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Abstract We consider the problem of how to schedule t
similar and independent tasks to be performed in a syn-
chronous distributed system of p stations communicating
via multiple-access channels. Stations are prone to crashes
whose patterns of occurrence are specified by adversarial
models. Work, defined as the number of the available pro-
cessor steps, is the complexity measure. We consider only
reliable algorithms that perform all the tasks as long as at
least one station remains operational. It is shown that ev-
ery reliable algorithm has to perform work �(t + p

√
t)

even when no failures occur. An optimal deterministic al-
gorithm for the channel with collision detection is devel-
oped, which performs work O(t + p

√
t). Another algorithm,

for the channel without collision detection, performs work
O(t + p

√
t + p min{ f, t}), where f < p is the number of

failures. This algorithm is proved to be optimal, provided
that the adversary is restricted in failing no more than f
stations. Finally, we consider the question if randomization
helps against weaker adversaries for the channel without
collision detection. A randomized algorithm is developed
which performs the expected minimum amount O(t + p

√
t)

of work, provided that the adversary may fail a constant frac-
tion of stations and it has to select failure-prone stations prior
to the start of an execution of the algorithm.
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1 Introduction

We consider the problem of how to schedule t similar and
independent tasks in a distributed system with p processors
prone to failures. This problem is known under the name Do-
All [1]. The distributed setting we assume in this paper con-
sists of a number of stations communicating via a multiple
access channel [2, 3]. The system is synchronous. There is a
global clock which defines the same rounds for all stations.

The channel operates according to the following rules:
if exactly one station performs a transmission at a round,
then the message reaches all the stations, but if at least two
stations broadcast simultaneously, then a conflict occurs and
no station receives any of these messages. If the stations at-
tached to the channel do not receive a meaningful message at
a round, then there are two possible reasons: either none or
more than one messages were sent. The ability to distinguish
between these two cases is called collision detection. When
it is available, then the channel is also said to be with ternary
feedback, because of the following three possible events on
the channel recorded by the attached stations: (1) a meaning-
ful message received, (2) no messages sent, and (3) a colli-
sion signal received.

Stations are prone to crashes [4, 5]. Allowable scenarios
of failure occurrences are determined by adversarial models.
An adversary is size-bounded if it may fail at most f sta-
tions, for a parameter 0 ≤ f < p. We may refer to a size-
bounded adversary as f -bounded to make the value of pa-
rameter f explicit. If f is a constant fraction of p, then the
adversary is linearly bounded. A size-bounded adversary is
weakly adaptive if it selects, prior to a start of an execution,
a subset of stations that might be failed later in the execu-
tion at arbitrary times. An f -bounded adversary is strongly
adaptive if the upper bound f on the number of failures is
the only restriction on failure occurrences in an execution.
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We want algorithms to perform all the tasks for any pat-
tern of crashes such that at least one station remains opera-
tional in an execution. Algorithms that have this property are
called reliable in this paper. We show that work �(t + p

√
t)

has to be performed by a reliable algorithm when no failures
occur in an execution. The amount of work asymptotically
equal to t + p

√
t is called minimal.

For a channel with collision detection, this lower bound
can be attained by a deterministic algorithm against any ad-
versary. The optimal bound on work for a weaker chan-
nel without collision detection involves the number of fail-
ures f . We give a deterministic algorithm for this channel
which performs work O(t + p

√
t + p min{ f, t}) against f -

bounded adversary. This work complexity is shown to be
optimal when the upper bound f on the number of failures
is the only restriction on the adversary.

Next we consider the question what is the optimum
amount of work needed for the channel without colli-
sion detection against adversaries that are weaker than size
bounded. We show that a randomized algorithm can achieve
the expected minimal work O(t + p

√
t) against certain

weakly-adaptive size-bounded adversaries. The number of
faults for this to hold is a constant fraction of the num-
ber of all the stations. A conclusion is that randomization
helps if collision detection is not available and the adversary
is sufficiently restricted. Finally, we show that if the num-
ber t of tasks satisfies t = o(p2), then a weakly-adaptive
f -bounded adversary can force any algorithm for the chan-
nel without collision detection to perform asymptotically
more than the minimal work �(t + p

√
t), provided that

f = p (1 − o(1/
√

t)).

1.1 Previous work

The Do-All problem was introduced by Dwork et al. [1], and
investigated in a number of papers [6–10]. All the previous
papers considered message-passing models, in which every
node can send a message to any subset of nodes in one
round. The algorithmic paradigms used included balancing
work, checkpointing the progress made, and designating
nodes to coordinate by collecting and disseminating infor-
mation. The primary measures of efficiency of algorithms
used in [1] were task-oriented work, in which each per-
formance of a task contributes a unit to complexity, and
communication measured as the number of point-to-point
messages. That paper also proposed effort as a measure of
efficiency, which is work and communication combined.
The earlier work [1, 6, 9, 10] concentrated on the adversary
who could fail all the stations but one. Some recent work
[7, 8] concerned optimizing solutions against weaker
adversaries.

De Prisco et al. [9] were the first to use the avail-
able processor steps [11] as the measure of work for so-
lutions of Do-All. They developed an algorithm which has
work O(t + ( f + 1)p) and message complexity O(( f +
1)p). Galil et al. [10] improved the message complexity to

O( f pε + min{ f + 1, log p}p), for any positive ε, while
maintaining the same work complexity. This was achieved
as a by-product of their investigation of the Byzantine agree-
ment with stop-failures, for which they found a message-
optimal solution. Chlebus et al. [6] studied failure models
allowing restarts. Restarted processors could contribute to
the task-oriented work, but the cost of integrating them into
the system, in terms of the available processor steps and
communication, might well surpass the benefits. The solu-
tion presented in [6] achieves the work efficiency O((t +
p log p+ f ) min{log p, log f }), and its message complexity
is O(t + p log p + f p), against suitably defined adversaries
that may introduce f failures and restarts. This algorithm
is an extension of one that is tolerant of stop-failures and
which has work complexity O((t+p log p/ log log p) log f )
and communication complexity O(t + p log p/ log log p +
f p). Chlebus and Kowalski [8] studied the Do-All problem
when occurrences of failures are controlled by the weakly-
adaptive linearly-bounded adversary. They developed a ran-
domized algorithm with the expected effort O(p log∗ p),
in the case p = t , which is asymptotically smaller than
the lower bound �(p log p/ log log p) on work of any de-
terministic algorithm. Chlebus et al. [7] developed a deter-
ministic algorithm with effort O(t + pa), for some specific
constant a, where 1 < a < 2, against the unbounded ad-
versary, which is the first algorithm with the property that
both work and communication are o(t + p2) against this ad-
versary. They also gave an algorithm achieving both work
and communication complexities O(t+ p log2 p) against the
strongly-adaptive linearly-bounded adversary. All the pre-
viously known deterministic algorithms had either work or
communication efficiency �(t + p2) when as many as a
linear fraction of processing units could be failed by the
strongly-adaptive adversary. Georgiou et al. [12] developed
an algorithm with work O(t + p1+ε), for any fixed con-
stant ε, by an approach based on gossiping.

Kowalski and Shvartsman [13] studied Do-All in an
asynchronous message-passing mode when executions are
restricted such that every message delay is at most d . They
showed lower bound �(t+pd logd p) on the expected work.
They developed several algorithms, among them a determin-
istic one with work O((t + pd) log p). Georgiou et al. [14]
considered an on-line version of Do-All, called Omni-Do, in
the asynchronous system with partitionable networks. They
presented a randomized algorithm achieving a competitive
ratio 1 + cw/e against an oblivious adversary, where com-
putational width cw is a parameter of the poset according
to which the adversary splits and merges groups. The same
authors studied in [15] an iterative version of Do-All model-
ing a repeated use of Do-All solutions. Fernández et al. [16]
considered Do-All in the model of Byzantine failures.

Clementi et al. [17] investigated Do-All in the commu-
nication model of a multiple-access channel without colli-
sion detection. Their paper [17] appeared shortly after a con-
ference version of this one; it studied F-reliable protocols,
which are correct if the number of crashes is at most F , for
a parameter F < p. They obtained tight bounds on the time
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and work of F-reliable deterministic protocols. In particular,
the bound on work shown in [17] is �(t + F · min{t, F}).
In this paper, we consider protocols that are correct for any
number of crashes smaller than p, which is the same as
(p − 1)-reliability. Moreover, the complexity bounds of our
algorithms, for the channel without collision detection, are
parametrized by the number f of crashes that actually oc-
cur in an execution.

