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Abstract. We consider distributed broadcasting in radio net-
works, modeled as undirected graphs, whose nodes have no
information on the topology of the network, nor even on their
immediate neighborhood. For randomized broadcasting, we
give an algorithm working in expected time O(D log(n/D)+
log2 n) in n-node radio networks of diameter D, which is op-
timal, as it matches the lower bounds of Alon et al. [1] and
Kushilevitz and Mansour [16]. Our algorithm improves the
best previously known randomized broadcasting algorithm of
Bar-Yehuda, Goldreich and Itai [3], running in expected time
O(D log n+log2 n). (In fact, our result holds also in the setting
of n-node directed radio networks of radius D.) For determin-
istic broadcasting, we show the lower bound Ω(n log n

log(n/D) ) on
broadcasting time in n-node radio networks of diameter D.
This implies previously known lower bounds of Bar-Yehuda,
Goldreich and Itai [3] and Bruschi and Del Pinto [5], and is
sharper than any of them in many cases. We also give an al-
gorithm working in time O(n log n), thus shrinking – for the
first time – the gap between the upper and the lower bound on
deterministic broadcasting time to a logarithmic factor.

Keywords: Broadcasting – Distributed – Deterministic –
Randomized – Radio network

1 Introduction

A radio network is a collection of transmitter-receiver devices
referred to as nodes. It is modeled as an undirected connected
graph on the set of these nodes. An edge e between two nodes
means that the transmitter of one end of e can reach the other
end. Nodes send messages in synchronous steps (time slots).
In every step every node acts either as a transmitter or as
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a receiver. A node acting as a transmitter sends a message
which can potentially reach all of its neighbors. A node acting
as a receiver in a given step gets a message, if and only if,
exactly one of its neighbors transmits in this step. The message
received in this case is the one that was transmitted. If at least
two neighbors v and v′ of u transmit simultaneously in a given
step, none of the messages is received by u in this step. In this
case we say that a collision occurred at u. It is assumed that the
effect at node u of more than one of its neighbors transmitting
is the same as that of no neighbor transmitting, i.e., a node
cannot distinguish a collision from silence.

Broadcasting is one of basic tasks in network communica-
tion. Its goal is to transmit a message from one node of the net-
work, called the source, to all other nodes. Remote nodes get
the source message via intermediate nodes, along paths in the
network. It is assumed that only nodes that already received the
source message can transmit, i.e., there are no “spontaneous”
transmissions of nodes other than the source. In this paper we
concentrate on one of the most important and widely studied
performance parameters of a broadcasting scheme, which is
the total time, i.e., the number of steps it uses to inform all
the nodes of the network. Broadcasting time is considered as
a function of two parameters of the network: the number n of
nodes, and the radius D, which is the largest distance from the
source to any node of the network. (For undirected graphs, the
diameter is of the order of the radius.)

We consider distributed broadcasting in ad hoc radio net-
works. This means that nodes do not have any a priori knowl-
edge about the topology of the network, nor even on their
immediate neighborhood: the only a priori knowledge of a
node is its own label, and a linear upper bound on the number
of nodes. Broadcasting in ad hoc radio networks was investi-
gated, e.g., in [4,5,7–10].

1.1 Related work

Deterministic centralized broadcasting assuming complete
knowledge of the network was considered in [6], where a
O(D log2 n)-time broadcasting algorithm was given for all
n-node networks of radius D. In [12], O(D + log5 n)-time
broadcasting was proposed. On the other hand, in [1] the au-
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thors proved the existence of a family of n-node networks of
radius 2, for which any broadcast requires time Ω(log2 n).

One of the first papers to study deterministic distributed
broadcasting in radio networks whose nodes have only limited
knowledge of the topology, was [3]. The authors assumed that
nodes know only their own label and labels of their neigh-
bors. Under this scenario, a simple linear-time broadcasting
algorithm based on DFS follows from [2].

Many authors [4,5,7–10] studied deterministic distributed
broadcasting in radio networks under the assumption (also
used in the present paper) that nodes know only their own la-
bel (but not labels of their neighbors). In [7] the authors gave
a broadcasting algorithm working in time O(n) for arbitrary
n-node networks, assuming that nodes can transmit sponta-
neously, before getting the source message. For this model,
a matching lower bound Ω(n) on deterministic broadcasting
time was proved in [15] even for the class of networks of
constant diameter. On the other hand, in [5] a lower bound
Ω(D log n) was proved for n-node networks of radius D, if
spontaneous transmissions are not allowed.

