is closed
upward under inclusion).

Proof Suppose c ∈ U and c ≤ d. Then either (1) O(c) is
undefined, or (2) O(c) = b, but for some configuration c′

such that c
∗→ c′ either O(c′) is undefined or O(c′) 	= b.

In case (1), O(d) is undefined and d ∈ U . In case (2), d =
d − c + c

∗→ d − c + c′. If O(d) is not defined, then d ∈ U .
If O(c′) is not defined, then O(d − c + c′) is not defined,
and d ∈ U . If both O(d) and O(c′) are defined, we have that
O(d) = O(c) 	= O(c′), and O(d−c+c′) is either undefined
or equal to O(c′), so d ∈ U . Thus U is closed upwards under
inclusion. �

Lemma 17 There exists k ≥ 1 such that c ∈ U if and only
if τk(c) ∈ U .

Proof By Higman’s Lemma, only finitely many elements
u1, . . . , un are minimal in U , and because U is upwards
closed, c ∈ U if and only if ui ≤ c for some i . Let k be the
maximum value ui (e) for all i ∈ {1, . . . , n} and all e ∈ E .
Then τk(ui) = ui for each i .

Suppose c ∈ U . Then ui ≤ c for some i , so ui = τk(ui) ≤
τk(c) by Lemma 14, and thus τk(c) ∈ U . Conversely, if
τk(c) ∈ U , then ui ≤ τk(c) ≤ c for some i , and therefore
c ∈ U . �

Lemma 18 There exists k ≥ 1 such that for all c ∈ C and
b ∈ {0, 1}, we have c ∈ Sb if and only if τk(c) ∈ Sb.

Proof By Lemma 17, there exists k ≥ 1 such that for all
c ∈ C, we have c ∈ U if and only if τk(c) ∈ U . Taking the
contrapositive, we have c ∈ S if and only if τk(c) ∈ S. Since
truncation does not affect output, the conclusion follows. �

10.5 Extensions

We define a map X from C to subsets of N
� as follows.

X (c) := {x ∈ N
� | there exists d ≥ c such that

c + x
∗→ d and τk(c) = τk(d)},

where k is the constant from the conclusion of Lemma 18.
If c ∈ S, then X (c) is the set of inputs by which c can be
pumped. We call such inputs the extensions of c. We first
prove that pumping does not affect stable output.

Lemma 19 If x ∈ Pop(�) and c ∈ S and x
∗→ c, then ψ is

constant on x + X (c).

Proof If y ∈ X (c), then there exists d ∈ C such that c+ y
∗→

d and τk(c) = τk(d). Since c ∈ S, by Lemma 18 we have
d ∈ S, and O(c) = O(d). Thus ψ(x) = ψ(x + y). �

We now prove that pumping operations can be composed,
i.e., that X (c) is a monoid.

Lemma 20 X (c) is a monoid for all c ∈ C.

Proof We have 0 ∈ X (c), with d = c as a witness. If x1, x2 ∈
X (c), then there exist d1, d2 such that c ≤ d1 and c ≤ d2 and
τk(c) = τk(d1) = τk(d2) and c + x1

∗→ d1 and c + x2
∗→ d2.

Thus

c + x1 + x2
∗→ d1 + x2 = (d1 − c)+ c + x2

∗→
(d1 − c)+ d2.

Taking d := d1 +d2 −c, we have c ≤ d and c+x1 +x2
∗→ d

and τk(c) = τk(d2) = τk(c + d2 − c) and by Lemma 15,
τk(c + d2 − c) = τk(d1 + d2 − c) = τk(d), since τk(c) =
τk(d1). We conclude that x1 + x2 ∈ X (c). �

123

The computational power of population protocols 295

11 A pumping lemma for stably computable predicates

Given a set of inputs Y ⊆ Pop(�), a monoid-coset covering
of Y with respect toψ is a set {(xi ,Mi)}i∈I of pairs of inputs
and submonoids of N

� such that Y ⊆ ⋃
i∈I (xi + Mi) and

for all i ∈ I , we have xi ∈ Y andψ(xi + Mi) = {ψ(xi)}. We
sayψ admits finite coset coverings if for all Y there exists a
finite monoid-coset covering of Y with respect toψ . The fol-
lowing Pumping Lemma states that every stably computable
predicate admits finite coset coverings. We show later (The-
orem 24) that any predicate such that the predicate and its
complement both admit finite coset coverings is semilinear.

Lemma 21 Every stably computable predicate ψ admits
finite coset coverings.

Proof Consider any Y ⊆ Pop(�). If Y is a finite set
{x1, . . . , xn} then it has a trivial finite covering {(xi ,∅)}1≤i≤n .
So assume Y is infinite. Let y1, y2, . . . be any enumeration
of Y such that yi ≤ y j implies i ≤ j . (For example, fix an
ordering of�. Then enumerate the elements of Y ordered by
cardinality and then lexicographic order.) We define a family
of sets Bi ⊆ Pop(�)× S inductively as follows.

B0 := ∅.

Bi :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Bi−1 if there exists (x, c) ∈ Bi−1 such that

yi ∈ x + X (c)

Bi−1 ∪ {(yi , s(yi))} ∪ {(yi , s(c + yi − x)) | (x, c)

∈ Bi−1 and x ≤ yi } otherwise,

where s(d) ∈ S is any stable configuration reachable from d.

It is easy to see by induction on i that, for all (x, c) ∈ Bi , x
∗→

c, and in the construction, s(d) is applied only to reachable
configurations d, so the existence of s(d) is guaranteed by the
requirements of stably computing a predicate. So, Lemma 19
implies that ψ is constant on x + X (c). Let B := ⋃

i≥1 Bi .
It follows from Lemma 20 that {(x, X (c)) | (x, c) ∈ B} is a
monoid-coset covering of Y with respect toψ . We now show
that B is finite to prove that this is a finite covering.

Assuming to the contrary that B is infinite, infinitely many
different elements of Y appear as first components of ele-
ments of B, since each Bi is clearly finite. By Higman’s
Lemma, there exists an infinite chain z1 < z2 < · · · of
such elements. Our construction guarantees the existence of
associated configurations {di }i≥1 such that (zi , di) ∈ B and

di + (zi+1 − zi)
∗→ di+1 for all i ≥ 1.

Consider the sequence d1, d2, d3, . . .; either only finitely
many values occur (recall we are considering the Abstract
Model, not just the two-way model) or infinitely many val-
ues occur and we can apply Higman’s Lemma again. In either
case, there exists an increasing function f such that d f (1) ≤
d f (2) ≤ d f (3) ≤ · · · . Thus the sequence τk(d f (i)) reaches
a maximum and becomes constant at some index i = j .

Consequently, we have z f (j+1) − z f (j) ∈ X (d f (j)), which
contradicts the membership of (z f (j+1), d f (j+1)) in B. �

Applying this lemma with Y = ψ−1(1) (the support of
ψ) we obtain a finite family of monoid cosets xi + Mi such
that

ψ−1(1) =
⋃

i

(xi + Mi).

This does not prove semilinearity by itself, since some mo-
noid Mi might not be finitely generated. However, every sub-
monoid of Z

1 is finitely generated, so in the special case of
a unary alphabet, we have already that ψ is semilinear, and
therefore regular.

