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Abstract Self-stabilization is an elegant approach for
designing a class of fault-tolerant distributed protocols. A
self-stabilizing protocol is guaranteed to eventually converge
to a legitimate state after a transient fault. However, even a
minor transient fault can cause vast disruption in the system
before legitimacy is reached. This paper introduces the notion
of fault-containment to address this particular weakness
of self-stabilizing systems. Informally, a fault-containing
self-stabilizing protocol, in addition to providing self-
stabilization, contains the effects of faults. This ensures that
disruption during recovery from faults, is proportional to
the extent of the faults. The paper begins with a formal
framework for specifying and evaluating fault-containing
self-stabilizing protocols. The main result of the paper is
a transformer that converts any non-reactive self-stabilizing
protocol into an equivalent fault-containing self-stabilizing
protocol that can repair any single fault in the system in
O(1) time. For a large class of input protocols, the corres-
ponding output protocols produced by the transformer have
O(1) space overhead. The small time and space overhead
make the fault-containing self-stabilizing protocol a practical

S. Ghosh (B) · T. Herman · S. V. Pemmaraju
Department of Computer Science, The University of Iowa,
Iowa City, IA 52242, USA
e-mail: ghosh@cs.uiowa.edu

T. Herman
e-mail: herman@cs.uiowa.edu

S. V. Pemmaraju
e-mail: sriram@cs.uiowa.edu

A. Gupta
Department of Computer Science and Engineering,
Indian Institute of Technology,
Kharagpur 721302, India
e-mail: agupta@cse.iitkgp.ernet.in

alternative to the original self-stabilizing protocol. The
transformer is based on a novel stabilizing timer paradigm
that significantly simplifies the task of fault-containment.
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1 Introduction

Self-stabilization is an elegant approach for designing a class
of fault tolerant distributed protocols. A system is said to be
self-stabilizing if starting from any initial state, the system
is guaranteed to converge to, and stay in thereafter, a state
belonging to a well-defined set of desirable states. The set of
desirable states to which the system converges is called the
set of legitimate states; the rest of the states are labeled ille-
gitimate states. Research on self-stabilization was initiated
by a seminal paper by Dijkstra [14] in 1974. Since then, self-
stabilizing protocols have been designed for a large variety
of problems and underlying principles have been explored
[16,34].

Self-stabilizing systems are important in the area of fault-
tolerance because they provide automatic tolerance to tran-
sient faults. Since the state of a system after transient faults
can be viewed as an arbitrary initial state, the system automa-
tically recovers from such faults and reaches a legitimate state
without any external intervention. However, the importance
of self-stabilizing systems is not limited to their tolerance of
transient faults. In many cases, self-stabilizing protocols can
dynamically adapt to changes in topology of the underlying
network [3,12,15,18,23]. Therefore, such protocols can be
thought of as being tolerant to permanent faults, such as the
crash of a node or a link, that change the topology of the
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network. Some self-stabilizing protocols [10,23] have the
ability to automatically adjust to dynamic changes in the
parameters of a problem such as weights associated with
edges or nodes in the network. Self-stabilizing protocols have
also been designed in some cases to tolerate more severe per-
manent faults such as omission or Byzantine faults [11,25].

The motivation of our current research stems from a funda-
mental limitation of self-stabilizing systems. Fault-tolerance
can be classified into two broad categories: masking and
non-masking (see Arora and Kulkarni [4]). Masking fault-
tolerance is the ability of programs to continually satisfy
their specification in the presence of faults. Self-stabilization
is considered non-masking fault-tolerance, since the users of
a stabilizing system can observe disrupted behavior while the
system recovers to a legitimate state. Given a non-masking
fault-tolerant system, one would hope that the level of disrup-
tion observable by users be proportional to the severity of the
fault causing the disruption. Unfortunately, many stabilizing
systems do not have this property: in some cases even a single
bit corruption may lead to an observable state change in all
processes, and the system may take a large amount of time
to recover to a legitimate state. Our current work addresses
this particular weakness by introducing the notion of fault-
containment in the context of self-stabilization. In the context
of digital systems, Nelson [32] defines fault-containment as
the prevention of error propagation across defined bounda-
ries. Our goal is to design fault-containing, self-stabilizing
protocols, that is, protocols that, in addition to being self-
stabilizing, have the ability to contain “small-scale” transient
faults within some defined boundaries. By a “small-scale”
fault we mean a transient fault that affects a small number
of components physically close together in the system. This
notion will be made more precise later in the paper. Sup-
pose that α is a state of a system arising from a small-scale
fault. Then, the property of fault-containment guarantees that
during recovery from α: (a) the total number of observable
state changes by all components in the system is small, and
(b) only a small subset of components, physically close to the
faulty components, change their local states. Thus the boun-
daries within which we wish to contain the effects of faults
are spatial as well as temporal. Fault-containment guarantees
that to any user of the system, small-scale faults are “almost”
masked, and after such a fault occurs, the system is repai-
red quickly with minimal seepage of the faults. In addition
to ensuring the containment of small-scale faults, it is desi-
rable that the system also provide the broader guarantee of
self-stabilization, since arbitrary large-scale faults may occur
occasionally. A formal definition of fault-containment in the
context of self-stabilizing systems is presented in Sect. 4.

Small-scale faults can be thought of as a class of faults dis-
tinct from the class of arbitrary transient faults and therefore
fault-containing self-stabilizing systems can be thought of as
examples of systems that provide multitolerance. Multitole-

rance refers to the ability of a system to tolerate multiple fault-
classes, each in a possibly different way. Arora and Kulkarni
[5] propose a component based method for designing multito-
lerance. However, in Arora and Kulkarni’s method, the indi-
vidual components must be non-interfering in a certain sense.
In our context, this method might involve starting with a self-
stabilization component and adding to it a fault-containment
component. Unfortunately, the fault-containment component
and the self-stabilization component typically interfere with
each other adversely because the properties of self-stabilizat-
ion and fault-containment seem to be inherently in conflict
with each other. Hence, even though fault-containing self-
stabilizing systems are examples of multitolerant systems,
Arora and Kulkarni’s method cannot be used to design such
systems. The design of fault-containing self-stabilizing sys-
tems in an asynchronous network is made more difficult by
the fact that there is little control on the order of moves by
processes. For example, if the neighbor of a faulty process
makes a move before the faulty process repairs its fault, then
the fault may spread through the system before it is even-
tually repaired. The conflict between self-stabilization and
fault-containment is the most fundamental problem faced
during the addition of the property of fault-containment to
self-stabilizing protocols. This problem is formally identified
and solved in this paper.

The problem of containing the effects of small-scale tran-
sient faults is rapidly assuming importance for two reasons:
(a) the dramatic growth in network sizes and (b) the fact that
in practice, a transient fault usually corrupts a small num-
ber of components. For example, consider a broadcasting
protocol that uses a spanning tree computed by an under-
lying self-stabilizing protocol (see [12] for an example of a
self-stabilizing spanning tree protocol). A transient fault at
a single process, say i , that corrupts the spanning tree infor-
mation local to i may contaminate the spanning tree infor-
mation in a large portion of the system, if the fault is not
contained. The faulty spanning tree could significantly and
adversely affect the operation of the broadcasting protocol
across a large portion of the network. The damage to the
broadcasting operation could be in terms of lost messages
or a large number of unnecessary messages. So our goal is
to tightly contain the effects of small-scale transient faults.
What “tightly” exactly means depends on the context and
the application. For example, suppose that α is a state obtai-
ned from a legitimate state by a transient fault at a single
process. In one context, tight fault containment could mean
that, starting in α, observable disruption of the system state
persists for at most O(1) time; in another context tight fault
containment could mean that during recovery from α, only
processes within O(1) distance of the faulty process are allo-
wed to make observable changes in their local state. In any
case, tight fault-containment results in a self-stabilizing dis-
tributed system in which the disruption caused by small-scale
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faults is “almost” invisible and as a result adverse effects of
such faults are minimal.

1.1 Contributions

Our first contribution lies in formalizing the notion of fault
containment within the context of self-stabilization. As far
as we know, this is the first attempt to investigate fault-
containment systematically in the context of self-
stabilization. We identify and formally define various metrics
to evaluate the fault-containment and self-stabilization pro-
perties of a protocol, and based on these, give a formal defini-
tion of fault-containing self-stabilizing protocols. Informally,
let a k-faulty state be an illegitimate state obtained from a
legitimate state by transient faults that arbitrarily corrupt the
local state of k processes. In this paper, we focus on fault-
containment from 1-faulty states. However, our definitions
extend to the case of k-faulty states as well.

Our second contribution is concerned with the
methodology of designing fault-containing self-stabilizing
protocols. The main question here is whether we can systema-
tically construct from self-stabilizing protocols, equivalent
protocols that are fault-containing, in addition to being self-
stabilizing. This problem is important since self-stabilizing
protocols already exist for a large number of problems. We
formalize this problem as one of constructing a transformer
that can transform any self-stabilizing protocol into an equi-
valent fault-containing self-stabilizing protocol. As mentio-
ned earlier, this problem is difficult because of what seem
to be inherently conflicting demands that the properties of
self-stabilization and fault-containment place on a system.
We solve the problem by presenting a transformer T that
converts a non-reactive self-stabilizing protocol P into an
equivalent fault-containing self-stabilizing protocol Q that
repairs a 1-faulty state in O(1) time, and with only the faulty
process making an observable state change. For many ins-
tances of P , the output Q produced by the transformer has
O(1) space overhead per process. Thus, the single transient
fault is contained as tightly as possible, temporally as well as
spatially. Features of Q worth emphasizing are that it runs on
an asynchronous network and only requires a small amount of
extra space per process for fault-containment. To get around
problems introduced by asynchrony and also as a way of
distinguishing between single process faults and other more
substantial faults, we use a novel timer-based technique in
Q. This timer protocol is self-stabilizing and we believe is
of independent interest in distributed computing.