In [7–9,14,11] the model of directed graphs was used.
Increasingly faster broadcasting algorithms working on arbi-
trary (directed) radio networks were constructed, the currently
fastest being the O(n log2 D)-time algorithm from [11]. On
the other hand, in [10] a lower bound Ω(n log D) on broad-
casting time was proved for directedn-node networks of radius
D.

Finally, randomized broadcasting algorithms in radio net-
works were studied, e.g., in [3,16]. For these algorithms, no
topological knowledge of the network was assumed. In [3] the
authors showed a randomized broadcasting algorithm running
in expected time O(D log n + log2 n). In [16] it was shown
that for any randomized broadcasting algorithm and param-
eters D ≤ n, there exists an n-node network of radius D
requiring expected time Ω(D log(n/D)) to execute this algo-
rithm (even if labels of nodes are from the set {1, . . . n}). It
should be noted that the lower bound Ω(log2 n) from [1], for
some networks of radius 2, holds for randomized algorithms
as well.

1.2 Our results

Our main result for randomized broadcasting is an algorithm
working in expected time O(D log(n/D)+log2 n) in n-node
radio networks of radius D. This result holds also for n-node
directed radio networks of radius D, and we carry out the
analysis in this more general setting. This complexity is opti-
mal in view of the lower bounds Ω(log2 n) of Alon et al. [1]
and Ω(D log(n/D)) of Kushilevitz and Mansour [16]. Our
algorithm improves the best previously known randomized
broadcasting algorithm of Bar-Yehuda, Goldreich and Itai [3],
running in expected time O(D log n+log2 n). Our algorithm
is faster, e.g., for radius D ∈ Θ(n/polylog (n)).

Shortly after the conference version of the present paper,
a randomized broadcasting algorithm working in the same
time O(D log(n/D)+log2 n), with high probability, has been
independently presented in [11].

Our main result for deterministic broadcasting is the lower
bound Ω(n log n

log(n/D) ) on broadcasting time in n-node radio
networks of radius D: for any broadcasting algorithm we con-

struct an n-node network of radius Θ(D), on which this al-
gorithm requires time Ω(n log n

log(n/D) ) to broadcast. The two
sharpest lower bounds known previously on deterministic
broadcasting time were: the lower bound Ω(n) from [3,15]
(even for the class of networks with constant radius), and the
lower bound Ω(D log n) from [1,5]. (It should be noted that
the linear lower bound in [3] was incorrectly claimed under the
stronger scenario assuming knowledge of the neighborhood,
but the argument can be modified to correctly prove this lower
bound under our present scenario, cf. [15]).

Our lower bound implies both these results, and is sharper
than any of them, e.g., for D ∈ Θ(n/polylog(n)). The tech-
nique used to prove it is different from both previous lower
bounds. Given any broadcasting algorithm, we construct a net-
work on which it works slowly, by combining two types of ob-
jects: families of sets used for “jamming” potential messages,
and selective families of sets. Jamming is used to be able to
derive lower bounds on broadcasting time from lower bounds
on the size of selective families.

As for upper bounds on deterministic broadcasting time,
the fastest algorithm known to date was the algorithm from
[14], running in time O(n log n log D) and designed for di-
rected networks but working for undirected ones as well. We
construct a faster broadcasting algorithm working in time
O(n log n) for undirected n-node networks. Thus our algo-
rithm is the first to exceed the optimal time by at most a
logarithmic factor, for arbitrary (undirected) networks. To-
gether with our result, the new O(n log2 D)-time algorithm
presented in [11] after the conference version of the present
paper, gives an upper bound O(n · min{log2 D, log n}) on
broadcasting time in undirected radio networks.

In [10], the authors proved a lower bound Ω(n log D) on
deterministic broadcasting time in directed n-node networks
of radius D. More precisely, for any broadcasting algorithm,
they constructed a directed n-node network of radius D, in
which there are edges from all nodes of the ith layer to all
nodes of the (i + 1)th layer (such networks are called com-
plete layered networks, cf. [9]), such that this algorithm re-
quires time Ω(n log D) to broadcast on this network. It was
claimed in [10] that the same argument shows the lower bound
Ω(n log D) on broadcasting time for undirected networks, if
spontaneous transmissions are not allowed. We prove that this
extension is incorrect. Indeed, we construct a broadcasting
algorithm which works in time O(n + D log n) for all undi-
rected complete layered n-node networks of radius D. For all
unbounded D ∈ o(n) this is faster than the claimed lower
bound. Our algorithm is optimal for complete layered net-
works, in view of [5,3].