Corollary 22 Every stably computable predicate over a
unary alphabet is semilinear. Thus, over a unary alphabet,
the stably computable predicates are exactly the semilinear
(in fact, regular) predicates.

For example, the unary predicate that is true if the number
of input symbols is a power of 2 (or a prime, or any other non-
regular predicate) is not stably computable. Another easy
corollary suffices to show certain other predicates over non-
unary alphabets are not stably computable.

Corollary 23 Suppose ψ is a stably computable predicate
such that L = ψ−1(1) is infinite. Then L contains an infinite
linear subset.

Proof By Lemma 21 there is a finite monoid-coset covering
of L . If L is infinite, some (x + M) ⊆ L in the covering must
be infinite. �

As an application, consider the set of inputs over the alpha-
bet {a, b} such that the number bs is the square of the number
of as. This is an infinite set with no infinite linear subset, and
is therefore not stably computable. Using closure results for
stably computable predicates we can then show that the set
of all inputs over alphabet {a, b, c} such that the number of
cs is the product of the number of as and the number of bs is
not stably computable. The existence of a pumping lemma
and the negative results for these particular predicates were
conjectured in [3,4].

12 Proof of the semilinearity theorem: outline

We are now in a position to give an overview of how we
go from the pumping lemma (Lemma 21) of Sect. 11 to the
semilinearity theorem (Theorem 9), via Theorem 24.

Recall the following set of points in N
2.

M√
2 = {(i, j) : i ≤ √

2 j}.

123

296 D. Angluin et al.

This is a monoid but is not stably computable. To see this,
suppose the contrary. By the Pumping Lemma (Lemma 21),
there exist monoid cosets xi + Mi for 1 ≤ i ≤ m such that

M√
2 =

⋃

1≤i≤m

(xi + Mi).

Let v = (−1,
√

2); then x · v > 0 for all x ∈ M√
2. Let

ε = mini {xi · v}. Choose some y ∈ M√
2 such that 0 <

y · v < ε. Then for some i , y ∈ xi + Mi , and (y − xi) · v =
y · v − xi · v < ε − ε = 0. Thus for a sufficiently large
n ∈ N, (xi + n(y − xi)) · v < 0, which contradicts the fact
that xi + Mi is a subset of M√

2. The issue here is that the
line dividing the positive and negative inputs cannot have an
irrational slope if the predicate is stably computable. One
ingredient of our proof is a generalization of this idea to sep-
arating hyperplanes.

However, to be able to use separating hyperplanes, we first
must deal with separating “intermixed” positive and nega-
tive inputs using their images in a finite group. For example,
consider the following set of points in N

2, which is stably
computable.

L = {(i, j) : i < j, (i + j) is odd}.
By first separating the points in N

2 by their images (i mod
2, j mod 2) in the group Z2 × Z2, we get four subproblems
in which lines suffice to separate the positive and negative
points.

A further issue is that because of the relationship between
the monoids X (c) and their cosets x + X (c), instead of a sin-
gle separating hyperplane we have to consider finite sets of
parallel hyperplanes, which themselves may contain points
from the support ofψ . These points can be handled by induc-
tion on dimension, but this requires that the main theorem be
generalized to consider the intersection of the support of ψ
and an arbitrary group coset (where we view each hyperplane
as a group coset). We shall prove the following theorem by
induction on the dimension of the group G; it clearly holds
when G has dimension 0, i.e., when G is the trivial group.

Theorem 24 Ifψ and its complement admit finite coset cov-
erings then for any group coset H = x0 + G ⊆ Z

� , we have
ψ−1(1) ∩ H is semilinear.

This theorem, together with Lemma 21 can now be used
to prove Theorem 9. Ifψ is stably computable in the Abstract
Model, then so is its complement (since the output function
of the protocol can be negated). Thus, by Lemma 21, both ψ
and its complement admit finite coset coverings. Applying
Theorem 24 with H = Z

� establishes Theorem 9.
The details of the proof of Theorem 24 are quite involved

and are in Sect. 13. To summarize briefly, the overall
strategy is:

1. By dividing the space into residue classes with respect
to appropriately chosen moduli, we can arrange for the
vectors from the monoids associated with the cover to
appear in all-positive and all-negative regions separated
by hyperplanes. In this part of the proof we extend N

�

to Z
� to make use of the fact that all subgroups of Z

�

are finitely generated. (Sect. 13.1.)
2. We then further map the problem from Z

� to R
� , and use

techniques from convex geometry to show that appro-
priate hyperplanes separating the monoids indeed exist.
(Sect. 13.2.) We obtain a (looser) separation by slabs (the
space between two parallel hyperplanes) on the inputs
by observing that each input is displaced a uniformly
bounded amount from its corresponding extension
vector.

3. Moving to R
� allows for the possibility of separating

hyperplanes with irrational coefficients. Applying the
Pumping Lemma as described above, we show that the
resulting separating hyperplanes are normal to a vector
with rational coordinates and thus correspond to cosets
of subgroups of Z

� . (Sect. 13.3.)
4. At this stage, we have shown that the positive inputs to

the predicate consist of (a) those inputs in the interior
of the separated regions, which can by identified first by
computing the residue classes of their coordinates and
then by identifying which of a finite number of poly-
topes (given by intersections of half-spaces with rational
coordinates) they appear within, and (b) those inputs that
lie in some slab. The first class is semilinear as identifica-
tion of a residue class and identification of membership in
a particular polytope are both expressible in Presburger
arithmetic. The second class is then shown to be semi-
linear by induction on dimension, with the base case of
dimension 0 being the trivially semilinear case of a single
point. (Sect. 13.4.)

13 Proof of the semilinearity theorem: details

The proof of Theorem 24 is delayed to Sect. 13.4. First
we describe the process of separating inputs in more
detail.

13.1 Separating intermixed inputs

Let ψ : Pop(�) → {0, 1} be a predicate that admits finite
coset coverings. Let G be a subgroup of Z

� and let H =
h+G be a coset of G. Take {(ai ,Mi)}i∈I and {(b j , N j)} j∈J to
be finite monoid-coset covers ofψ−1(0)∩H andψ−1(1)∩H
respectively. Assume without loss of generality that
Mi , N j ⊆ G by intersecting with G if necessary. Define
K (i, j) := Z(Mi ∩ N j), the group generated by the intersec-
tion of Mi and N j .

123

The computational power of population protocols 297

Lemma 25 For all i ∈ I and j ∈ J , no coset of K (i, j)
intersects both ai + Mi and b j + N j .

Proof If we suppose the lemma is false, then there exist x ∈
ai + Mi and x ′ ∈ b j + N j such that (x − x ′) ∈ K (i, j).
Because Mi ∩N j is a monoid, we can rewrite x−x ′ as a differ-
ence y′− y where y ∈ Mi and y′ ∈ N j . Thus x + y = x ′+ y′.
The former is in ai + Mi , whereas the latter is in b j + N j .
This contradicts the fact that ai + Mi and b j + N j are disjoint
(since they have different predicate values). �

Define

K :=
⋂

K (i, j) has finitely many cosets in G

K (i, j).

In addition to having finitely many cosets in G, the group K
inherits the relevant properties of the groups K (i, j) included
in its defining intersection.

Lemma 26 For all i ∈ I and j ∈ J such that K (i, j) has
finitely many cosets in G, no coset of K intersects both ai +Mi

and b j + N j .