1.2 Related work

The multiple-access channel may be interpreted as a single-
hop radio network [2], which is relevant when consider-
ing the role of collision detection. Most of the previous re-
search on the multiple-access channel concerned methods
of handling packets which the stations keep generating to be
broadcast via the channel as quickly as possible; see [2, 3]
for surveys of these topics. The packets may be generated
in a possibly irregular way, which results in bursty traffic.
Techniques like time-division multiplexing are not efficient
then, and a better throughput can be achieved by distribut-
ing the control among the stations. This is done by ran-
domized conflict-resolution protocols that arbitrate among
the stations competing for access to the channel; among the
most popular such protocols are Aloha [18] and the expo-
nential backoff [19]. If packets are generated dynamically,
then the basic problem is to have stable protocols that pre-
vent the channel from becoming eventually clogged. Recent
work in that direction includes the papers of Goldberg et
al. [20], Goldberg et al. [21], Håstad et al. [22], and Ragha-
van and Upfal [23].

Static problems concern a scenario when input data
are allocated at the stations prior to the start of an exe-
cution. The problem of selection is about how to have an
input message broadcast successfully if only some among
the stations hold input messages while the other do not.
Willard [24] developed protocols solving this problem in
the expected time O(log log n) in the channel with col-
lision detection. Kushilevitz and Mansour [25] proved a
lower bound �(log n) for the selection problem if colli-
sion detection is not available, which shows that there is
an exponential gap between the models with collision de-
tection and without it. A related problem of finding max-
imum among the keys stored in a subset of stations was
considered by Martel [26]. There is a related all-broadcast
problem, in which a subset of some k among all n sta-
tions have messages, and all these messages need to be
transmitted successfully via the channel as quickly as pos-
sible. Komlós and Greenberg [27] showed how to solve this
deterministically in time O(k + k log(n/k)), where both
numbers n and k are known. Kowalski [28] gave an ex-
plicit solution of complexity O(k polylog n). A lower bound
�(k(log n)/(log k)) was proved by Greenberg and Wino-
grad [29]. Jurdziński et al. [30] studied the related leader
election problem for the channel without collision detection.
They gave a deterministic solution with sub-logarithmic en-
ergy cost and showed a doubly-logarithmic lower bound.

Chlebus et al. [31] considered algorithms for broadcasting
spanning forests via a multiple-access channel, when the
edges of an input graph are stored at the stations.

The wakeup problem has as the goal to perform a suc-
cessful broadcast as quickly as possible after a start of a sys-
tem, in a scenario when the spontaneous times to join execu-
tion are independent over all stations and are controlled by
an adversary. Ga̧sieniec et al. [32] introduced this problem
for the multiple-access channel and studied the impact of
various modes of synchrony on the complexity of solutions.
In particular, they showed that if the stations have access to a
global clock, then wakeup can be completed in the expected
time O(log n) by a randomized protocol. In the case when
the local clocks are not synchronized, then there is a random-
ized protocol working in the expected time O(n). Jurdziński
and Stachowiak [33] improved this result by developing a
randomized protocol not relying on a global clock and solv-
ing the wakeup problem in the expected time O(log n). It
was also shown in [32] that deterministic protocols require
time �(n), and that there are deterministic protocols work-
ing in time O(n log2 n).

The known solutions for the wakeup problem are based
on combinatorial structures called radio synchronizers. A bi-
nary n × m array S is a (n, k)-synchronizer of length m if
for any non-empty set A ⊆ {1, . . . , n} of at most k rows
and for arbitrary shifts of rows in A, each by a distance at
most m, there is a column with an occurrence of 1 in exactly
one shifted row in A. Such synchronizers were defined by
Chrobak et al. [34] in the context of their work on the prob-
lems of wakeup, leader election and synchronization of lo-
cal clocks in multi-hop radio networks, but this notion was
already implicitly used in [32]. It was shown in [34] that
such structures exist with m = O(k2 log n), for given n
and k. Indyk [35] showed that synchronizers with k = n
and m = O(n1+ε) can be constructed in time O(2polylog n),
for any constant ε > 0. Chlebus and Kowalski [36] proved
that (n, k)-synchronizers of length O(k2 polylog n) can be
constructed in time polynomial in n.

1.3 Document structure

We describe the communication environment of a multiple-
access channel, the model of failures, and the Do-All prob-
lem in Sect. 2. This section also includes a discussion of the
relevance of the notion of common knowledge to distributed
computing on multiple-access channels and shows that any
reliable algorithm solving Do-All has to perform the mini-
mum amount �(t + p

√
t) of work in an execution without

crashes. The next two sections present optimal determinisitic
algorithms against strong adversaries that are restricted only
by the number of failures they may incur. Section 3 is about
the weaker channel, in which collision detection is not avail-
able. The next Sect. 4 considers the channel with collision
detection. Section 5 addresses the question if randomization
can help for the channel without collision detection against
weaker adversaries. We conclude with a short discussion in
Sect. 6.
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2 Distributed environment and problem

In this section we present the distributed environment and
the Do-All problem. The section includes two technical aux-
iliary results. One is about common knowledge in distributed
computing on multiple-access channels. The other shows
that there is a certain minimum amount of work which any
algorithm solving Do-All in a reliable manner has to perform
when no failures occur.

2.1 Processing units

There are p stations, each with a unique identifier in [p] =
{1, . . . , p}. Number p is known to all the stations. The sys-
tem is synchronized by a global clock. All stations start si-
multaneously at round zero with private variables initialized
as specified by the code of the executed algorithm. The du-
ration of a global round is related to the time of communica-
tion and to the time to process a chunk of input, as explained
in detail later. We assume that manipulating private variables
takes negligible time. Each station may come to a halt at any
time. A station that halted voluntarily is considered to be
non-faulty.

2.2 Communication

Stations communicate by broadcasting on a multiple access
channel. We assume that all the messages sent via the chan-
nel are delivered to all the stations, but if many are sent si-
multaneously, then they interfere with one another and are
received in a garbled form. If a message sent via the channel
is successfully delivered to all the stations, in the sense that
every recipient can read it correctly, then the message is said
to be heard by the stations. This happens if exactly one sta-
tion transmits the message. If no messages are sent, then the
stations receive only the background noise, which is distinct
from any meaningful message. If more than one messages
are broadcast simultaneously at a round, then a conflict oc-
curs, and no station can hear any of these messages.

We consider two models depending on what feedback
stations receive when a conflict for access occurs.

Channel without collision detection: a conflict for
access results in each station hearing the back-
ground noise.

Channel with collision detection: a conflict for ac-
cess results in each station hearing the interfer-
ence noise, which is distinct from the background
noise.

We often refer to the background noise simply as silence
and to interference noise as hearing a collision. The measure
of time is scaled to the time of transmissions; we assume
that it takes exactly one round to perform a broadcast via
the channel. The size of a packet to carry a single mes-
sage is assumed to be O(log p) bits, but all our deterministic
algorithms broadcast messages of merely O(1) bits.

2.3 Failures

Stations fail by crashing. A station that has not failed by
the end of a round is said to be non-faulty or operational
in this round. The rounds in which specific stations crash
are controlled by an adversary. Every crash is permanent in
the execution, which means that adversarial models allowing
restarts, like in [6], are not considered.

Our adversarial models specify restrictions on scenarios
to fail stations but do not require any minimal pattern nor
amount of failures. This means that the weakest adversary
does not crash any station.

Efficiency bounds may involve the number of failures f .
Next we clarify the role and interpretation of f , which is
essential in understanding the meaning of the results. First,
f is the number of failures actually occurring in an execution
and is never a part of code of protocols. Second, we require
all our protocols to be correct even when only one station
remains operational in an execution, for whatever price it
comes. This turns out to make algorithms costly even when
no failures occur, as is stated in Lemma 2.

Our upper bounds on complexity with formulas involv-
ing f refer to the actual number of failures f in an execu-
tion, which is more precise than presenting the bounds as a
function of an upper bound on the number of failures. This
is relevant to only one algorithm, namely, to the determin-
istic algorithm for the channel without collision detection,
see Theorem 1. The remaining algorithms achieve the min-
imal complexity that has to be accrued even when no fail-
ures occur. This is why their efficiency bounds do not refer
to the number of failures f in an execution. Lower bounds
also refer to the actual number of failures f in an execution.
When this number f is sufficiently small, then it does not
affect the asymptotic rate of growth of the expression de-
scribing the lower-bound complexity. This phenomenon is
again possible because of the strong correctness assumed,
see Theorem 2 for an example.