1.2 Related work

Of late, there has been growing interest among researchers
in constructing protocols that are not only self-stabilizing,
but also provide certain guarantees during convergence from

certain states. Gouda and Schneider [26] propose a stabili-
zing algorithm for constructing a maximum flow tree in a
network; the algorithm allows arc capacities to change and
ensures that even while a new maximum flow tree is being
constructed in response to the new capacities, a flow tree
is maintained. Dolev and Herman [17] construct “supersta-
bilizing” protocols that, in addition to being self-stabilizin-
g, guarantee that during convergence from states that arise
from legitimate states by small-scale topology changes such
as the crash or recovery of a processor or a link, certain
passage predicates will be satisfied. Thus, superstabilizing
protocols provide some guarantees during convergence, in
contrast to self-stabilizing protocols that provide no gua-
rantees on system behavior during convergence. However,
Dolev and Herman assume that any such topology change is
accompanied by a signal to neighboring processors. In the
context of fault-containing self-stabilizing protocols, such
signals or interrupts to distinguish between a small scale
fault (from which we want fault-containment) and an arbi-
trary fault (from which we want only self-stabilization) may
not be available. In fact, it is the need to distinguish bet-
ween two types of faults that makes the design of fault-
containing self-stabilizing protocols difficult. Hence, even
though fault-containing self-stabilizing protocols are simi-
lar to superstabilizing protocols in the sense that they also
provide additional guarantees during convergence from cer-
tain types of faults, the methods of [17] are not directly
applicable to fault-containment. For several specific
problems, self-stabilizing protocols that provide certain fault-
containment properties from 1-faulty states have been pre-
sented: [19] solves the problem of electing a leader in a
ring, [21] solves the problem of constructing a spanning tree,
and [22] solves a the problem of constructing a breadth-first
search spanning tree. Herman [27] presents a self-stabilizing
protocol for mutual exclusion on a ring that contains the effect
of any spurious tokens that may have been generated by a
single-process fault. Kutten and Patt-Shamir [28] mention
an asynchronous self-stabilizing algorithm for the persistent
bit problem that recovers in time proportional to the num-
ber of faults. Beauquier, Genolini, and Kutten [9] present a
token-based mutual exclusion protocol that can recover from
k faults in O(k) time.

Some recent papers address the bigger question of how
to systematically construct fault-containing protocols from
protocols that are not fault-containing. Kutten and Peleg [30]
present a class of protocols for a synchronous network for
which the recovery time is proportional to the number of tran-
sient faults. However, their protocols are not self-stabilizing.
But the attempt by the authors to link recovery time to the
severity of the fault is an important contribution. Kutten and
Patt-Shamir [29] present a self-stabilizing algorithm for the
persistent bit problem, where the goal is to retain the value of
a common replicated bit across the system in spite of transient
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faults. Kutten and Patt-Shamir use this algorithm as the basis
of a transformer that takes as input a non-reactive, possibly
non-stabilizing protocol and produces as output an equiva-
lent self-stabilizing protocol that recovers in time proportio-
nal to the number of faults from any state in which at most
half the processes are corrupted by transient faults. Again,
the resulting protocol works only on synchronous systems.
An alternate method of stabilizing an asynchronous system
in time commensurate with the extent of failure is propo-
sed by Ghosh and He in [24]. It guarantees recovery from
single faults in O(1) time, but when the number of failures
increases, the number of processes that makes observable
state changes may grow exponentially. Thus the effect of
the fault is not tightly contained within a small neighbo-
rhood around the fault. The recent work of Afek and Dolev
[1] describe a transformer that takes as input a synchronous
distributed protocol and produces as output an equivalent
synchronous, self-stabilizing version that has the ability to
locally repair faults in expected time proportional to the lar-
gest diameter of a faulty region. Afek and Dolev drop the
requirement of Kutten and Patt-Shamir that at most half the
processes be corrupted by a transient fault, and their trans-
former also handles interactive protocols. However, the fault-
containment provided by Afek and Dolev’s technique uses
error-correcting codes and is probabilistic, and their proto-
cols work only on synchronous systems. Running these syn-
chronous protocols in an asynchronous environment is not
merely a matter of using a synchronizer; the synchronizer
itself has to be fault-containing in an asynchronous environ-
ment. The transformer we present in this paper is the first1

attempt to automatically build fault-containing protocols in
an asynchronous setting.

A crucial part of our transformer is a timer protocol. This
is, in some superficial ways similar to the synchronizer
protocols [6–8,13] that can be used to run synchronous pro-
tocols in an asynchronous environment. However, there are
fundamental differences. The protocol in [6] is not self-
stabilizing. The protocols in [7,8,13] are stabilizing. Of these,
the protocol in [8] is very complicated. [7] presents two syn-
chronizer protocols. The first one requires unbounded regis-
ters. The second protocol bypasses this problem by using a
self-stabilizing reset mechanism whenever the register value
reaches a predefined maximum. Similarly, [13] also pro-
vides two protocols for maintaining clock variables such that
clocks of neighboring processes are synchronized. The first
one requires an unbounded clock. The second one provides a
bounded clock, where the bound must be greater than n2 for
an n-process system and is thus dependent on the network
size. However, all the protocols guarantee only stabilization,
and fail to meet the additional requirement of supporting

1 A preliminary version of this paper appeared in the 15th Annual ACM
Symposium on Principles of Distributed Computing, 1996.

fault-containment in the case of a single fault. In addition,
all the protocols are non-terminating. The timer protocol we
present is stabilizing, has special properties to achieve fault-
containment in the case of a single fault in the system, and
terminates when stabilization is completed.

1.3 Organization

The rest of the paper is organized as follows. Section 2
presents an example to motivate the issue of fault-
containment in the context of self-stabilization; the example
illustrates the difficulty of achieving fault-containment and
self-stabilization in the same protocol. Section 3 presents
our model of computation. Section 4 formally defines fault-
containment in the context of self-stabilization. Section 5
considers the problem of automatic transformation of exis-
ting self-stabilizing protocols into fault-containing self-
stabilizing protocols. A transformer is presented that takes
as input a non-reactive self-stabilizing protocol, and automa-
tically produces as output an equivalent fault-containing self-
stabilizing protocol. Finally, Sect. 6 contains some
concluding remarks.

2 A motivating example

To identify and emphasize the difficulties of combining self-
stabilization with fault-containment, we present a simple
example involving a transient fault that corrupts a single pro-
cessor. The example is a simple self-stabilizing protocol [12]
to construct a spanning tree of a network of n processes. A
particular process r is designated as the root of the span-
ning tree to be constructed. The local state of each process i ,
i �= r , is described by the tuple 〈 p, � 〉, where p is a variable
that identifies i’s parent in the tree and � is a variable that
denotes the distance in the tree between i and r . The process
r has a single variable � whose value is set to 0. Informally,
each non-root process, asynchronously with any other pro-
cess, perpetually checks its variables and adjusts them by
applying one of two rules: (1) if � < n and � is not one grea-
ter than its parent’s � variable, then � should be made one
greater than that of its parent’s � variable; (2) if � ≥ n then p
should be set to a new parent. Figure 1a shows a legitimate
state for a small network (dashed lines are non-tree edges).
The value of the variable � for each process is shown beside
the node and the parent variable p is shown by the arrow. At a
legitimate state, only rule (1) applies and even when applied,
it does not change the state of the process.

Now suppose that a single-process transient fault occurs
in the legitimate state shown in Fig. 1a. This transient fault
changes the distance variable � at process x and the resulting
state is shown in Fig. 1b. In this state, rule (1) is applicable
at both x and y. If this rule executes first at x , the fault is
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Fig. 1 An example showing the difficulty of containing a fault

instantly repaired and a legitimate state is reached; however
if y executes first, then every descendant of y could adjust its
distance variable � as well, before the system returns to a legi-
timate state. This example hints that optimal fault contain-
ment might be achievable by proper scheduling of the actions
of a protocol. However, achieving this scheduling is compli-
cated by the fact that in a distributed system, processes have
only local knowledge of the system. Consider the tree shown
in Fig. 2a. Figure 2b shows a state resulting from faults in
multiple processes that occur in the legitimate state shown in
Fig. 2a. In particular, the faults change the distance variables
of all processes in the subtree rooted at y, including the pro-
cess y, as shown. Note that process y is the only process with
an applicable rule that can change the local state of y, and
hence the global state of the system. Hence, process y needs
to change its state by an application of rule (1) in order to start
the recovery to a legitimate state. However, the local know-
ledge of the system available to y is exactly the same as in the
case of the tree shown in Fig. 1b. Thus, with the same local
knowledge available to a process y, we require that in one
case y moves to avoid deadlock, but require that in another
case y does not move so as to achieve fault-containment.
One implication of this is that there is a thin line between
fault-containment and deadlock: on one hand, if a process
chooses not to move, then the system might be deadlocked;
on the other hand, if it chooses to move, then the system
might not be fault-containing. A solution to this problem
could be to extend the states of processes by adding auxi-
liary information so that each process knows more. But there
is danger here as well, since a transient fault can corrupt the
auxiliary information and lead to an equally unreliable local
state.

Figure 1c shows another example of a state obtained by
a single-process transient fault at the legitimate state shown
in Fig. 1a. This fault causes process x to change its parent
variable p from w to z and the result is a cycle. A legitimate
state will be obtained after a number of rule executions by
all processes in the cycle. Intuitively, one might hope that a
transient fault at a single process can be repaired by actions
only at that process, but this example shows stabilizing pro-
tocols may not have actions capable of such local repair. In
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Fig. 2 An example to show the potential conflict between deadlock
and fault-containment

particular, to recover from the 1-faulty global state shown in
Fig. 1c, we would like x to reset its parent variable back to w

immediately. However neither of the two rules in the protocol
allow x to take such an action. To overcome this deficiency,
one might attempt to add actions explicitly for local repair
following a single-process transient fault. However this leads
to other dangers. From local information, processes cannot
distinguish between states in which it is better to execute the
original protocol’s actions versus states in which it is better
to execute the newly added local repair actions. Executing
local repair actions at the wrong time might undo some of
the progress made by the original protocol and as a result the
new protocol may not even be self-stabilizing.

The spanning tree example illustrates the potential conflict
between self-stabilization and fault-containment — trying to
achieve fault-containment may destroy the self-stabilization
property of the system, and vice-versa. The essential diffi-
culty in constructing self-stabilizing protocols that also
achieve fault-containment is that based on local knowledge,
processes cannot always unambiguously decide the extent of
failure in the system. Hence, a process cannot always decide
the proper action to take to achieve both fault-containment
and self-stabilization.

We will next formalize the notion of fault-containment
in the context of self-stabilization. As mentioned earlier in
this paper, we will focus on fault-containment from single
transient faults. We first describe our model of computation,
and present definitions relative to this model. However, it
is important to note that the scope of the definitions is not
restricted to any one particular model of computation. The
definitions can be easily extended to other models of compu-
tation, as long as the notion of a single fault is well-defined
in that model. Moreover, the definitions can also be easily
extended to the case when there is a need to contain the
effects of not one, but k faults, for some fixed k > 1.
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3 Model of computation

A distributed system is modeled by a network consisting of
a set of nodes pairwise connected by a set of edges. Each
node in the network corresponds to a process, and each edge
between two nodes corresponds to a bidirectional commu-
nication link between the two nodes. Each process has a set
of local variables. Let V be the set of all processes in the
network and let |V | = n. A local variable belonging to a
process i can be read by i and any of its neighbors, but can
be written into by i only. Thus, a process can directly com-
municate with only its neighbors in the network by reading
their local variables, and writing into its own local variables.
The values of the local variables of a process constitute the
local state of that process. The global state of the system is
the collection of local states of all processes in the system.