Proof Since K (i, j) ⊇ K , each coset of K is contained in a
coset of K (i, j). The result follows from Lemma 22. �

Since all group cosets are semilinear, we can use member-
ship in the cosets of K to separate those pairs of monoid co-
sets that are full rank. For the others, we have to take another
approach.

13.2 Separating with hyperplanes

Let g1 + K , . . . , gn + K ⊆ G be the cosets of K in G. For
each 	 ∈ {1, . . . , n} define H	 := h + g	 + K . Note that
∪	H	 = H . If two monoid cosets ai + Mi and b j + N j both
meet some coset h + (g	 + K) ⊆ H , it is possible to sepa-
rate H	 ∩ (ai + Mi) from H	 ∩ (b j + N j) with a hyperplane
(except for a set of lower dimension). Define I	 := {i ∈ I |
(ai +Mi)∩H	 	= ∅} and J	 := { j ∈ J | (b j +N j)∩H	 	= ∅}.
If i ∈ I	 and j ∈ J	, then H	, which is a coset of K , intersects
both ai + Mi and b j + N j , so K (i, j) has infinitely many
cosets in G, by Lemma 26.

At this point we turn to the methods of geometry. We pass
from groups to vector spaces by working in the vector space
closure RG of G in R

� . Instead of monoids, we consider
the convex cones they generate: the set of nonnegative linear
combinations of monoid elements. We connect the geometry
to the algebra by observing that K (i, j) has finitely many
cosets in G if and only if RK (i, j), the vector space closure
of K (i, j), is all of RG. Thus if two monoid cosets are not
intermixed, their intersection of their associated monoids has
strictly smaller dimension than G. This allows us to separate
these monoids with a hyperplane.

Formally, given sets of vectors U and U ′, a set of non-
zero vectors V distinguishes U and U ′ if for all u ∈ U and
u′ ∈ U ′, there exists v ∈ V such that (u ·v)(u′ ·v) ≤ 0; that is,
either one dot product is zero or one is negative and the other
is positive. Define M̂	 := ⋃

i∈I	 Mi and N̂	 := ⋃
j∈J	 N j .

The goal of this subsection is to show the existence of a finite
set of vectors V that distinguishes M̂	 from N̂	. The main tool
we use is the Separating Hyperplane Theorem from convex
geometry. Note that int U denotes the interior of U .

Theorem 27 (Separating Hyperplane Theorem [34]) If U
and U ′ are convex subsets of R

d with nonempty interiors
such that int U ∩ int U ′ = ∅, then there exists v ∈ R

d such
that u · v ≤ 0 for all u ∈ U and u′ · v ≥ 0 for all u′ ∈ U ′.

Unfortunately, Mi and N j are not convex. Thus we are
forced to consider the convex cones that they generate. We
need Carathéodory’s theorem, another result from convex
geometry, to verify the seemingly trivial fact that the inter-
section of these cones lies in a proper vector subspace of RG.

Theorem 28 (Carathéodory’s Theorem [34]) For any set of
vectors Y ⊆ R

d , if x ∈ R+Y , then there exists a linearly
independent subset Y ′ ⊆ Y such that x ∈ R+Y ′.

Lemma 29 For all i ∈ I	 and j ∈ J	, the set Z = R+Mi ∩
R+N j is contained in a proper vector subspace of RG.

Proof Suppose to the contrary. Then the vector subspace RZ
is all of RG and has a basis {z1, . . . , zd} ⊆ Z . By perturbing
this basis to have rational coordinates, we can assume without
loss of generality that zs ∈ QG as well for all s ∈ {1, . . . , d}.

By Theorem 28, for each s, there is a linearly independent
set Ys ⊆ Mi such that zs ∈ R+Ys . When we write each zs as
its unique linear combination of elements in Ys , we see by lin-
ear algebra over QG that in fact zs ∈ Q+Mi . Repeating this
argument with N j yields that zs ∈ Q+Mi ∩Q+N j . We clear
denominators to find numbers ms such that ms zs ∈ Mi ∩ N j .
The set {ms zs}, however, is a basis for RG, which contradicts
the fact that RK (i, j) is not all of RG. �
Lemma 30 For all i ∈ I	 and j ∈ J	, there exists a nonzero
vector v such that {v} distinguishes Mi and N j .

Proof If either Mi or N j is contained in a proper vector sub-
space of RG, then take v to be normal to that subspace.

Otherwise, consider the sets U := R+Mi and U ′ :=
R+N j . The intersection of their interiors is both open and
contained in a proper vector subspace of RG. Thus U and
U ′ have no interior point in common. Therefore, by Theo-
rem 27 there exists v ∈ RG such that for all u ∈ U , we have
u · v ≤ 0; and for all u′ ∈ U ′, we have u′ · v ≥ 0. It follows
that {v} distinguishes Mi and N j . �

To obtain a set of vectors that distinguish M̂	 and N̂	, we
put together all of the individual distinguishing vectors.

123

298 D. Angluin et al.

Lemma 31 For all 1 ≤ 	 ≤ n, there exists a finite set of
vectors V that distinguishes M̂	 and N̂	.

Proof The set V := {v(i, j) | i ∈ I	 and j ∈ J	}
distinguishes M̂	 and N̂	, where v(i, j) is the vector from
Lemma 30 such that {v(i, j)} distinguishes Mi and N j . �

Combining results in this section and the previous one,
we have some powerful criteria for determining the predi-
cate value of an input.

Lemma 32 Let V be a set of vectors that distinguishes M̂	

and N̂	. Suppose x ∈ M̂	 and y ∈ H	 are such that for all
j ∈ J	 and v ∈ V , we have (x · v)((y − bi) · v) > 0. Then
ψ(y) = 0.

Proof Suppose to the contrary that ψ(y) = 1. Then there
exists j ∈ J	 such that (y − b j) ∈ N j . The set V , however,
fails to distinguish x and y − b j , which is a contradiction.

�
Clearly, this lemma has an analogous counterpart that

establishes sufficient conditions for ψ(y) = 1.

13.3 Achieving rationality

The chief obstacle yet to be overcome is that a distinguishing
set of vectors might include vectors with irrational coordi-
nates. In order to rule out predicates like ψ(r, s) := [r <
(
√

2)s], we need to show that we can always distinguish M̂	

and N̂	 by vectors with integral coordinates. We must use for
a second time the fact that ψ admits finite coset covers.

Lemma 33 For all 	 there exists a finite set of vectors from
Z
� that distinguishes M̂	 and N̂	.

Proof Since we can clear denominators, it is enough to find
a set of vectors in Q

� that distinguishes M̂	 and N̂	. By
Lemma 31 there exists a finite set of vectors V that dis-
tinguishes M̂	 and N̂	. Assume that V \ Q

� has minimum
cardinality, that is, as few vectors in V have irrational com-
ponents as possible. To avoid a special case later, we assume
without loss of generality that V contains the standard basis
� of R

� . We show that this set V contains only vectors in
Q
� .
Suppose to the contrary that there exists v ∈ V \ Q

� . By
assumption, the set V ′ := V \ {v} cannot distinguish M̂	 and
N̂	. Thus there exist i ∈ I	 and j ∈ J	 and x ∈ Mi and
y ∈ N j such that for all v′ ∈ V ′ we have (x · v′)(y · v′) > 0.