Any result given in this paper is not for an environment
determined by the number of failures f only but also for the
specific power of some f -bounded adversary. Adversarial
models become relevant when we study the impact of ran-
domization in protocols. An adversary is said to be adaptive
with condition C if decisions about crashes can be made on-
line, the only constraint being that the condition C has to be
satisfied in all executions. We consider the following specific
adversaries:

Strongly-Adaptive f -Bounded: the adversary is
adaptive with the condition that at most f stat-
ions are failed, where 0 ≤ f < p.

Weakly-Adaptive f -Bounded: it is adaptive with the
following condition:

the adversary needs to select f failure-
prone stations prior to the start of an
execution, and then it may fail only
the selected failure-prone stations in the
course of this execution,

where 0 ≤ f < p.
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If algorithms are deterministic, then both the Strongly-
Adaptive f -Bounded and Weakly-Adaptive f -Bounded ad-
versaries are equivalent, because both can determine the
behavior of the algorithm in advance. We write simply
f -Bounded for Strongly-Adaptive f -Bounded. The Un-
bounded adversary is the same as Strongly-Adaptive (p −
1)-Bounded. The Linearly-Bounded adversary denotes f -
Bounded, where f = c × p, for a constant 0 < c < p.
None of the considered adversaries can fail all the stations
in an execution of an algorithm.

2.4 Computation and knowledge

An execution, of a given algorithm, is a sequence of con-
figurations of the system in consecutive rounds. The execu-
tion is determined by the occurrences of failures of stations,
the messages broadcast via the channel, and the sequence
of random bits used by each station [37]. If execution E ′ is
obtained by modifying the actions of an adversary on some
other execution E , then it is assumed that each station in E ′
receives exactly the same sequence of random bits as in E .

Algorithms are described by referring to variables main-
tained by stations and by interactions of stations with the
channel. Every station has private copies of all variables of
the algorithm at hand. If the variable is called X , then the
private copy of X used by station v is denoted by Xv . The
state of a station is determined by the values of all its private
variables.

The knowledge of a station at a round is determined by
the sequence of its previous states and by the history of what
has been heard on the channel till this round. Rather than
to say that some fact is implied by the knowledge of a sta-
tion, we say that the station “knows” the fact. All the sta-
tions receive the same information from the channel. This
property of communication in the system has an impact on
what the stations know in common. The notion of common
knowledge, as defined by Halpern and Moses [38], is rele-
vant to our considerations. It captures a certain natural scope
of knowledge which all the stations have together. It does not
merely mean what every station knows, but rather what all
the stations know that they all know, and on this level only
what they know that they know that they know, and so on
through the infinity of levels. More precisely, the common
knowledge is this portion of knowledge of all stations that
belongs to every one of these levels. Clearly, anything suc-
cessfully broadcast via the channel is common knowledge.
Similarly, if an algorithm uses a variable and in all execu-
tions the private copies of the variable are guaranteed to have
the same value at the end of a round across all the stations,
then the current value of this variable at the end of a round
is common knowledge. Next we identify what is common
knowledge of stations running a distributed deterministic al-
gorithm with communication via a multiple-access channel
with possible station crashes.

When station v is operational at a round, then its state is
known by all the remaining stations. When station v crashes,
then this fact may be common knowledge at some point in

the execution. More precisely, at any following round, either
all operational stations know that station v has crashed or
none of them knows that. Intuitively, this is because there
are only few ways to learn that a station crashed, and when
this information is provided eventually by the channel, then
it is provided to all the stations simultaneously, so it becomes
common knowledge. For instance, station v may be sched-
uled to broadcast as the only station at a round; when the
broadcast is not heard, then this justifies a crash of v. An-
other possibility is that station v is to transmit together with
a group of other stations and the broadcast is heard as per-
formed by a different station. The remaining cases require
restricting algorithms to have additional properties as de-
fined next.

A deterministic algorithm is simple if it has the following
two properties:

1. All stations obtain the same input in all executions.
2. If the channel is without collision detection, then when-

ever at least two stations perform a simultaneous broad-
cast, then the message sent by each of these stations to
the channel allows to retrieve the name of the sender.

Lemma 1 Consider an execution of a simple determinisitic
algorithm for the multiple access channel. If a certain sta-
tion v has crashed by a given round, then either this fact
about v is common knowledge or no station knows it at the
round. If station v is operational at a round, then the lo-
cal state of v at this round is common knowledge. Main-
taining these two kinds of common knowledge can be imple-
mented, so that referring to it may be made a part of code of
algorithms.

Proof The proof is by induction on the number of rounds.
We prove the two parts simultaneously. We also indicate how
to maintain the common knowledge for an immediate refer-
ence by a station.

The base of induction holds because of two reasons.
First, initially all stations may be operational so no station
can know about any crashes. Second, the algorithm is sim-
ple, hence the individual inputs assigned to the stations are
all equal. Therefore the initial state of a station can be de-
termined by the code of the algorithm and the name of the
station.

Consider first the knowledge of crashes at a round. Let
set A consist of these stations that are both scheduled to per-
form a transmission in this round and are not known by any
operational station to have crashed before. If A is empty,
then there is no attempt to transmit and hence no change of
knowledge in any station. Suppose A contains exactly one
station v. If v is operational, then v broadcasts and all sta-
tions hear the message. This does not change the knowledge
of all stations about crashes, since all stations know in that
respect exactly what v does, by the inductive assumption.
Otherwise, if v has crashed, then silence is heard only, and
all the stations learn that v has already crashed. Hence all the
stations change their knowledge in exactly the same way.

Next consider the case when A contains at least two el-
ements. Suppose first that the channel is without collision
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detection. If silence is heard, then all the stations learn that
either all the elements of A have crashed or at least two of
them survived. No station can identify specific failures in A,
because even if the station is in A and knows that it is alive,
then the behavior of the channel is consistent with no station
in A crashing. If a message is heard on the channel, then all
the stations receive it. This indicates that exactly one station
in A survived till this round while the remaining stations
have crashed. The algorithm is simple, hence the message
heard on the channel allows for all the stations to get to know
the name of the only survivor, since the message contains the
name explicitly. Suppose the channel has a collision detec-
tion mechanism available. If the collision noise is heard, then
every station in set A learns that at least some other station
in A is still operational, while all stations not in A learn that
at least two stations in A are still operational. This does not
identify any new crash, since the collision noise is consistent
with no station in A having crashed.

Every station may maintain a list of stations known as
having crashed. When this knowledge changes, new sta-
tions are simply added to the list. This completes the part
of proof about the knowledge of crashes. Next we consider
the knowledge of states.

The algorithm is deterministic, so a transition for a given
state is uniquely determined. This allows a station to simu-
late transitions of all the remaining stations in its local mem-
ory. The simulating algorithm is structured as follows. Each
station has its own private variables, as specified by the exe-
cuted algorithm, and additionally it maintains copies of pri-
vate variables of all the remaining stations. A station first
modifies its own private variables, according to the code of
the executed algorithm. Next the station simulates a similar
action, as performed in the current round by all the remain-
ing stations on their private variables, on the copies of pri-
vate variables of these stations. ��

Lemma 1 is proved by describing a simulation that pro-
vides common knowledge about states of all stations. All the
algorithms presented in this paper are simple. This makes it
possible to use the simulation implicitly in pseudo-code of
these algorithms, for instance in Fig. 2. The knowledge is
sometimes conditional on a simulated station being still op-
erational. Suppose that all stations have some value X ob-
tained as a result of a simulation of the state of station v that
is not known as having crashed. Then their common knowl-
edge about station v is in the form of the following implica-
tion: “if v is still operational, then the state of v equals X .”

2.5 Complexity measure

Work is used as a performance metric. It is defined to be the
number of the available-processor steps, which means that
each station contributes a unit for each round when it is op-
erational, even when idling, unless it has already crashed or
halted. This follows the approach proposed by Kanellakis
and Shvartsman [5, 11]. The measure can be defined pre-
cisely as follows. We assume that an execution starts when

all the stations have been provided with the code to execute
and the input, and they know the first round r0 to begin.
For a station v, let rv be the round when the station halts
or crashes, whichever comes first. The contribution of sta-
tion v to work of the executed algorithm equals the number
rv − r0. The sum

∑
1≤v≤p(rv − r0) of these contributions

over all the stations is the work accrued by the algorithm in
the execution.

2.6 Tasks and doing them all

There are t tasks to execute in the system under consider-
ation. The tasks are known to all the stations, in the sense
that a station can identify a task in a constant time, given the
number of the task. The following three properties of tasks
are assumed:

Similar: every task takes the same number of rounds
to perform.

Independent: tasks can be performed in any order.
Idempotent: tasks can be performed many times and

concurrently.