Processes execute their protocols asynchronously. The
protocol of each process i consists of a set of guarded sta-
tements of the form G → A, where G, called the guard,
is a boolean predicate involving the local variables of i and
that of its neighbors, and A, called an action, is an assign-
ment of values to one or more variables of i . The action is
executed only if the corresponding guard is evaluated to be
true. If multiple guards are true at a process, an action corres-
ponding to an enabled guard is chosen non-deterministically
from among the actions corresponding to all enabled guards.
No fairness assumptions are made in choosing a guard from
all enabled guards. The execution of a guarded statement
(the evaluation of the guard and the execution of the action)
is assumed to be serialized between any pair of processes
that are neighbors. The execution of guarded statements at
processes that are not neighbors may occur simultaneously.
Serializing the actions of neighbors along with the fact that
no fairness assumption is required allows us to think of the
execution of the system as being completely serialized. This
is of course equivalent to assuming a central daemon that
serializes the execution of all guarded statements. So for sim-
plifying our proofs we assume a central daemon, while noting
that as mentioned above, in our model this can be implemen-
ted using local control. In this paper, we do not address how
this local control can be implemented in a fault-contained
manner. In the rest of this paper, we will refer to the atomic
execution of a guarded statement by a process as a move by
that process. An execution sequence of the system is a finite
or infinite sequence of global states of the system that satis-
fies two properties: (a) if the sequence is finite, then in the last
state of the sequence, no process has an enabled guard, and
(b) if s and s′ are two consecutive states in the sequence, then
s and s′ are distinct, and there exists a process i such that i
has an enabled guard in s and execution of the corresponding
action results in the state s′ (the execution sequence, in this
case, is said to contain a move by process i). The running time
of a protocol is measured in rounds. Given any contiguous

subsequence X of an execution sequence, X can be uniquely
partitioned into rounds as follows. Let X0 = X . Then for
i = 1, 2, 3, . . ., round i , denoted by ri , is the minimum pre-
fix of Xi−1 such that for every process j , either ri contains
a state in which all guards at process j are disabled, or ri

contains a move by j . For each i = 1, 2, 3, . . ., the sequence
Xi is such that Xi−1 = ri Xi . Thus Xi is obtained from Xi−1

by deleting the prefix ri . The intuition is that each round
of an execution sequence is the minimal prefix in which all
processes get a chance to execute. However, some processes
squander their chance to execute because when they choose
to be scheduled, none of their guards are enabled.

4 Fault-containment and self-stabilization

To present a formal definition of a fault-containing self-
stabilizing protocol, we adopt the following approach. We
first consider the property of self-stabilization and the pro-
perty of fault-containment of a protocol separately. We then
identify and define various metrics to evaluate these two pro-
perties. Finally, we define fault-containing self-stabilizing
protocols as those protocols that satisfy certain upper bounds
on these metrics.

4.1 Measures of Self-stabilization

Let P be a protocol executed by a distributed system and
let L be a predicate defined over the set of global states of
the system. The protocol P is said to converge to L if every
execution sequence of P (independent of the initial state)
contains a global state satisfying L . L is said to be closed
in P if every execution sequence of P that starts in a state
satisfying L only contains states satisfying L . P is said to
be self-stabilizing if P converges to L and L is closed in
P . In particular, we say that P stabilizes to L . The set of
states specified by L is called the set of legitimate states of
P . A state that is not legitimate is called an illegitimate state.
Note that any protocol P trivially stabilizes to the predicate
TRUE, which corresponds to the set of all global states of
the system. For any self-stabilizing protocol P we denote
by States(P) the set of global states of the system and we
denote byLegit(P) the subset ofStates(P) that contains
exactly the legitimate states of P . That is, if P stabilizes to
L , then Legit(P) = L .

Partition the local state of a process into two parts: a pri-
mary part and a secondary part. The local state of a process i
can therefore be denoted by the ordered pair 〈pi , si 〉, where pi

and si denote the primary part and the secondary part respecti-
vely of the local state of i . Correspondingly, each global state
of the system can be written as an ordered pair 〈p, s〉, where
p (respectively, s) is the collection of primary (respectively,
secondary) parts of the local states of all processes in the
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system. We will refer to p as a primary state of P and to s as
a secondary state of P . We will use Statesp(P) to denote
the set of primary parts of all states in States(P). The
motivation for partitioning the state of each process, in this
manner into a primary and a secondary part, is the following.
Typically, a protocol produces an output that is used either
by some other system or directly by a human user. Usually,
the output of a protocol is represented by a few variables,
while the rest of the variables simply assist in computing the
output. We use pi , the primary part of the state of process i , to
denote the output of process i ; si , the secondary part, denotes
the rest of the state of process i . Correspondingly, p denotes
the output of P and s denotes the rest of the global state of P .
The exact definition of what constitutes the primary part and
what constitutes the secondary part of a state depends on the
particular application at hand. In fact, the secondary state s
could be empty. For example, [7] presents a self-stabilizing
protocol whose primary state stabilizes in O(D) time, where
D is the diameter of the network, but whose secondary state
takes much longer to stabilize.

Assuming that each global state of the system is
partitioned into primary and secondary states, the notion
of legitimacy can be extended to the set of primary states,
Statesp(P), as well. That is, Statesp(P) can be par-
titioned into a subset of legitimate states and a subset of
illegitimate states so that independent of the secondary state
of P , users of P are satisfied once the primary state of P
becomes legitimate. This notion can be formalized as fol-
lows. Let Legitp(P) denote a set of primary states of P
such that:

(a) For any global state 〈p, s〉, 〈p, s〉 ∈ Legit(P) ⇒
p ∈ Legitp(P).

(b) Legitp(P) is closed in P (that is, every execution
sequence of the system that starts in a state whose pri-
mary state is inLegitp(P), contains only states whose
primary parts are in Legitp(P)).

Of course, the predicate Legitp(P) should be represen-
tative of exactly those values of the output that the user consi-
ders correct. This, in turn, depends on the application at hand.
Thus, our view is that starting from an arbitrary state, P first
reaches a state whose primary part is in Legitp(P) and
then eventually reaches a state in Legit(P). Thus, P may
pass through states 〈p, s〉 for which p ∈ Legitp(P) and
〈p, s〉 �∈ Legit(P). The user of P is satisfied with such
states, but such states are not yet legitimate – the secondary
state has to undergo more changes before the entire state
becomes legitimate.

We now define the following metrics as a measure of the
stabilization property of a system.

Definition 1 (Stabilization time:) The worst case time, star-
ting from any initial state, to reach a state in
Legit(P). The stabilization time of a protocol P is denoted
T (P).

Definition 2 (Primary stabilization time:) The worst case
time, starting from any initial state, to reach a state whose
primary part is in Legitp(P). The primary stabilization
time of a protocol P is denoted Tp(P).

Definition 3 (Stabilization space:) The maximum space
used by any process in a legitimate state. The stabilization
space of a protocol P is denoted S(P).

Our measurement of space at a legitimate state (as opposed
to space used during convergence to a legitimate state) is
motivated by two previous papers on self-stabilization [2,33].

Most self-stabilizing systems do not distinguish between
the primary and the secondary parts of global states, and
are only concerned with the entire state becoming legitimate
quickly. In fact, we know of only one example of a self-
stabilizing system in which a distinction between stabiliza-
tion of the primary state and stabilization of the entire state
has been made [7]. As we will demonstrate, in the context
of fault-containment, the distinction between primary and
secondary states of a system is extremely important. The
fault-containing self-stabilizing protocols that we construct
in the sequel have the ability to start from a 1-faulty state
and repair the primary state quickly. However, the secondary
state, containing variables that help in detecting and repai-
ring single process faults, takes much longer to become legi-
timate. In fact, it is an open question whether the stabilization
time of our protocol (as opposed to the primary stabilization
time) starting from a 1-faulty state can be improved without
larger space overhead. In the next section, we identify and
define metrics for evaluating the fault-containment property
of a protocol.

4.2 Measures of fault-containment

Let a 1-faulty state of the system be defined as an illegitimate
state that differs from some legitimate state in the local state
of exactly one process in the system. This definition is similar
to the notion of Hamming distance used in error-correcting
codes and used in other papers such as [17,29]. Thus a 1-
faulty state could have been caused by the corruption of the
local state of exactly one process, though the reader should
note that a 1-faulty state could also be the result of faults at
more than one process. Our goal is to repair a 1-faulty state
by changing the primary part of the local state of exactly one
process.

We propose the following metrics to evaluate the property
of fault-containment of a protocol.
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Definition 4 (Containment time:) The worst case time, star-
ting from any 1-faulty state, for a protocol to reach a state
whose primary part is in Legitp(P). The containment time
of a protocol P is denoted T 1

p (P).

Definition 5 (Contamination number:) The worst case num-
ber of processes that change the primary part of their local
state during recovery from any 1-faulty state to a legitimate
state. The contamination number of a protocol P is denoted
N 1(P).

Definition 6 (Fault gap:) The worst case time, starting from
any 1-faulty state, to reach state in Legit(P). The fault gap
of a protocol P is denoted T 1(P).

Definition 7 (Containment space:) The maximum size of
the secondary part of the local state of any process at a legiti-
mate state. The containment space of a protocol P is denoted
S1(P).

Thus, the containment time is a measure of how long it
takes for a 1-faulty state to be repaired as far as the primary
state of the system is concerned. This is analogous to the
primary stabilization time of P if it is restricted to start
from 1-faulty states. Note that containment time is defined
with respect to a suitably defined predicate of interest,
Legitp(P), and therefore T 1

p (P) may change if Legitp

(P) is changed. Since only the primary part of the state is
observed and used, contamination number is a measure of
how many processes make observable changes to their local
states, before the 1-faulty state is repaired. Ideally, we would
like only the faulty process to change the primary portion
of its state before L p is established, and in such a case the
contamination number would be one.

The first two metrics defined above consider efficient reco-
very of the primary part of the protocol only. However, as
noted earlier, the predicate Legitp(P) is established does
not mean that the system is in a legitimate state. That is, the
system may be in a state 〈p, s〉 where p ∈ Legitp(P) and
〈p, s〉 �∈ Legit(P). In such a state, if a single-process fault
occurs then, the system provides no guarantee (beyond worst
case stabilization time) as to how quickly this fault will get
repaired. This is because even though a state 〈p, s〉 for which
p ∈ Legitp(P) and 〈p, s〉 �∈ Legit(P), might seem like a
legitimate state to a user, in reality it may be nowhere “close”
to being legitimate and a single process fault in such a state
may not yield a 1-faulty state. Therefore, for the system to
repair a single-process fault quickly, that fault may have to
be separated by at least T 1(P) time from the most recent
fault. This motivates the name “fault-gap” for T 1(P). Note
that the fault gap is at least as large as the containment time
and in general can be much larger.

Finally, the metric, containment space, measures the space
overhead incurred in achieving fault-containment. Note that

similar to the definition of stabilization space, we measure
space used at a legitimate state, as opposed to space used
during convergence to a legitimate state. While this by itself
does not specify any bounds on the space requirement during
convergence, we will show that our implementations use only
a bounded amount of space.

The reader should note that the definitions provided above
can be extended in an obvious manner to the case of k-faulty
states.