We consider two cases. In the first case, for all choices of
x and y we have (x ·v)(y ·v) = 0. Then at least one vector in
each problem pair is normal to v. By linear algebra over Q

� ,
there exists a vector v′ ∈ Q

� such that if w ∈ G is normal
to v, then w is normal to v′. Thus V ′ ∪ {v′} distinguishes M̂	

and N̂	, which is a contradiction, since (V ′ ∪ {v′}) \ Q
� has

fewer elements than V \ Q
� .

In the second case, we have x and y such that (x · v′)(y ·
v′) > 0 for all v′ ∈ V ′ and (x ·v)(y ·v) < 0. Assume without
loss of generality that x · v < 0 < y · v by taking −v instead
of v if necessary. Let
 := {w ∈ RG | v′ ·w > 0 for all v′ ∈
V and w(q) > 0 for all q ∈ �}. Clearly
 is an open set.
Also, y ∈
, since by the assumption that � ⊆ V we have
y(q) > 0 for all q ∈ �. Given that
 is a nonempty open set,
we can extend x, y to a basisw1 = x, w2 = y, . . . , wm such
that ws ∈
 for all s ≥ 2. By perturbing each ws slightly
to have rational coordinates and clearing denominators, we
assume without loss of generality that ws ∈
 ∩ K . There
exists s such that (ws ·v)/(w1 ·v) is irrational, since otherwise
some nonzero real scalar multiple of v belongs to Q

� .
In consequence N(x · v)+ N(ws · v) is dense in R, so we

can find sequences of positive integers mt and m′
t such that

mt (x · v)+ m′
t (ws · v)

is a negative monotone increasing sequence of real numbers
approaching 0 as t approaches infinity. For all v′ ∈ V , the
points (mt x + m′

tws)t≥1 lie on the same side of the hyper-
plane normal to v, and as a sequence they approach the hyper-
plane normal to v arbitrarily closely. By another application
of Higman’s Lemma, there is an increasing function f such
that (m f (t),m′

f (t)) is an increasing sequence.
Let z ∈ (ai + Mi)∩ H	. There exists some constant c ≥ 0

such that for each r , the points ((z+(c+m f (t))x+m′
f (t)ws)−

br)t≥1 all lie on the same side of each hyperplane as x . It is
easily verified that each of these points belongs to H	. Thus
by Lemma 32, ψ(z + (c + m f (t))x + m′

f (t)ws) is constantly
0. Apply the pumping lemma (Lemma 21) again to these
inputs to obtain a finite cover. Then there exist t1 < t2 such
that (mt2 − mt1)x + (m′

t2 − m′
t1)ws ∈ P , where the monoid

coset (z +mt1 x +mt2ws)+ P belongs to the cover. Pumping
z + (c + mt1)x + m′

t1ws by a sufficiently large multiple of
(mt2 − mt1)x + (m′

t2 − m′
t1)ws yields an element z′ such that

ψ(z′) = 0, but for each r , we have that z′ −ar is on the same
side of each hyperplane asws , which contradicts Lemma 32.

�

13.4 Proof of Theorem 24

We can now prove Theorem 24 by induction on the dimen-
sion of G (the cardinality of the largest linearly independent
subset of G).

Proof If the dimension of G is zero, then H is a single point
and the result holds. If the dimension of G is greater than
zero, then by Lemmas 26 and 33, there exist a group K and
finite distinguishers V	 ⊆ Z

� for all cosets H	 of K in H .
For each distinguishing vector v ∈ V	, consider the set of

points x ∈ H	 such that it is not that the case that the follow-
ing numbers are either all negative or all positive: (x −ai) ·v
for i ∈ I	 and (x −b j) ·v for j ∈ J	. This set has finite width

123

The computational power of population protocols 299

in the direction of v. Thus it can be written as the union of
finitely many cosets of a group of smaller dimension. The
key to the induction is that any point not in the union of these
sets over the different x satisfies the hypotheses of one of the
variants of Lemma 32.

Define the sets

B :=
⋃

	

{ x ∈ H	 | ∃y ∈ N̂	 such that ((x − b j) · v)(y · v)

> 0 for all j ∈ J	 and v ∈ V	}
B ′ :=

⋃

	

{ x ∈ H	 |	 ∃y ∈ M̂	 such that ((x − ai) · v)(y · v)

> 0 for all i ∈ I	 and v ∈ V	}.
By Lemma 32 we have B ⊆ ψ−1(1) ⊆ B ′. It is not difficult
to verify that B and B ′ are semilinear. Moreover, B ′ \ B is
a union of finitely many group cosets of dimension less than
G. It follows by inductive hypothesis that ψ−1(1)∩ (B ′ \ B)
is semilinear, and thus that ψ itself is semilinear. �

14 Characterizations of the one-way models

In this section, we complete the characterizations of the one-
way models in Fig. 2 by showing that they are limited to the
indicated power.

14.1 Immediate and delayed transmission

We first consider the immediate and delayed transmission
models to prove the following converse to Theorem 6.

Theorem 34 Let ψ be a predicate that is stably computable
by an immediate or delayed transmission protocol. Then ψ
is in SLIN ∩ coreMOD.

Thus, for example, the comparison predicate, true if there
are more as than bs in the input, is not stably computable in
the immediate or delayed transmission model, because it is
not in coreMOD. Intuitively, the weakness of delayed trans-
mission compared with queued transmission is in the inabil-
ity of a receiver to refuse messages temporarily; in effect, by
delivering a number of copies of some message to a receiver
and and forcing it back into the same state, we cause the whole
collection of messages to “disappear” from the computation.

Because a delayed transmission protocol is a special case
of a queued transmission protocol and an immediate trans-
mission protocol is a special case of a two-way protocol,
Corollary 10 shows that ψ is in SLIN. To see that ψ is also
in coreMOD requires some preliminary lemmas. Consider
any delayed or immediate transmission protocol that stably
computes ψ , and consider any nonempty subset �′ of �.

To unify the treatment of the two kinds of protocols, we
assume that in a delayed transmission protocol, the sender

simply sends its current state; thus, we need not distinguish
between states and messages in our description. Formally, in
this case the set of messages consists of a disjoint copy of
the set of states, distinguished by the phrases “the state qi ”
and “the message qi .” In the case of immediate transmission,
an interaction (p, q) �→ (δ1(p), δ2(p, q)) is described as the
sender sending message p and going to state δ1(p), and the
receiver receiving message p and going to state δ2(p, q).

We let Q′ denote the set of states that appear in configura-
tions reachable from inputs that contain only symbols from
�′. For states q, q ′ ∈ Q′ of the protocol, we say that q can
reach q ′ if there is some finite sequence of messages (from
Q′) sent and received by an agent in state q that enable it to
enter state q ′. Formally, q can reach q ′ if there is a sequence
of states q = q1, q2, . . . , qk = q ′ such that, for 2 ≤ i ≤ k,
either qi = δs(qi−1) or qi = δr (p, qi−1) for some message
p ∈ Q′.

The following lemma shows that, for any message p, a
sufficient number of copies of p can be “absorbed” by an
agent in some state q, returning that agent to state q.

Lemma 35 Fix any message p ∈ Q′. Define f p(q) =
δr (p, q). There exists a state q ∈ Q′ and a positive inte-
ger n such that f (n)p (q) = q.