The Do-All problem is defined as follows. Given a col-
lection of t tasks that satisfy the above three properties, a
collection of p stations must performs all the tasks in the
presence of an adversary who controls failures. We assume
for simplicity that it takes exactly one round to perform
one task, which does not affect the asymptotic efficiency of
algorithms.

The usual approach in the literature is to consider the
Do-All problem solved when at least one processing unit
knows that all the tasks have been performed. The specifi-
cation of correctness of an algorithm is also normally com-
bined with requiring termination of all processing units and
may be restricted to a class of adversaries. We assume a
strong notion of correctness of a Do-All solution, which re-
quires handling the tasks properly against the strongest size-
bounded adversary.

An algorithm solving the Do-All problem is reliable if
the following two conditions are satisfied in any execution:

1. All the tasks are eventually performed, if at least one sta-
tion remains non-faulty.

2. Each station eventually halts, unless it has crashed.

Observe that when a station halts, in the course of an ex-
ecution of a reliable algorithm A, then all the tasks have
already been performed. This is because otherwise the Un-
bounded adversary could immediately fail the remaining sta-
tions and some tasks would remain outstanding forever. This
implies that a station that decides to halt knows that all the
tasks have been already completed in the execution of A.
If algorithm A is both simple and deterministic, then, by
Lemma 1, when one station knows that all the tasks have
been completed, then all the stations do. It follows that it
is possible to simulate A in such a way that all the stations
halt simultaneously. A reliable randomized algorithm is re-
quired also to have the property that all the tasks are eventu-
ally performed in all executions, hence randomization may
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contribute to efficiency only but not to compromise correct-
ness with some small probability.

2.7 Inherent cost of reliability

Reliability prevents a station to halt when there are still some
outstanding tasks. Global coordination of knowledge about
the tasks already performed is relatively slow, because, in-
tuitively, it is best achieved by simultaneous transmissions
of stations that have been assigned the same set of tasks to
perform. Therefore one may expect a certain minimal work
to be accrued even in optimistic scenarios with few crashes.
This is indeed the case, which can be stated quantitatively as
follows:

Lemma 2 A reliable algorithm, possibly randomized, per-
forms work �(t + p

√
t) in an execution in which no failures

occur.

Proof It is sufficient to consider the channel with collision
detection, in which stations could possibly have more infor-
mation. Let A be a reliable algorithm. The part �(t) of the
bound follows from the fact that every task has to be per-
formed at least once in any execution of A.

Task α is confirmed at round i of an execution of algo-
rithm A, if either a station broadcasts successfully and it has
performed α by round i , or at least two stations broadcast
simultaneously and all of them, with a possible exception of
one station, have performed task α by round i of the execu-
tion. At least half of the stations broadcasting at round i and
confirming α have performed it by then, so at most 2i tasks
can be confirmed at round i . Let E1 be an execution of the
algorithm when no failures occur. Let station v come to a
halt at some round j in E1.

Claim: The tasks not confirmed by round j were per-
formed by v itself in E1.

Suppose, to the contrary, that this is not the case, and let
β be such a task. Consider an execution, say E2, obtained
by running the algorithm and crashing any station that per-
formed task β in E1 just before it was to perform β in E1, and
all the remaining stations, except for v, crashed at step j .
The broadcasts via the channel are the same during the first
j rounds in E1 and E2. Hence all the stations perform the
same tasks in E1 and E2 till round j . The definition of E2 is
consistent with the power of the Unbounded adversary. The
algorithm is not reliable because task β is not performed in
E2 and station v is operational. This justifies the claim.

We estimate the contribution of the station v to work.
The total number of tasks confirmed in E1 is at most

2(1 + 2 + · · · + j) = O( j2) .

Suppose some t ′ tasks have been confirmed by round j . The
remaining t − t ′ tasks have been performed by v. The work
of v is at least

�(
√

t ′ + (t − t ′)) = �(
√

t),

which completes the proof. ��

The amount of work asymptotically equal to t + p
√

t is
called minimal. This amount of work is a yardstick that we
use to measure efficiency of algorithms in various models of
the multiple-access channel. Lemma 2 shows that minimal
work is a lower bound on the amount of work performed
by a reliable, possibly randomized algorithm, in the worst
case.

Every adversary we consider may choose not to fail any
station in an execution, which makes Lemma 2 applica-
ble. Otherwise the proofs of some results, like Corollaries 1
and 2, would not be correct. This is because there are exe-
cutions in which the amount of performed work is smaller
than minimal. For instance, consider the scenario in which
t = o(p2) and all but one stations crash in the beginning.
Then the amount of work is O(t), which is asymptotically
smaller than minimal work, because p = ω(

√
t).

3 Channel without collision detection

In this section we give a work-optimal deterministic solu-
tion to the Do-All problem for a channel without collision
detection. We begin with an overview of the algorithm.

The first decision to make about the algorithm, when
pondering its design, is whether to allow for multiple simul-
taneous transmissions. There is a simple intuition why it is
better not to allow conflicts to occur in a setting without con-
flict detection. Namely, when nothing is heard on the chan-
nel, then we cannot distinguish a collision from a situation
when all the broadcasting stations have failed. If the algo-
rithm is deterministic, then we anyway would need to make
it possible for the participating stations to perform individual
broadcasts of their individual progress in performing tasks.
We follow this intuition to avoid conflicts between broad-
casting stations. There is at most one station scheduled by
the algorithm to transmit at a round.

Yet another initial decision regards the schedule and con-
tents of broadcasts. A natural solution would be to have sta-
tions broadcast their progress reports in a round-robin way,
one station at a time. We apply this in the case when the
number of tasks is sufficiently large compared to the num-
ber of stations. A message broadcast via the channel consists
of just a single bit. Its only purpose is to confirm that the sta-
tion is still operational. This works because the algorithm is
deterministic, hence the states of all operational stations are
common knowledge by Lemma 1.

The next decision is about assignment of work to sta-
tions. Tasks are maintained as an ordered list. Segments of
this list are assigned to stations. Their lengths are increas-
ing to offset delays in scheduled transmissions. A schedule
of transmissions and an assignment of tasks need to be co-
ordinated. We partition the sequence of consecutive rounds
into segments called epochs. An epoch is a minimal such a
segment with the property that either every station has an
opportunity to perform one transmission or every task could
be reported as performed if there are no crashes. Which of
these cases holds depends on the relative magnitude of the
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Fig. 1 Algorithm TWO-LISTS; code for station v

Fig. 2 Procedure EPOCH-TWO-LISTS; code for station v

number of outstanding tasks and the number of operational
stations.

The deterministic algorithm we develop in this section is
called TWO-LISTS. The algorithm is structured as a repeat
loop, see Fig. 1. One iteration of this loop is called an epoch.
The structure of an epoch is presented in Fig. 2. An expla-
nation how to assign pointer Task To Do in the first line in
Fig. 2 and when to terminate an epoch is given elsewhere.
If, in all executions, all the values of private copies of some
variable Y are equal at all stations at the end of every round,
and this unique value is common knowledge, then we refer
to the private copy Yv of station v with subscript v dropped.
This is the case for the variables STATIONS, Transmit
and TASKS in Fig. 2.

An epoch is structured as a repeat loop, see Fig. 2. One
iteration of this loop is called a phase. A phase takes three
rounds containing the following three respective actions:

(1) performing a task by each station; followed by
(2) a single broadcast by a certain station; followed next by
(3) book-keeping operations performed by all stations,

which depend on whether the broadcast was heard or not.

One phase involves performing one task by all stations in
one round, followed by performing one broadcast by a cer-
tain station in one round, so it could be structured to consist
of two rounds only. We choose to add one more round for
the sake of readability.

Each station maintains private copies of the following
four lists: TASKS, STATIONS, DONE, and OUTSTANDING.
List TASKS stores all the tasks that have not been announced
via the channel as performed yet. List STATIONS contains
all stations that either made a broadcast each time they were
scheduled to or have not been scheduled to broadcast yet at
all. This means that list STATIONS stores stations that could
still be operational, because they never failed to broadcast
when scheduled to. Lists TASKS and STATIONS are kept
sorted, which helps in assigning tasks to perform. Since lists
TASKS and STATIONS are defined by what was heard on
the channel, their contents are the same in all private copies
of stations at the end of a round. It follows that contents
of these two lists are global knowledge, which is the reason
why the algorithm is called TWO-LISTS. The additional lists
are auxiliary and their main purpose is to allow to structure
the algorithm in a simple and readable way. When discussing
the correctness and efficiency of the algorithm, the size of
any used list X is denoted by |X|.