4.3 Definition of fault-containing self-stabilization

Based on the metrics defined in the above section, we now
give the following definition of a fault-containing self-
stabilizing protocol. The definition requires that the proto-
col be self-stabilizing and in addition satisfy certain upper
bounds on some of the metrics defined for fault-containment.

Definition 8 (Fault-containing self-stabilizing protocol:) A
protocol P that is self-stabilizing and in addition satisfies
T 1

p (P) = O(1) and N 1(P) = O(1).

According to the definition above, for a fault-containing
self-stabilizing protocol, the user will observe the disruption
caused by a single process fault for only a constant amount of
time (independent of the size of the network or the size of the
neighborhood of the faulty process). Furthermore, the user
will only observe changes in the state of a constant number of
processes. Thus the effect of a single process fault is almost
invisible to a user.

Note that depending on the aims of a particular applica-
tion, alternate definitions of a fault-containing self-stabilizing
protocol are possible. For example, if fast convergence of the
system to a legitimate state is of more importance than just
masking the effect of the fault from users, then bounds on
the fault-gap can be used to define a fault-containing self-
stabilizing protocol. Ideally, it is desirable to have a constant
upper bound on all four of containment time, contamina-
tion number, fault-gap, and containment space. However, in
general, it is hard to design such a protocol for an arbitrary
network.

5 General transformation techniques

As mentioned earlier our goal is not to construct fault-
containing self-stabilizing protocols from scratch. Our goal
is to start with an existing self-stabilizing protocol for a pro-
blem, and then modify it by adding the property of fault-
containment. The modification of an existing self-stabilizing
protocol simplifies the task of designing and verifying the
self-stabilization property of the derived protocol. This view
is confirmed by our design of three self-stabilizing protocols
[19,21,22] that provide certain fault-containment properties
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from 1-faulty states; all three protocols are constructed from
existing self-stabilizing protocols. However, in all three cases,
modifying the existing protocol and proving the correct-
ness of the resulting protocol required the use of problem-
specific information. Since self-stabilizing protocols have
been designed for a large number of problems, an extremely
important problem in this context is designing a transfor-
mer that takes as input a self-stabilizing protocol, and auto-
matically produces as output an equivalent fault-containing
self-stabilizing protocol. Such a transformer necessarily can-
not use any problem-specific information. In this section, we
consider the problem of constructing a transformer. We first
formally define the transformation problem. We then present
a transformer for the class of non-reactive self-stabilizing
protocols. Note that in a non-reactive protocol [31], no guard
is enabled in the final state. Hence, the existence of an enabled
guard indicates an illegitimate global state.

5.1 The transformation problem

In order to state the transformation problem, we formalize
the notion of equivalence between a pair of self-stabilizing
protocols in the context of fault-containment.

Definition 9 Let P be a self-stabilizing protocol. A fault-
containing self-stabilizing protocol Q is equivalent to P if

(a) Statesp(Q) = States(P).
(b) Legitp(Q) = Legit(P).

Intuitively, if Q is a fault-containing self-stabilizing protocol
equivalent to P , then Q behaves like P except that Q is
fault-containing. A user can barely notice the disruption in
Q caused by a single process fault. On the other hand, P
may not be fault-containing and it is possible that a single
process fault causes substantial disruption in P . Note that we
are being conservative in assigning the entire state of P as the
primary state of Q. It is possible that the primary state of P ,
namely that part of the state that the user is really interested
in, is a small part of the entire state of the system. In this
case, T 1

p (Q) is an upper bound on the worst case time that
Q takes to go from a 1-faulty state to a state in which the
user considers the output correct. The secondary state of Q
may contain auxiliary variables used for fault-containment.
Once the primary state of Q has become legitimate (that is,
the primary state belongs toLegitp(Q)) then the secondary
state will not affect it and eventually the secondary state will
also become legitimate. The Transformation Problem can
now be defined as follows.

Definition 10 Construct a transformer T that takes as input
a self-stabilizing protocol P and produces as output a fault-
containing self-stabilizing protocol Q equivalent to P .

Independent of whether P is fault-containing or not, the
transformer T constructs a protocol Q that essentially does
everything that P does and in addition, guarantees fault-
containment. Construction of T is the topic of the rest of
the paper.

5.2 A solution to the transformation problem

In this section we present a solution to the transformation pro-
blem. We construct a transformer T that takes a non-reactive
self-stabilizing protocol P and maps it into an equivalent
non-reactive fault-containing self-stabilizing protocol Q.

To simplify presentation, we assume that in protocol P ,
each process i executes a single guarded statement of the form
Gi → Ai . Multiple guarded statements G1 → A1, G2 →
A2, . . . at a process can always be written as a single guarded
statement with guard G1 ∨ G2 ∨ · · · and action if G1 then
A1 else if G2 then A2 . . . The exact definitions of Gi and
Ai depend on the particular protocol P being considered.
The main idea in constructing Q from P is the following.
View the protocol Q as consisting of two protocols C and
C ′ cascaded together, such that C executes first, followed
by C ′. For now, suppose that C is a synchronous non-self-
stabilizing protocol whose behavior is as follows: if star-
ted in a 1-faulty state of Q, C takes the system into a state
satisfying Legitp(Q) ≡ Legit(P) in O(1) synchronous
steps, with only O(1) processes changing the primary por-
tion of the state. C ′ can be thought of as the protocol P along
with some additional “book-keeping” code necessary to esta-
blish the truth of Legit(Q) after Legitp(Q) is true. From
a 1-faulty state, C executes first and in O(1) time repairs the
fault and takes the system into a state satisfyingLegitp(Q).
Then C ′ executes and takes the system into a state satisfying
Legit(Q). Note that the truth of Legitp(Q) implies the
truth of Legit(P), and since P is non-reactive, the truth of
Legit(P) implies that no guards of P are enabled. Hence,
in the execution of C ′, no process can change the primary
portion of the state and Legitp(Q) cannot be made false
again. Thus, the containment time and the contamination
number of Q are both O(1). If Q is started in a state that
is not 1-faulty, then first C executes and does nothing use-
ful. Subsequently, C ′ executes and takes the system into a
state satisfying Legit(P). Hence, Q is a fault-containing
self-stabilizing protocol.

Since protocol Q executes in an asynchronous network,
the implementation of the above idea requires mechanisms
that provide two levels of synchronization. Firstly, since C is
a synchronous protocol, it is necessary to provide synchroni-
zation between different steps of C . Secondly, it is necessary
to synchronize the protocols C and C ′ such that a process
starts executing C ′ only after all processes have finished exe-
cuting the last step of C . However, since a state change by
a process depends only on its own local state and the local
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state of its neighbors, it suffices to ensure synchronization
between neighboring processes only. In other words, for any
process i , it suffices to ensure that process i does not execute
a step of C until i and all neighbors of i have finished the
execution of the previous step of C , and process i does not
start executing C ′ until i and all its neighbors have finished
executing the last step of C . This synchronization is provided
by a timer protocol described in the following subsection.

As we mentioned earlier, this timer protocol is in some
ways similar to the synchronizer protocols in [6–8]. Howe-
ver, all the protocols above guarantee only stabilization, and
fail to meet the additional requirement of supporting fault-
containment in the case of a single fault. Specifically, in the
case of a single fault, the synchronizer protocols do not gua-
rantee that C ′ runs after C . In fact, we can construct fault sce-
narios and execution sequences for these protocols in which
C ′ is executed before C and fail to achieve fault-containment.
The timer protocol we present is stabilizing, has special pro-
perties to achieve fault-containment in the case of a single
fault in the system, and terminates when stabilization is com-
pleted. We describe the timer protocol in the next section.

5.2.1 Timer protocol

The timer protocol maintains a timer variable ti at each pro-
cess i . This variable can take any integer value in the range
[0..M], where M is a sufficiently large positive integer. We
will discuss what the value of M should be later in this paper.
The timer variable ti is consistent if its value differs by at most
one from the value of the timer variable of each of its neigh-
bors; otherwise ti is said to be inconsistent. The goal of the
timer protocol is to make all timer variables in the system
consistent while they have sufficiently large values, and then
decrement them without losing consistency so that eventually
all timer variables have the value 0. The timer values decre-
menting consistently essentially simulates a global clock that
provides the necessary mechanism for synchronizing neigh-
boring processes.

The implementation of the timer is shown in Figure 3. The
protocol consists of two guarded statements, one that sets the
timer variable of a process to M and the other that decrements
the timer variable by one. The timer variable of a process i ,
ti , is set to M if either of the following two predicates is true:

Condition 1 ≡ (ti �= M)∧(∃ j ∈ Ni : (ti −t j > 1)∧(t j <

M − n))

Condition 2 ≡ (ti < M − n) ∧ (∃ j ∈ Ni : t j = M)

Thus the predicate raise(ti ) , that appears in statement S1 in
Fig. 3 is the disjunction of the above two predicates. Note
that raise(ti ) is true only when ti is inconsistent because
the truth of either of Condition 1 or Condition 2 implies the
inconsistency of ti .

Fig. 3 The implementation of timer. Program for process i

The timer variable of a process is decremented if either of
the following predicates is true:

Condition 3 ≡ (ti > 0) ∧ (∀ j ∈ Ni : 0 ≤ ti − t j ≤ 1)

Condition 4 ≡ (∀ j ∈ Ni : ti ≥ t j ∧ (t j ≥ M − n))

Thus the predicate decrement(ti ), shown in statement S2 in
Fig. 3, is the disjunction of the above two predicates. Note that
both conditions require ti to be no less than the timer value
of any neighbor. Condition 3 requires that ti be consistent,
while Condition 4 allows ti to be decremented even when it
is inconsistent, provided that the neighbors of i have timer
values in the range [M−n..M] and ti is the largest timer value
in the neighborhood. All guards in the timer protocol become
false when all timer values are 0. The important feature of
the timer protocol is that it provides synchronization between
neighboring processes. In particular, the only way a timer
value can come down to 0 is through decrement actions that
are “synchronized” with neighbors over the interval M − n
down to 0. Choosing M appropriately allows us to make this
interval sufficiently large.

5.2.2 The protocol Q

The variables of the protocol Q are the variables of the proto-
col P (the self-stabilizing protocol input to the transformer),
the timer variables, along with any additional variables used
by protocol C . In a legitimate state of Q, characterized by
the predicate Legit(Q), the variables of P are in a legi-
timate state characterized by the predicate Legitp(Q) ≡
Legit(P) (that is, Gi is false for every i), the timer variables
are all equal to 0, and any additional variables of C are in
a legitimate state. To make this more precise, partition the
variables that the protocol C uses into two sets: the variables
of P and the timer variables belong to one set and the rest of
the variables belong to the other set, which we shall call the
book-keeping variables of C . Let the predicate Legitb(C)

characterize global states in which the book-keeping
variables of C are legitimate. Thus, Legit(Q) ≡
Legitp(Q) ∧ Legitb(C) ∧ (∀i ∈ V : ti = 0). Assume
that the predicate Legitb(C) can be written as
Legitb(C) ≡ ∀i : Legitb(C, i), where Legitb(C, i)
is a predicate which is true if and only if the book-keeping
variables of C at process i have values that are the same
as their values in some legitimate state of Q. We will give
two alternate implementations of the protocol C , and the
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corresponding definitions ofLegitb(C) andLegitb(C, i),
later in the paper (Sect. 5.4). Note that in a state satisfying
Legitb(C), what the value of the book-keeping variables
of C should be, may depend on the values of the variables
of P .