Proof For any state r ∈ Q′, the sequence of states r, f p(r),

f (2)p (r), . . . in Q′ must be eventually periodic of some period
n. Choosing q to be any state in the periodic part, we see that
f (n)p (q) = q. �

If n is a positive integer and q1, q2 ∈ Q′ are states, we
say that q1 and q2 are n-substitutable if there exist an input
x containing only symbols from �′ and a configuration b of
states, such that the configurations c = nq1 + b and d =
nq2 + b are reachable from I (x). We note that if q1 and q2

are n-substitutable, then they are mn-substitutable for any
positive integer m. We define two states q1, q2 ∈ Q′ to be
substitutable if there is some positive integer n such that they
are n-substitutable. Substitutability is reflexive and symmet-
ric by definition; we now show it is transitive.

Lemma 36 Let q1, q2, q3 ∈ Q′ be states and assume that
q1 and q2 are substitutable and q2 and q3 are substitutable.
Then q1 and q3 are substitutable.

Proof For some input x containing only symbols from �′,
configuration b of states and integer n, the configurations
c = nq1 + b and d = nq2 + b are reachable from I (x).
Similarly, for some input y containing only symbols from
�′, configuration b′ of states and positive integer m, the con-
figurations c′ = mq2 + b′ and d ′ = mq3 + b′ are reachable
from I (y).

Consider the input z = mx+ny, which contains only input
symbols from�′. From I (z) there is a computation reaching

123

300 D. Angluin et al.

mc + nc′, which is equal to mnq1 + (mnq2 + mb + nb′),
and also a computation reaching md + nd ′, which is equal
to mnq3 + (mnq2 + mb + nb′). Thus q1 and q3 are mn-sub-
stitutable. �

Now we show that reachability implies substitutability.

Lemma 37 If q1, q2 ∈ Q′ are states such that q1 can reach
q2 then q1 and q2 are substitutable.

Proof Because substitutability is transitive, it suffices to con-
sider the case in which q2 is reachable in one step from q1.
For every state q ∈ Q′, we define cq to be any configura-
tion of states containing q that is reachable from an input
containing only symbols from �′. We consider two cases.

If q1 reaches q2 by a send step, then by Lemma 35 we
may choose a state q3 ∈ Q′ and a positive integer n such that
f (n)q1 (q3) = q3. (Intuitively, this means an agent in state q3

will be back in q3 after receiving n copies of message q1.)
We choose b = n(cq1 − q1) + cq3 , and let c = nq1 + b, so
that c = ncq1 + cq3 . Then c is reachable from I (x) for some
input x containing only symbols from �′.

From c we may have each of n agents in state q1 trans-
mit a message (and reach state q2) to a single agent in state
q3, which will again be in state q3 after receiving the n cop-
ies of q1. Formally, it is easy to see by induction on j that

c
∗→ (n − j)q1 + jq2 + b − q3 + f (j)

q1 (q3) for 0 ≤ j ≤ n.
Taking j = n, we have that d = nq2 + b is reachable from
c, and therefore from I (x), so q1 and q2 are substitutable.

Suppose q1 reaches q2 by a receive step, say of message
q3 ∈ Q′. Let q4 be the state reached from state q3 after a
send. Then by Lemma 35, there is a state q5 ∈ Q′ and a
positive integer n such that f (n)q3 (q5) = q5. (This means that
after receiving n copies of message q3 an agent that starts in
state q5 will be back in state q5.) We choose

b = n(cq1 − q1)+ n(cq3 − q3)+ nq4 + cq5 ,

and let

c = nq1 + b = ncq1 + n(cq3 − q3)+ nq4 + cq5 .

Now c′ = ncq1 +ncq3 + cq5 is reachable from I (x) for some
input x containing only symbols from �′. It is easy to see

by induction on j that, for 0 ≤ j ≤ n, c′ ∗→ ncq1 + ncq3 −
jq3 + jq4 + cq5 − q5 + f (j)

q3 (q5) by a sequence of steps in
which j agents in state q3 send a message (and go to state
q4) to a single agent that started in state q5. Taking j = n,

we see that c′ ∗→ ncq1 + ncq3 − nq3 + nq4 + cq5 = c. Also,
d = nq2 + b = n(cq1 − q1)+ nq2 + n(cq3 − q3)+ nq4 + cq5

is reachable from c′ by a computation in which we pair up
n agents in state q3 with n agents in state q1 and in each of
the n pairs have the agent in state q3 send a message to the
agent in state q1, transforming the sender into state q4 and
the receiver into state q2. Thus, in this case also, q1 and q2

are substitutable. �

Thus we have the following pumping lemma for predicates
stably computable by immediate and delayed transmission
protocols.

Lemma 38 For every input symbol σ ∈ �′ there exist pos-
itive integers k and n such that for every input y ∈ Pop(�)
that is k-rich with respect to �′, y and y + nσ are both
accepted or both rejected.

Proof Let k0 be the constant in Lemma 18 such that k0-trun-
cates are sufficient to determine membership in the set S of
output stable configurations for the protocol. We choose k1

to be |Q′|(k0 − 1)+ 1.
Let σ be any input symbol from �′ and let q = ι(σ), the

initial state associated with σ . Let R ⊆ Q′ be the set of states
that q can reach, and consider any q ′ ∈ R. By Lemma 37,
q and q ′ are nq ′ -substitutable for some positive integer nq ′ .
Let n be the least common multiple of the nq ′ for all q ′ ∈ R;
q and q ′ are n-substitutable. That is, there exists an input
xq ′ containing only symbols from �′ and a configuration of
states bq ′ such that the configurations cq ′ = nq + bq ′ and
dq ′ = nq ′ + bq ′ are reachable from I (xq ′).

Let x be the sum of all xq ′ over q ′ ∈ R. We choose k2

to be the maximum multiplicity of any input symbol in x .
Let k = max(k1, k2) and let y be any input that is k-rich
with respect to�′. Then y ≥ x and y contains only symbols
from �′.

Consider a computation from I (y) that first takes I (x) to
the sum s = ∑

q ′∈R cq ′ and then proceeds to an output stable
configuration e. Since y is k-rich with respect to�′, there are
at least k ≥ k1 agents with input symbol σ . By the pigeon-
hole principle, some state q ′ ∈ R appears with multiplicity
at least k0 in e.

Now from I (y + nσ) = I (y) + nq we consider a com-
putation that takes I (x − xq ′) to s − cq ′ and I (xq ′) to dq ′ ,
giving

I (y − x)+ nq + (s − (nq + bq ′))+ nq ′ + bq ′

= I (y − x)+ s + nq ′.
Now we continue by running I (y−x)+s to e, giving e+nq ′,
which is output stable because τk0(e) = τk0(e + nq ′). Thus
y and y + nσ are both accepted or both rejected. �

Now we can conclude the proof of Theorem 34.

Proof For each alphabet symbol σ ∈ �′, by Lemma 38 there
exist integers kσ and nσ such that for all inputs y that are kσ -
rich with respect to �′, y + nσ σ is accepted if and only if y
is accepted. Let k be the maximum of the kσ s over σ ∈ �′.
Then the acceptance or rejection of an input y that is k-rich
with respect to �′ depends only on the values of the number
of occurrences of σ modulo nσ , which implies that ψ is k-
similar with respect to�′ to a predicate in in MOD. Because
�′ was an arbitrary nonempty subset of �, this shows that
ψ ∈ coreMOD. �

123

The computational power of population protocols 301

14.2 Immediate observation

In the immediate observation model, transitions are of the
form (p, q) �→ (p, q ′) and there is no multiset of undeliv-
ered messages. We have shown in Theorem 7 that for any
constant k, an immediate observation protocol can count the
number of copies of each input symbol up to k, However,
this is also the extent of its power.

