
Distrib. Comput. (2007) 19:335–359
DOI 10.1007/s00446-006-0019-4

SPECIAL ISSUE PODC 05

The weakest failure detector to solve nonuniform consensus

Jonathan Eisler · Vassos Hadzilacos · Sam Toueg

Received: 15 October 2005 / Accepted: 20 February 2006 / Published online: 2 February 2007
© Springer-Verlag 2007

Abstract We determine the weakest failure detector
to solve nonuniform consensus in any environment, i.e.,
regardless of the number of faulty processes. Together
with previous results, this closes all aspects of the fol-
lowing question: What is the weakest failure detector to
solve (uniform or nonuniform) consensus in any
environment?

Keywords Distributed algorithms · Fault tolerance ·
Consensus · Failure detectors

1 Introduction

Consensus is a classical problem that lies at the heart of
many important problems in fault-tolerant distributed
computing. In consensus each process initially proposes
a value, and eventually processes must reach a common
decision on one of the proposed values. Two variants
of the problem have been studied: in the uniform ver-
sion, no two processes (whether correct or faulty) can
reach different decisions. Here a faulty process need
not reach a decision at all, but if it does, that decision
must be consistent with that of correct processes. In the
nonuniform version, no two correct processes can reach
different decisions. In this weaker version of consensus,

Research supported in part by the Natural Sciences and
Engineering Council of Canada.

J. Eisler
One Microsoft Way, Microsoft Corporation,
Redmond, WA 98052, USA

V. Hadzilacos (B) · S. Toueg
Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada

a faulty process can reach a decision on any proposed
value.

It is well-known that consensus is unsolvable in asyn-
chronous systems subject to process crashes (even if
communication is reliable) [4]. One way to circumvent
this impossibility result is through the use of unreli-
able failure detectors [2]: in this model, each process has
access to a failure detector module that provides some
(possibly incomplete and inaccurate) information about
failures, e.g., a list of processes currently suspected to
have crashed. It is natural then to seek the weakest fail-
ure detector to solve consensus. Informally, D∗ is the
weakest failure detector to solve problem P if (a) there
is an algorithm that uses D∗ to solve P, and (b) any
failure detector D that can be used to solve P can be
transformed to D∗.

Chandra et al. [1] were the first to address the ques-
tion of the weakest failure detector to solve consen-
sus. They determined the weakest failure detector to
solve uniform or nonuniform consensus in systems with
a majority of correct processes. Delporte et al. [3] deter-
mined the weakest failure detector to solve uniform con-
sensus in systems with any number of failures, i.e., in any
environment. Informally, an environment describes the
number and timing of failures that can occur.

It remained open to identify the weakest failure detec-
tor to solve nonuniform consensus in any environment.
In this paper, we resolve this question. Together with
the results cited above, this closes all aspects of the
following question: what is the weakest failure detec-
tor to solve (uniform or nonuniform) consensus in any
environment? We summarize the previous results before
describing our own contribution in greater detail.

Chandra et al. showed that, in environments where
a majority of processes are correct, the weakest failure

336 J. Eisler et al.

detector to solve uniform or nonuniform consensus is Ω ,
the leader failure detector. At each process, Ω outputs
(the identity of) a process. Ω guarantees that there is a
time after which the same correct process is output at
all correct processes.

Delporte et al. proved that the weakest failure detec-
tor to solve uniform consensus in any environment is
the pair (Ω , Σ), where Σ is the quorum failure detec-
tor.1 At each process, Σ outputs a set of processes such
that: (1) any two sets, output at any times and at any
processes, intersect, and (2) there is a time after which
every set output at any correct process consists of only
correct processes.

In this paper, we determine that the weakest failure
detector to solve nonuniform consensus in any envi-
ronment is (Ω , Σν), where Σν is the natural “nonuni-
form” version of Σ . More precisely, Σν is like Σ , except
that the intersection requirement is restricted to quo-
rums output at correct processes. In other words, any two
quorums output at correct processes intersect. Quorums
output at faulty processes, however, may fail to intersect
with quorums output at other processes. Clearly, Σν is
weaker than Σ .

To prove our result we need to show that the follow-
ing hold in any environment:

Sufficiency. There is an algorithm that uses (Ω , Σν) to
solve nonuniform consensus.

Necessity. Any failure detector D that can be used to
solve nonuniform consensus can be transformed to
(Ω , Σν).

To prove sufficiency, we proceed in two stages. We
first show how to transform Σν into another failure
detector, denoted Σν+. We then give an algorithm that
uses (Ω , Σν+) to solve nonuniform consensus in any
environment.

From Chandra et al. we already know that in any
environment, any failure detector D that can be used to
solve nonuniform consensus can be transformed to Ω .
Thus, to prove necessity, it suffices to show that D can
also be transformed to Σν . We present an algorithm that
does so.

To prove that (Ω , Σν) is the weakest failure detector
to solve nonuniform consensus we had to use differ-
ent techniques than those used by Delporte et al. to
show that (Ω , Σ) is the weakest failure detector to solve
uniform consensus. At the heart of their proof is the
fact that uniform consensus can be used to implement
registers. Nonuniform consensus, however, is not strong

1 If D and D′ are failure detectors (D, D′), is the failure detec-
tor that outputs a vector with two components, the first being the
output of D and the second being the output of D′.

enough to implement registers. As a result, neither their
necessity nor their sufficiency techniques can be adopted
for our purposes.

Interestingly, our approach also gives an alternative
proof that (Ω , Σ) is the weakest failure detector to solve
uniform consensus: (a) our proof that Σν is necessary to
solve nonuniform consensus also shows that Σ is nec-
essary to solve uniform consensus (see Sect. 5.1), and
(b) a simple modification of a known algorithm shows
that (Ω , Σ) is sufficient to solve uniform consensus (see
Sect. 6.3).

From the results of [1,3] and this paper, (Ω , Σ) and
(Ω , Σν) are the weakest failure detectors to solve uni-
form and nonuniform consensus, respectively, in any
environment. In environments, where half or more of
the processes may fail, (Ω , Σ) and (Ω , Σν) are not equiv-
alent. This follows from an observation by Delporte et al.
that, in such environments, the weakest failure detector
to solve nonuniform consensus is not (Ω , �) [3]. In this
paper, we provide a direct proof that if half or more
of the processes may fail, (Ω , Σ) and (Ω , Σν) are not
equivalent. On the other hand, if a majority of processes
are correct, (Ω , Σ) and (Ω , Σν) are equivalent: in this
case, Σ and Σν can be implemented “from scratch”, i.e.,
without using any failure detector.

The rest of the paper is organized as follows: In Sect. 2
we review the model of computation, and in Sect. 3 we
define the failure detectors Ω , Σ and Σν . In Sect. 4 we
recall a technique introduced by Chandra et al. to prove
statements of the form: “any failure detector that can be
used to solve a certain problem P can be transformed
to failure detector D” [1]. This technique is the starting
point for our proof that, in any environment, any failure
detector that can be used to solve nonuniform consensus
can be transformed to Σν . We give this proof in Sect. 5.
In Sect. 6 we prove that, in any environment, nonuni-
form consensus can be solved using (Ω , Σν). Finally,
in Sect. 7, we show that (Ω , Σν) and (Ω , Σ) are not
equivalent in environments where half or more of the
processes may fail, while they are equivalent in environ-
ments where a majority of the processes are correct.

2 The model

Our model of asynchronous computation is the one
described in [1], which augments the model of Fischer
et al. [4] with failure detectors.

2.1 Systems

We consider distributed message-passing systems with a
set of n ≥ 2 processes Π = {0, 1, . . . , n − 1}. Processes

Weakest failure detector to solve nonuniform consensus 337

execute steps asynchronously, i.e., there is no bound on
the delay between steps. Each pair of processes are con-
nected by a reliable link. The links transmit messages
with finite but unbounded delay. They are modeled as a
set M, called the message buffer, that contains triples of
the form (p, data, q) indicating that p has sent the mes-
sage data to q, and q has not yet received it. We assume
that each message sent by a process p to a process q
is unique; this can be guaranteed by having the sender
include a counter with each message.

2.2 Failures, failure patterns and environments

We consider crash failures only: processes fail only by
halting prematurely. A failure pattern is a function F :
N → 2Π , where F(t) is the set of processes that have
crashed through time t. (For presentation simplicity, we
assume a discrete global clock to which the processes
do not have access. The range of this clock’s ticks is
N.) Since processes never recover from crashes, F(t) ⊆
F(t + 1). Let faulty(F) = ⋃

t∈N
F(t) be the set of faulty

processes in a failure pattern F; and let correct(F) =
Π − faulty(F) be the set of correct processes in F. When
the failure pattern F is clear from the context, we say
that process p is correct if p ∈ correct(F), and p is faulty
if p ∈ faulty(F).

An environment is a set of failure patterns. Intuitively,
an environment describes the number and timing of fail-
ures that can occur in the system. Thus, a result that
applies to all environments is one that holds regardless
of the number and timing of failures.

2.3 Failure detectors

A failure detector history H with range R describes the
behavior of a failure detector during an execution. For-
mally, it is a function H : Π × N → R, where H(p, t)
is the value output by the failure detector module of
process p at time t.

A failure detector D with range R is a function that
maps any failure pattern F to a set of failure detector
histories with range R. D(F) is the set of all possible
failure detector histories that may be output by D in a
failure pattern F. Typically we specify a failure detector
by stating the properties that its histories satisfy.

Given two failure detectors D and D′, we denote by
(D, D′) the failure detector whose output is an ordered
pair in which the first element corresponds to an output
of D, and the second element corresponds to an output
of D′. More precisely, if R and R′ are the ranges of D
and D′, respectively, then the range of (D, D′) is R×R′.

For all failure patterns F,

H′′ ∈ (D, D′)(F) ⇐⇒
∃H ∈ D(F) ∧ ∃H′ ∈ D′(F) ∧
∀ p ∈ Π , ∀ t ∈ N : H′′(p, t) = (H(p, t), H′(p, t))

2.4 Algorithms

An algorithm A is modeled as a collection of n deter-
ministic automata. There is an automaton A(p) for each
process p. Computation proceeds in steps of these auto-
mata. In each step, a process p atomically

– receives a single message m from the message buffer
M, or the empty message λ;

– queries its local failure detector module and receives
a value d;

– changes its state; and
– sends messages to other processes.

The state transition and the messages that p sends are all
uniquely determined by the automaton A(p), the state
of p at the beginning of the step, the received message
m, and the failure detector value d. Formally, a step is a
tuple e = (p, m, d, A), where p is the process taking step
e, m is the message received by p during e, d is the fail-
ure detector value seen by p in e, and A is the algorithm
being executed.

The message received in a step is nondeterministic-
ally selected from M ∪ {λ}. This reflects the asynchrony
of the communication channels: a process p may receive
the empty message despite the existence of unreceived
messages addressed to p.

2.5 Configurations

A configuration is a pair (s, M), where s is a function that
maps each process to its local state, and M is the message
buffer. Recall that M is a set of triples (p, data, q), where
p sent data to q, which has not yet received it. An initial
configuration is a pair (s, M), where M = ∅ and s(p) is
an initial state of the automaton A(p).

A step (p, m, d, A) is applicable to a configuration C =
(s, M) if and only if m ∈ M ∪ {λ}. If e is a step applica-
ble to configuration C, e(C) denotes the configuration
that results when we apply e to C. This is uniquely deter-
mined by the automaton A(p) of the process p that takes
step e.

2.6 Schedules and runs

A schedule S of an algorithm A is a finite or infinite
sequence of steps of A. The ith step in schedule S is

338 J. Eisler et al.

denoted S[i], and the prefix consisting the first j steps of
S is denoted S[1..j]. A schedule S is applicable to a config-
uration C if S is the empty schedule, or S[1] is applicable
to C, S[2] is applicable to S[1](C), etc. If S is finite and
is applicable to C, S(C) denotes the configuration that
results when we apply schedule S to configuration C. We
denote by participants(S) the set of processes that take
at least one step in schedule S.

Let S be a schedule applicable to an initial configura-
tion I of an algorithm A, and let i, j be positive integers
such that i, j ≤ |S|. We say that step i causally precedes
step j in S with respect to I if and only if one of the
following holds [5]:

– S[i] and S[j] are steps of the same process and i < j;
– S[i] and S[j] are the sending and receipt of the same

message — i.e., step S[i] applied to configuration
S[1..i − 1](I) results in the sending of some message
m, and S[j] = (−, m, −, A); or

– there is a positive integer k ≤ |S| such that step i
causally precedes step k, and step k causally pre-
cedes step j in S with respect to I.

Note that if S[i] and S[j] are the sending and receipt of
the same message m, then i < j (because if j ≤ i, then
S[j] would be receiving m before m is sent in S[i], con-
tradicting the fact that S is applicable to I). This implies:

Observation 2.1 If step i causally precedes step j in S with
respect to I then i < j.