Let the predicate PorC_inconsistent(i) be defined as
PorC_inconsistent (i) ≡

(ti = 0 ∧ (∀ j ∈ Ni : t j = 0)

∧ (Gi ∨ ¬Legitb(C, i))).
Thus, PorC_inconsistent(i) is true if the timer values of i and
its neighbors are all zero, but either the variables of P or the
book-keeping variables of C at i are different from what their
values should be in a legitimate state of Q. The protocol Q
is shown in Fig. 4. Note that the only change to the timer
protocol is the weakening of the first guard by adding the
predicate PorC_inconsistent(i), and the addition of an action
to the second guarded statement. We now elaborate on each
of the two guarded statements in the protocol.

– Guarded statement S1: Suppose that a single-process
fault occurs at a process i in a legitimate state of Q. If the
fault corrupts ti and sets it to a value greater than 1, then
raise(ti ) is true. If the fault either does not corrupt ti or sets
ti to 1, and corrupts either the variables of P or the book-
keeping variables of C and changes any of them from their
values in a legitimate state, then PorC_inconsistent(i) or
PorC_inconsistent ( j) for some j ∈ Ni will be true
eventually. In either case, the fault triggers process i or
one of its neighbors to set its timer variable to M by
an execution of guarded statement S1. If a process k ∈
{i}∪Ni sets its timer to M , then raise(t�)becomes true for
all � ∈ Nk with t� = 0. Any such process � then executes
S1 and sets t� to M . In this manner, the initial fault at i
acts as a signal that spreads across the entire network and
all processes eventually set their timer variables to M . In
case of arbitrary faults, multiple processes may set their
timer variables to M independently. However, it will be
shown that the timer variables of all processes become
consistent with a sufficiently large value within a finite
time. It is important for the correctness of protocol Q that
the timer variables of all processes become consistent and
then decrement down to 0 maintaining consistency over a
sufficiently large interval of values. Note that consistent
decrementing of the timer variables amounts to executing
the actions of the protocol synchronously.

– Guarded statement S2: When a process is ready to
decrement its timer, it does so, but before that, depending
on the value of its timer variable, the process executes
an action. This is implemented by the second guarded
statement in Fig. 4. We now describe action(ti ), which
is the action performed by process i when it is ready to
decrement its timer variable. Corresponding to different

Fig. 4 Protocol Q based on timer. Program for process i

values of ti , different actions are performed and these are
described below. Choosing action(ti ) appropriately for
different values of ti allows us to coordinate C and C ′, as
desired. The timer variable range, [1..M] is partitioned
into the following subranges:

1. [M − c + 1..M]: Here c is the running time of C .
If ti is in this range, then i executes an appropriate
action of the protocol C . In particular, if the c steps
of the protocol C are consecutively numbered from
0 to (c − 1), then i executes step 0 when ti = M ,
step 1 when ti = M − 1, step 2 when ti = M − 2
and so on. After each execution of a step, ti is decre-
mented. Thus, when ti = M − c + 1, the last step
of C is executed, and ti is decremented to M − c.
It will be shown that starting from a 1-faulty state,
ti is decremented only when all neighbors of i have
timer values equal to ti or one less than ti . Thus, by
paying attention to the values of ti while executing
C , we have essentially synchronized C , even though
the network is asynchronous. This is because a pro-
cess i executes a step of C only when all neighbors
have completed executing actions from the previous
synchronous step.

2. [b+1..M−a], for some b ≥ 1, where a = max(c, n):
If ti is in this range, then i executes the action Ai pro-
vided Gi is true. Thus each process executes protocol
P when its timer variable is in the range [b +1..M −
a]. Note that for a particular n, if c ≥ n, then this
subrange is contiguous to the subrange [M−c+1..M]
above. However, if c < n, then no action is taken if ti
is in the intermediate subrange [M − n + 1..M −
c]. For the first of the two implementations of C
that we present later, the value of c is 3 and for the
second implementation of C , the value of c is 11.
The range [b + 1..M − a] should be large enough
to allow protocol P to reach legitimacy (that is, for
Legitp(Q) ≡ Legit(P) to be established) after
executing in the range. The value of b is determined
by the book-keeping operations necessary to esta-
blish Legitb(C) at the end of the execution of P .

3. [2..b]: If ti is in this range, then some book-keeping
operations are performed. These operations restore
the additional variables of C to legitimacy. Since
in general, the values of any additional variables in
C may depend on the values of the variables in P ,
these operations are performed after the variables in
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P have achieved legitimacy and hence, do not change
anymore. Whether these book-keeping operations are
necessary or not depends on the implementation of
the protocol C . The value of b is also dependent on the
implementation of C and the necessary book-keeping
operations. For example, in the first of the two imple-
mentations of C that we present later, b is 2. That is,
book-keeping operations are performed by any pro-
cess in the single step when its timer decrements from
2 to 1. The second implementation of C does not need
any book-keeping operations.

4. [1..1]: If ti is in this range (that is, when ti is decre-
mented from 1 to 0), then no action is taken.

The actions executed in the different subranges of
the timer are shown in Fig. 5. The only restriction on
the value of M is that it should be large enough to allow
the protocol P to reach legitimacy when it executes in the
range [b + 1..M − a], where a = max(c, n). Note that
this implies that n is a lower bound on M . In case of a
single fault, C executes first in the range [M − c + 1..M]
to establish Legitp(Q) in constant time, with only a
constant number of processes changing the primary por-
tion of the state. Since the truth of Legitp(Q) implies
that Gi is false for all i , no state change occurs when the
timer is in the subrange [b + 1..M − c]. Book-keeping
operations are then performed in the subrange [2..b], to
set the book-keeping variables of C correctly, if neces-
sary. These operations ensure the truth of Legitb(C).
In case of an arbitrary fault, the execution of C may not
be useful in any way. Subsequently, the execution of P
in the subrange [b + 1..M − a] establishes Legitp(Q).
The book-keeping operations are then performed to res-
tore the truth ofLegitb(C), if necessary, in the subrange
[2..b].

The per-process space overhead incurred by protocol Q is
the sum of any space overhead incurred by protocol C and the
space required to store the timer variable. Since the maximum
value of the timer is M , the space required to store the timer
is O(log M) bits. However, in a legitimate state, this can be
further reduced by encoding the timer variable in a single
bit. In such an implementation, a corruption of the timer
variables can result in one or more timers having value 1,
which will be immediately corrected by the corrupted timers
decrementing their values to 0 (by guarded statement S2). If
any variables of P or C are corrupted as well, the predicate
PorC_inconsistent(i) will be true for some i . In this case,
space can be allocated dynamically for ti to hold the value
M . Similarly, space can be allocated dynamically for any
other timer as well when they are incremented to M from 0.
Later in the paper, we present two implementations of C . The
first implementation works for all protocols P and it requires
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Fig. 5 Actions performed in various subranges of the timer when (i)
c < n and (ii) c ≥ n

extra space at each process to store copies of local states of
all neighboring processes. The second implementation works
for a large class of protocols P , but requires O(1) space
overhead per process. In either case, the space overhead for
C is small, and thus, the space overhead of Q in a legitimate
state can be very small.

5.3 Proof of correctness

The proof of correctness of Q is divided into two parts, a
proof of self-stabilization, and a proof of fault-containment.
In this paper, we give an overview of the proof and state
without proof, the main results. The complete proof of cor-
rectness can be found in [20]. We start with the following
assumption.

Range Assumption: The value of M is large enough such
that when any one process decrements its timer from M to
0, Gi is false and Legitb(C, i) is true for every process
i in the system.

Note that by the definition of decrement (ti ), the decrements
of ti from M − n down to 0 must be synchronized with
the timer values of the neighbors of i . Also, for technical
convenience, we assume that M − a is greater than 1, that is,
each of the two ranges [M − c + 1..M] and [b + 1..M − a]
are non-empty.

We show two implementations of the protocol C at the
end of the paper that satisfies the following property:

[Fault-Containment Property] C is a synchronous
protocol such that when C is started in a 1-faulty state
with fault at process i , Legitp(Q) is established
within c synchronous steps for some constant c with
only the faulty process i changing the primary portion
of the state. Moreover, only process i and its
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neighbors change state (either primary or secondary)
before Legitp(Q) is established.

We will use this property of the protocol C in the proof of
fault-containment of Q.

With respect to the protocol Q shown in Fig. 4, we will
refer to the guard of statement S1 in process i as G1(i) and
the guard of statement S2 in process i as G2(i) in the rest of
this paper.

5.3.1 Proof of self-stabilization

We first define a legitimate state of Q.

Definition 11 A legitimate state of Q is a state in which for
every process i , Gi is false,Legitb(C, i) is true, and ti = 0.

Clearly, in such a state, no guard is enabled in the system.
To prove the partial correctness of Q, we will show that if
no guard is enabled in the system, then the system is in a
legitimate state. We first show the following properties of
the timer.

We first define a relaxed version of a consistent timer that
we will call a pseudo-consistent timer.

Definition 12 The timer ti at a process i is pseudo-consistent
if either ti is consistent, or if ti ≥ M−n and for every j ∈ Ni ,
t j ≥ M − n.

Note that ti may be pseudo-consistent even though its
value differs by more than one from the timer t j of some
neighbor j of i , as long as for every k ∈ {i} ∪ Ni , M − n ≤
tk ≤ M . It is easy to verify that the predicate decrement (ti )
is true if and only if ti �= 0, ti is pseudo-consistent and ti ≥ t j

for all j ∈ Ni . The system is in a timer-consistent state if the
timer of every process in the system is pseudo-consistent.
The following results can be easily verified.

Lemma 1 If the system is in a timer-consistent state and
ti �= 0 for some process i , then decrement (t j ) is true for
some process j .

Lemma 2 If the system is not in a timer-consistent state,
then raise(ti ) is true for some process i .

The partial correctness of Q can be easily established from
Lemmas 1 and 2.

Theorem 1 The protocol Q is partially correct.

We next prove the termination of Q. A move changing the
timer value of a process can be divided into two classes: an
increasing timer move is a move in which the timer is set to
M , and a decreasing timer move is a move in which the timer
is decremented by 1. Thus, in protocol Q, an increasing timer
move is an execution of S1, and a decreasing timer move is

an execution of S2. We will first show that the number of
increasing timer moves is finite. This implies that the total
number of moves is finite, since all remaining moves are
decreasing timer moves, and the timer of a process cannot be
decreased below 0.