An interesting corollary of our results is the following:
n-node complete layered networks of radius D are the most
difficult for randomized broadcasting but they are not for de-
terministic broadcasting. Indeed, the lower bound from [16]
on randomized broadcasting time (which is tight in view of our
upper bound) was established for complete layered networks.
On the other hand, in the case of deterministic broadcasting,
the comparison of our upper bound O(n + D log n) for com-
plete layered networks with our lower bound Ω(n log n

log(n/D) )
for arbitrary networks shows that complete layered networks
are not the most difficult to broadcast deterministically, for
some values of D.
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1.3 Model and terminology

We consider networks modeled as undirected connected
graphs whose nodes have distinct labels belonging to the set
{0, 1, ..., r}, where r is linear in the number n of nodes. We
assume that each node knows a priori only its own label and
the parameter r. A distinguished node with label 0 is called
the source. We denote by D the radius of the graph, i.e., the
distance from the source to the farthest node. The jth layer
of a graph is the set of nodes at distance j from the source. A
complete layered network is a graph in which adjacent pairs
of nodes are exactly those from consecutive layers. We adopt
the same definition of broadcasting time, as e.g., in [9,16]. A
broadcasting algorithm works in time t, if every node gets the
source message after at most t steps.

It should be noted that our assumption that nodes know
the parameter r = O(n) such that labels belong to the set
{0, 1, ..., r} is not an insignificant generalization of a stronger
assumption that nodes know n and all labels are from the set
{0, 1, ..., n − 1}. An example of the difference between these
assumptions is the problem of deterministic broadcasting in
the class of networks considered in [3]. In our present model
where each node knows only its own label (and not labels
of neighbors, as in [3]) the difference between the above as-
sumptions can be seen in a rather dramatic way. If all nodes
know n and labels are from the set {0, 1, ..., n−1} then, using
procedure Echo and Algorithm Binary-Selection described in
Sect. 4, it is possible to broadcast in time O(log n) in these
networks. However, if only r is known to nodes, the arguments
from [3,15] show that the lower bound on broadcasting time
for this class of networks is Ω(n).

2 Randomized broadcasting

In this section we design and analyze a randomized broadcast-
ing algorithm whose expected running time on any n-node net-
work of radius D is O(D log(n/D) + log2 n). Our algorithm
is optimal in view of the lower bounds from [1,16].

Although in this paper we consider undirected graphs, this
particular result holds in the more general setting of directed
graphs as well (undirected graphs can be considered as di-
rected with every edge replaced by two directed edges in op-
posite directions). Hence (only in this section) we work in the
directed setting. In this setting D denotes the directed radius,
which is the minimum length of the directed path from the
source to the furthest node.

First suppose that r and D are powers of 2, and that D is
known to all nodes. We will later show how these assumptions
can be removed without changing our result.

We start by presenting the general idea of the algorithm.
It works in O(D) stages, each consisting of log(r/D) + 2
steps. During the first log(r/D)+1 steps of each stage, trans-
mission probabilities of nodes are chosen in such a way that
every node with at most r/D informed in-neighbors gets the
source message with a constant probability. Nodes with many
informed in-neighbors are taken care of in the last step of each
stage. In these steps, transmission probabilities are carefully
constructed to ensure that after x in-neighbors of a node get the
source message (for x > r/D), this node is also informed with
a constant probability, after O(r/x) stages, or, in some cases,

after O((r log r)/x) stages. Our analysis shows that last steps
of O(D) stages are enough to inform all such nodes. This anal-
ysis is significantly complicated by the fact that broadcasting
progress occurs (with high probability) in different time inter-
vals. Notice that nodes do not have to know when broadcasting
starts: although the algorithm works in stages, every node that
gets the source message knows when to start transmissions
and what is the number of its stage.