A run of algorithm A using failure detector D in envi-
ronment E is a tuple R = (F, H, I, S, T) where F is a
failure pattern in E , H is a failure detector history in
D(F), I is an initial configuration of A, S is a schedule of
A, and T is a list of times in N (informally, T[i] is the time
when step S[i] is taken) such that the following hold:

(1) S is applicable to I.
(2) S and T are both finite sequences of the same

length, or are both infinite sequences.
(3) For all positive integers i ≤ |S|, if S[i] = (p, −, d,

A),2 then p /∈ F(T[i]) and d = H(p, T[i]).
(4) For all positive integers i < j ≤ |S|, T[i] ≤ T[j].
(5) For all positive integers i, j ≤ |S|, if step i caus-

ally precedes step j in S with respect to I then
T[i] < T[j].

Property (3) states that a process does not take steps
after crashing, and that the failure detector value seen in

2 The symbol “−” in a field of a tuple indicates an arbitrary per-
missible value for that field of the tuple. We use this convention
throughout the paper.

a step is the one dictated by the failure detector history
H. Property (4) states that the sequence of times when
processes take steps in a schedule is nondecreasing,
and property (5) states that these times respect causal
precedence.

A run whose schedule is finite (respectively, infinite) is
called a finite (respectively, infinite) run. An admissible
run of algorithm A using failure detector D in environ-
ment E is an infinite run R = (F, H, I, S, T) of A using D
in E with two additional properties:

(6) Every correct process takes an infinite number of
steps in S.

(7) Each message sent to a correct process is even-
tually received. More precisely, for every finite
prefix S′ of S, and every q ∈ correct(F), if the
message buffer in configuration S′(I) contains a
message m = (−, −, q), then for some i ∈ N, S[i] =
(q, m, −, A).

2.7 Solving problems with failure detectors

A problem P is defined by a set of properties that runs
must satisfy. We say that algorithm A uses failure detec-
tor D to solve problem P in environment E if and only
if all the admissible runs of A using D in E satisfy the
properties of P. We say that failure detector D can be
used to solve problem P in environment E if and only
if there exists some algorithm A that uses D to solve
P in E .

2.8 Nonuniform consensus

We now define what it means for an algorithm A to
solve nonuniform consensus. Let V be a set of at least
two distinct values (when V = {0, 1} the problem is
called binary nonuniform consensus). The automata that
define A must be such that, for each v ∈ V, each process
p has a distinct initial state in which p is said to propose
v. Also, each process has certain states in which it is said
to decide v. Decisions are irrevocable in the sense that
after entering a state in which it decides v, a process
remains in such a state forever. We say that a process
proposes v or decides v in configuration C if and only if it
does so in its state in C. Let R = (F, H, I, S, T) be a run
of A. We say that process p proposes v in R if and only
if p proposes v in the initial configuration I of R; we say
that p decides v in R if and only if for some prefix S′ of
S, p decides v in S′(I).

We say that algorithm A uses failure detector D to
solve nonuniform consensus in environment E if and only
if every admissible run R of A using D in E has the fol-
lowing properties:

Weakest failure detector to solve nonuniform consensus 339

Termination. Every correct process decides a value in R.
Nonuniform agreement. No two correct processes

decide different values in R.
Validity. If a process decides v in R, then some process

proposes v in R.

2.9 Weakest failure detectors

We now explain how to compare two failure detectors
D and D′ in some environment E . To do so, we first
explain what it means for an algorithm to transform D
to D′ in E . Such an algorithm, denoted TD→D′ , uses D to
maintain a variable outputp at every process p; outputp
functions as the output of the emulated failure detector
D′ at p. For each admissible run R of TD→D′ , let OR be
the history of all the output variables in R; i.e., OR(p, t)
is the value of outputp at time t in R. Algorithm TD→D′
transforms D to D′ in environment E if and only if for
every admissible run R = (F, H, I, S, T) of TD→D′ using
D in E , OR ∈ D′(F).

We say that D′ is weaker than D in E , denoted
D′ �E D, if there is an algorithm TD→D′ that trans-
forms D to D′ in E . If D′ �E D, and D �E D′, then D′
is equivalent to D in E , denoted D′ ≡E D. The relation
stronger than (�E) is defined symmetrically.

A failure detector D∗ is the weakest failure detector
to solve problem P in environment E if and only if:3

Sufficiency. There is an algorithm that uses D∗ to solve
P in E .

Necessity. For any failure detector D, if D can be used
to solve P in E then D∗ �E D.

2.10 Mergeability

Several proofs in distributed computing employ a tech-
nique known as the “partition argument”. At the heart
of this technique is the ability to combine two different
runs R0 and R1 of an algorithm A that involve disjoint
sets of processes P0 and P1, respectively, into a single
run R of A in which the processes in P0 behave as in
R0 and the processes in P1 behave as in R1. We now
formalize this, and prove that in our model it is possible
to combine such “mergeable” runs in this manner.

Two finite runs R0 = (F, H, I0, S0, T0) and R1 = (F, H,
I1, S1, T1) of an algorithm A using failure detector D in
some environment E are mergeable if and only if (a)
participants(S0) ∩ participants(S1) = ∅, and (b) A has
an initial configuration I such that the initial state of

3 There may be several distinct failure detectors that are the
weakest to solve a problem P. It is easy to see, however, that they
are all equivalent. For this reason we speak of the weakest, rather
than a weakest failure detector to solve P.

every process in participants(S0) is the same in I as in I0,
and the initial state of every process in participants(S1)

is the same in I as in I1. A merging of two such runs
is a tuple R = (F, H, I, S, T) where T is a sequence
consisting of the times in T0 and T1 in nondecreasing
order, and S is the sequence consisting of the steps
in S0 and S1 merged in the same order as the ele-
ments of T0 and T1 were merged into T. For exam-
ple, suppose that S0 = a1, a2, a3, T0 = 3, 5, 7; and S1 =
b1, b2, b3, b4, T1 = 2, 4, 5, 6. (Note that steps a2 of S0 and
b3 of S1 are concurrent.) Then T = 2, 3, 4, 5, 5, 6, 7, and
the two possibilities for S are b1, a1, b2, b3, a2, b4, a3 or
b1, a1, b2, a2, b3, b4, a3. More formally, the requirements
on S and T for R = (F, H, I, S, T) to be a merging of R0
and R1 are

– |S| = |S0| + |S1| and |T| = |T0| + |T1|;
– T is nondecreasing;
– for each b ∈ {0, 1} and each i ∈ {1, 2, . . . , |Sb|} there is

a j ∈ {1, 2, . . . , |S|} such that Sb[i] = S[j] and Tb[i] =
T[j]; and

– for each j ∈ {1, 2, . . . , |S|} there is a b ∈ {0, 1} and an
i ∈ {1, 2, . . . , |Sb|} such that S[j] = Sb[i] and T[j] =
Tb[j].

Lemma 2.2 Let R = (F, H, I, S, T) be a merging of two
mergeable finite runs R0 = (F, H, I0, S0, T0) and R1 =
(F, H, I1, S1, T1) of an algorithm A using failure detector
D in some environment E . Then

(a) R is also a run of A using D in E .
(b) For each b ∈ {0, 1} and each process p ∈ participants

(Sb), the state of p is the same in S(I) as in Sb(Ib).

The proof of Lemma 2.2 is straightforward though some-
what tedious; it is given in Appendix A.

3 Failure detectors used in this paper

In this section, we recall the definitions of the leader
failure detector Ω [1], and the quorum failure detector
Σ [3]. We then introduce the nonuniform counterpart
of Σ , denoted Σν .

3.1 Leader failure detector Ω

The leader failure detector Ω outputs a single trusted
process at each local module, such that there is a time
after which all correct processes trust the same correct
process.

340 J. Eisler et al.

Formally, the range of Ω is Π . For all failure patterns
F, H ∈ Ω(F) if and only if:

correct(F) �= ∅ �⇒
(∃p ∈ correct(F), ∀ q ∈ correct(F), ∃t ∈ N, ∀ t′ > t :

H(q, t′) = p
)

3.2 Quorum failure detector Σ

The quorum failure detector Σ outputs a set of pro-
cesses at each process. Any two quorums, output at any
times and at any processes, intersect. Moreover, there
is a time after which all quorums output at correct pro-
cesses include only correct processes.

Formally, the range of Σ is 2Π . For all failure patterns
F, H ∈ Σ(F) if and only if:

Intersection. Any two quorums intersect.

∀ p, p′ ∈ Π , ∀ t, t′ ∈ N : H(p, t)∩ H(p′, t′) �= ∅
Completeness. There is a time after which the quorums

of correct processes contain only correct processes.

∃t ∈ N, ∀ p ∈ correct(F), ∀ t′ > t : H(p, t′) ⊆ correct(F)

The definition of Σ does not require that the quorums
of correct processes eventually converge to the same
set; correct processes are free to keep changing their
quorums forever.

3.3 Nonuniform quorum failure detector Σν

We now define the nonuniform counterpart of Σ ,
denoted Σν .4 Σν differs from Σ in only one respect:
only quorums output by correct processes are required
to intersect.

Formally, the range of Σν is 2Π . For all failure pat-
terns F, H ∈ Σν(F) if and only if:

Nonuniform intersection. Any two quorums that are
output by correct processes intersect.

∀ p, p′ ∈ correct(F), ∀ t, t′ ∈ N : H(p, t) ∩ H(p′, t′) �= ∅
Completeness. There is a time after which the quorums

of correct processes contain only correct processes.

∃t ∈ N, ∀ p ∈ correct(F), ∀ t′ > t : H(p, t′) ⊆ correct(F)

4 DAGs and simulations

Recall that to prove that failure detector D∗ is the weak-
est failure detector that solves a problem P we must

4 The superscript reflects the fact that the Greek letter ν is ren-
dered in English as “nu”, which is also a suitable abbreviation for
the word “nonuniform”.

prove that: (a) there is an algorithm that uses D∗ to
solve P, and (b) any failure detector that can be used
to solve P can be transformed to D∗. In this section,
we review a proof technique for (b). It was introduced
by Chandra et al., who used it to prove that any failure
detector that solves nonuniform consensus can be trans-
formed to Ω [1]. We will use it in Sect. 5 to prove that
any failure detector that solves nonuniform consensus
can be transformed to Σν . We will also use a simpler
version of this technique in Sect. 6.2.

Suppose that D is a failure detector that can be used
to solve P in some environment E . In other words, there
is an algorithm A that uses D to solve P in E . The
proof technique shows how to use D and A to emu-
late D∗ in E . The emulation consists of two interact-
ing components: the communication component and the
computation component. In the communication compo-
nent, each process “samples” its local module of D and
exchanges messages with other processes to construct a
directed acyclic graph (DAG) of failure detector sam-
ples of D. In the computation component, p uses this
DAG to simulate schedules of the algorithm A (which
uses D to solve P). Based on these simulated schedules,
p simulates the output of the failure detector D∗ that
we want to emulate. We now explain in more detail how
each process builds its DAG of failure detector samples
of D and how it uses this DAG to simulate schedules
of A.

4.1 Building DAGs of failure detector samples

The DAG-building algorithm, denoted ADAG, is shown
in Fig. 1. In our algorithm descriptions, which we give
in pseudocode, we use the following conventions. Vari-
ables of process p are subscripted with p. If D is a failure
detector, then Dp denotes the function call by which p
can access its local module of D; this call returns the
current value of p’s local module of D. The pseudo-
code of each process begins with an initialize clause,
which defines the process’ state in the initial configu-
ration. (Variables whose values are not explicitly set in
this clause, can be assigned arbitrary values in the initial
configuration.)

In ADAG, each process p maintains a DAG of failure
detector samples of D in the variable Gp. Each node
of this DAG is of the form (q, d, k); such a triple indi-
cates that process q obtained value d when it queried its
failure detector module Dq for the kth time. (The third
component is included to ensure that distinct samplings
of the failure detector result in distinct nodes.) We call
such triples samples; a sample (q, −, −) is said to be of
or taken by process q. We use the terms “node (of the
DAG)” and “sample” interchangeably.

Weakest failure detector to solve nonuniform consensus 341

Fig. 1 Algorithm ADAG builds an ever-increasing DAG of failure detector samples of D

Process p periodically performs the following actions:

(a) it receives a message, which is either a DAG pre-
viously sent to p by another process, or the empty
message (line 5);

(b) it queries its local failure detector module Dp,
receiving a value that it stores in variable dp

(line 6);
(c) it updates its DAG Gp by first adding to it the

DAG that it received in (a), and then adding to it
a new node with the failure detector value it got
in (b), as well as edges from all other nodes to the
new node (lines 7–10); and

(d) it sends the updated Gp to all processes(line 11).

Note that this sequence of actions (receiving a message,
querying the local failure detector module, changing
local state, and sending messages to other processes)
corresponds exactly to the sequence of actions taken in
a single step in our model. Thus, each iteration of the
loop in Fig. 1 is executed as a single step.