An increasing move on a timer ti can happen because
of two reasons, either if PorC_inconsistent(i) is true or if
raise(ti ) is true. If PorC_inconsistent(i) is true, we will call
the corresponding increasing timer move a Type 1 increa-
sing move. All other increasing timer moves (that is, when
PorC_inconsistent(i) is false but raise(ti ) is true) will be cal-
led Type 2 increasing moves. Note that by definition of
raise(ti ), ti must be inconsistent for process i to execute a
Type 2 increasing move.

By definition, a Type 2 increasing move by a process
i occurs when raise(ti ) is true. Note that raise(ti ) is a dis-
junction of two predicates, Yi ≡ (ti �= M ∧ (∃ j ∈ Ni :
(ti − t j > 1) ∧ (t j < M − n))) and Zi ≡ (∃ j ∈ Ni : t j =
M ∧ (ti < M − n)). We will further subdivide Type 2
increasing moves into two classes. A Type 2(a) increa-
sing move is an execution of a Type 2 increasing move
when the predicate Yi is true. All other Type 2 increasing
moves (that is, when Yi is false but Zi is true) are calledType
2(b) increasing moves.

The following lemmas bound the number of Type 1 and
Type 2(a) increasing moves. Lemma 3 follows from the
fact that in order for a process i to execute two Type 1
increasing moves, i has to decrease its timer from M (set
after the first Type 1 increasing move) down to 0 (in order
for the second Type 1 increasing move to occur). But then,
by the range assumption on the value of M , G j is false
and Legitb(C, j) is true for all j after ti is set to 0 and the
second Type 1 increasing move cannot occur.

Lemma 3 A process can execute at most one Type 1
increasing move.

Lemma 4 In any execution sequence, a process can execute
at most one Type 2(a) increasing move.

Thus, there is a finite prefix of the execution sequence X
that contains all Type 1 and Type 2(a) moves. Consi-
der the suffix of X after the last execution of a Type 1
or Type 2(a) increasing move by any process, and call
it X ′. Thus, X ′ contains only executions of Type 2(b)
increasing moves, and decreasing moves. Unlike Type 1
and Type 2(a) increasing moves, a process can execute
more than one Type 2(b) increasing moves. However, we
show that the number of executions of Type 2(b) increa-
sing moves in X ′ is finite.

Label the moves in X ′ by 1, 2, 3, . . . Let m1 be a Type
2(b) increasing move by process i . Then, we view an increa-
sing move m2 at another process j as the cause of the move
m1 at i , if process j is the last neighbor of i to set its timer
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value to M before m1, and move m2 is the last increasing
move by j before m1 in X ′ that assigns M to t j . The move
m1 is thought of as being caused by move m2. Note that by
definition of a Type 2(b) increasing moves, t j = M just
before the execution of m1. Of course, no neighbor of i may
have made a move to assign M to its timer in X ′ prior to the
execution of m1, and some neighbors may have initial timer
values of M at the beginning of X ′. In this case, we think
of the cause of m1 as an imaginary move ⊥ at j , where j is
an arbitrary neighbor of i with timer value equal to M just
before move m1.

The motivation behind defining a cause of a Type 2(b)
increasing moves in the above manner is as follows. We
know that X ′ contains only Type 2(b) increasing move
and decreasing moves. Hence, for every increasing move in
X ′, we can define a cause of the move. Then for any increa-
sing move m1 by a process i in X ′, we can follow a backward
chain of increasing moves in X ′ such that each move in the
chain is caused by the preceding move in the chain. Since
every increasing move has a cause as defined above, such a
chain can be constructed until we reach a move that is caused
by an imaginary move ⊥ at some process j . We can also view
this chain as starting with an imaginary move ⊥ at j and and
ending with the move m1 at i such that each move in the
chain causes the subsequent move. Using certain properties
of such chains, it can be shown that for any two processes
i and j , there can be only finitely many chains that begin
with an imaginary move ⊥ at j and end with an increasing
move by i . Since there is only finitely many processes with
initial timer value M at the beginning of X ′, this implies that
the number of increasing moves by any process i is finite.
Therefore, the number of increasing timer moves in X ′ is
finite.

Lemma 5 The number of executions ofType 2(b) increa-
sing moves in X ′ is finite.

We have thus proved that the total number of increasing
moves on the timers is finite. Consider the suffix of the execu-
tion sequence after the last increasing timer move by any pro-
cess. Then, this suffix contains only decreasing timer moves.
Clearly, this suffix is finite, since the timer of a process can-
not be decremented below 0 by any action of the protocol Q.
This leads to the following theorem.

Theorem 2 The protocol Q terminates in a finite number of
steps.

The following theorem then follows from Theorems 1 and
2.

Theorem 3 The protocol Q is self-stabilizing.

5.3.2 Proof of fault-containment

Recall that a timer ti is said to be consistent if |ti − t j | ≤ 1 for
all j ∈ Ni ; otherwise, it is inconsistent. A consistent timer
with a non-zero value can decrement its value only when its
value is equal to or one more than the timer values of all its
neighbors. We will refer to decrements of a consistent timer
as decrements in sync with the neighbors of the process.

The following observation can be easily verified.

Observation 1 Let ti be a consistent timer. Then, the set of
consistent timers and the set of inconsistent timers in the
system remain unchanged after a decrement operation by i .

Thus, if a timer t j for an arbitrary process j is consistent
before the decrement operation by i , then t j is consistent after
the decrement operation by i . Similarly, if t j is inconsistent
before the decrement operation, then t j remains inconsistent
after the operation.

The proof of fault-containment is organized in three parts.
In the first part, we introduce the notion of a good state and
identify various properties of a good state that are crucial in
proving the fault-containment properties of Q. In the second
part, using the notion of a good state and its properties, we
prove that the fault-gap of Q is O(M + D), where D is
the diameter of the network. Finally, in the third part, we
show that the containment time of Q is constant and the
contamination number of Q is one. Only an overview of the
proof is given and the main results are stated. The complete
proof appears in [20].

A Good State and Its Properties

We first define a region as follows.

Definition 13 A region R is a maximal subset of V such that
(i) the graph induced by R is connected, (ii) the timers of all
processes in R are consistent, and (iii) at least one process in
R has timer value not equal to 0.

Given a region R, the border of R is defined as the set BR

of all processes such that BR ⊆ V − R and every process in
BR is adjacent to some process in R. Thus, a process that is
not in a region R or in the border BR of R cannot be adjacent
to any process in R. Note that since R is maximal, no process
in BR has a consistent timer.

A region R is said to be a closed region if the timer value
of each process in BR is equal to M . Then, a good state of
the system is defined as follows.

Definition 14 A system is said to be in a good state if all
regions in the system are closed regions, and the timer value
of every process not belonging to any region is 0 or M .

Note that a good state may not have any region at all.
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Fig. 6 Examples of region, border, closed region, and good state

Figure 6 shows examples of a region, the border of a
region, a closed region, and a good state. The timer values of
each process is shown beside it. Note that n = 7 and M > n.
Figure 6a–c shows the same network of processes, but with
differing timer values. In all three cases, there is exactly one
region in the system consisting of the single process i . The
neighbors of i constitute the border of the region. The rest
of the processes are not in a region or a border. The state in
Fig. 6a is not a good state since j , a process in the border, has
a timer value not equal to M , and hence the region is not clo-
sed. The state in Fig. 6b is not a good state since k, a process
not in any region or border, has a timer value not equal to M .
However, note that in this case, the region is closed, since all
processes in the border has timer value M . Figure 6c shows
an example of a good state. The single region in the system
is closed, and all processes not in a region or a border have
timer values 0. Note that in this case, other than process i ,
process k is the only process with a consistent timer. Howe-
ver, k does not form a region by itself since tk = 0 and by
definition of a region, at least one process in the region must
have a non-zero timer value.

We next identify certain properties of a good state. Recall
that a process can execute either a decreasing timer move, or
a Type 1 or Type 2 increasing timer move. Also recall
that a timer ti of a process i is said to be pseudo-consistent
either if ti is consistent, or if ti is inconsistent and for every
process j ∈ {i} ∪ Ni , M − n ≤ t j ≤ M . From the definition
of the predicate decrement (ti ) in the protocol Q, we know
that ti can decrement only if ti is pseudo-consistent.

The following observation can be easily verified.

Observation 2 In a good state, the timer of any process is
either consistent or not pseudo-consistent.

Thus, in a good state, decrement operations can only be
executed by processes with consistent timers. Also, by defi-
nition of a good state, the timer of a process not in a region
can only be 0 or M . If the timer of a process not in a region
is consistent, then the timer value cannot be M , as then the
process will belong to a region. Hence, the following obser-
vation holds.

Observation 3 In a good state, if the timer of a process not
in a region is consistent, then the value of the timer is 0.

Hence, a process not in a region cannot decrement its
timer, and the following observation holds.

Observation 4 In a good state, decreasing timer moves can
only be executed by processes in a region.

By definition of a good state, if process j belongs to a
border of some region in a good state, then t j = M and t j

is inconsistent. Since t j = M , all neighbors of j that are in
some region must have timer values M or M − 1, since all
such processes must have consistent timers. Also, since the
state is a good state, any neighbor of j not in any region must
have timer value 0 or M . Therefore, t j is inconsistent implies
that j must have a neighbor k such that tk = 0, as otherwise,
t j will be consistent. Therefore, no guards are enabled at j
and the following observation holds.

Observation 5 In a good state, a process in the border of
some region cannot execute any move.

The next observation follows from Observation 5, and the
fact that a process in a region has a consistent timer, and
hence, cannot execute a Type 2 increasing move.

Observation 6 In a good state, a Type 2 increasing move
can be executed only by a process not in a region or a border.

Thus, in an arbitrary good state, a process in a region
can only execute decreasing moves or Type 1 increasing
moves, a process in a border cannot execute any move, and a
process not in a region or a border can execute either Type
1 or Type 2 increasing moves.

The following result can be shown.

Lemma 6 A good state is closed under a decreasing move
and a Type 2 increasing move.

In general, a good state is not closed under a Type 1
increasing move. However, it can be shown that starting from
a 1-faulty state with fault at some process i , only processes
in {i} ∪ Ni can execute a Type 1 increasing move, and any
such execution in a good state results in a good state. This
will imply that starting from a 1-faulty state, a good state is
closed under all possible moves in the system.

We will now use the above properties of a good state to
prove the fault-containment properties of the protocol Q.

Fault-gap of Q

Consider a 1-faulty state f of the system with fault at process
i . If the fault at i corrupts only ti and sets it to 1, then in one
round, ti decrements to 0 and the system reaches a legitimate
state. We will not consider this trivial case any more. Hence,
in the rest of this proof, we will assume that in the state f ,
if ti = 1, then G j is true or Legitb(C, j) is false for some
process j ∈ {i} ∪ Ni (that is, the fault at i has also corrupted
either the primary portion of the state or some book-keeping
variables at i).