It should be noted that an algorithm based on proce-
dure Decay from [3] could not be used to obtain optimal
performance because, with high probability, it requires time
Ω(D log n + log2 n). On the other hand, trying to shorten the
length of procedure Decay would not work either, as nodes
with many informed in-neighbors could not be informed fast
with high probability. The novelty and strength of our ap-
proach consists in simultaneous shortening of stage lengths to
log(r/D)+1 steps, and adding only one extra step to each of
them (with a particular corresponding transmission probabil-
ity) in order to handle uninformed nodes with many informed
in-neighbors.

We now define a sequence of probabilities which will be
used in the last step of each stage.An infinite sequence (pi)∞

i=1
of reals from the interval [0, 1] is called universal, if the fol-
lowing conditions hold:

U1. for every j = log(r/D) + 1, . . . , �log r
4 log r �, the se-

quence pi+1, pi+2, . . . , pi+3 D·2j

r

contains at least one

value 1
2j ;

U2. for every j = �log r
4 log r � + 1, . . . , log r, the sequence

pi+1, pi+2, . . . , pi+3 D·2j

r·2�log log r�+1
contains at least one

value 1
2j .

Lemma 1 For sufficiently large r and every D such that
32r2/3 < D ≤ r, there exists a universal sequence.

Proof. For every j = log(r/D) + 1, . . . , �log r
4 log r �, we at-

tach the real 1
2j to every node in level log(2r/2j) of the com-

plete binary tree of depth log D. For every j = �log r
4 log r � +

1, . . . , log r, we attach the real 1
2j to every node in level

log 2r2�log log r�+1

2j of the complete binary tree of depth log D.
Next, starting with nodes in level log D−1, we move reals

from their current locations to leaves, in the following way.
Consider a node v, such that all non-leaf descendants of v
have their assigned reals already moved to leaves. Let z be the
leftmost leaf in the subtree of v which has fewer reals already
moved to it than leaves to the left of it in this subtree (or, let
it be the leftmost leaf in the subtree of v if all leaves hold the
same number of reals). We move the real from v (or, in the case
when v had two reals initially assigned, the smaller of them)
to z. The new real is appended to the end of the sequence of
reals already moved to z.

The total number of reals distributed in the tree is

�log r
4 log r �∑

j=log(r/D)+1

2r

2j
+

log r∑
j=�log r

4 log r �+1

2r2�log log r�+1

2j
≤

≤ 2
2r

2r/D
+ 2

8r log r

r/(2 log r)
= 2D + 32 log2 r < 3D .
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After all moves, these reals are distributed almost evenly
among leaves of the tree (the difference between the num-
ber of reals in different leaves can be at most 1). Hence there
are at most 3 reals in every leaf. Now the sequence (pi)∞

i=1 is
constructed in two further steps. First, all sequences of reals
in leaves are concatenated from left to right. Then copies of
the obtained sequence are infinitely concatenated.

The proof of property U1 of the sequence (pi)∞
i=1 follows

from the fact, that the distances between two consecutive equal
values 1/2j , for j = log(r/D) + 1, . . . , �log r

4 log r �, are at
most

3 · 2 · 2log D−log(2r/2j) =
6D

2r/2j
=

3D · 2j

r
.

The factor 3 is the maximal number of reals in one leaf, the
factor 2 is because a real may be moved to the leftmost or to the
rightmost leaf, and the factor 2log D−log(2r/2j) is the number
of leaves in the subtree of a node in layer log(2r/2j), where
values 1/2j are placed at the beginning of the construction.

The proof of property U2, for j = �log r
4 log r � + 1, . . . ,

log r, is similar to the above - the only difference is replacing
2r/2j by 2r2�log log r�+1

2j .
Notice that the above bounds also hold when we count

distance modulo the length of the string whose copies are
infinitely concatenated. Hence, both U1 and U2 hold after
infinite concatenation. ��

Fix a universal sequence (pi)∞
i=1. We define the following

procedures.

Procedure Stage(D, i)
for l = 0 to log(r/D) do transmit with probability 1

2l

transmit with probability pi

Procedure Randomized-Broadcasting(D)

if D ≤ 32r2/3 then perform Procedure Broadcast from [3]
else

the source transmits

for i = 1 to 4660D do
if node v received source message before Stage(D, i)

then v performs Stage(D, i)

If D ≤ 32r2/3 then Ω(log(r/D)) = Ω(log r)
and Procedure Randomized-Broadcasting(D) works in time
O(D log(n/D) + log2 n), in view of [3]. We now analyze
Procedure Randomized-Broadcasting(D), assuming D >
32r2/3.