We now present some properties of the DAGs of
samples computed by algorithm ADAG. In the following,
we consider an arbitrary admissible run R =
(F, H, I, S, T) of ADAG using failure detector D in some
arbitrary environment E . We use the following notation
throughout the paper: in the context of a given run of an
algorithm, the value of variable xp at time t is denoted
xt

p; if p takes a step at time t, then xt
p is the value of xp

after that step.
We start with some simple observations, in each of

which p is an arbitrary process. Since p never removes
any nodes or edges from Gp, the DAG contained in this
variable is nondecreasing. That is,

Observation 4.1 For all t, t′ ∈ N, if t ≤ t′ then Gt
p is a

subgraph of Gt′
p.

We define the limit DAG of a process p to be
G∞

p = ∪t∈NGt
p. Since kp is incremented in each iter-

ation of p’s loop, when p takes sample (p, −, k), it has
already taken samples (p, −, k′) for all k′ < k; and, at
that time, it adds edges from all such nodes to (p, −, k).
Thus,

Observation 4.2 If v = (p, −, k) and v′ = (p, −, k′) are
nodes of G∞

p and k ≥ k′, then v is a descendant of v′
in G∞

p .

Let v = (q, d, k) be any node of G∞
p . It is obvious

from the code of ADAG that process q received d from
its failure detector module in its kth step. Let τ(v) to be
the time when q takes this step. More precisely, if S[i] is
the kth step of q in S, then τ(v) = T[i]. (Recall that S is
the schedule and T is the sequence of times of the run
R of ADAG that we are considering.) From property (3)
of runs, we have:

Observation 4.3 If v = (q, d, k) is a node of G∞
p , then

q /∈ F(τ (v)) and d = H(q, τ(v)).

From the algorithm ADAG, it is clear that if (u, v) is an
edge of the limit DAG G∞

p , then the step in which sample
u was taken causally precedes the step in which sample
v was taken in schedule S with respect to I. (Recall that
I is the initial configuration of the run R of ADAG that
we are considering.) From property (5) of the runs of
ADAG, it follows that τ(u) < τ(v). By induction we can
generalize this observation from single edges to finite or
infinite paths of G∞

p :

342 J. Eisler et al.

Observation 4.4 If g = v0, v1, . . . is a finite or infinite
path of G∞

p , then the sequence of times τ(v0), τ(v1), . . . is
strictly increasing.

Let G be any DAG; if v is a node of G, then G|v
is the subgraph of G induced by the descendants of v
in G; otherwise, G|v is the empty graph. Informally, the
next lemma states that any finite path in process p’s limit
DAG eventually appears permanently in p’s DAG.

Lemma 4.5 Let p be a correct process and v be a node of
G∞

p . For each finite path g in G∞
p |v, there is a time t such

that, for all t′ ≥ t, g ∈ Gt′
p|v.

Proof Let g be any finite path in G∞
p |v. Since G∞

p =
∪t∈NGt

p, it is clear that for each edge e of g there is

a time t(e) such that e is in Gt(e)
p . Let t = max{t(e) :

e is an edge of g}. By Observation 4.1, every edge e of g
(and hence the entire path g) is in Gt′

p for all t′ ≥ t. Since
g is in G∞

p |v, every node in g is a descendant of v. Thus,

g is in Gt′
p|v, for all t′ ≥ t. ��

Since faulty processes eventually crash and cease to
take steps, from a certain point on only correct processes
take samples. This is the basic intuition underlying the
next lemma.

Lemma 4.6 For every correct process p, there is a sample
v∗ of p in G∞

p such that G∞
p |v∗ contains only samples of

correct processes. Furthermore,

(a) There is a time after which any node v in variable
vp (line 9) is a descendant of v∗ in G∞

p .
(b) For any descendant v of v∗ in G∞

p and any t ∈ N,
Gt

p|v contains only samples of correct processes.

Proof Since p is correct, it takes infinitely many steps,
Let t∗ be the first time that p takes a step after all faulty
processes have crashed, and let v∗ be the sample that p
takes in that step. Consider any node v of G∞

p |v∗. Since v
is a descendant of v∗ in G∞

p , by Observation 4.4, τ(v) ≥
τ(v∗) = t∗. Since all faulty processes have crashed by
time t∗, the process that takes sample v (at time τ(v) ≥
t∗) must be correct. So, G∞

p |v∗ contains only samples of
correct processes.

(a) Let v∗ = (p, −, k∗). Since kp increases in each itera-
tion of p’s loop, eventually kp has values that are more
than k∗. Therefore, eventually only nodes whose third
entry is more than k∗ are assigned to vp. By Observa-
tion 4.2 all these nodes are descendants of v∗ in G∞

p .

(b) Consider any descendant v of v∗ in G∞
p and any time

t ∈ N. Clearly, Gt
p|v is a subgraph of G∞

p |v, and G∞
p |v is a

subgraph of G∞
p |v∗. Since G∞

p |v∗ contains only samples
of correct processes, so does its subgraph Gt

p|v. ��

Since correct processes keep taking samples and
exchanging their DAGs forever, every correct process’
limit DAG has an infinite path with infinitely many sam-
ples of each correct process. This observation is formal-
ized by Lemma 4.8. To prove it, it is convenient to prove
the following lemma first.

Lemma 4.7 Let p be a correct process, t be a time, and G
be a subgraph of Gt

p. For any correct process q, there is a

time t′ such that Gt′
p contains a sample u of q and an edge

from every node of G to u.

Proof Let s be the first step that p takes after time t. By
Observation 4.1, G is still in p’s DAG just before this
step. There are two cases:

p = q. In step s, p adds to its DAG a new sample
u = (p, −, −), and edges from every other node in its
DAG (in particular, from every node in G) to u. Thus,
when this step is completed, say at time t′, Gt′

p has the
desired properties.

p �= q. In step s, p sends to all processes a DAG that
contains G. Now consider the step in which q receives
that DAG. In that step, q first incorporates the DAG it
receives, which contains G, into its own DAG. Then q
adds to its DAG a new sample u = (q, −, −), and edges
from every other node in its DAG (in particular, from
every node in G) to u. Finally, q sends the resulting DAG
to all processes. Consider the step in which p receives
that DAG. When it does so, p incorporates the DAG
it receives into its own DAG. Thus, when this step is
completed, say at time t′, Gt′

p has the desired properties.
��

Lemma 4.8 Let p be a correct process and v be a node of
G∞

p . G∞
p |v has an infinite path g∞ that starts with v and

contains infinitely many samples of each correct process.

Proof Since v is a node of G∞
p , there is a time t0 such

that v is in Gt0
p . By repeated application of Lemma 4.7,

there is an infinite sequence of times t0, t1, . . . and an infi-
nite sequence of paths g0, g1, . . . such that for all i ∈ N,
(a) gi is in Gti

p and starts with v, (b) gi is a prefix of gi+1,
and (c) each correct process has at least i steps in gi.

Let g∞ be the “limit” of sequence g0, g1, . . . That is,
g∞ is the infinite path which, up to length |gi|, is identi-
cal to gi. (This is well-defined because of (b).) It is now
easy to see that g∞ is a path in G∞

p |v that starts with
v and contains infinitely many samples of each correct
process. ��

4.2 Simulating schedules of an algorithm A

In the previous section, we saw how each process p can
execute algorithm ADAG using a failure detector D to

Weakest failure detector to solve nonuniform consensus 343

build an ever-increasing DAG of samples of D (under
the “current” failure pattern F and failure detector his-
tory H ∈ D(F)). We now explain how each process p
can use its DAG of samples of D to simulate schedules
of runs of any algorithm A using D (with failure pattern
F and failure detector history H ∈ D(F)). These are
called simulated schedules of A. Another way of thinking
about these simulated schedules is that they are sched-
ules of runs that could have occurred if processes were
running algorithm A using D, instead of running ADAG
using D.

Fix an initial configuration I of algorithm A, and a
path g = (p1, d1, k1), (p2, d2, k2), . . . of the DAG con-
tained in Gp at some time t, or of the limit DAG G∞

p .
Our goal is to define the set of simulated schedules deter-
mined by path g and initial configuration I. Path g tells
us that the following could have happened in an execu-
tion of algorithm A under the current failure pattern F
and failure detector history H ∈ D(F): process p1 takes
the first step and gets value d1 from its failure detector
module; then process p2 takes the second step and gets
value d2 from its failure detector module; and so on.
This sequence of process ids and failure detector val-
ues, along with the initial configuration I, define a set of
schedules of A, each schedule in this set correspond-
ing to different delays that the messages sent might
experience.

More precisely, we say that a schedule S is compati-
ble with the path g = (p1, d1, k1), (p2, d2, k2), . . . if and
only if it has the same length as g, and S = (p1, m1, d1, A),
(p2, m2, d2, A), . . . for some (possibly null) messages
m1, m2, . . . The set of simulated schedules determined
by g and initial configuration I is the set of all schedules
that are compatible with g and applicable to I.

Let G be any DAG of samples and I be any initial
configuration of A. Sch(G, I) denotes the set of sched-
ules of A that are compatible with some path in G and
are applicable to I. Note that if G is finite then Sch(G, I)
contains a finite number of finite schedules.

We now present some properties of simulated
schedules. In the following, we consider an arbitrary
admissible run R of ADAG using failure detector D in
some arbitrary environment E . Let F ∈ E be the failure
pattern of this run and H ∈ D(F) its failure detector
history.

The first lemma justifies the name “simulated sched-
ules”; it states that these schedules really are schedules
of runs of algorithm A using D, with failure pattern F
and failure detector history H.

Lemma 4.9 Let p be a process, t ∈ N ∪ {∞}, G be a
subgraph of Gt

p, and I be an initial configuration of algo-
rithm A. For each schedule S ∈ Sch(Gt

p|u, I), there is a

list of times T such that RA = (F, H, I, S, T) is a run of A
using D in E .

Proof Let S be any schedule in Sch(G, I). Thus, S is
applicable to I and compatible with some path g =
v1, v2, . . . in G. Let T = τ(v1), τ(v2), . . . We claim that
RA = (F, H, I, S, T) is a run of A using D in E . Since
F ∈ E , H ∈ D(F) and I is an initial configuration of A,
it suffices to verify that RA satisfies properties (1)–(5)
of runs. S is applicable to I (property (1)) by definition
of Sch(G, I). S and T have the same length (property
(2)) because each of them has the same length as g.
The fact that in R no process takes a step after it has
crashed, and that the failure detector value in each step
is consistent with the history H (property (3)) follows
from Observation 4.3, since S is compatible with path
g = v1, v2, . . . and T = τ(v1), τ(v2), . . . Observation 4.4
implies that T is strictly increasing, and so property (4)
is also satisfied. To show property (5), we must prove
that if step i causally precedes step j in S with respect
to I then T[i] < T[j]. This follows from Observation 2.1
and the fact that T is strictly increasing. ��

Since G∞
p |u is a subgraph of G∞

p , by Lemma 4.9 every
infinite schedule S∞ in Sch(G∞

p |u, I) is a schedule of
an infinite run of A using D in E . However, S∞ is not
necessarily a schedule of an admissible run, i.e., a run
where each correct process takes an infinite number of
steps (property (6)) and eventually receives every mes-
sage sent to it (property (7)). The next lemma, however,
states that Sch(G∞

p |u, I) contains at least one infinite
schedule of an admissible run of A.

Lemma 4.10 Let p be a correct process, u be a node of
G∞

p , and I be an initial configuration of A. There is a
schedule S∞ ∈ Sch(G∞

p |u, I) and a list of times T∞ such
that RA = (F, H, I, S∞, T∞) is an admissible run of A
using D in E .

Proof By Lemma 4.8, G∞
p |u has an infinite path g∞ that

contains infinitely many samples of each correct process.
We define an infinite sequence of schedules S0, S1, . . .
such that for each i ∈ N, (a) Si has length i, (b) Si is
compatible with the path consisting of the first i nodes
of g∞, (c) Si is applicable to I, and (d) if i > 0, Si−1 is a
prefix of Si. The definition is by induction:

Basis S0 is the empty schedule. It is obvious that this
has the required properties.

Induction step Let i be an arbitrary positive integer,
and assume that Si−1 with the required properties has
been defined. Let the ith node of g∞ be (p, d, −). Then
Si is obtained from Si−1 by appending to it the step
(p, m, d, A), where m is the message defined as follows:
if the message buffer of configuration Si−1(I) has no

344 J. Eisler et al.

message to p (i.e., no message of the form (−, −, p)),
then m = λ; otherwise, m is the oldest message to p in
the message buffer of Si−1(I) (i.e., there is no message m′
to p in the message buffer of Si−1(I) and a j < i − 1 such
that the message buffer of Sj(I) contains m′ but not m).
It is obvious that Si has the required properties: length
i, compatible with the first i nodes of g∞, applicable to
I, and an extension of Si−1.

Now define S∞ to be the infinite schedule whose pre-
fix of length i is Si. (This is well-defined because, for all
i ∈ N, Si has length i and is a prefix of Si+1.) Clearly
S∞ is compatible with g∞ and applicable to I. Since g∞
is a path in G∞

p |u, we have that S∞ ∈ Sch(G∞
p |u, I).