Intuitively, the fault-gap of Q is established as follows.
We first show (in Theorem 4) that starting from a 1-faulty
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state with fault at i , within a constant number of rounds,
the system reaches a good state with the faulty process i
belonging to some closed region R. Consider a process j
in BR . Then, if there is any neighbor of j that is not in R,
within one round, all such neighbors will set their timers to
M . Intuitively, this will extend the border of the region R by
at least one, removing j from BR and putting it in R. This
growing of the region R continues until all processes belong
to R (and thus, BR is empty). It is easy to see that this will
happen within O(D) rounds. Thus, after O(D) rounds, all
processes have consistent timer values. Thus, any process
can make only decreasing moves in sync with its neighbors
thereafter, and it is easy to see that within O(M) rounds, all
processes will decrement their timers to 0, thereby reaching a
legitimate state of Q. Thus the fault-gap of Q is O(M + D).

Starting from the 1-faulty state f , let f ′ be the first state
obtained from f in which some timer value equals M . Note
that f ′ may be the same as f if the fault at i sets ti to M .
Then the following result holds.

Lemma 7 Starting from f, the state f ′ is reached within two
rounds. Moreover, in f ′, for exactly one process j ∈ {i}∪ Ni ,
t j = M and for each process k �= j , tk = 0. Hence, f ′ is a
good state.

We next argue that any state reachable from f ′ is a good
state. We have already shown in Lemma 6 that a good state
is closed under a decreasing move and a Type 2 increasing
move. In general, an arbitrary good state is not closed under
a Type 1 increasing move. However, we will show that any
good state reachable from f ′ is also closed under a Type
1 increasing move. The following two lemmas identify the
processes that can possibly execute a Type 1 increasing
move starting from f .

Lemma 8 For any process j , if tk = M for some k ∈ { j} ∪
N j at any state during the execution of Q, then process j
cannot execute any Type 1 increasing move subsequently.

Lemma 9 Starting from the 1-faulty state f , a process not
belonging to the set {i}∪Ni cannot execute aType 1 increa-
sing move.

Using Lemmas 7 and 8, the following result can be shown.

Lemma 10 Starting from state f ′, an execution of a Type
1 increasing move by a process in {i} ∪ Ni in a good state
results in a good state.

Lemma 9 and 10 imply that any state reachable from f ′
is a good state. Moreover, the following result can be easily
shown.

Lemma 11 Starting from f ′, within two rounds, a state f ′′ is
reached such that i ∈ R1 for some closed region R1. Moreo-
ver, ti = M in or before f ′′.

The following theorem follows directly from Lemma 7
and Lemma 11.

Theorem 4 Starting from the 1-faulty state f with fault at
i , in constant number of rounds, a state f ′′ is reached such
that f ′′ is a good state and the faulty process i belongs to
some closed region R1 in f ′′.

Since ti is set to M before reaching f ′′, the following
result holds from Lemmas 8 and 9

Lemma 12 Starting from state f ′′, no process can execute
a Type 1 increasing move.

Hence, any state reachable from f ′′ is a good state, and
in any such state, using Observation 4–6, and Lemma 12,
a process in a region can only execute decreasing moves, a
process in a border can execute no moves, and a process not
in a region or a border can execute only Type 2 increasing
moves. We next show that starting from f ′′, a state in which
all timers in the system are consistent is reached in O(D)

rounds.
Any state reachable from f ′, and hence from f ′′, is a good

state. In any good state, we know from Observation 5 that no
process in the border of a region can change state. A move by
any process not in a region or border cannot affect a process
in a region, since no process in a region is a neighbor of
any process not in a region or a border. Since processes in
a region can only execute decreasing moves, the following
lemma holds from Observation 1.

Lemma 13 If a process belongs to a region in any state rea-
chable from f ′′, then it continues to belong to a region in all
subsequent states until all timers in the system reaches 0.

Note that when all timers reach 0, we still have a good
state but by our definition of a region, there is no region in
the system.

Since a process in a closed region can only execute decrea-
sing moves, the above lemma implies that once a process
j belongs to a closed region, it can no longer execute any
increasing timer moves.

The following theorem can then be easily proved. The
proof shows by induction that after d rounds, all processes at
shortest distance d from i are included in the closed region
containing i . Since i initially belongs to a closed region
within a constant number of rounds, all processes are inclu-
ded in a single closed region in O(D) rounds. The border of
this region is obviously empty, and thus all processes have
consistent timer values.

Theorem 5 Starting from state f ′′, a state in which all
processes have consistent timer values is reached in O(D)

rounds.

Finally, we show that starting from a state in which all
timers are consistent, a legitimate state is reached in O(M)
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rounds. The proof follows from the fact that at each round,
the processes with the current maximum timer value must
decrease their timer by one.

Theorem 6 Consider a state s′ reachable from f ′′ in which
all processes have consistent timer values. Then, starting
from s′, a legitimate state is reached within M rounds.

The following theorem follows from Theorems 4–6.

Theorem 7 The fault-gap of Q is O(M + D).

Containment Time and Contamination Number of Q

We will next prove that the containment time of Q is constant
and the contamination number of Q is one. We will continue
to use f to denote a 1-faulty state with fault at process i and f ′
to denote the first state reached from f in which some timer
in the system has a value of M . We have seen in Lemma 7
that in f ′, for exactly one process j ∈ {i} ∪ Ni , t j = M , and
for any process k �= j , tk = 0.

The following result can be easily proved.

Lemma 14 Starting from the 1-faulty state f , the timer of
every process is set to M exactly once before a legitimate
state is reached.

The following lemma shows that all decrements of the
timers must be in sync.

Lemma 15 Starting from the 1-faulty state f , any process k
decrements tk only if 0 ≤ tk − t� ≤ 1 for all � ∈ Nk.

The above two lemmas show that all processes will set
their timers to M once, and then decrement it down to 0 in
synchrony with their neighbors. That is, all decrements of a
process are in synchrony with their neighbors. Since the steps
of the protocol C are executed along with the decrements of
the timer, this implies that no process executes a step of C
until all its neighbors have finished executing the previous
step of C . Thus all processes will execute the protocol C
synchronously. Since by the fault-containment property of
C , only process i and its neighbors can change state before
Legitp(Q) is established, the following lemma follows.

Lemma 16 Starting from the state f ′, the predicateLegitp

(Q) holds when ti ≤ M − c and for all j ∈ Ni , t j ≤ M − c.

The following lemma bounds the time needed for the
timers of i and any j ∈ Ni to reach M − c.

Lemma 17 Starting from the state f ′, a state in which ti ≤
M −c and t j ≤ M −c for all j ∈ Ni is reached within 2c+2
rounds.

Since f ′ is reached from a 1-faulty state within a constant
number of rounds, Lemma 16 and Lemma 17 shows that

starting from a 1-faulty state, the predicate Legitp(Q) is
established within a constant number of rounds. Hence, the
containment time of Q is constant. By definition of C , only
the faulty process i can change the primary portion of the state
before Legitp(Q) is established. Also, after Legitp(Q)

is established, no process can change the primary portion of
its local state. Hence the contamination number of Q is one.
Hence the following theorem holds.

Theorem 8 The containment time of Q with respect to
Legitp(Q) is O(1), and the contamination number of Q is
1. Hence, Q is a fault-containing protocol.

5.4 Implementation of the protocol C

We finally present two alternate implementations of the syn-
chronous protocol C described in the previous section. The
first implementation has a greater space overhead than the
second, but it requires only 3 synchronous steps to establish
Legitp(Q) when started in a 1-faulty state. The second
implementation is computationally not as efficient, but it has
a space overhead of O(1). The proof of correctness of the
implementations appear in [20].

5.4.1 First implementation

Without loss of generality, assume that any process i uses
a single variable2 xi in P . Thus Gi , is a predicate defined
over xi and x j for all j ∈ Ni . Each process i in protocol
C , in addition to xi , has one additional variable si [ j] for
each j ∈ Ni . The variable si [ j] is meant to contain a copy
of the variable x j . Consider a 1-faulty state with fault at
process i that corrupts arbitrarily one or more of the variables
belonging to the set {xi } ∪ {si [ j] | j ∈ Ni }. Then, protocol
C establishes Legitp(Q) within 3 synchronous steps, with
only i changing its state. If |Ni | > 1, the fault at i is corrected
in the first two steps. If |Ni | = 1, the fault is corrected in the
third step.

For notational convenience, we define the following two
predicates:

no_P_ f ault (i, y) ≡ (∀ j ∈ Ni : s j [i] = y) ∧ (xi = y)

P_ f ault (i, y) ≡ (∀ j ∈ Ni : s j [i] = y) ∧ (xi �= y)

The predicate no_P_ f ault (i, y) indicates that the variable
xi with value y is consistent with the copies kept in the neigh-
boring processes. The predicate P_ f ault (i, y) indicates that
the copies of the variable xi in the neighboring processes are
all equal to y, but the actual value of the variable xi is not
equal to y. Hence, if P_ f ault (i, y) is true, it is possible that
a fault at i has corrupted xi . Note that a process i may satisfy

2 Multiple variables at a process i can simply be thought of as multiple
fields of xi .
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neither of the two predicates for any value of y. However,
both the predicates cannot be satisfied at the same time. The
protocol C is shown in Fig. 7. A brief description of the three
steps follows.

If the fault has corrupted xi , let the value of xi before the
fault be y. Then P_ f ault (i, y) will be true and no_P_ f ault
(i, y) will be false. If |Ni | > 1, step 1 will correct this fault.
If |Ni | = 1, step 3 will correct the fault. In both cases, any
inconsistencies in the copies of neighbors’ variables kept at
i are also corrected. No other processes change their state.
However, it is possible for a fault at i to corrupt only the
variables si [ j] for one or more j ∈ Ni . In this case, we may
enter the following scenario. Assume that |Ni | > 1, a variable
si [ j] is corrupted for some j , and |N j | = 1. If si [ j] = y1

for some y1 after the fault, then P_ f ault ( j, y1) is true. This
scenario is shown in Fig. 8. In this case, it is necessary for
the variable si [ j] to be corrected before step 3 is entered, as
otherwise j will wrongly change x j in step 3. Step 2 incorpo-
rates this correction. When an inconsistency in one or more

Fig. 7 An implementation of C that requires three synchronous steps

i

sj [i ]

si j[ ]

xj

xi

: the corrupted variable

j

Fig. 8 A scenario in which the corruption of a single copy variable at
one process i can cause an incorrect change in another process j

copy variables is detected, process i tries to determine if the
fault is at i or if the fault is at some neighbor of i . In the latter
case, process i will not take any action, and let the neighbor
detect and repair the fault. The NO-CORRECTION condition
identifies scenarios in which the fault is at some neighbor of
i , and hence, process i takes no action. If si [ j] is not the same
as x j for more than one neighbor j of i , the fault must be
at i , and i corrects all inconsistent copies. However, if si [ j]
is inconsistent for exactly one neighbor j , the inconsistency
may be due to the corruption of si [ j] at i , or the corruption
of x j at j . However, if |N j | > 1, the fault cannot be at j ,
since then, process j would have corrected x j during step
1. Hence, i again corrects si [ j]. However, if |N j | = 1, it is
harder to determine if the fault is at i or at j . If after setting
x j to si [ j] (that is, assuming that the fault is at j), at least
one of Gi and G j is true, then surely the fault cannot be at
j , as the state before the fault was a legitimate state in which
Gx was false for every process x . Hence, i again corrects
si [ j]. However, if setting x j to si [ j] makes both Gi and G j

false, i assumes that the fault is at j and allows j to correct
x j during step 3. Note that since i is the only neighbor of j
(since, |N j | = 1), it suffices to check only the status of Gi

and G j .
Note that the protocol requires process i to compute the

value of G j when |N j | = 1 in step 2. Since i is the only
neighbor of j , i can check the status of G j assuming that i has
access to the program executed by j . This assumption is made
here for simplicity of the protocol, but is not necessary. The
status of G j can be known by i using an additional temporary
boolean variable that is set appropriately by a node j with
|N j | = 1 in step 1 if x j �= si [ j].