Theorem 39 Let ψ be a predicate that is stably computable
by an immediate observation protocol. Thenψ ∈ COUNT∗.

Proof Let k be the constant in Lemma 18 such that k-trun-
cates are sufficient to determine membership in the set S of
output stable configurations. Assume that x is an input such
that some input symbol σ occurs with multiplicity at least
k′ = |Q|(k − 1) + 1 in x . Let c0, c1, c2, . . . , cm be an exe-
cution from the initial configuration c0 = I (x) to an output
stable configuration cm . Then, ci = ci−1 − pi + p′

i for some
pi , p′

i ∈ Q. We define si (j) inductively to represent the state
of the j th agent with input σ in ci , as follows. Let s0(j) =
ι(σ). If the multiset {si−1(j) : 1 ≤ j ≤ k′} is contained
in ci , then si = si−1. Otherwise, there is some ĵ such that

si−1(ĵ) = pi , and we define si (j) =
{

p′
i if j = ĵ

si−1(j) otherwise.
By the pigeonhole principle, the multiset {sm(j) | 1 ≤

j ≤ k′} contains some state q ′ with multiplicity at least k.
Choose j ′ such that sm(j ′) = q ′. We introduce a “clone” of
this agent into the execution. Formally, we show by induc-

tion that I (x + σ)
∗→ ci + si (j ′). When i = 0, I (x +

σ) = c0 + s0(j ′). Assume I (x + σ)
∗→ ci−1 + si−1(j ′). If

qi (j ′) = si−1(j ′), then the claim is clearly true. Otherwise,
ci + si (j ′) = ci−1 − pi + 2p′

i , which is reachable from
ci−1 + si−1(j ′) = ci−1 + pi by having two agents in state
pi change to state p′

i by observing some state in ci−1 − pi .

Thus, I (x + σ)
∗→ cm + q ′. Because the multiplicity of

q ′ in cm is at least k, τk(cm) = τk(cm + q ′). Therefore, since
cm is output stable, so is cm + q ′. Moreover, cm + q ′ has the
same output as cm , so ψ(x) = ψ(x +σ). Because this holds
of any input symbol σ of multiplicity at least k′ in x , we have
ψ ∈ COUNTk′ ⊂ COUNT∗. �

We may also consider a variant of the immediate obser-
vation model in which an agent may interact with itself, that
is, a rule (p, p) �→ (p, q) can be applied to a single agent in
state p to change it to state q. This is the model with mir-
rors. The two versions of the model are equal in power, as
they can simulate each other, using bit-flipping protocols to
avoid or permit self-interactions.

Theorem 40 The same predicates are stably computable by
immediate observation protocols in the models with and with-
out mirrors.

Proof We may assume that n, the population size, is at least
3, since any predicate on 3 or fewer agents is computable in
either model; this case can be detected and handled separately
in either kind of protocol.

Given an immediate observation protocol that stably com-
putes a predicate ψ in the model without mirrors, we can
derive another protocol that stably computes ψ in the model
with mirrors. For every old state q we introduce a new state
q ′ and for every old transition (p, q) �→ (p, r), where p 	=
q, we introduce variants of the transition with all combina-
tions of primed and unprimed states p, q, and r . We replace
every old transition (p, p) �→ (p, q) with four new transi-
tions: (p, p) �→ (p, p′) and (p′, p′) �→ (p′, p), as well as
(p, p′) �→ (p, q) and (p′, p) �→ (p′, q). In the mirrored
model, this allows an agent to flip back and forth between p
and p′ by itself, but to leave these two states, it must interact
with someone other than itself (witnessed by having different
“primation”).

For the other direction, given an immediate observation
protocol in the model with mirrors that stably computes a
predicate ψ , we can again introduce primed and unprimed
versions of each state. For each ordered pair of states p and q,
we have rules (p, q) �→ (p, q ′) and (p, q ′) �→ (p, q), which
allow a state to flip between primed and unprimed as long as
there is at least one unprimed state. Because the input states
are unprimed, these rules cannot eliminate the last unprimed
state. In addition, for every rule (p, q) �→ (p, r)with p 	= q
in the protocol with mirrors, there is a rule (p′, q) �→ (p′, r)
in the protocol without mirrors; this allows steps involving
two agents in different states to be simulated by priming the
initiator, unpriming the responder, and taking the step. For
every rule (p, p) �→ (p, r) in the protocol with mirrors,
there are rules (q ′, p′) �→ (q ′, r ′) for every original state q.
If a step involves two agents in state p, it can be simulated
by priming both agents and taking the step. If a step involves
one agent in state p, it can be simulated by priming that agent
(to get p′) and any other agent (to get q ′) and taking the step.
Note that this simulation can be carried out if there are at
least three agents in the population because there is at least
one unprimed agent in every configuration reachable from
an input configuration. �

14.3 Delayed observation

Here, we prove the converse of Theorem 8, showing that the
delayed observation model is the weakest of the one-way
models we defined.

Theorem 41 Suppose ψ is stably computed by a delayed
observation protocol. Then ψ is in COUNT1.

Proof We show that for any input x , ifσ ∈ x thenψ(x+σ) =
ψ(x), which implies that ψ is completely determined by the

123

302 D. Angluin et al.

presence or absence of each input symbol and hence is in
COUNT1.

Consider the finite graph whose nodes are configurations
reachable from I (x) that contain no messages in transit, with

a directed edge from c to c′ if c
∗→ c′. A final strongly con-

nected component of this graph is one from which no other
strongly connected component of the graph is reachable.
From I (x) we can reach a configuration in a final strongly
connected component F of this graph. Let F̂ denote all the
configurations d, including those with undelivered messages,

such that c
∗→ d for some c ∈ F . For any configurations d

and d ′ in F̂ , d
∗→ d ′ by first delivering all messages in d.

This implies that all configurations in F̂ are output stable.
The set T of states that occur in configurations in F̂ is

closed, that is, if p, q ∈ T and (p, q) �→ (p, q ′), then q ′ ∈ T .
To see this, assume not. Then, take a configuration c in F̂ that
contains p and let an agent in state p send a message, putting
p into messages in transit. Now mimic a computation from d
to a configuration d ′ in F̂ containing q, leaving the message
p undelivered. Then deliver p to an agent in state q, arriving
at a configuration in F̂ containing q ′, a contradiction.

Now consider any σ in x . Consider an execution that
begins in I (x) and ends in an output stable configuration
c in F . There must be a sequence of states q0, q1, . . . , qm

where q0 = ι(σ), qm appears in c, and (pi , qi−1) �→ (pi , qi)

for some state pi that appeared in some configuration during
the execution. Starting from the configuration I (x + σ) =
I (x)+ q0, we can reach a configuration c + q0 that also has
one additional copy of each message p1, . . . , pm left in tran-
sit. By delivering all of the m messages to the agent in state
q0 in order, we reach the configuration c + qm . Because T is
closed and the states of c + qm are all in T , c + qm is output
stable and therefore ψ(x + σ) = ψ(x). �

If we assume that no agent ever receives its own mes-
sage, then the power of the model increases only slightly: it
becomes possible for an agent in a unique state to observe
that it never encounters a twin, and the stably computable
predicates are COUNT2 in this case. The proof is a straight-
forward extension of the proof of Theorem 41.