By Lemma 4.9, there is a time list T∞ such that RA =
(F, H, I, S∞, T∞) is a run of A using D in E . It remains
to prove that RA is admissible. We first note that each
correct process takes infinitely many steps in RA; this
is because S∞ is compatible with g∞ and g∞ contains
infinitely many samples of each correct process. Further-
more, from the way we choose the message received in
each step of S∞, every message sent to a correct process
is eventually received in RA. So, RA has properties (6)
and (7) of admissible runs. ��

The following lemma is an immediate consequence
of Lemma 4.5 and the definition of Sch(G|u, I):

Lemma 4.11 Let p be a correct process, u be a node of
G∞

p , and I be an initial configuration of A. For each finite
schedule S ∈ Sch(G∞

p |u, I), there is a time t such that, for

all t′ ≥ t, S ∈ Sch(Gt′
p|u, I).

5 (Ω , Σν) is necessary for solving nonuniform
consensus

In this section, we prove that in any environment E , any
failure detector D that can be used to solve binary non-
uniform consensus can be transformed to Σν .
Intuitively, this says that, in any environment, Σν is
necessary to solve nonuniform consensus. Previously,
Chandra et al. had shown that, in any environment, Ω

is also necessary to solve nonuniform consensus [1].
By combining these two results, we get that, in any
environment, (Ω , Σν) is necessary to solve nonuniform
consensus.

Let A be any algorithm that uses D to solve binary
nonuniform consensus in E . In Fig. 2, we present an
algorithm TD→Σν that uses A to transform D to Σν .
This algorithm incorporates verbatim the DAG-build-
ing algorithm ADAG (Fig. 1) on lines 3–12. In the rest of
the algorithm, each process p uses a “recent” subgraph
of its current DAG Gp to simulate schedules of runs of

Fig. 2 Algorithm TD→Σν

Weakest failure detector to solve nonuniform consensus 345

A using D. Using these schedules p periodically deter-
mines a new quorum of Σν . We now explain this in more
detail.

Process p maintains a “recent” sample of its own in
variable up. This is initialized to p’s first sample (line 13),
and is updated to p’s most recent sample each time p out-
puts a new quorum (lines 18–19). The sample stored in
up acts as a “freshness barrier”: p’s new quorum contains
only processes that have taken samples at least as recent
as up. This ensures the completeness property of Σν .

Process p maintains two sets of simulated schedules,
Sch(Gp|up, I0) and Sch(Gp|up, I1), where I0 and I1 are
the initial configurations of A in which all processes pro-
pose 0 and 1, respectively (lines 14–16). Process p checks
whether these two sets contain simulated schedules S0
and S1, respectively, such that p decides in both S0(I0)

and S1(I1); if p finds such schedules, p updates its quo-
rum by assigning to Σν-outputp the set of processes that
take steps in either of these two schedules (lines 17–18).
As we will see, this way of choosing quorums ensures
the nonuniform intersection property of Σν .

Note that in each iteration of the loop, p performs the
actions that correspond to a step in our model: receive
a message, query the failure detector, change state and
send messages. Thus, in our model, a process executes
an iteration of the loop in one atomic step.

In what follows, we fix an arbitrary admissible run of
algorithm TD→Σν using failure detector D in some arbi-
trary environment E . Let F ∈ E be the failure pattern of
this run and H ∈ D(F) be its failure detector history. We
will prove that the quorums assigned to the variables
Σν-outputp in this run satisfy the properties of Σν .

Lemma 5.1 Every correct process p assigns a quorum to
Σν-outputp and a node to up infinitely often.

Proof Let p be any correct process. From the algo-
rithm, it is clear that Σν-outputp and up are either both
assigned infinitely often or both assigned a finite number
of times. For contradiction, suppose that they are both
assigned a finite number of times. By line 13, p assigns
a node to up at least once. Let t0 be the time when
the final assignment of up occurs and let u be the final
value of up.

By line 11, u is a node of G∞
p . By Lemma 4.10, there

is a schedule S∞
0 in Sch(G∞

p |u, I0) such that there is
an admissible run R0 = (F, H, I0, S∞

0 , −) of A using D.
Recall that A uses D to solve nonuniform consensus in
environment E , and F ∈ E . Since all processes propose
0 in I0, by the termination and validity properties, every
correct process—and in particular p—decides 0 in R0.
Thus, there is a finite prefix S0 of S∞

0 such that p decides
0 in S0(I0). By similar reasoning, there is a finite prefix

S1 of some schedule S∞
1 in Sch(G∞

p |u, I1) such that p
decides 1 in S1(I1).

Since S0 and S1 are finite schedules in Sch(G∞
p |u, I0)

and Sch(G∞
p |u, I1), respectively, by Lemma 4.11, there

is a time t1 such that for all t ≥ t1, S0 ∈ Sch(Gt
p|u, I0) and

S1 ∈ Sch(Gt
p|u, I1).

Let t∗ = max(t0, t1). Thus, after time t∗, up = u and
the condition of the if-statement on line 17 is true. So,
the first time after t∗ that p executes line 17, it finds
that the condition of that if-statement is satisfied, and
assigns a node to up in line 19. This occurs after time t0,
contradicting the definition of t0. ��
Lemma 5.2 (Completeness) For every correct process p,
there is a time after which the quorums assigned to Σν-
outputp contain only correct processes.

Proof Let p be a correct process. By Lemma 4.6, there
is a sample v∗ of p in G∞

p such that G∞
p |v∗ contains

only samples of correct processes. By Lemma 4.6(a),
there is a time after which any node v contained in vp

is a descendant of v∗ in G∞
p . By Lemma 5.1, there are

infinitely many assignments to up; in each such assign-
ment, up is assigned the node that is currently in vp (see
lines 13 and 19). Thus, there is a time t∗ such that for all
t ≥ t∗, ut

p is a descendant of v∗ in G∞
p . By Lemma 4.6(b),

for all t ≥ t∗, Gt
p|ut

p contains only samples of correct
processes.

By Lemma 5.1, p assigns a quorum to Σν-outputp
infinitely often after time t∗. Since every assignment to
Σν-outputp (other than the initialization) occurs on
line 18, it suffices to prove that any quorum assigned to
Σν-outputp after time t∗ on line 18 contains only correct
processes. Consider any such assignment, say at time t ≥
t∗ (see lines 17–18). The quorum assigned to Σν-outputp
at time t is participants(S0)∪participants(S1), where S0 ∈
Sch(Gt

p|ut
p, I0) and S1 ∈ Sch(Gt

p|ut
p, I1). Since t ≥ t∗,

Gt
p|ut

p contains only samples of correct processes. This
implies that all processes in participants(S0) ∪
participants(S1) are correct; and so the quorum assigned
to Σν-outputp at time t contains only correct processes.

��
Lemma 5.3 (Nonuniform intersection) For all correct
processes p and q, any two quorums assigned to
Σν-outputp and Σν-outputq intersect.

Proof Suppose, by way of contradiction, that there are
correct processes p and q such that at some time t
Σν-outputp = P, at some time t′ Σν-outputq = Q, and
P ∩ Q = ∅. By the algorithm (see lines 17–18), there
is a schedule S0 ∈ Sch(Gt

p|ut
p, I0), such that p decides

0 in S0(I0) and participants(S0) ⊆ P; and a schedule
S1 ∈ Sch(Gt′

q|ut′
q, I1), such that q decides 1 in S1(I1) and

participants(S1) ⊆ Q.

346 J. Eisler et al.

By Lemma 4.9, for some time lists T0 and T1, R0 =
(F, H, I0, S0, T0) and R1 = (F, H, I1, S1, T1) are runs of
A using D. Since P and Q are disjoint, so are their sub-
sets, participants(S0) and participants(S1). Moreover, A
has an initial configuration I in which every process in
participants(S0) proposes 0 (as in I0), and every process
in participants(S1) proposes 1 (as in I1). Thus, R0 and
R1 are mergeable. Let R = (F, H, I, S, T) be a merging
of R0 and R1. By Lemma 2.2, R is a run of A using D,
the state of p is the same in S(I) as in S0(I0), and the
state of q is the same in S(I) as in S1(I1). Thus, R is a
run of A using D in which p decides 0 and q decides 1.
This contradicts the agreement property of nonuniform
consensus. ��

By Lemmata 5.2 and 5.3, the values of Σν-outputp
satisfy the properties of Σν . Therefore,

Theorem 5.4 For all environments E , if a failure detector
D can be used to solve nonuniform consensus in E , then
algorithm TD→Σν transforms D to Σν in E .

Corollary 5.5 For all environments E , if a failure detector
D can be used to solve nonuniform consensus in E , then
Σν �E D.

Informally, this corollary says that Σν is necessary to
solve nonuniform consensus. Chandra et al. proved that
Ω is also necessary to solve nonuniform consensus and,
a fortiori, uniform consensus [1]:

Theorem 5.6 For all environments E , if a failure detector
D can be used to solve nonuniform or uniform consensus
in E , then Ω �E D.

From Corollary 5.5 and Theorem 5.6, the pair (Ω , Σν)

is necessary to solve nonuniform consensus:

Theorem 5.7 For all environments E , if a failure detector
D can be used to solve nonuniform consensus in E , then
(Ω , Σν) �E D.

5.1 Remark on uniform consensus

It turns out that the transformation algorithm TD→Σν ,
given in Fig. 2, also shows that Σ is necessary to solve
uniform consensus: if D is a failure detector that can be
used to solve uniform consensus then algorithm TD→Σν

transforms D to Σ . This provides an alternative proof
of a result previously shown by Delporte et al. [3].

Theorem 5.8 For all environments E , if a failure detec-
tor D can be used to solve uniform consensus in E , then
algorithm TD→Σν transforms D to Σ in E .

The proof of Theorem 5.8 is identical to the proof of
Theorem 5.4, except that, in Lemma 5.3, we remove
each occurrence of the word “correct” and replace every
occurrence of the word “nonuniform” by “uniform”.

Corollary 5.9 (Delporte et al. [3]) For all environments
E , if a failure detector D can be used to solve uniform
consensus in E , then Σ �E D.

From Corollary 5.9 and Theorem 5.6, the pair (Ω , Σ) is
necessary to solve uniform consensus:

Theorem 5.10 (Delporte et al. [3]) For all environments
E , if a failure detector D can be used to solve uniform
consensus in E , then (Ω , Σ) �E D.

6 (Ω , Σν) is sufficient for solving nonuniform
consensus

We now prove that (Ω , Σν) can be used to solve non-
uniform consensus in any environment. To do so, we
first introduce Σν+, a failure detector that appears to
be stronger than Σν (Sect. 6.1). We then prove that
Σν+ is actually equivalent to Σν , by giving an algo-
rithm that transforms Σν to Σν+ in any environment
(Sect. 6.2). Finally, we present an algorithm that uses
(Ω , Σν+) to solve nonuniform consensus in any envi-
ronment (Sect. 6.3).

6.1 Failure detector Σν+

Failure detector Σν+ is obtained by adding two prop-
erties to Σν , as explained below. The range of Σν+ is
2Π . For all failure patterns F, H ∈ Σν+(F) if and only
if H satisfies the properties of Σν (completeness and
nonuniform intersection), as well as the following:

Conditional nonintersection. Any quorum that does not
intersect with some quorum of a correct process con-
tains only faulty processes.

∀ p ∈ correct(F), ∀ p′ ∈ Π , ∀ t, t′ ∈ N :

H(p, t)∩ H(p′, t′) = ∅ �⇒ H(p′, t′) ⊆ faulty(F)

Self-inclusion. Each process is contained in all its
quorums.

∀ p ∈ Π , ∀ t ∈ N : p ∈ H(p, t)

It is easy to see that the above two properties imply
the nonuniform intersection property of Σν . It is conve-
nient, however, to keep nonuniform intersection as an
explicit property of Σν+.

Weakest failure detector to solve nonuniform consensus 347

Fig. 3 Algorithm TΣν→Σν+ transforms Σν to Σν+

6.2 Equivalence of Σν and Σν+

We now describe an algorithm, denoted TΣν→Σν+ , that
transforms Σν to Σν+ in any environment E . This algo-
rithm, shown in Fig. 3, is explained below.

Algorithm TΣν→Σν+ incorporates the DAG-building
algorithm ADAG (Fig. 1) verbatim on lines 13–12. Here,
the failure detector that is getting sampled is Σν (line 7).
In lines 13–17, each process p uses a “recent” subgraph
of its DAG of samples Gp to determine the next Σν+-
quorum to output. The “freshness” of the subgraph used
is achieved by the same technique employed in algo-
rithm TD→Σν (Fig. 2). That is, p keeps a “recent” sample
of its own in variable up. This variable is initialized to
p’s first sample (line 13), and updated to p’s most recent
sample each time p outputs a new quorum (lines 16–17).
Process p’s new quorum (line 16) includes only processes
that have taken samples in Gp|up — i.e., samples at least
as recent as up.