The above protocol will correct a single fault in all cases
except when the network is a just a single edge. In such
a trivial case, if Legitp(Q) is not true after execution of
C , the protocol P , executed as part of Q, will establish
Legitp(Q). The implementation of C presented here can
be modified to work correctly for a single edge also. Howe-
ver, we do not do so here since the complexity of P in this
case will typically be trivial.

Note that when this particular implementation of C is used
in Q, the predicate Legitb(C, i) for a process i is defined
as follows.

Legitb(C, i) ≡ (∀ j ∈ Ni : si [ j] = x j )

That is, the copies that i keeps of the x variables of its neigh-
bors are all consistent with the actual value of the x variables
in the neighbors. Then, Legitb(C) ≡ ∀i : Legitb(C, i).
Also, the book-keeping action that a process i executes when
the timer ti is in the range [2..b] is simply

∀ j ∈ Ni : si [ j] = x j .

Thus, the value of b in this case is simply 2, and a process
i executes the book-keeping operation when it decrements
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its timer from 2 to 1. Note that after the timer of a process
i has reached b = 2, Legitp(Q) is true by the assumption
on the value of M and hence, the variable xi can no longer
change. Hence, the copies of xi made by the neighbors of i
when their timers decrement from 2 to 1 (and hence, ti must
be 2 or less) are the correct copies of xi . Thus, Legitb(C)

is established when all timers are decremented to 1.

5.4.2 An alternate implementation of C

In this alternate implementation of C , we give up computa-
tional efficiency to an extent to reduce the space overhead of
achieving fault-containment. In particular, in this alternate
implementation of C , book-keeping variables have tempo-
rary existence — they are created in the first synchronous
step of C and are destroyed in the last step. Because of this,
C contributes O(1) to the space overhead of Q, since in a
legitimate state of Q, none of the book-keeping variables of
C are in existence. A brief sketch of this alternate implemen-
tation of C is given below. We describe each step separately
and provide occasional comments to give intuition. For an
integer k ≥ 0 we use the notation N k

i to denote the set of
processes that are at a distance of k from i .

Step 1 Each process i allocates space for a local variable
si [0] and assigns to si [0] the set {xi }. Recall the assump-
tion we made at the outset of Sect. 5.4.1 that each process
i uses a single variable xi in P .

Steps 2–5 In Step k, k = 2, 3, 4, 5, each process i allocates
space for a variable si [k] and assigns to si [k] the union
of the sets s j [k − 1] for all j ∈ {i} ∪ Ni .

Comment: After Step 5, each process i has a local variable
si [4] that contains a complete snapshot of the portion of
the network that is within distance 4 from process i .

Step 6 Each process i computes the predicate
oneFaultyi defined as

(Gi ∨ ∃ j ∈ Ni : G j ) ∧ (∀ j ∈ N 2
i ∪ N 3

i : ¬G j )

Comment: In a 1-faulty state in which i is a faulty process,
oneFaultyi is true. It is possible that even if i is not a
faulty process in a 1-faulty state, oneFaultyi is true.
However, it is easy to verify that in a 1-faulty state, if
oneFaultyi and oneFaulty j are both true for some
i �= j , then distance between i and j is at most 2. To eva-
luate oneFaultyi , process i has to evaluate guards at
itself, its neighbors, and at processes that are at a distance
2 or 3 away and hence it needs to know information about
processes that are at a distance of at most 4. Since this
information is available in the variable si [4], process i is
able to compute oneFaultyi . Note that processes may
need unique identifiers, at least within the subgraph of

radius 3 around i , for i to be able to distinguish between
processes in Ni and processes in N 2

i ∪ N 3
i .

Step 7 Each process i for which oneFaultyi is true, com-
putes the predicate

canRepairi ≡ ∃α : canRepairi (α)

where canRepairi (α) is defined as

if the local state of process i is changed to α then Gi is
false and for all j ∈ Ni , G j is false.

Comment: In a 1-faulty stateoneFaultyi ∧canRepairi

is true if and only if i is faulty. Recall that a 1-faulty state
is a state that differs from some legitimate state in the
local state of exactly one process. It is possible that a 1-
faulty state differs from one legitimate state in the local
state of a process i and from some other legitimate state in
he local state of process j , where i and j are distinct. So
several processes can be considered the only faulty pro-
cesses in a 1-faulty state and any one of these could repair
the fault. Hence the only problem to be solved now is to
ensure that exactly one of the faulty processes changes
its local state and repairs the fault. Otherwise, if several
faulty processes change their local state simultaneously,
the fault may not be repaired. So processes have to nego-
tiate to pick one process that fixes the fault. This task is
performed in the next few steps.

Step 8 Each process i allocates space for a variable ti [0].
If oneFaultyi ∧ canRepairi is true, then process
i assigns the set {i} to ti [0]; otherwise the empty set is
assigned to ti [0].

Step 9-10 In Step k, k = 9, 10, each process i assigns to
ti [k − 7], the union of t j [k − 8] for all j ∈ {i} ∪ Ni .

Comment: At the end of Step 10, each process has a local
variable ti [2] that contains the set of all processes j at dis-
tance no more than 2 from i such that oneFaulty j ∧
canRepair j is true. As mentioned in an earlier com-
ment, if for some i �= j , oneFaultyi and
oneFaulty j are both true, then distance between i and
j is at most 2. Hence, in a 1-faulty state, ifoneFaultyi∧
canRepairi is true, then ti [2] contains the set of all
processes j for which oneFaulty j ∧canRepair j is
true.

Step 11 A process i such that i = min(ti [2]), changes its
local state to α where canRepairi (α) is true.

Comment: The process with minimum identifier among all
faulty processes in a 1-faulty state is elected to fix the
fault.

Step 12 Each process i deallocates space for all variables
si [k], 0 ≤ k ≤ 4, and ti [k], 0 ≤ k ≤ 2.

Discussion Since the above implementation of C requires
12 steps, the value of c is 12. Recall that [M − c + 1, M]
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is the subrange of timer values in which the protocol C exe-
cutes. Since there are no book-keeping variables that remain
in existence after C has finished execution, Legitb(C, i) is
simply defined to be true. Since there are no book-keeping
variables, there are no book-keeping actions to be performed
and therefore the range [2..b] within which such actions are
performed, can be shrunk to 0.

The problem with the above implementation of C is that
it is not clear how to compute the predicate canRepairi

in general. For many protocols, if a process i is faulty in a
1-faulty state then Gi is true and the execution of the cor-
responding action Ai repairs the fault. So in such cases,
the protocol itself is an excellent guide on how to compute
canRepairi . This pleasant situation does not hold for all
protocols; for example consider the spanning tree protocol
described in Sect. 2. In the 1-faulty state shown in Fig. 1(c)
process x is faulty, in fact, it is the only process that has
an enabled guard. But, none of the actions of process x as
prescribed by the spanning tree protocol, can repair the fault.
This particular problem can be easily solved by adding a
new action to the protocol. But, in general appropriate new
actions that can be added to protocols without affecting their
self-stabilizing properties may not be easy to derive. So the
above implementation of the protocol C works only for proto-
cols for which the predicate canRepairi can be computed
efficiently.

The first implementation of C did not have this problem
since the old state was memorized. Hybrid versions of C in
which the old state is partly memorized and partly computed
might alleviate both the problems of space overhead and the
computational difficulty of the above solution.

6 Conclusion

In this paper, we have formally introduced the notion of fault-
containment in the context of self-stabilization. We have
specified metrics to evaluate the fault-containment proper-
ties of a self-stabilizing protocol, and formally defined a
fault-containing self-stabilizing protocol in terms of them.
In the main result of our paper, we present a transformer that
can automatically convert any non-reactive self-stabilizing
protocol into an equivalent fault-containing self-stabilizing
protocol. We believe that the results presented here are an
important step towards making self-stabilizing protocols
more practical.

The definitions presented in Sect. 4 can be naturally exten-
ded to specify fault-containment from multiple faults. Howe-
ver, the transformer presented in Sect. 5 generates protocols
that provide fault-containment from single faults only, since
the component protocol C recovers only from a single tran-
sient fault. If we extend C so that it can efficiently recover
from a k-faulty state for any k ≥ 1, then using the same timer-
based approach we can design a transformer that can gene-

rate self-stabilizing protocols that provide fault-containment
from multiple faults. It can be shown that for a synchro-
nous system, the transformer presented in this paper can
produce self-stabilizing protocols that recover from multiple
faults with the same guarantees on fault-gap and contain-
ment time, provided that the shortest distance between any
two faults in the network is at least four. In this case, it can
be easily shown using the same proof technique used in the
single fault case that a good state is formed within a constant
time, with each faulty node belonging to a closed region.
The proof then proceeds similarly. The faults in this case are
sufficiently dispersed around the network so as to not affect
each other.

The protocols generated by the transformer has a constant
containment time, meaning that the observable effects of a
single fault is repaired very fast. However, the fault-gap of
the protocol can be high, since the value of M may be large.
It might be possible to reduce the fault-gap of the proto-
col using the following approach. Suppose that M is not
as large as required by our transformer. In this case, it is
possible that a process can decrement its timer from M to
0, but the system may not have reached a legitimate state.
The process might then reset its timer to M , and start decre-
menting down to 0 again. Depending on the value of M ,
this process may be repeated a number of times. Note that
each time the process decrements from M to 0, it first exe-
cutes the protocol C . So if we can ensure that the repea-
ted execution of the steps of C within the execution of P
do not affect progress towards self-stabilization, then the
protocol will reach a legitimate state eventually, Thus, if
we use an implementation of C satisfying this condition,
we can generate a class of transformers, one transformer
for each value of M . Reducing the value of M reduces the
fault-gap of the generated protocol, but increases the
stabilization time, since the steps of C have to be perfor-
med multiple times. So this approach promises to yield a
sequence of transformers that reveals a trade-off between
fault-gap and stabilization time. We are currently investi-
gating if the implementation of C presented in this paper
satisfies this property.
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