List TASKS shrinks in the course of an execution, until
eventually it becomes empty, which indicates that all tasks
have been performed; when this happens then all stations
halt simultaneously, because the contents of this list is global
knowledge. List STATIONS also may shrink, due to fail-
ure detected by missing broadcasts, but it always contains at
least one item. All input tasks are partitioned into two lists
DONEv and OUTSTANDINGv at node v. The former stores
the tasks known by v as already performed and the latter
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contains the remaining tasks. Every station also maintains
copies of these four lists and their corresponding pointers for
every other station, for the purpose to simulate the behavior
of the whole system.

There is pointer Transmit associated with list
STATIONS. This pointer indicates the station which is
scheduled to perform broadcast in the current phase. Point-
ers Transmit have the same value at all stations at the end
of a round, which follows by inspection of the code in Figs. 1
and 2. It follows that this value is common knowledge. There
is pointer Task To Do associated with list TASKS. This
pointer is used to assign the task to perform in the current
phase.

3.1 Assigning ranges of tasks to stations

List TASKS is considered ordered in the cyclic order. Se-
quences of items in the list that are consecutive in this or-
der are called segments. Each station has such a segment
assigned to it at the start of an epoch. This segment is called
the range of the station for the epoch. The size of the range
is called its length.

Pointers Task To Do are assigned their values in the
beginning of an epoch as follows. When station y is im-
mediately after station x on list STATIONS, then pointer
Task To Doy is set to the first item in list TASKS after
the range of tasks assigned to station x . Let list STATIONS
store the sequence 〈vi 〉1≤i≤n of n = |STATIONS| elements.
The length of the range of station vi is set equal to i . A
task is said to have been covered in the current phase of an
epoch, when the task belongs to the union of ranges of all
the stations that have broadcast in the epoch by the phase.
A task can be assigned to many ranges simultaneously if list
STATIONS is sufficiently long as compared to the length of
list TASKS in the beginning of an epoch.

Let list STATIONS be of length n = |STATIONS| at
the beginning of an epoch. The number of phases in this
epoch is at most n. The range of a station consists of the
tasks assigned to the station to perform in the epoch by its
scheduled transmission. All the ranges for an epoch make to-
gether a contiguous interval I on list TASKS, possibly with
repetitions of tasks when the assignment of ranges wraps
around the list. If station v performs its transmission in the
i-th phase of the epoch, then it has performed all i tasks
from its range of the interval I by the transmission. The to-
tal number of such tasks in interval I in the epoch is at most
|I| = ∑n

i=1 i = n(n + 1)/2. An epoch is dense if at its
beginning the inequality n(n + 1)/2 ≥ |TASKS| holds, oth-
erwise the epoch is called sparse. It follows from the def-
inition of sparse and dense epochs, and also from the con-
ditions to terminate an epoch given in Fig. 2, that sparse
versus dense epochs may be characterized by the way they
terminate. Namely, a sparse epoch terminates when point-
ers Transmit traverse the whole list STATIONS and are
moved to the first item on this list. A sparse epoch takes
n phases. A dense epoch terminates when all the tasks on
list TASKS have been covered in the epoch, while pointers

Transmit still have not been moved to the heads of lists
STATIONS. If there are no failures in a dense epoch, then
this epoch suffices to perform all the outstanding tasks and
announce this via the channel, because of the inequality
|I| ≥ |TASKS| defining dense epochs.

3.2 Updating lists

Lists are updated as follows after a scheduled broadcast. If
the broadcast was heard, then the tasks which have been
performed by the broadcasting station are removed from
TASKS, and also moved from lists OUTSTANDING to lists
DONE. If a broadcast was not heard, which indicates a crash,
then the station which failed to broadcast is removed from
list STATIONS. A modification of a pointer for a list is nor-
mally explicitly indicated in a pseudo-code. For instance, af-
ter a successful broadcast, pointer Transmit is advanced
by one position on list STATIONS. An implicit modifica-
tion occurs only when the entry pointed to by the pointer is
removed from the list. In such a case the pointer is automat-
ically set to the item immediately after the removed one on
the list.

Every station v needs to know which tasks have been
performed by the station that performed a broadcast at a
round, say some station w, because v needs to remove these
tasks from its list TASKSv . The pseudo-code in Fig. 2 refers
simply to the list DONEw, where w = Transmit. This
list is private to w but it could be obtained in the follow-
ing two possible ways. First, it could be obtained from w
by a direct broadcast. Station w transmitted anyway so the
message broadcast might have contained the contents of list
DONEw. We choose to perform broadcasts of constant-size
messages, so that they always fit within one round, which
excludes this method. Second, local states of stations can be
simulated since they are common knowledge by Lemma 1.
The approach we use is based on this fact. We have every sta-
tion simulate the behavior of all the remaining stations in its
local memory in a way described in the proof of Lemma 1.
The pseudo-code in Fig. 2 does not include these operations,
in order to have it simple and readable. The information in
Fig. 2 is sufficient, since the operations that a station v per-
forms on the copies of lists of the remaining stations are the
same as those given in this pseudo-code that v performs on
its own lists.

Lemma 3 Algorithm TWO-LISTS is reliable.

Proof A copy of list STATIONS is initialized to the same
sorted list of all stations in every station. The same en-
try from these lists is removed after a missing broadcast.
Hence copies of this list are always the same in all stations.
This property, together with the rule to manipulate pointer
Transmit, assures that both list STATIONS and pointer
Transmit are common knowledge, which guarantees that
at most one station is scheduled to broadcast at a round.

Assume that some station, say, v never crashes. Any
scheduled broadcast of v is always performed by v alone
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and so it is always heard. Station v performs at least one
new task in each phase, which is guaranteed by the first in-
struction of Round 1 in Fig. 2. The performed task is next
placed on list DONEv . It follows that, when a transmission
of station v occurs, list DONEv is longer than during the pre-
ceding broadcast of station v. Therefore all stations remove
at least one entry from their copies of list TASKS between
two consecutive broadcasts of v.

For any task x , station v eventually either performs x
itself or hears about x as performed. When this happens
for every task, then list DONEv contains all the tasks. Now
just one broadcast by v results in all lists TASKS becoming
empty and all stations halting, unless they halted before. ��

The next theorem shows how the efficiency of TWO-
LISTS depends on the number of crashes in an execution.

Theorem 1 Algorithm TWO-LISTS solves Do-All with
work O(t + p

√
t + p min{ f, t}) against the f -Bounded ad-

versary, for any 0 ≤ f < p.

Proof We partition the work performed by the stations into
three parts: failing, mixed and productive. The failing part
comprises two kinds of work. First is the work by all stations
at a phase in which the scheduled transmission is not heard.
Second is the work by a station in the epoch in which the
station crashes. The mixed work is accrued in certain dense
epochs, as will be explained later. The remaining work is
called productive.

If a station crashes in an epoch, then its work in this
epoch equals at most the length of the epoch, which is at
most p. Therefore the failing work is O(p f ). Every station
performs work O(t), because the total number of phases is t .
It follows that the failing work is also O(pt). These two facts
together give the estimate O(p min{ f, t}) on the magnitude
of failing work.

The remaining work is estimated separately in dense and
sparse epochs. Consider sparse epochs first.

Let n = |STATIONS| be the number of stations as-
sumed still operational at the start of a sparse epoch. Ev-
ery station, among these n listed in STATIONS, is assigned
a range which is a segment of interval I disjoint from the
ranges assigned to other stations. This follows from the in-
equality n(n + 1)/2 < |TASKS| defining sparse epochs. A
station, say, v that does not crash in the epoch has its produc-
tive work partitioned into a number of parts for the sake of
accounting. The first part accounts for the work performed
by v by the time of transmission by v in this epoch. This part
is assigned to v itself. The next parts are assigned to these
stations scheduled to broadcast after v in this epoch that sur-
vive past their scheduled times of transmissions. Suppose
v is scheduled to transmit during the i-th phase in the cur-
rent epoch. When the broadcast occurs, then station v has
already performed work 3i in the current epoch. If we addi-
tionally add the work performed in this i-th phase by all the
stations that already performed their transmissions in this
epoch, then this together makes the amount of work at most
3i + 3(i − 1) = 6i − 3. Hence we can assign up to 6 units

of work to every task performed by a station broadcasting
in a sparse epoch. This work is categorized as productive. It
follows that productive work accrued during sparse epochs
is O(t) in total.