We now explain how this quorum is chosen. Given
a path g = (p1, d1, k1), (p2, d2, k2), . . . in Gp|up, let
participants(g) be the set {p1, p2, . . .} of processes that

appear in the first components of the nodes of g, and
trusted(g) be the union of the Σν-quorums d1, d2, . . . in
the second components of the nodes of g. Initially, each
process p outputs Π (line 2). To determine its next Σν+-
quorum, p looks at paths of Gp|up. If it finds one such
path g with the property that trusted(g) ⊆ participants(g)

and p ∈ participants(g), then its next Σν+-quorum is
participants(g) (lines 14–16). As we will see, the “fresh-
ness” of the samples considered ensures completeness,
while the rule for choosing new quorums ensures the
remaining properties of Σν+.

Note that in our model, process p executes an iter-
ation of the loop in one atomic step. In what follows,
we consider an arbitrary admissible run of algorithm
TΣν→Σν+ using Σν in some arbitrary environment E . Let
F ∈ E be the failure pattern of this run and H ∈ D(F) be
its failure detector history. We will prove that the quo-
rums assigned to the variables Σν+-outputp in this run
satisfy the properties of Σν+.

Lemma 6.1 Every correct process p assigns a quorum to
Σν+-outputp and a node to up infinitely often.

348 J. Eisler et al.

Proof Let p be a correct process. From the algorithm, it
is clear that Σν-outputp and up are either both assigned
infinitely often or both assigned a finite number of times.
For contradiction, suppose that they are both assigned a
finite number of times. By line 13, p assigns a node to up

at least once. Let u be the final value of up. By line 11,
u is a node of G∞

p . By Lemma 4.8, G∞
p |u has an infinite

path v1, v2, . . . that contains infinitely many samples of
each correct process.

By the definition of faulty processes and the
completeness property of Σν , there is a time t after
which (a) only correct processes take steps, and (b)
the Σν-quorums of correct processes contain only cor-
rect processes. By Observation 4.4, the sequence
τ(v1), τ(v2), . . . (the sequence of times at which sam-
ples v1, v2, . . . were taken) is strictly increasing. Thus,
there is some k such that for all j ≥ k, τ(vk) ≥ t.
So by the definition of t, for each j ≥ k, the process
associated with vj must be correct and the Σν-quorum
associated with vj contains only correct processes. Let
g = vk, vk+1, . . . , v� be a finite subpath of v1, v2, . . . so
that every correct process has at least one sample in
g. (Such a path exists because every correct process
has infinitely many samples in v1, v2, . . ., and therefore
also in vk, vk+1, . . .) By definition of g, participants(g) =
correct(F); and, since p is correct, p ∈ participants(g).
As argued above, the Σν-quorum associated with each
vj, k ≤ j ≤ �, contains only correct processes. Thus,
trusted(g) ⊆ correct(F). So, trusted(g) ⊆ participants(g)

and p ∈ participants(g).
Since g is a finite path in G∞

p |u, by Lemma 4.5, there
is a time t1 such that for all t ≥ t1, g ∈ Gt

p|u. Let t2 be
a time after the final assignment to up occurs, and let
t∗ = max(t1, t2). Thus, after t∗, up = u, and the condition
of the if-statement on line 15 is true. So, the first time
after t∗ that p executes line 15, it finds the condition of
that if-statement to be true, and assigns a node to up

in line 17. This occurs after time t1, contradicting the
definition of t1. ��
Lemma 6.2 (Completeness) There is a time after which,
for every correct process p, the quorums assigned to Σν+-
outputp contain only correct processes.

Proof Let p be a correct process. By Lemma 4.6, there
is a sample v∗ of p in G∞

p such that G∞
p |v∗ contains only

samples of correct processes. By Lemma 4.6(a), there is a
time after which any node v contained in vp is a descen-
dant of v∗ in G∞

p . By Lemma 6.1, there are infinitely
many assignments to up; in all of these up is assigned the
node in vp (see lines 13 and 17). Thus, there is a time t∗
such that for all t ≥ t∗, ut

p is a descendant of v∗ in G∞
p .

By Lemma 4.6(b), for all t ≥ t∗, Gt
p|ut

p contains only
samples of correct processes.

By Lemma 6.1, p assigns a quorum to Σν+-outputp

infinitely often after time t∗. Since every assignment to
Σν+-outputp (other than the initialization) occurs on
line 16, it suffices to prove that any quorum assigned
to Σν+-outputp after time t∗ on line 16 contains only
correct processes. Consider any such assignment, say at
time t ≥ t∗ (see lines 15–16). The quorum assigned to
Σν-outputp at time t is participants(g), where g is a path
in Gt

p|ut
p. Since t ≥ t∗, Gt

p|ut
p contains only samples of

correct processes. Thus all processes in participants(g)

are correct; and so the quorum assigned to Σν-outputp

at time t contains only correct processes. ��
Lemma 6.3 (Self-inclusion) For each process p, all quo-
rums assigned to Σν+-outputp contain p.

Proof Initially, Σν+-outputp = Π (line 15) and so the
initial quorum in Σν+-outputp includes p. Any subse-
quent assignment of a quorum to Σν+-outputp, occurs
on line 16; by the condition on line 15, such quorum
includes p. ��
Lemma 6.4 Let p, q be any two processes, and P, Q be
any quorums assigned to Σν+-outputp and Σν+-outputq

respectively. If P contains a correct process and Q con-
tains a correct process, then P ∩ Q �= ∅.

Proof We first show that, for any processes p, q, if q
belongs to a quorum P assigned to Σν+-outputp, then
P is a superset of some Σν-quorum output at q. This
is obvious if P is the initial value Π of Σν+-outputp,
since Π is a superset of every quorum output at any
process. Otherwise, P is the quorum assigned to Σν+-
outputp on line 16 at some time t. By the algorithm,
we have that P = participants(g), where g is a path in
Gt

p|ut
p, and trusted(g) ⊆ participants(g). For any pro-

cess q ∈ participants(g), there is a node (q, Q′, −) in g,
where Q′ is a Σν-quorum output at q. By definition of
trusted(g), Q′ ⊆ trusted(g) ⊆ participants(g) = P. Thus,
P is a superset of a Σν-quorum Q′ output at q.

Now, suppose that for some processes p and q, P and
Q are quorums assigned to variables Σν+-outputp and
Σν+-outputq, respectively, and there are correct pro-
cesses p′ ∈ P and q′ ∈ Q. By the previous paragraph,
p′and q′ output Σν-quorums P′ and Q′, respectively,
such that P′ ⊆ P and Q′ ⊆ Q. Since p′ and q′ are cor-
rect, by nonuniform intersection of Σν , P′ ∩ Q′ �= ∅.
Thus, P ∩ Q �= ∅. ��
Lemma 6.5 (Nonuniform intersection) For all correct
processes p and q, any two quorums assigned to Σν+-
outputp and Σν+-outputq intersect.

Proof Let P and Q by any quorums assigned to
Σν+-outputp and Σν+-outputq, respectively. By Lemma

Weakest failure detector to solve nonuniform consensus 349

6.3, p ∈ P and q ∈ Q. Since p and q are correct, by
Lemma 6.4, P ∩ Q �= ∅. ��
Lemma 6.6 (Conditional nonintersection) Let p be a
correct process and q be any process. Any quorum
assigned to Σν+-outputq that does not intersect a quorum
assigned to Σν+-outputp contains only faulty processes.

Proof Let P and Q by any quorums assigned to Σν+-
outputp and Σν+-outputq, respectively. Suppose, by way
of contradiction, that P ∩ Q = ∅ and Q contains a cor-
rect process. By Lemma 6.3, p ∈ P, and so P also con-
tains a correct process. By Lemma 6.4, P ∩ Q �= ∅ — a
contradiction. ��
By Lemmata 6.2, 6.3, 6.5 and 6.6, in any run of algorithm
TΣν→Σν+ , the values of the variables Σν+-outputp sat-
isfy the properties of Σν+. Therefore,

Theorem 6.7 For all environments E , algorithm
TΣν→Σν+ transforms Σν to Σν+ in E . Thus, for all envi-
ronments E , Σν+ �E Σν .

Since Σν+ satisfies the properties of Σν , it is clear that
Σν �E Σν+ for all environments E . Therefore,

Corollary 6.8 For all environments E , Σν ≡E Σν+.

6.3 Using (Ω , Σν+) to solve nonuniform consensus

We now describe an algorithm that uses failure detector
(Ω , Σν+) to solve nonuniform consensus in any envi-
ronment. We start with a high-level description of the
algorithm, which motivates the need for, and explains,
the mechanisms it uses. We then give a detailed descrip-
tion of the algorithm and prove its correctness.

High-level description

The starting point for our algorithm is an algorithm
due to Mostéfaoui and Raynal. That algorithm uses Ω

to solve uniform consensus in environments where a
majority of processes are correct [6]. Roughly speaking,
the Mostéfaoui–Raynal algorithm works as follows.

Each process maintains an “estimate” (of what will
become its decision), which is initially set to the value
the process wants to propose. Processes proceed in asyn-
chronous rounds (in each round k, processes send and
receive messages tagged with round number k). Each
asynchronous round is divided into three phases.

In the first phase, each process p sends a leader mes-
sage, containing p’s current estimate, to all processes.
Then p waits to receive a leader message from its cur-
rent leader c, i.e., from the process c currently output by

the failure detector Ω at p. Finally, p adopts the estimate
contained in c’s leader message as its own estimate.

In the second phase, each process p sends a report
message, containing p’s current estimate, to all processes.
Then p waits to receive reports from a majority of pro-
cesses. Based on the reports it receives, p prepares a
proposal message that it will send in the third and final
phase: If p receives reports with the same estimate v
from a majority of processes, it will send a proposal for v;
otherwise it will send a proposal for the special value “?”.

In the third phase, each process p sends its proposal as
described above to all processes. Then p waits to receive
proposals from a majority of processes. If p receives at
least one proposal for a value v �= ?, then p adopts v as
its new estimate. If p receives a majority of proposals for
v �= ?, then it decides v. Process p then proceeds to the
next round.

The following two properties are key for the correct-
ness of this algorithm:

(A) In each round, no process receives proposals for
different values v �= ? and v′ �= ?. This is because a
process receives a proposal for v �= ? from a pro-
cess q only if q previously received reports for v
from a majority of processes, and any two majori-
ties must intersect.

(B) If a process decides v in some round, then all
processes that complete that round do so with
estimate v. Again, this is because of the intersec-
tion property of majorities: A process p decides v
in some round only if it receives proposals for v
from a majority of processes. This implies that any
other process that completes that round receives
a proposal from at least one of the processes from
which p received the proposals for v, and will
therefore adopt v as its estimate.

The fact that any two majorities intersect is crucial
to ensure properties (A) and (B), and these proper-
ties in turn ensure uniform agreement. Since any two
Σ-quorums also intersect, it is not hard to see that we
can use them to the same effect. That is, instead of wait-
ing for messages from a majority of processes, each pro-
cess p can wait for messages from all processes in the
quorum presently output by Σ at p. It is easy to see that
the resulting algorithm, which uses (Ω , Σ), also solves
uniform consensus, and it does so in all environments.5

Recall that nonuniform consensus differs from uni-
form consensus in that only correct processes need to

5 Together with Theorem 5.10, this shows that in all environments
E , (Ω , Σ) is the weakest failure detector to solve uniform consen-
sus in E .

350 J. Eisler et al.

agree on the decision value. Similarly, Σν differs from
Σ in that only quorums output at correct processes are
required to intersect. So it may appear that by replacing
majorities by Σν-quorums (and, a fortiori, by Σν+-quo-
rums) in the Mostéfaoui–Raynal algorithm, we would
get an algorithm that solves nonuniform consensus—
which is our goal here. Unfortunately, this is not so, as
the following scenario shows.

Suppose that a correct process p receives unanimous
round k proposals for v from all the processes in its
Σν+-quorum P, and so it decides v, in round k. Since
Σν+-quorums at correct processes intersect, all correct
processes receive at least one proposal for v and adopt
estimate v at the end of round k. Some faulty process q,
however, does not receive any proposals for v (because
the quorum Q that q uses to collect proposals in round
k does not intersect with p’s quorum P), and q’s esti-
mate at the end of round k is some v′ �= v. In phase
one of round k + 1, q sends a leader message containing
estimate v′, and the failure detector Ω outputs q at all
processes. So, every process that completes this phase
adopts v′ from q as its estimate. It is now easy to extend
this scenario so that eventually some correct process
decides v′, violating nonuniform agreement.

The above scenario shows an example of contamina-
tion: informally, contamination occurs when a correct
process adopts an estimate v′ from a faulty process in
some round even though some correct process decided
v �= v′ in an earlier round. In the above algorithm, a
correct process can be contaminated in the two places
where it can adopt a new estimate: when it receives a
leader message (in the first phase), and when it receives
proposals (in the third phase). To prevent such
contamination, and ensure nonuniform agreement, our
algorithm makes processes more circumspect both about
changing their estimates and about deciding.