Fix a directed graph G = (V, E) with n nodes and radius
D. In what follows, v0 denotes the source. Fix a node v ∈ V
and consider a shortest directed path v0, v1, . . . , vk, where
vk = v. Obviously k ≤ D. Let Pv denote the subgraph of G
including the path v0, v1, . . . , vk, and all in-neighbors of any
vj , for j = 1, . . . , k. For any such node w, we put the edge
(w, vj) in Pv , for j = max{j′ : (w, vj′) ∈ E}. Let dj , for
j = 1, . . . , k, be the in-degree of node vj in Pv . Note that∑k

i=1 di ≤ n.

Let Ei,j , for j < k, be the event that after stage i of Pro-
cedure Randomized-Broadcasting(D) all nodes vj , . . . , vk do
not have the source message, and all nodes vj+1, . . . , vk have
no in-neighbor in Pv having the source message but vj has
such an in-neighbor. Denote by Ei,k the event that vk has the
source message at the end of stage i. Our aim is to show that,
for some constant γ, Pr [ EγD,k ] ≥ 1 − 1/r2. The proof of
this fact is split into a series of lemmas. By definition of Ei,j ,
Pr [ Ei+x,j | Ei,j ] is the probability that, during x stages of
the procedure, the “information front” in Pv does not move
from vj . Lemmas 2, 3 and 4 estimate this probability for dif-
ferent ranges of in-degree dj (notice that x varies depending
on the range of dj). Lemma 6 uses these estimates to show
that information front reaches v in O(D) stages, with high
probability.

Lemma 2 For every j ≤ k, if dj ≤ r/D then

Pr [ Ei+1,j | Ei,j ] < 7
8 .

Proof. Fix an elementary event from Ei,j : an execution of
Procedure Randomized-Broadcasting(D) to the end of stage
i for a fixed random seed . Suppose that at the beginning of
stage i+1, node vj has more than 2l−1 and at most 2l informed
in-neighbors, for some l = 0, . . . , �log dj�. Consider step l
during stage i + 1 (it exists, since l ≤ �log dj� ≤ log(r/D)).
Since no additional in-neighbor of node vj can transmit during
stage i + 1 (if such in-neighbor receives the source message
during stage i + 1 for the first time, it will start transmitting
in stage i + 2), there are still more than 2l−1 and at most
2l in-neighbors of vj having the source message and possibly
transmitting, each with probability 1/2l. If l = 0 then the proof
is obvious: the transmission is successful with probability 1
during step l = 0 in stage i+1. If l = 1 then, with probability
2 · 1

2 · 1
2 = 1

2 , the transmission in step l = 1 in stage i + 1 is
successful. Assume l > 1. The probability that, during step l
of stage i + 1, node vj receives the source message, is at least

x · 1
2l

(
1 − 1

2l

)x−1
> 2l−1 · 1

2l

(
1 − 1

2l

)2l

≥ 1
2

· 1
4

=
1
8

,

where x is the number of in-neighbors of vj in Pv having the
source message at the beginning of stage i + 1. ��

Let dj(x), for integer x ≥ 0, be the number of in-neighbors
of vj having the source message after stage i + x if Ei+x,j , or
equal to r + 1 otherwise.

Lemma 3 For every j ≤ k, if the inequality log r
D < log dj ≤

�log r
4 log r � holds then

Pr
[

E
i+ 6D·2�log dj�

r ,j

∣∣∣ Ei,j

]
<

7
8
.

Proof. Fix an elementary event from Ei,j .
Case 1. dj(0) ≤ r/D. The proof as in Lemma 2.
Case 2. r/D < dj(0) ≤ dj . We prove that for every

positive integer m and log(r/D) < l ≤ �log dj�,

Pr
[
dj

(
m +

3D · 2l

r

)
≤ 2l

∣∣∣ Ei,j , dj(m) > 2l−1
]
<

7
8

. (1)

In the event (Ei,j , dj(m) > 2l−1), in all stages i + m +
1, . . . , i+m+ 3D·2l

r , we have that the number of in-neighbors
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of vj in Pv having the source message is more that 2l−1.
From universality condition U1 (for log dj ≤ �log r

4 log r �),
in this interval of stages there is at least one stage i0 such that
pi0 = 1/2l. We have the inequality

Pr
[

dj

(
m +

3D · 2l

r

)
≤ 2l

∣∣∣ Ei,j , dj(m) > 2l−1
]

≤

≤ Pr
[

dj

(
m +

3D · 2l

r

)
≤ 2l

∣∣∣ Ei,j , E∗
]

,

where E∗ denotes the event:

dj(m) > 2l−1 and dj(m + i0 − 1) ≤ 2l .