15 Local fairness is weak even with unbounded states

In this section, we consider a strongly anonymous message-
passing model with the following local fairness condition: if
some agent sends a particular message m infinitely often, then
each agent receives message m infinitely often. This model
turns out to be surprisingly weak. Even if the states of pro-
cesses and the lengths of messages may grow without bound,
protocols in this model cannot distinguish two multisets of
inputs if the same set of values appears in each. Since this
model subsumes the one-way finite-state population protocol

models, this result supports the choice of the stronger global
fairness condition assumed in the rest of the paper.

Theorem 42 Let � denote the (finite or countably infinite)
set of possible input values. A predicate ψ on finite nonemp-
ty multisets of elements from � is stably computable in the
asynchronous message-passing model with the weak fairness
condition if and only ifψ is completely determined by the set
of input values present in the initial configuration.

Proof We describe a protocol in which each agent eventually
determines the set of all the inputs that occur in the initial
configuration, and therefore the correct value ofψ . The state
of each agent is the set consisting of its initial input value
together with every value that has occurred in a message it
has received. Whenever an agent runs, it sends its current
state. Whenever an agent receives a message, it updates its
state to be the union of its previous state and the set of values
in the message.

Clearly every message sent is a subset of the set of input
values in the initial configuration, so there are only finitely
many possible messages in each computation. Every message
sent by an agent with input value σ contains the element σ ,
and it sends infinitely many messages, so eventually every
agent receives a message containing σ . Thus, the state of
every agent eventually consists of the set of values in the
input configuration, and each outputs the correct value of ψ .

For the converse, assume that we have a protocol that sta-
bly computes a predicate ψ , and let x and x ′ be any two
nonempty multisets of values from � such that the same set
of values appears in each. Let n = |x | and n′ = |x ′|. Let c0

and c′
0 be initial configurations corresponding to inputs x and

x ′, respectively. We construct two executions α and α′ start-
ing from c0 and c′

0. Let m1,m2, . . . be an arbitrary sequence
of messages where every possible message appears infinitely
often. We construct the executions α and α′ in phases, where
phase i will ensure that message mi gets delivered to every-
one if that message has been sent enough times. Let ci and
c′

i be the configurations of α and α′ at the end of phase i .
Our goal is to prove the following claim: for all i ≥ 0 and

for all σ ∈ �, the state in ci of each agent with original input
σ is the same as the state in c′

i of each agent with original
input σ . Assume that we have constructed the first i − 1
phases of the two executions so that the claim is satisfied.
Suppose we run all processes in lock step from ci−1 and c′

i−1
without delivering any messages. There are two cases.

Case (i): Eventually, after ri rounds, the run from ci−1 will
have at least n copies of mi in transit and, after r ′

i rounds,
the run from c′

i−1 will have at least n′ copies of mi in tran-
sit. Then, the i th phase of α and α′ is constructed by running
each agent for max(ri , r ′

i) rounds without delivering any mes-
sages, and then delivering one copy of mi to every agent. This
ensures the claim will be true for ci and c′

i .

123

The computational power of population protocols 303

Case (ii): Otherwise, we allow every agent to take one step
without delivering any messages. (This clearly satisfies the
claim for ci and c′

i .)
It remains to show that both α and α′ satisfy the weak

fairness condition, and then it will follow from the claim that
ψ(x) = ψ(x ′). First, notice that every agent takes infinitely
many steps in α and α′. If some agent v sends a message m
infinitely many times in α or α′, it will also be sent infinitely
many times by an agent with the same input value in the other
execution (since an agent with a particular input experiences
the same sequence of events in both executions). Suppose m
is never delivered after phase i to some agent w in one of
the two executions. Eventually, there will be n copies of m in
transit in C j for some j > i and n′ copies of m in transit in
C ′

j ′ for some j ′ > i . Consider the first occurrence of m in the
sequence m1,m2, . . . that comes after m j and m j ′ . During
the corresponding phase, m will be delivered to every agent,
includingw, a contradiction. Thus, α and α′ satisfy the weak
fairness condition. �

16 Conclusions and discussion

We have shown that the predicates stably computable by
population protocols in the family of all-pairs communica-
tion graphs are semilinear, answering the main open question
in [3,4]. This result also shows that the model of population
protocols with stabilizing inputs, introduced in [1], is equal
in computational power to the standard model of population
protocols in the family of all-pairs communication graphs,
resolving another open question.

Our semilinearity proof is given for an abstract model that
includes not only population protocols, but generalizations
permitting rules that replace one finite multiset of elements of
a configuration with another finite multiset of elements. Thus,
even a generalization of population protocols in which rules
may add or delete agents or involve interactions between
more than two agents will stably compute only semilinear
predicates, answering a question in [2].

We have introduced several models of one-way communi-
cation in population protocols: queued transmission, imme-
diate and delayed transmission and immediate and delayed
observation, and exactly characterized the classes of pred-
icates stably computable in these models in the family of
all-pairs communication networks by natural subclasses of
the semilinear predicates. These one-way models are more
closely related to asynchronous message-passing models,
and illuminate the effects of capabilities such as the ability
to refuse to accept incoming messages temporarily.

Another natural variant of the population protocol model
considers “reversing moves” and requires that a protocol
stably compute a predicate despite the possible presence in
an execution of a finite number of reversing moves, that is,

steps in which a rule (p, q) �→ (p′, q ′) is used in reverse:
(p′, q ′) �→ (p, q). It is not difficult to show that the basic
protocols for modulo and threshold predicates are resistant
to such reversing moves, and therefore that all the semilinear
predicates can be computed by protocols resistant to revers-
ing moves. Thus, requiring such resistance does not reduce
the computational power of population protocols in the fam-
ily of all-pairs communication graphs.

Despite promising results for population protocols in
restricted communication graphs [1], much more remains to
be understood about their computational power. In particular,
the computational power of one-way protocols in restricted
communication graphs has not been studied.

Acknowledgments This research was carried out while the third
author was an undergraduate at the University of Rochester. The authors
would like to thank the reviewers of the extended abstracts on which
this paper is based [6,7] and also the referees of the current paper for
their thoughtful comments and suggestions.