Changing estimate. In our algorithm, a process p changes
its estimate upon receiving a leader message from its
current leader q only if p does not “distrust” q. We now
explain what we mean by “p distrusts q”. To do so, we
also explain what we mean by “p considers q faulty”.

Process p maintains a quorum history variable Hp in
which it stores all its past quorums, as well as all other
processes’ quorums of which it is aware. More precisely,
Hp is an array indexed by the set of processes, and Hp[r]
is a set that contains all the quorums of r that p knows
about. Processes learn of the quorums of other processes
by including their quorum history variables in messages
they exchange.

Suppose p finds a quorum P in Hp[p] and a quorum
Q in Hp[q] that do not intersect. By the nonuniform
intersection property of Σν+, p knows that either it is

faulty or q is faulty, and so p considers q to be faulty.
(This is because in nonuniform consensus, it is safe for
a process to always consider itself correct.) Note that a
correct process never considers another correct process
to be faulty, since their Σν+-quorums always intersect.

Now suppose p finds a quorum R in Hp[r] and a quo-
rum Q in Hp[q] that do not intersect. Process p knows
that either r or q is faulty. If p does not consider r to
be faulty (by the above definition), then p distrusts q.
Symmetrically, if p does not consider q to be faulty, then
p distrusts r.

Deciding. In our algorithm, a process p that receives
unanimous proposals for v from a quorum P in round k
decides v only if the following two conditions hold: (a) p
does not distrust any process in the quorum P; and, (b) p
knows that, if it is correct, then by the end of round k,
all the correct processes are aware that p has seen P as
one of its Σν+-quorums.

We call (b) the “quorum awareness property”. We
now describe the mechanism that ensures this property.
The first time that a process p uses a quorum P for col-
lecting proposals, it sends to all processes in P a message
that it “saw” quorum P. A process q receiving that mes-
sage inserts P into Hq[p] and sends back to p an acknowl-
edgment that includes q’s current round number j. This
signifies that by round j, q is aware that p saw quorum P.
Process p is allowed to decide v in round k only if (a) it
receives unanimous proposals for v from a quorum P
none of whose members it distrusts, and (b) every pro-
cess q in P has acknowledged having inserted P into
Hq[p] in a round strictly less than p’s current round k.
The latter condition ensures that every round k pro-
posal message sent by any process in P contains a quo-
rum history H such that P ∈ H[p]. By nonuniform
intersection, the quorums of correct processes intersect.
So, if p is correct, then the quorums of every correct
process c intersect P, and c collects a round k proposal
from a process in P. As a result, after c incorporates
into its own quorum history all the quorum histories
included in the round k proposals it receives, c is aware
that p has seen the quorum P, i.e., by the end of round
k, P ∈ Hc[p].

Let us now revisit the contamination scenario
described previously, and see how the above rules (on
changing estimate and deciding) prevent this contami-
nation. Recall that, in that scenario, a correct process
p decides v in round k after receiving unanimous pro-
posals for v from a quorum P, a faulty process q retains
estimate v′ �= v in round k after collecting proposals
from a quorum Q that does not intersect with P, q sends
a leader message containing estimate v′ in round k + 1,
at every process Ω outputs q throughout round k + 1,

Weakest failure detector to solve nonuniform consensus 351

and so each correct process c adopts estimate v′ from q
in round k + 1, i.e., c gets contaminated. With the above
two rules about changing estimates and deciding, this
contamination does not occur, as we now explain.

Since p decides in round k using quorum P, the quo-
rum awareness property ensures that, by the end of
round k, every correct process c is aware that p has
seen P as one of his quorums, i.e., P ∈ Hc[p]. Since q
saw the quorum Q in round k, it has Q ∈ Hq[q] by the
end of that round. So when c receives a leader message
with estimate v′ from q in the first phase of the round
k + 1, and c incorporates q’s quorum history Hq into
its own, it has Q ∈ Hc[q]. So at this point, P ∈ Hc[p]
and Q ∈ Hc[q], i.e., c is aware that p and q saw two
non-intersecting quorums P and Q, respectively. Since c
does not consider p to be faulty (because both c and p
are correct), by definition, c distrusts q. Thus c does not
adopts q’s estimate v′, and it avoids contamination.

In the above, we have focused on a scenario where
contamination occurs only one round after a correct
process decides. In general, however, contamination can
occur several rounds after a correct process decides. The
rules that we described above prevent contamination in
all cases, and so they ensure (nonuniform) agreement in
all the runs of the algorithm.

The reader may have noticed that in our discussion
so far we have used only the properties of Σν . As will
become clear in the proof, the two additional properties
of Σν+ are also necessary for the correctness of Anuc.
At a high level, we can now say that the self-inclusion
property (every process is included in all its quorums)
implies that a process p never considers itself faulty,
and so p distrusts every process that it considers faulty.
This, in turn, ensures that in every round p receives no
conflicting proposals. The conditional nonintersection
property (a quorum that fails to intersect a correct pro-
cess’s quorum contains only faulty processes) implies
that every correct process eventually ceases to distrust
correct processes—a fact that is important for liveness.

Detailed description and correctness proof

We now describe our algorithm in more detail and then
prove its correctness. The algorithm, denoted Anuc, is
shown in Figs. 4 and 5. In the first phase of each asyn-
chronous round of Anuc, each process p sends to all pro-
cesses its leader message. This message, which is tagged
with lead and the current round number kp, contains
the estimate xp and quorum history Hp (line 15). Pro-
cess p then waits for a (round kp) leader message from
the process output by Ω at p (line 16). Upon receiv-
ing it, p incorporates into Hp the quorum history con-
tained in this message (17—see also lines 44–46). If p

does not distrust the sender of this leader message, it
adopts the estimate that the message contains (line 18).
To determine if p distrusts a process q (lines 51–53), p
first determines the set Fp of processes that it considers
faulty because some of their quorums do not intersect
some of its own (line 52). Process p then distrusts q if
there is some r /∈ Fp such that Hp[q] and Hp[r] contain
nonintersecting quorums (line 53).

In the second phase, p sends to all processes its report
message. This message, which is tagged with rep and the
current round number kp, contains the current estimate
xp (line 19). Process p then waits for (round kp) reports
from the quorum currently output by Σν+ (line 20—see
also lines 47–50).

In the third phase, p sends to all processes its proposal.
This message, which is tagged with prop and the cur-
rent round kp, contains a value and the current quorum
history Hp. The proposal’s value is v if all the reports that
p received in round kp were for v (line 22); otherwise,
it is the special value ? (line 24) Process p then waits
for proposals from the quorum Qp presently output by
Σν+ (line 26), incorporates into its quorum history Hp

the quorum histories contained in the proposals that p
received from processes in Qp (line 27), and repeats this
until none of the processes in Qp is distrusted (lines 25–
28). If p receives a proposal for a value v �= ? from some
process in Qp, then p adopts v as its estimate (line 29). If
p receives unanimous proposals for a value v �= ? from
all processes in Qp, and p is sure that every process q in
Qp has inserted Qp into Hq[p] in a previous round (in
which case seenp[Qp] < kp as we will see below),6 then
p decides v (line 30).

Finally, if this is the first time that p has used the
quorum Qp to collect proposals, then p sends the mes-
sage (saw, p, Qp) to every process q in Qp (line 32),
so that process q may insert Qp into Hq[p]. Process p
receives acknowledgments of the form (ack, q, Qp, k)

(line 39), indicating that q inserted Qp into Hq[p] by
round k (line 36). While p receives such acknowledg-
ments, p keeps track of the maximum round in which
they were sent (lines 39–41). When p has received such
acknowledgments from every process in Qp, it records
the overall maximum in seenp[Qp] (line 42).

We now prove the correctness of Anuc. We assume
that function calls of Anuc are uninterruptible, i.e., after
any process invokes any function in Fig. 5, it does not
execute any line outside that function’s definition until
the call terminates. In what follows, we consider an arbi-
trary admissible run of Anuc using (Ω , Σν+) in an arbi-
trary environment E . We begin with a lemma and two
6 This condition ensures that every correct process c has inserted
Qp into Hc[p] by the end of round kp, i.e., it ensures the quorum
awareness property that we described earlier.

352 J. Eisler et al.

observations concerning Hp (which contains the quorum
history of p) and Fp (which contains the set of processes
that p considers to be faulty).

Lemma 6.9 For all processes p and q and any set Q, if at
some time Q ∈ Hp[q], then q previously received quorum
Q from its failure detector Σν+.

Fig. 4 Algorithm Anuc uses (Ω , Σν+) to solve nonuniform consensus

Weakest failure detector to solve nonuniform consensus 353

Fig. 5 Functions used by Anuc

Proof The proof is by a simple induction that uses the
following observations. Initially, Hp[q] is the empty set.
In the algorithm, there are three locations where p may
insert Q into Hp[q]: (1) on line 49, where p = q, and p
inserts Q into Hp[q] after receiving Q from its failure
detector Σν+, (2) on line 36, after p receives a message
(saw, q, Q) from some process q that previously received
Q from Σν+, and (3) on line 46, where p incorporates
into Hp[q] a quorum history H[r] that contains Q. ��

Since a process never removes quorums from its quo-
rum history variable,

Observation 6.10 For all processes p and q and any quo-
rum Q, if Q ∈ Hp[q] at some time t, then Q ∈ Hp[q] at
all times t′ ≥ t.

From the previous observation, and the statement
that computes the variable Fp (on line 52),

Observation 6.11 For all processes p and q, if q ∈ Fp at
some time t, then q ∈ Fp at all times t′ ≥ t.

Next, we turn our attention to termination. The fol-
lowing lemma implies that no correct process is stuck
forever in the loop of lines 25–28.

Lemma 6.12 There is a time after which, for all correct
processes q, every call to distrusts(q) returns false.

Proof Suppose, by way of contradiction, that there is
a correct process q and a process p such that infinitely
many calls of p to distrusts(q) return true. Clearly, p is
correct.

Since p makes an infinite number of calls to the
function distrusts(q), either p executes infinitely many
rounds, or p blocks in the repeat loop of lines 25–28.

Either way, p calls get_quorum() infinitely often. Thus,
by the completeness property of Σν+ and by Observa-
tion 6.10, there is a time t after which Hp[p] contains a
quorum P consisting of only correct processes.

Consider any call of p to distrusts(q) that returns true
and is made after time t. Let T be the closed time inter-
val whose endpoints are the invocation (line 51) and
termination (line 53) of this call. Since the call returns
true, it must be that at some time t′′ ∈ T, ∃r /∈ Fp, ∃Q ∈
Hp[q], ∃R ∈ Hp[r] : Q ∩ R = ∅ (line 53). By our choice
of t, at time t′′ > t, Hp[p] contains the quorum P which
consists of only correct processes. Since function calls are
uninterruptible and the function distrusts does not mod-
ify Hp, Hp does not change during T. Therefore, during
this entire interval, R ∈ Hp[r] and P ∈ Hp[p]. The quo-
rum R and the quorum Q output by the correct process
q do not intersect, so by the conditional nonintersection
property of Σν+, R contains only faulty processes. Since
P contains only correct processes, R ∩ P = ∅. So when
p evaluates Fp on line 52, it finds R ∈ Hp[r], P ∈ Hp[p],
and R ∩ P = ∅, and p inserts r in Fp at some time t′ ∈ T.

Clearly, t′ ≤ t′′, since p executes line 52 before line 53.
So, r ∈ Fp at time t′, and r /∈ Fp at time t′′ ≥ t′ — a
contradiction to Observation 6.11. ��

Lemma 6.13 Every correct process executes infinitely
many rounds.

Proof Suppose, by way of contradiction, that some cor-
rect process executes only a finite number of rounds.
Consider the earliest line of the earliest round in which
a correct process blocks; let k be that round, and let p be
such a process. There are exactly four cases, depending
on the place in the algorithm where p blocks.

354 J. Eisler et al.

(1) Line 16: In this case, p waits forever for a message
(lead, k, −, −) in round k. Since there is a time after
which Ω forever outputs a correct process c at p,
there is a time after which process p waits forever
for a message (lead, k, −, −) from c in round k. By
our definition of p, all correct processes, including
c, execute up to line 15 in round k. Thus, c sends a
message of the form (lead, k, −, −) to p in round k,
which p eventually receives. This contradicts that
p is blocked on line 16.

(2) Line 20: In this case, p calls get_quorum() infinitely
often. Since there are finitely many different quo-
rums, infinitely many of p’s calls to get_quorum()

return Q, for some quorum Q. By completeness of
Σν+, all processes in Q are correct. By definition of
p, all correct processes execute line 19 in round k.
Therefore, every correct process sends a message
(rep, k, −) to p, and p eventually receives such a
message from every process in Q. This contradicts
that p is blocked on line 20.

(3) Line 26: An argument similar to that used in
case (2) shows that this case cannot occur.