Consider next the work performed during dense epochs.
We partition such epochs into two categories. A mixed epoch
has the property that the number of stations failing to broad-
cast in their scheduled rounds is more than half of the num-
ber of all the phases of the epoch. All the work in a mixed
epoch that is not failing is categorized as mixed. Observe that
the amount of mixed work in a dense epoch is not more than
the amount of failing work in the epoch. It follows that the
total work in all mixed dense epochs is O(p min{ f, t}). A
significant dense epoch has the property that at least half of
the stations scheduled to broadcast in the epoch performed
their transmissions. The work accrued during such dense
epochs is counted as productive, unless it is counted as fail-
ing. Next we estimate such work.

Let ti be the length of list TASKS at the beginning of the
i-th significant dense epoch. Then the duration of this epoch
is the smallest positive integer ni with the property that the
inequality

ni (ni + 1) ≥ 2ti (1)

holds. Denote qi = �(ni − 1)/2. There are at least qi suc-
cessful transmissions in the i-th significant epoch. Observe
that the later a failure of a transmission occurs, the more
tasks performed by a station fail to be announced via the
channel. Therefore the number ri of new tasks announced as
performed in the i-th significant dense epoch is at least

qi∑

k=1

k = qi (qi + 1)

2
≥ (

n2
i − 1

)
/4.

Use the inequality

x2 − 1 ≥ x(x + 1)/2 ,

which holds for any integer x ≥ 2. It follows that the in-
equalities

ri ≥ ni (ni + 1)/8 ≥ ti/4

hold, by the estimate (1) for the dense epoch.
We obtain a recursive estimate ti+1 ≤ 3ti/4 on the rate

of decreasing of the terms of sequence 〈ti 〉i≥1. To have a
bound for the first epoch it is sufficient to take the estimate
t1 ≤ t . It follows that the inequality

ti ≤
(

3

4

)i−1

t (2)

holds, for i ≥ 1. There is some constant c > 0 such that
the contribution to productive work of the i-th significant
dense epoch is at most cp

√
ti . This is because the duration of

the epoch is O(
√

ti ). Combine the estimate cp
√

ti with the
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geometric progression of (2) to obtain that all the significant
epochs contribute at most

∑

i≥1

cp
√

ti ≤ cp
∑

i≥1

√
t

(√
3

2

)i−1

= O(p
√

t)

to the productive work.
To summarize, we have shown the following estimates

on work. The amounts of failing and mixed work are
O(p min{ f, t}) each. The amount of productive work is O(t)
in sparse epochs, and it is O(p

√
t) in dense epochs. ��

Next we show a matching lower bound.

Theorem 2 The f -Bounded adversary, for 0 ≤ f < p, can
force any reliable, possibly randomized, algorithm for the
channel without collision detection to perform work

�(t + p
√

t + p min{ f, t}) .

Proof We consider two cases, depending on which term
dominates the bound. If it is �(t + p

√
t), then the bound

follows from Lemma 2. Consider the case when �(p ·
min{ f, t}) determines the magnitude of the bound. Denote
g = min{ f, t}.

Let E1 be the execution obtained by running the
algorithm and crashing any station that wants to broadcast
as a single one during the first g/4 rounds. Denote as A
the set of stations failed in E1. The definition of E1 is con-
sistent with the power of the f -Bounded adversary, since
|A| ≤ g/4 ≤ f .

Claim: No station halts by round g/4 in execution
E1.

Suppose, to the contrary, that some station v halts before
round g/4 in E1. We show that the algorithm is not reliable.
To this end we consider another execution, say, E2 that may
be made to happen by the Unbounded adversary. Let γ be a
task which is performed in E1 by at most

pg

4(t − g/4)
≤ pg

3t

stations, except for station v, during the first g/4 rounds. It
exists because g ≤ t . Let B be this set of stations. The size
|B| of set B satisfies the inequality

|B| ≤ pg

3t
≤ p

3
.

We define operationally a set of stations, denoted C , as fol-
lows. Initially C equals A ∪ B. Notice that the inequality
|A ∪ B| ≤ 7p/12 holds. If there is any station that wants to
broadcast during the first g/4 rounds in E1 as the only sta-
tion not in the current C , then it is added to C . At most one
station is added to C for each among the first g/4 ≤ p/4
rounds of E1, so |C | ≤ 10p/12 < p.

Let execution E2 be obtained by failing all the stations in
C at the start and then running the algorithm. The definition

of E2 is consistent with the power of the Unbounded adver-
sary. There is no broadcast heard in E2 during the first g/4
rounds. Therefore each station operational in E2 behaves in
exactly the same way in both E1 and E2 during the first g/4
rounds. Task γ is not performed in execution E2 by round
g/4, because the stations in B have been failed and the re-
maining ones behave as in E1.

The station v is not failed in E2 and so it performs the
same actions in both E1 and E2. Consider a new execution,
denoted E3. This execution is like E2 till round g/4, then all
the stations, except for v, are failed. The definition of E3 is
consistent with the power of the Unbounded adversary. Sta-
tion v is operational but halted and task γ is still outstanding
in E3 at round g/4. We conclude that the algorithm is not re-
liable. This contradiction completes the proof of the claim.

Let us consider the original execution E1 again. It fol-
lows from the claim that there are at least p − g/4 = �(p)
stations still operational and non-halted in round g/4 in ex-
ecution E1, and they have generated work �(pg) = �(p ·
min{ f, t}) by this round. ��
Corollary 1 Algorithm TWO-LISTS is optimal in asymp-
totic work efficiency, among randomized reliable algorithms
for the channel without collision detection, against the adap-
tive adversary who may crash all but one station.

Proof Combine Theorem 1 with Theorem 2. Both hold for
the adversary who is adaptive and may crash up to p − 1
stations. ��

We show in Sect. 5 that randomization can make a dif-
ference for the channel without collision detection in weaker
adversarial models.

4 Channel with collision detection

In this section we present a deterministic algorithm
GROUPS-TOGETHER for the model with collision detection.
The algorithm is a modification of algorithm TWO-LISTS. It
is structured similarly as a repeat loop, see Fig. 3. One iter-
ation of the loop is again called an epoch; it is given as pro-
cedure EPOCH-GROUPS in Fig. 4. An epoch is structured
as a repeat loop, one iteration of the loop is again called
a phase. A phase consists of three rounds, of which one is
for transmissions. If no transmission occurs in a phase, then
the phase is called silent, otherwise it is called noisy. The
mechanism of collision detection allows to distinguish silent
phases from those in which multiple transmissions are per-
formed.

The availability of collision detection makes the struc-
ture of the algorithm presented in this section differ in two
important aspects from algorithm TWO-LISTS. One is the
approach to possible collisions resulting from simultaneous
transmissions. Algorithm GROUPS-TOGETHER uses simul-
taneous transmissions aggressively as a hedge against faults,
while TWO-LISTS avoids any conflicts for access to the
channel by its design. The other difference is in balanc-
ing the frequency of transmissions of individual stations.



446 B. S. Chlebus et al.

Fig. 3 Algorithm GROUPS-TOGETHER; code for station v

Fig. 4 Procedure EPOCH-GROUPS; code for station v

Algorithm TWO-LISTS allowed for some stations not to
make any transmissions during the whole epoch, when the
epoch was dense. Algorithm GROUPS-TOGETHER makes
every station transmit exactly once during every epoch, in-
cluding dense epochs.

The different approach to dense epochs results from the
availability of collision detection. The algorithm schedules
multiple simultaneous transmissions by groups of nodes in
such a way that when the last group transmits, all the tasks
considered as outstanding in the beginning of the epoch have
been covered in the epoch. When at least one station in a
group survives till the round when the group is scheduled
to transmit, then either a collision or a successful broad-
cast are heard, which means that the phase is noisy. Colli-
sion detection is used to announce progress when many sta-
tions perform the same tasks and transmit simultaneously.
On the other hand, when all the stations in a group crash by
the round when they are scheduled to transmit, then silence
on the channel allows to efficiently detect all these multi-
ple crashes in one round, because silence is distinct from
collision.

Every station maintains four lists. Lists TASKS, DONE
and OUTSTANDING are the same as in Sect. 3. List
STATIONS is replaced by list GROUPS which stores groups
of stations. List GROUPS is rearranged in the beginning of
an epoch and is sorted on the smallest name in group. There
is a pointer Group which points to an entry in list GROUPS.

Lists TASKS and GROUPS are the same in all stations. The
stations in the same group always perform the same tasks
and broadcast simultaneously. When an epoch ends, then the
stations that are in groups on list GROUPS are rearranged
into a new list of groups.