References

1. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H.,
Peralta, R.: Stably computable properties of network graphs. In:
Prasanna, V.K., Iyengar, S., Spirakis, P., Welsh, M. (eds) Dis-
tributed Computing in Sensor Systems: First IEEE International
Conference, DCOSS 2005, Marina del Rey, CA, USA, June/July,
2005, Proceedings, volume 3560 of Lecture Notes in Computer
Science, pp. 63–74. Springer, Berlin (2005)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Urn
automata. Technical Report YALEU/DCS/TR-1280, Yale Univer-
sity Department of Computer Science (2003)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Computation in networks of passively mobile finite-state sensors.
In: PODC ’04: Proceedings of the Twenty-Third Annual ACM
Symposium on Principles of Distributed Computing, pp. 290–299.
ACM, New York (2004)

4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Computation in networks of passively mobile finite-state sen-
sors. Distrib. Comput. 18(4), 235–253 (2006)

5. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by pop-
ulation protocols with a leader. In: Distributed Computing: 20th
International Symposium, DISC 2006: Stockholm, Sweden, Sep-
tember 2006: Proceedings, pp. 61–75 (2006)

6. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predi-
cates are semilinear. In: Proceedings of the 25th ACM Symposium
on Principles of Distributed Computing, pp. 292–299 (2006)

7. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: On the power of
anonymous one-way communication. In: Principles of Distributed
Systems; 9th International Conference, OPODIS 2005; Pisa, Italy;
December 2005; Revised Selected Papers, volume 3974 of Lecture
Notes in Computer Science, pp. 396–411 (2005)

8. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing
population protocols. In: Principles of Distributed Systems; 9th
International Conference, OPODIS 2005; Pisa, Italy; December
2005; Revised Selected Papers, volume 3974 of Lecture Notes in
Computer Science. pp. 103–117 (2005)

9. Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing consensus in
mobile networks. In: Proceedings of Distributed Computing in
Sensor Systems: Second IEEE International Conference, volume
4026 of Lecture Notes in Computer Science, pp. 37–50 (2006)

123

304 D. Angluin et al.

10. Attiya, H., Gorbach, A., Moran, S.: Computing in totally
anonymous asynchronous shared memory systems. Inform. Com-
put. 173(2), 162–183 (2002)

11. Angluin, D.: Local and global properties in networks of proces-
sors. In: Proceedings of the 12th ACM Symposium on Theory of
Computing, pp. 82–93 (1980)

12. Aspnes, J., Shah, G., Shah, J.: Wait-free consensus with infinite
arrivals. In: Proceedings of the 34th ACM Symposium on Theory
of Computing, pp. 524–533 (2002)

13. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases,
Second Edition. Charles Griffin & Co., London (1975)

14. Buhrman, H.: Alessandro Panconesi, Riccardo Silvestri, and Paul
Vitanyi. On the importance of having an identity or, is consensus
really universal?. Distrib. Comput. 18(3), 167–176 (2006)

15. Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowl-
edge. In: Proceedings of the 18th ACM Symposium on Principles
of Distributed Computing, pp. 173–179 (1999)

16. Boldi, P., Vigna, S.: An effective characterization of computability
in anonymous networks. In: Distributed Computing, 15th Interna-
tional Conference, pp. 33–47 (2001)

17. Diamadi, Z., Fischer, M.J.: A simple game for the study of trust
in distributed systems. Wuhan Univ. J. Natural Sci. 6(1–2), 72–82
(2001). Also appears as Yale Technical Report TR–1207, January
2001

18. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.:
When birds die: Making population protocols fault-tolerant. In:
Proceedings of the Second IEEE International Conference on Dis-
tributed Computing in Sensor Systems (DCOSS ’06), pp. 51–66
(2006)

19. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors. Am. J. Math. 35(4), 413–
422 (1913)

20. Daley, D.J., Kendall, D.G.: Stochastic rumours. J. Inst. Math.
Appl. 1, 42–55 (1965)

21. Eğecioğlu, Ö., Singh, A.K.: Naming symmetric processes using
shared variables. Distrib. Comput. 8(1), 19–38 (1994)

22. Fischer, M.J., Jiang, H.: Self-stabilizing leader election in networks
of finite-state anonymous agents. In: Tenth International Confer-
ence on Principles of Distributed Systems, volume 4305 of Lecture
Notes in Computer Science, pp. 395–409 (2006)

23. Fich, F., Ruppert, E.: Hundreds of impossibility results for distrib-
uted computing. Distrib. Comput. 16(2–3), 121–163 (2003)

24. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of
chemical systems with many species and many channels. J. Phys.
Chem. A 104, 1876–1880 (2000)

25. Gillespie, D.T.: A rigorous derivation of the chemical master
equation. Physica A 188, 404–425 (1992)

26. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-
memory computing. Distrib. Comput. (2007, in press)

27. Higman, G.: Ordering by divisibility in abstract algebras. Proc.
Lond. Math. Soc. 3(2), 326–336 (1952)

28. Hopcroft, J., Pansiot, J.: On the reachability problem for 5-dimen-
sional vector addition systems. Theoret. Comput. Sci. 8(2), 135–
159 (1978)

29. Ibarra, O.H., Dang, Z., Egecioglu, O.: Catalytic P systems, semi-
linear sets, and vector addition systems. Theor. Comput. Sci.
312(2–3), 379–399 (2004)

30. Jiang, H.: Distributed Systems of Simple Interacting Agents. PhD
thesis, Yale University (2007)

31. Jayanti, P., Toueg, S.: Wakeup under read/write atomicity. In: Dis-
tributed Algorithms, 4th International Workshop, volume 486 of
LNCS, pp. 277–288 (1990)

32. Kutten, S., Ostrovsky, R., Patt-Shamir, B.: The Las-Vegas pro-
cessor identity problem (How and when to be unique). J. Algo-
rithms 37(2), 468–494 (2000)

33. Lang, S.: Algebra (revised third edition). Springer, Berlin (2002)
34. Lay, S.R.: Convex Sets and their Applications. Krieger Publishing

Company, (1992)
35. Lipton, R.J., Park, A.: The processor identity problem. Inform.

Process. Lett. 36(2), 91–94 (1990)
36. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581

(1966)
37. Panconesi, A., Papatriantafilou, M., Tsigas, P., Vitányi, P.: Ran-

domized naming using wait-free shared variables. Distrib. Comput.
11(3), 113–124 (1998)

38. Presburger, M.: Über die Vollständigkeit eines gewissen Systems
der Arithmetik ganzer Zahlen, in welchem die Addition als einz-
ige Operation hervortritt. In: Comptes-Rendus du I Congrès de
Mathématiciens des Pays Slaves, pp. 92–101, Warszawa (1929)

39. Sakamoto, N.: Comparison of initial conditions for distributed
algorithms on anonymous networks. In: Proc. 18th ACM Sympo-
sium on Principles of Distributed Computing, pp. 173–179 (1999)

40. Teng, S.-H.: Space efficient processor identity protocol. Inform.
Process. Lett. 34(3), 147–154 (1990)

123

	The computational power of population protocols
	Abstract
	Introduction
	Stably computable predicates are semilinear
	One-way communication
	Related work
	Population protocols and related models
	Comparison with asynchronous message-passing
	Preliminaries
	A unified framework
	Definitions of models
	Two-way
	Transmission with queuing
	Immediate transmission and observation
	Delayed transmission and observation
	The abstract model
	Mirrors and messages to self
	Predicate classes
	Semilinear predicates
	The classes MOD and coreMOD
	Simple threshold predicates
	Summary of characterizations
	Protocols
	The two-way model
	Queued transmission
	Immediate and delayed transmission
	Immediate observation
	Delayed observation
	Characterization of the power of the abstract model
	Groundwork
	Monoids, groups, and semilinearity
	Higman's lemma
	Truncation maps and their properties
	Truncation and stability
	Extensions
	A pumping lemma for stably computable predicates
	Proof of the semilinearity theorem: outline
	Proof of the semilinearity theorem: details
	Separating intermixed inputs
	Separating with hyperplanes
	Achieving rationality
	Proof of Theorem 24
	Characterizations of the one-way models
	Immediate and delayed transmission
	Immediate observation
	Delayed observation
	Local fairness is weak even with unbounded states
	Conclusions and discussion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