(4) Loop on lines 25–28: In this case, p calls the func-
tion get_quorum() infinitely often on line 26. Since
there are finitely many different quorums, infinitely
many of p’s calls to get_quorum() return Q, for
some quorum Q. By completeness of Σν+, all pro-
cesses in Q are correct. By Lemma 6.12, for all
q ∈ Q, there is a time after which every call of p
to distrusts(q) returns false. Thus, there is a time
after which the condition on line 28 is always true.
This contradicts that p is blocked in the loop on
lines 25–28.

Thus, no correct process blocks forever. ��
Lemma 6.14 There is a round and a value v �= ? such
that all the processes that start this round do so with the
same estimate v.

Proof From the definition of Ω and Lemma 6.12, there
is a time t after which

(1) all faulty processes have crashed;
(2) Ω forever outputs the same correct process c at all

correct processes; and,
(3) for all correct processes q, every call to distrusts(q)

returns false.

Let k be the maximum round number of all correct pro-
cesses at time t, and consider round k + 1 of correct
processes (which exists by the previous lemma). In the
first phase of round k + 1, c sends its estimate xc, which

is some value v �= ?, to all processes. By (2) and (3),
every correct process waits for and receives the message
(lead, k + 1, v, −) from c on line 16, gets false when it
calls distrusts(c), and updates its estimate to v on line 18.
So all the correct processes have estimate v just before
sending their round k + 1 reports.

From the above and (1), in round k + 1, only reports
for v are sent and received, and only proposals for v are
sent and received. Thus, no process changes its estimate
to a value other than v in that round. Hence, at the begin-
ning of round k + 2, the estimate of all correct processes
is v. By (1) faulty processes do not begin round k + 2.
Thus all the processes that start round k + 2 do so with
the same estimate v. ��
Lemma 6.15 If all the processes that start some round k
do so with the same estimate v, then no process changes
its estimate to v′ �= v in any round k′ ≥ k.

Proof Suppose all the processes that start round k do so
with the same estimate v. In round k, only leader mes-
sages, reports, and proposals for v are sent and received.
Thus, no process changes its estimate to v′ �= v in round
k, and so all the processes that start round k + 1 do
so with the same estimate v. The lemma follows by a
straightforward induction. ��

From the previous two lemmata, there is a round k
and a value v �= ? such that all processes that start round
k′ ≥ k, do so with the same estimate v. This implies:

Corollary 6.16 There is a round k and a value v �= ? such
that for every k′ ≥ k, all round k′ proposals are for v.

The following lemma describes the key properties of
the quorum awareness mechanism (lines 31–42) men-
tioned in our informal algorithm description. Part (a)
is used for termination and ensures that the condition
seenp[Qp] < kp on line 30 is eventually satisfied. Part
(b) will be used later for nonuniform agreement.

Lemma 6.17 (a) Let p be any correct process and P be
any quorum of correct processes. If p sends the message
(saw, p, P) to all processes in P, then there is an � �= ∞
and a time after which seenp[P] = � forever.

(b) For any process p and any quorum P, if at some
time seenp[P] = � with � �= ∞, then every process q ∈ P
inserted P into Hq[p] in some round jq ≤ �.

Proof (a) Suppose that some correct process p sends
the message (saw, p, P) to every process in some quorum
P ⊆ correct(F) on line 32. Let q be any process in P.

Since q is correct, it eventually receives (saw, p, P) on
line 35 in some round jq. So q inserts P into Hq[p] and
sends (ack, q, P, jq) to p on lines 36 and 37, respectively,

Weakest failure detector to solve nonuniform consensus 355

in round jq. Since p is correct, it eventually receives
(ack, q, P, jq) from q.

Note that p sends (saw, p, P) to each q ∈ P only
once (see lines 31 and 33), so p receives exactly one
(ack, q, P, −) back from each q ∈ P. Moreover, since
p sends (saw, p, P) messages only to processes in P, it
receives (ack, −, P, −) messages only from processes in P.

By inspection of the algorithm (see lines 39–41), it
is clear that if P′ is the subset of P from which p has
received (ack, −, P, −) messages, then Acksp[P] = P′
and roundp[P] = max{jq : q ∈ P′} (where we adopt the
convention that max{} = 0). As we showed above, p
eventually receives exactly one (ack, −, P, −) from each
process in P and from no other process. Thus, there
is a time after which Acksp[P] = P and roundp[P] =
max{jq : q ∈ P} forever. Let � = max{jq : q ∈ P}. From
line 42 we see that as soon as Acksp[P] is assigned its
final value P, seenp[P] is assigned its final value �. This
proves part (a) of the lemma.
(b) Let p be any process and P be any quorum. Suppose
that at some time seenp[P] = � �= ∞. Since p initializes
seenp[P] to ∞, this means that p assigns � to seenp[P]
on line 42. From our description in part (a), it is clear
that this implies that every process q ∈ P inserted P into
Hq[p] in some round jq ≤ � = max{jq : q ∈ P}. This
proves part (b) of the lemma. ��

Lemma 6.18 (Termination) Every correct process even-
tually decides.

Proof Let p be any correct process. Suppose, by way
of contradiction, that p never decides. By Lemma 6.13,
p executes infinitely many rounds. Since there are only
finitely many different quorums, there is some P such
that p executes line 30 infinitely often with Qp = P.
From the algorithm, it is clear that p gets the quorum P
from Σν+

p infinitely often (via get_quorum(), on line 26).
By the completeness property of Σν+, P contains only
correct processes.

Since p never decides, p finds that the condition of
line 30 with Qp = P is false infinitely often. This implies
that either

(a) infinitely often, the proposals that p receives from
processes in P are not all for the same v �= ?, or

(b) infinitely often, p finds seenp[P] < kp is false.

Corollary 6.16 contradicts case (a). Since all the
processes in P are correct, by Lemma 6.17(a), there is
an � �= ∞ and a time after which seenp[P] = � (forever).
Since p executes infinitely many rounds, there is a time
after which kp > �. This contradicts case (b). ��

Lemma 6.19 (Validity) If a process decides v, then some
process proposes v.

Proof From line 30 we see that a process p decides its
current estimate xp. Initially, xp is the value that p pro-
poses. By inspection of the algorithm and a simple induc-
tion, it is easy to show that the value of xp remains a
value proposed by one of the processes. ��

We now turn our attention to nonuniform agreement.

Lemma 6.20 For all processes p and at all times, p /∈ Fp.

Proof Suppose, by way of contradiction, that at some
time p ∈ Fp. At the time when p first adds p to Fp

on line 52, there must be two quorums Q ∈ Hp[p] and
P ∈ Hp[p] such that Q ∩ P = ∅. By the self-inclusion
property of Σν+, every quorum output at p contains p.
Thus, p ∈ Q ∩ P—a contradiction. ��
Lemma 6.21 For all correct processes p and q, at all
times, q /∈ Fp.

Proof Let p and q be correct processes. Suppose, by way
of contradiction, that at some time q ∈ Fp. When p first
adds q to Fp on line 52, it must be that ∃Q ∈ Hp[q] and
∃P ∈ Hp[p] such that Q ∩ P = ∅. By Lemma 6.9, Q and
P are quorums of Σν+ output at q and p, respectively.
Since q and p are correct processes, by nonuniform inter-
section of Σν+, Q ∩ P �= ∅—a contradiction. ��

We say that process p distrusts q at time t if and only
if, at time t, there is a process r that is not in Fp, such
that Hp[q] and Hp[r] contain nonintersecting quorums.

Lemma 6.22 For all processes p and q, and at all times,
if q ∈ Fp then p distrusts q.

Proof Suppose that q ∈ Fp at time t. At the time t′ ≤ t
when p first adds q to Fp (on line 52), there must be two
quorums Q ∈ Hp[q] and P ∈ Hp[p] such that Q ∩ P = ∅.
Since p does not remove quorums from Hp (Observa-
tion 6.10), and p /∈ Fp at all times (by Lemma 6.20), then
at time t ≥ t′, we have: p �∈ Fp, Q ∈ Hp[q], P ∈ Hp[p],
and Q ∩ P = ∅. By definition, p distrusts q at time t. ��

We say that P is the quorum that process p uses to
collect round k reports if and only if P is the value of Qp

when p executes line 21 in round k. Similarly, P is the
quorum that process p uses to collect round k proposals,
if P is the value of Qp when p exits the repeat-until loop
of lines 25–28 in round k (note that P is also the value
of Qp when p executes lines 29 and 30 in round k).

The next lemma shows that Anuc has a property simi-
lar to property (A) of the Mostéfaoui–Raynal algorithm
discussed on page 349.

356 J. Eisler et al.

Lemma 6.23 Let P be the quorum that some process p
uses to collect round k proposals. If p receives round k
proposals for v �= ? and v′ �= ? from processes in P, then
v = v′.

Proof Let P be the quorum that p uses to collect round
k proposals. Suppose, by way of contradiction, that p
receives a round k proposal for v �= ? from process
q ∈ P, and a round k proposal for v′ �= ? such that v �= v′
from process q′ ∈ P. Let Q and Q′ be the quorums that
q and q′, respectively, used to collect round k reports.
From the algorithm, it is clear that q and q′ received
unanimous reports for v and v′ from all the processes
in Q and Q′, respectively, on line 20 in round k. Since
v �= v′, Q ∩ Q′ = ∅.

When q first obtained Q from Σν+
q , it added Q into

Hq[q] (line 49) and never subsequently removed Q from
Hq[q]. Thus, the proposal sent by q to p in round k con-
tains a quorum history H such that Q ∈ H[q]. Simi-
larly, the proposal sent by q′ to p in round k contains
a quorum history H′ such that Q′ ∈ H′[q′]. When p
receives these proposals, it incorporates the correspond-
ing quorum histories in Hp (line 27). So, before p exe-
cutes line 28 for the last time in round k, Q ∈ Hp[q] and
Q′ ∈ Hp[q′].

Let T (respectively, T ′) be the closed interval between
the time p makes the last call to distrusts(q) (respectively
distrusts(q′)) on line 28 of round k and the time that call
returns. It is clear from the algorithm that both these
calls return false. Without loss of generality, assume that
T precedes T ′. Since the call to distrusts(q′) during T ′
returns false, by Lemma 6.22, q′ /∈ Fp throughout T ′.
Thus, by Observation 6.11 and the fact that T precedes
T ′, q′ /∈ Fp throughout T. Furthermore, since Q ∈ Hp[q]
and Q′ ∈ Hp[q′] before T, by Observation 6.10, Q ∈
Hp[q] and Q′ ∈ Hp[q′] throughout T. Recalling that
Q ∩ Q′ = ∅, we conclude that when p executes line 53
during T, it returned true. This contradicts the fact that
this call to distrusts(q) returns false. ��

In the following, we say that process p decides v in
round k using quorum P if and only if p decides v on line
30 in round k and P is the quorum that p uses to collect
proposals in round k. The next lemma shows that Anuc

has the quorum awareness property discussed during
the informal presentation of the algorithm.

Lemma 6.24 If some process p decides v in round k using
quorum P, then every process q ∈ P that starts round k
has P ∈ Hq[p] at the beginning of round k.

Proof Assume p decides v in round k using quorum P.
Suppose seenp[P] = � when this occurs. By the condition
on line 30, � < k. So, by Lemma 6.17(b), every q ∈ P

inserted P into Hq[p] in some round jq ≤ �. Since pro-
cesses do not remove quorums from their quorum his-
tory variables (Observation 6.10), every process q ∈ P
that starts round k > � has P ∈ Hq[p] at the beginning
of round k. ��

We say that process q intersects (quorum) P in round
k if and only if the quorum that q uses to collect propos-
als in round k intersects P. The next lemma shows that
Anuc has a property analogous to property (B) of the
Mostéfaoui–Raynal algorithm discussed on page 349.

Lemma 6.25 Suppose that some process p decides v in
round k using quorum P. For every process q that inter-
sects P in round k,

(a) when q completes round k, xq = v and P ∈ Hq[p];
and,

(b) at any time after q completes round k, either xq = v
or p ∈ Fq.

Proof Suppose a process p decides v in round k using
quorum P.
(a) Let q be a process that intersects P in round k; i.e.,
the quorum Q that q uses to collect its round k propos-
als intersects P. Consider any process r ∈ P ∩ Q. Since
p decides v in round k using quorum P, and r ∈ P, we
have the following:

• The proposal that r sent to p in round k is for v. So,
the proposal that q receives from r in round k is also
for v. Thus, by Lemma 6.23, q receives only propos-
als for v or ? in round k. Therefore, q sets xq to v on
line 29 in round k, and xq = v at the end of round k.

• By Lemma 6.24, when r starts round k, it has P ∈
Hr[p]. So the proposal that q receives from r on line
26 in round k contains a quorum history H such that
P ∈ H[p]. Thus, q adds P into Hq[p] on line 27 in
round k, and P ∈ Hq[p] at the end of round k.