Let n be the smallest number such that inequality n(n +
1)/2 ≥ |TASKS| holds at the beginning of the epoch. If the
number of stations in groups in list GROUPS is at least n,
then the epoch is dense, otherwise it is sparse. Take two sta-
tions on positions i and j , respectively, in the sorted list of
all the stations in groups in list GROUPS at the end of the
previous epoch. They are placed in the same group of the
new list if numbers i and j are congruent modulo n. It fol-
lows that two groups in list GROUPS differ by at most 1 in
their sizes. Initially all stations are considered operational,
and positions are meant to be in the sorted list of all names
of the stations. This allocation of stations means that when
an epoch is sparse, then groups consist of singleton stations,
otherwise some groups contain more than one station. The
stations are partitioned initially into min{�√t�, p} balanced
groups. Ranges are assigned to groups similarly as they are
assigned to individual stations in algorithm TWO-LISTS.
This determines the initial value of pointer Task To Dov

for each station v.
The way the lists are updated after a scheduled broad-

cast depends on whether a broadcast was performed or not,
which is detected by receiving either a message or a signal
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of collision. When a broadcast takes place, then the tasks
performed by the group pointed to by Transmit, which
was just heard on the channel, are removed from TASKS. If
a broadcast did not occur, then all the stations in the group
pointed to by Group are removed from list GROUPS. The
rules for updating pointers are similar as in algorithm TWO-
LISTS. If an item, which is pointed at by the pointer associ-
ated with a list, is removed from the list, then the pointer is
automatically advanced to the following item.

Lemma 4 Algorithm GROUPS-TOGETHER is reliable.

Proof The copy of list GROUPS is initialized to the same
sorted list of all stations in every station. The same entry
from these lists is removed after a missing broadcast. When
an epoch ends, then copies of this list are identical in all sta-
tions, and remain so after they are rearranged. This assures
that both list GROUPS and pointer Transmit are common
knowledge, which guarantees that exactly one group of sta-
tions is scheduled to broadcast at a phase.

Assume that some station, say, v never crashes. Any
scheduled transmission by the group of v is always per-
formed, which results in either a transmission by v or col-
lision heard on the channel. Station v performs at least one
new task in each phase, as specified by the first instruction
of Round 1 in Fig. 4. It follows that all stations remove at
least one entry from their copies of list TASKS between two
consecutive broadcasts of v.

For any task x , station v eventually either performs x
itself or hears about x as performed. This means that even-
tually list DONEv contains all the tasks. Now just one broad-
cast by v results in all stations halting, unless they halted
before. ��
Theorem 3 Algorithm GROUPS-TOGETHER solves Do-All
with the minimal work O(t + p

√
t) against the f -Bounded

adversary, for any f such that 0 ≤ f < p.

Proof We consider sparse and dense epochs separately.
Consider first the sparse epochs of an execution. The amount
of work contributed in such noisy phases is O(t), by an ar-
gument similar to that given in the proof of Theorem 1.

Next consider silent phases in sparse epochs. Let pi de-
note the number of operational stations and ti denote the
number of outstanding tasks in the beginning of the i-th
sparse epoch. We have pi = O(

√
ti ), by the definition of a

sparse epoch. The amount of work contributed by one phase
in the i-th sparse epoch is O(pi ) = O(

√
ti ) = O(

√
t). Si-

lence at a phase is due to all the stations scheduled to trans-
mit at the phase having crashed. No station scheduled to
broadcast in a silent phase is included in list GROUPS of the
next epoch. Hence the total work in sparse epochs during
silent phases is O(p

√
t).

Next consider dense epochs. Let pi denote the number
of operational stations, ti denote the number of outstanding
tasks, and gi denote the number of groups in list GROUPS,
at the beginning of the i-th dense epoch. Observe that gi =
O(

√
ti ) by the definition of dense epoch. Hence the amount

of work during the considered epochs is

O




∑

i≥1

pi × gi



 = O




∑

i≥1

pi × √
ti



 . (3)

Let si be the number of silent phases in the i-th dense epoch.
We consider two cases determined by which of the inequal-
ities si < gi/2 or si ≥ gi/2 holds. In the former case, the
number of tasks announced as performed on the channel is
�(ti ), similarly as in the proof of Theorem 1. It follows that
ti+1 ≤ c1ti , for some constant value c1 < 1. In the latter
case, the number of stations removed from list GROUPS in
the i-th dense epoch it at least the number si multiplied by
the minimum size of a group. The size of a group in the i-th
dense epoch is �(pi/

√
ti ). Hence the number of stations re-

moved from list GROUPS in the i-th considered epoch is

�

(

si × pi√
ti

)

= �

(√
ti × pi√

ti

)

= �(pi ) .

This means that pi+1 ≤c2 pi , for some constant value c2 <1.
Every dense epoch falls into one of the two categories

discussed above. Therefore either the inequality ti+1 ≤ c1ti
holds or pi+1 ≤ c2 pi does. In both cases the estimate

pi+1
√

ti+1 ≤ c3 pi
√

ti

is valid, for c3 = min{c1,
√

c2} < 1. Therefore pi
√

ti ≤
ci−1

3 p1
√

t1, for i > 1, with p1 ≤ p and t1 ≤ t . Plugging in
these estimates into the right-hand side of (3), we obtain

p1
√

t1
∑

i≥1

ci−1
3 = O(p

√
t)

as the estimate on work accrued in dense phases.
To summarize, we showed that noisy sparse epochs con-

tribute O(t) to work and silent sparse epochs contribute
O(p

√
t). Dense epochs contribute O(p

√
t) to work, which

completes the proof. ��
Corollary 2 Algorithm GROUPS-TOGETHER cannot be
beaten in asymptotic work efficiency, by a randomized re-
liable algorithm for the channel with collision detection, in
any adversarial model.

Proof Combine Theorem 3 with Lemma 2. The former
holds for the strongest adversary who is adaptive and may
crash up to p−1 stations. The latter gives a bound that holds
for the weakest adversary who does not fail any station. ��

5 Randomized solutions

Corollary 2 states that randomization does not help against
any adversary to improve efficiency of deterministic solu-
tions for the Do-All problem in the model with collision
detection. What we showed in Sect. 3, about the model
without collision detection, was that randomization does
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Fig. 5 Algorithm MIX-RAND; code for station v

not help against strongly-adaptive size-bounded adversaries.
The lower bound of Theorem 2 relies on the power of such
an adversary. In this section we show that, as far as the chan-
nel without collision detection is concerned, the power of a
size-bounded adversary affects optimal efficiency of deter-
ministic algorithms versus randomized ones.

We present a randomized algorithm MIX-RAND de-
scribed in Fig. 5. It calls algorithm TWO-LISTS at the end. In
particular, the algorithm uses the same lists and pointers as
algorithm TWO-LISTS. The repeat loop of the algorithm is
called moving to front. One iteration of this loop is a phase
of this preprocessing operation. If the name of a station is
heard on the channel during moving to front, then the sta-
tion is said to have been moved to front.

Theorem 4 Algorithm MIX-RAND is reliable.

Proof The algorithm rearranges stations on list STATIONS
and next runs algorithm TWO-LISTS with list STATIONS
in this order. The reliability of algorithm TWO-LISTS does
not depend on the initial ordering of list STATIONS, as long
as this ordering is the same in all the stations. This property
holds because a station is moved to front only after its name
was heard on the channel. ��
Theorem 5 Algorithm MIX-RAND solves Do-All in the
channel without collision detection with the minimal ex-
pected work O(t + p

√
t) against the Weakly-Adaptive

Linearly-Bounded adversary.

Proof An execution starts with choosing some cp stations as
possible to crash at any time, where 0 < c < 1 is a constant.
Call the selected stations simply faulty, since they can crash
at any time. There are cp faulty stations and (1 − c)p non-
faulty ones.

Consider first the case p2 ≤ t . The amount of work
performed by algorithm TWO-LISTS is O(t + p

√
t +

p min{ f, t}) by Theorem 2. If p2 ≤ t , then p = O(
√

t) and
hence f = cp = O(

√
t). Therefore p min{ f, t} = O(p

√
t)

and the work of all stations while running MIX-RAND is
O(t + p

√
t).

Consider next the case p2 > t . The non-faulty stations
moved to front are called helpers. We first show that the

number of helpers in an execution of the algorithm is �(
√

t)
with a large probability.

During moving to front, a successful transmission is
heard at a round with the probability of (1 − 1

n )n−1 > 1/e,
where n is the number of stations that have not been moved
to front and e is the base of the natural logarithm. The
first station moved to front is non-faulty with the probabil-
ity (1 − c). The problem we encounter is that the probabil-
ity that a new helper is moved to front, at a single phase of
moving to front, depends on how many faulty and non-faulty
stations have already been moved to front. In the beginning
of moving, the probability is at least (c − 1)/e. If few non-
faulty stations have been moved to front, then the probabil-
ity of adding a new helper may become larger, while when
many helpers have already been moved, then the probability
may decrease. We estimate these probabilities uniformly de-
pending on whether at least half of all the non-faulty stations
have been moved to front.