(b) Suppose, by way of contradiction, that there is a pro-
cess q that intersects P in round k, such that at some time
t after q completes round k, xq �= v and p /∈ Fq.

Without loss of generality, let q be the first process
for which the above hold, i.e., t is as small as possible.
By Observation 6.11, a change from p ∈ Fq to p /∈ Fq

cannot occur, and so it must be the case that at time t,
while q is in some round k′ > k, q changes its estimate
xq from v to some value v′ �= v on lines 18 or 29. This
implies that by time t in round k′, either:

• q received a message m = (lead, k′, v′, H) from some
process c on line 16, and the subsequent call to
distrusts(c) on line 18 returned false, or

Weakest failure detector to solve nonuniform consensus 357

• q received a message m = (prop, k′, v′, H) from some
process c on line 26, c belongs to the quorum Q that
q uses to collect round k′ proposals, and when q exe-
cuted line 28 for the last time in round k′ the call to
distrusts(c) returned false.

In either case, let tc be the time when q invokes the
above call to distrusts(c) that returns false. Note that
tc ≤ t. There are exactly two cases regarding process c:

(1) c does not intersect P in round k. In this case, the
message m that c sends in round k′ > k carries a
quorum history H such that H[c] contains a quo-
rum that does not intersect P. Thus, after q receives
m on line 16 or 26 in round k′, and then executes
line 17 or 27, Hq[c] contains a quorum that does not
intersect P. By part (a) of this lemma and the fact
that q does not remove quorums from Hq (Obser-
vation 6.10), by the time q starts round k′ > k,
Hq[p] contains P. Thus, by time tc, Hq[c] and Hq[p]
contain nonintersecting quorums.

(2) c intersects P in round k. Let t′ be the time when
c sent message m. Clearly, t′ < t and at time t′, c
is in round k′ > k and xc = v′ �= v. Thus, by the
minimality of t, p ∈ Fc at time t′. So m carries a
quorum history H such that H[c] and H[p] contain
nonintersecting quorums (to see this, note the con-
dition under which c puts p in Fc on line 52). Thus,
after q receives m on line 16 or 26 in round k′, and
then executes line 17 or 27, i.e., by time tc, Hq[c]
and Hq[p] contain nonintersecting quorums.

In either case, Hq[c] and Hq[p] contain nonintersecting
quorums at time tc. Furthermore, p /∈ Fq at time tc (this
is because p /∈ Fq at time t ≥ tc). Therefore q’s call to
distrusts(c) at time tc returns true—a contradiction. ��
Lemma 6.26 (Nonuniform agreement) No two correct
processes decide differently.

Proof Let p and q be any two correct processes that
decide in some rounds k and k′, respectively. Assume,
without loss of generality, that k′ ≥ k. Suppose that p
decides some value v in round k using quorum P. We
now show that the estimate of process q at the end of
round k, and at any time thereafter, is v. This implies
that when q decides in round k′ ≥ k, it also decides v.

Since p and q are correct, by the nonuniform inter-
section property of Σν+, q intersects P in round k. By
Lemma 6.25(a), q has xq = v at the end of round k.
Furthermore, by Lemma 6.21, p /∈ Fq (always). So, by
Lemma 6.25(b), q also has xq = v at any time after
round k. ��

By Lemmata 6.18, 6.19 and 6.26, we have:

Theorem 6.27 For all environments E , algorithm Anuc
uses (Ω , Σν+) to solve nonuniform consensus in E .

Theorem 6.28 For all environments E , there is an algo-
rithm that uses (Ω , Σν) to solve nonuniform consensus
in E .

Proof Given failure detectors Ω and Σν , we can solve
nonuniform consensus as follows. We use TΣν→Σν+
(Fig. 3), to transform the given failure detector Σν to
Σν+. Concurrently, we run Anuc (Figs. 4 and 5), which
solves nonuniform consensus using the failure detectors
Ω (provided directly) and Σν+ (obtained through the
variables Σν+-output of TΣν→Σν+). ��

By Theorems 5.7 and 6.28, we have:

Theorem 6.29 For all environments E , (Ω , Σν) is the
weakest failure detector to solve nonuniform consensus
in E .

7 Comparison of (Ω , Σν) and (Ω , Σ)

Let Et be the environment that includes all failure pat-
terns in which any set of up to t processes can crash.
Formally, Et = {F : |faulty(F)| ≤ t}.

Note that, in any environment, (Ω , Σν) is weaker than
(Ω , Σ), since the outputs of (Ω , Σ) immediately satisfy
the properties of (Ω , Σν). Whether (Ω , Σν) is strictly
weaker than—i.e., weaker than, and not equivalent to—
(Ω , Σ) depends on the environment. In environments
where at least half of the processes can fail, (Ω , Σν) is
strictly weaker than (Ω , Σ); in environments where a
majority of the processes are correct, the two failure
detectors are equivalent. These facts are observed by
Delporte et al. [3]; for completeness, we provide direct
proofs below.

Theorem 7.1 For all t ≤ n, (Ω , Σν) ≡Et (Ω , Σ) if and
only if t < n/2.

Proof Clearly, for every environment E , (Ω , Σν) �E
(Ω , Σ). Thus, it suffices to show that (Ω , Σν) �Et (Ω , Σ)

if and only if t < n/2.
[if] Suppose t < n/2. We must prove that (Ω , Σν) �Et

(Ω , Σ). To do so, it suffices to show that in environment
Et where t < n/2, there is an algorithm that implements
Σ “from scratch” —i.e., without using any failure detec-
tor. The algorithm proceeds in asynchronous rounds.
Initially, each process p outputs Π as its quorum. At the

358 J. Eisler et al.

beginning of each round k, p sends a message (k, p) to
each process. Process p waits to receive n − t messages
of the form (k, −) in round k. It then outputs as its new
quorum the set of n − t processes from which it received
a message in round k.

Since at least n − t processes are correct, every cor-
rect process keeps outputting quorums forever. We now
prove that the quorums output satisfy the completeness
and intersection properties of Σ . Eventually, all faulty
processes crash, and only correct processes exchange
messages; therefore, eventually, the quorums of correct
processes include only correct processes. Since t < n/2,
any quorum output by a process contains a majority of
processes, and so any two quorums intersect.

[only if] Suppose t ≥ n/2. We show that there is
no algorithm that transforms (Ω , Σν) to (Ω , Σ) in Et.
In particular, there is no algorithm T that transforms
(Ω , Σν) to Σ in Et. Suppose, by way of contradiction,
that such an algorithm T exists. Since t ≥ n/2, we can
partition the set of processes Π into two sets A and B,
where |A| ≤ t and |B| ≤ t. Consider the following two
runs of T .

In the first run R, all processes in B crash before taking
a step, and all processes in A are correct. At each pro-
cess p ∈ A, the output of (Ω , Σν) is always (min(A), A);
at each process p ∈ B, the output of (Ω , Σν) is always
(min(B), B). Note that these outputs satisfy the require-
ments of (Ω , Σν) in the current failure pattern. Since T
transforms (Ω , Σν) to Σ , at each process p ∈ A, T even-
tually outputs some set that consists entirely of correct
processes. So, at some time τ and at some process a ∈ A,
T outputs a set A′ ⊆ A.

In the second run R′, (i) all processes in B are correct,
but their messages to processes in A are delayed up to
time τ +1, and (ii) all processes in A are faulty, and they
crash at time τ + 1. As in run R, at each process p ∈ A,
the output of (Ω , Σν) is always (min(A), A); at each pro-
cess p ∈ B, the output of (Ω , Σν) is always (min(B), B).
These outputs also satisfy the requirements of (Ω , Σν)

in the current failure pattern. Note that up to time τ +1,
processes in A cannot distinguish between runs R and R′.
So, at time τ , T outputs A′ ⊆ A at process a ∈ A exactly
as in run R. Now consider any process b ∈ B. Since only
processes in B are correct, the completeness property of
Σ requires that eventually the transformation algorithm
T outputs some set B′ ⊆ B at b.

So, in run R′, T outputs A′ ⊆ A at a and B′ ⊆ B at
b. Since A′ and B′ are disjoint, this violates the intersec-
tion property of Σ — a contradiction of the claim that
T transforms (Ω , Σν) to Σ in Et. ��
Acknowledgements We thank the anonymous referees for sug-
gestions that improved this paper.

Appendix A: Proof of Lemma 2.2

Lemma 2.2 Let R = (F, H, I, S, T) be a merging of two
mergeable finite runs R0 = (F, H, I0, S0, T0) and R1 =
(F, H, I1, S1, T1) of an algorithm A using failure detector
D in some environment E . Then

(a) R is also a run of A using D in E .
(b) For each b ∈ {0, 1} and each process p ∈

participants(Sb), the state of p is the same in S(I)
as in Sb(Ib).

Proof To prove that R = (F, H, I, S, T) is a run of A
using D in E , we first note that F ∈ E , H ∈ D(F),
and I is indeed an initial configuration of A. It now
suffices to show that R satisfies properties (1)–(5) of
runs. The fact that S and T have the same length (prop-
erty (2)) is obvious from the definition of R. The fact
that in R no process takes a step after it has crashed,
and that the failure detector value in each step is con-
sistent with the history H (property (3)) follows from
the way R is constructed from R0 and R1, and the fact
that R0 and R1 have this property. The fact that T is
nondecreasing (property (4)) is clear from the way T is
formed from two nondecreasing sequences T0 and T1.
To show property (5), we must prove that the times of
the steps in the merged run R respect the causal prece-
dence relation. This is true because each of R0 and R1
has this property, and no process takes a step in both
R0 and R1.

It remains to prove that run R satisfies property (1),
namely that S is applicable to I. To show this, we use
the following notation: for any schedule Ŝ and i ∈ {0,
1, . . . , |Ŝ|}, Ŝi is the prefix of Ŝ that has length i (Ŝ0 is the
empty schedule). Also, for the schedule S of the merged
run R, and b ∈ {0, 1}, let fb(i) be the number of steps of
Si that come from Sb. Using a straightforward induction,
we can show that for all i ∈ {0, 1, . . . , |S|}:

(i) For all b ∈ {0, 1}, the set of messages between
processes in participants(Sb) (i.e., messages of the
form (p, −, q) where p, q ∈ participants(Sb)) in the
message buffer of configuration Si(I) is equal to
the set of messages between processes in
participants(Sb) in the message buffer of config-
uration Sfb(i)

b (Ib).
(ii) For all b ∈ {0, 1}, the state of every process p ∈

participants(Sb) is the same in Si(I) as in Sfb(i)
b (Ib).

Below we use (i) to show that, for each i ∈ {1,
2, . . . , |S|}, S[i] is applicable to Si−1(I). This proves that
S is applicable to I.

Weakest failure detector to solve nonuniform consensus 359

Let S[i] = (p, m, d, A). Let b ∈ {0, 1} be such that
p ∈ participants(Sb) (such a b exists because every step
of S is in either S0 or S1). Thus, (p, m, d, A) is step fb(i)
of Sb. Therefore, m was sent to p by some process in
participants(Sb). Since Rb is a run, Sb is applicable to
Ib. In particular, step (p, m, d, A) of Sb is applicable to
Sfb(i)−1

b (Ib). Note that fb(i−1) = fb(i)−1. So, (p, m, d, A)

is applicable to Sfb(i−1)

b (Ib). Thus, m is in the message

buffer of Sfb(i−1)

b (Ib). By (i), m is in the message buffer
of Si−1(I). So, (p, m, d, A) is applicable to Si−1(I), as
wanted.

Part (b) of the lemma follows directly from (ii), taking
i = |S|. ��

References

1. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure
detector for solving consensus. JACM 43(4), 685–722 (1996)

2. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reli-
able distributed systems. JACM 43(2), 225–267 (1996)

3. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Shared
memory vs. message passing. Technical Report IC/2003/77,
EPFL (2003)

4. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of
distributed consensus with one faulty process. JACM 32(2),
374–382 (1985)

5. Lamport, L.: Time, clocks, and the ordering of events in a
distributed system. CACM 21(7), 558–565 (1978)

6. Mostéfaoui, A., Raynal, M.: Leader-based consensus. Parall
Process. Lett. 11(1), 95–107 (2001)

	The weakest failure detector to solve nonuniform consensus
	Abstract
	Introduction
	The model
	Systems
	Failures, failure patterns and environments
	Failure detectors
	Algorithms
	Configurations
	Schedules and runs
	Solving problems with failure detectors
	Nonuniform consensus
	Weakest failure detectors
	Mergeability
	Failure detectors used in this paper
	Leader failure detector
	Quorum failure detector
	Nonuniform quorum failure detector
	DAGs and simulations
	Building DAGs of failure detector samples
	Simulating schedules of an algorithm A
	(omaga,sigma nu) is necessary for solving nonuniform consensus
	Remark on uniform consensus
	(omaga,sigma nu) is sufficient for solving nonuniform consensus
	Failure detector +
	Equivalence of and +
	Using (,+) to solve nonuniform consensus
	Comparison of (,) and (,)
	Acknowledgements