Let X be a random variable equal to the number of suc-
cesses in a sequence of �√t� independent Poisson trials,
where the probability si of success at the i-th trial is de-
fined as follows. If the number of non-faulty stations moved
to front by the i-th phase of moving to front is smaller than
(c−1)p/2, then si = (c−1)/(2e), otherwise si = 1. For any
integer k ≤ (c − 1)�√t�/2, the probability that a total of at
least k non-faulty stations are moved to front is not smaller
than the probability of the event X ≥ k.

We use the following Chernoff bound [39] for a sequence
of Poisson trials. If Y is the number of successes, µ is the
expected value and 0 < ε < 1, then the inequality

Pr[Y ≤ (1 − ε)µ] ≤ e−ε2µ/2

holds.
We apply the inequality to variable X . Observe that

the expected value µ of random variable X is at least
(c − 1)�√t�/(2e), to obtain from the Chernoff bound that
the number q of helpers is �(

√
t) with the probability of

at least 1 − e−a
√

t , for some constant a > 0.
Next we consider the amounts of work depending on

whether the event that there are �(t) helpers holds, for some
specific constant in the Omega notation following from the
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Chernoff bound. When the event does not hold, then the
work is O(pt). Suppose that indeed there are �(t) helpers.

When all the helpers are scheduled to broadcast in an
epoch, then the number of tasks announced via the channel
as performed in the epoch is at least q(q + 1)/2 = �(t).
There are O(1) such epochs, hence the total work by the
last such an epoch is O(p

√
t). Consider the first epoch after

these when all the helpers are scheduled to transmit. Sup-
pose that there are still tasks in list TASKS. Starting from
this epoch, only an initial segment of helpers is used in
transmissions.

Observe that the amount of failing work, contributed
in phases when stations moved to front crashed before the
scheduled rounds to transmit, is at most pq = O(p

√
t).

Sparse epochs contribute work that can be charged to O(t),
at phases with successful transmissions, or to failing work at
the remaining phases. The amount of work accrued during
a dense epoch is O(p

√
t). A dense epoch has the minimal

number of tasks announced via the channel as performed
when helpers transmit in the initial segment of the phases in
the epoch, followed by phases contributing to failing work.
When transmissions by helpers make at least half of a dense
epoch, then the number of tasks announced via the channel
is �(t). Otherwise the number of faulty stations interspersed
between the helpers that are removed from STATIONS is
�(q). Since there are q faulty stations between the helpers
and there are t tasks to perform, we obtain that there are
O(1) dense epochs, which contribute the amount of work
that is O(p

√
t). It follows that the total amount of work,

when there are �(
√

t) helpers, is O(t + p
√

t).
The total expected work is thus of order

(1 − e−a
√

t )O(t + p
√

t) + e−a
√

t O(pt) .

This can be further estimated as follows:

O(t + p
√

t) + O(pte−a
√

t )

= O(t + p
√

t) + O(pe−a
√

t+ln t )

= O(t + p
√

t) + O(p),

which is O(t + p
√

t). ��
We show the following general lower bound about

weakly-adaptive adversaries.

Theorem 6 The Weakly-Adaptive f -Bounded adversary
can force any reliable randomized algorithm solving Do-All
in the channel without collision detection to perform the ex-
pected work �(t + p

√
t + p min{ f/(p − f ), t}).

Proof Part �(t+ p
√

t) follows from Lemma 2. We show the
remaining one. Let number g ≤ f be a parameter, we will
set its value later in the proof. Consider the following ex-
periment. The algorithm is run for g rounds and any station
that wants to perform a transmission such that the broadcast
would be successful is failed just before it is to transmit.
Additionally, at round g, a sufficient number of the remain-
ing stations, say, those with the smallest names, is failed to

make the total number of failures by round g equal to ex-
actly g. We define a probabilistic space in which the ele-
mentary events are the sets of names of stations correspond-
ing to sets of size g that can be failed in the experiment.
Let F denote the family of all such elementary events. The
probability Pr(ω) of ω ∈ F is defined to be equal to the
probability of an occurrence of an execution during the ex-
periment in which exactly the stations with names in ω are
failed by round g.

The following equality holds

∑

|A|=p− f

∑

ω∩A=∅
Pr(ω) =

(
p − g

p − f

)

,

where we sum over subsets A ⊆ [p] and elementary events
ω ∈ F , because each Pr(ω) occurs

(p−g
|A|

)
times on the left-

hand side. There are
( p

p− f

)
subsets A ⊆ [p] with |A| =

p − f . Hence there is some C ⊆ [p], with |C | = p − f ,
such that the probability that the names of stations failed in
the experiment are all outside C is at least
(

p − g

p − f

)/(
p

p − f

)

= (p − g)!
( f − g)!

f !
p!

= ( f + 1 − g)( f + 2 − g) · · · (p − g)

( f + 1)( f + 2) · · · p)

=
(

1 − g

f + 1

)(

1 − g

f + 2

)

· · ·
(

1 − g

p

)

≥
(

1 − g

f + 1

)p− f

=
[(

1 − g

f + 1

)( f +1)/g]g(p− f )/( f +1)

≥ 4−g(p− f )/( f +1)

= �(1),

provided g(p − f )/( f + 1) = O(1), which is the case if g
equals g∗ = � f/(p − f )� ≤ f . Let the adversary declare
exactly the stations not in C as prone to failures. Suppose the
algorithm is run for min{g∗, t}/4 rounds and each station not
in C that is to broadcast successfully is failed just before it
attempts to do so. Such an execution is consistent with the
power of the adversary. The event that no message is heard
during min{g∗, t}/4 rounds occurs with the probability that
is �(1).

The number of operational stations is �(p). None of
these stations may halt by round min{g∗, t}/4, because oth-
erwise the algorithm would not be reliable, since this round
occurs earlier than min{ f, t}/4. The expected work in such
an execution is thus of order

�(1)�(p) min{g∗/4, t/4} = �(p min{g∗, t}) ,

which completes the proof. ��
Is there an algorithm that needs to perform only the ex-

pected minimal work against such weakly-adaptive adver-
saries who could fail asymptotically more than a constant
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fraction of the stations? The next fact is an answer to this
question in the negative for certain ranges of the number of
failures f , as related to p and t .

Corollary 3 If f = p(1−o(1/
√

t)) and t = o(p2), then the
Weakly-Adaptive f -Bounded adversary can force any ran-
domized algorithm solving Do-All for the channel without
collision detection to perform the expected amount of work
that is ω(t + p

√
t).

Proof The lower bound of Theorem 6 states that the amount
of work above minimal is �(p min{ f/(p− f ), t}). There are
two cases, depending on which quantity under the minimum
operator is smaller. If t ≤ f/(p − f ), then the amount of
work is �(pt) = ω(t + p

√
t), for p = ω(1) and t = ω(1).

Next consider the other case of f/(p − f ) < t .
Since p − f = o(p/

√
t), the amount of work above

minimal is

p
f

p − f
= ω

(

p f

√
t

p

)

= ω( f
√

t). (4)

Plug in f = p(1 − o(1/
√

t)) into the right-hand side of (4)
to obtain estimates

ω

((

p − o

(
p√
t

))√
t

)

= ω(p
√

t − o(p))

= ω(p
√

t) = ω(t + p
√

t),

by the assumed magnitude p = ω(
√

t) of the number of
stations. ��

6 Conclusion

In this paper we study the Do-All problem in synchronous
networks with a broadcast primitive implemented by the
multiple-access channel. We consider relations among the
following issues: the impact of availability of collision de-
tection, the power of randomization versus deterministic so-
lutions, and specific adversarial models of crashes.

We observe that simple algorithms make it possible for
all stations to maintain common knowledge about crashes
and local states of stations. This knowledge can be referred
to in code of algorithms, which simplifies their design and
exposition, and may be used to save on the amount of infor-
mation sent via the channel.

Most of the previous research on the multiple-access
channel has concerned the issues of stability of protocols
handling dynamically generated packets. There have been
few static algorithmic problems considered, in which the
whole input is provided to the stations in advance. This paper
attempts to demonstrate that studying problems like Do-All
in the distributed environment when broadcasting is imple-
mented by the multiple-access channel provides insights into
properties of this environment that are complementary to
those obtained when studying the stability of handling dy-
namically generated packets.
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