We can bound the right-hand side of the above inequality by
the probability of transmission failure to vj during stage i0,
under condition that at the beginning of stage i0 the number of
informed in-neighbors of vj is greater than 2l−1 and at most
2l. This probability is at most 1/8, by the same argument as
in Lemma 2. Hence we proved inequality (1).

Let A be the event that dj(
3D·dj

r ) < r + 1. We define
events Al(m), for l = log(r/D)+1, . . . , �log dj� and positive
integer m, by induction. Fix log(r/D) + 1 ≤ l ≤ �log dj�
and a positive integer m. Assume that Al′(m′), for l′ ≤ l and
m′ < m, are already defined. We define Al(m) as the set
of elementary events in A \ ⋃

l′≤l

⋃
m′<m Al′(m′), such that

2l−1 < dj(m + 1) ≤ . . . ≤ dj(m + 3D·2l

r ) ≤ 2l. It follows,
that for every l and m, events Al(m) are disjoint.

Pr
[

E
i+2 3D·2�log dj�

r ,j

∣∣∣ Ei,j

]
=

= Pr
[ �log dj�⋃

l=log(r/D)+1

⋃
m

Al(m)
∣∣∣ Ei,j

]

≤
�log dj�∑

l=log r
D +1

∑
m

ql,m · Pr [ 2l ≥ dj(m) > 2l−1
∣∣ Ei,j ]

≤ max
log(r/D)+1≤l≤�log dj�

max
m

q′
l,m

<
7
8

,

where

ql,m = Pr
[
dj

(
m+

3D · 2l

r

)
≤ 2l

∣∣∣Ei,j , 2l ≥ dj(m) > 2l−1
]

q′
l,m = Pr

[
dj

(
m +

3D · 2l

r

)
≤ 2l

∣∣∣ Ei,j , dj(m) > 2l−1
]

.

��
Lemma 4 For every j ≤ k, if �log r

4 log r � < log dj ≤ log r

then

Pr
[
E

i+ 6D·2�log dj�
r·2�log log r�+1 ,j

∣∣∣ Ei,j

]
<

7
8
.

Proof. Fix an elementary event from Ei,j .
Case 1. dj(0) ≤ r/D. The proof is similar to that in

Lemma 2.

Case 2. r/D < dj(0) ≤ dj . First we prove that for every
l > �log r

4 log r � and positive integer m,

Pr
[
dj

(
m+

3D · 2l

r · 2�log log r�+1

)
≤ 2l

∣∣∣Ei,j , dj(m) > 2l−1
]
<

7
8

.

The proof is similar to that of inequality (1) in Lemma 3: we
replace 3D·2l

r by 3D·2l

r·2�log log r�+1 and use universality condition
U2 (for l > �log r

4 log r �), instead of U1.

Let A be the event such that dj( 3D·2l

r·2�log log r�+1 ) < r + 1.
We define events Al(m), for l = log(r/D) + 1, . . . , �log dj�
and positive integer m, by induction. Fix log(r/D)+1 ≤ l ≤
�log dj� and a positive integer m. Assume that Al′(m′), for
l′ ≤ l and m′ < m, are already defined. We define Al(m)
as the set of elementary events in A \ ⋃

l′≤l

⋃
m′<m Al′(m′),

such that

2l−1 < dj(m + 1) ≤ . . . ≤ dj

(
m +

3D · 2l

r

)
≤ 2l ,

if log(r/D) < l ≤ �log r
4 log r �, and

2l−1 < dj(m + 1) ≤ . . . ≤ dj

(
m +

3D · 2l

r · 2�log log r�+1

)
≤ 2l

otherwise. It follows, that for every l and m, events Al(m) are
disjoint. Similarly as in Lemma 3 we obtain, that the proba-
bility

Pr
[

E
i+2 3D·2�log dj�

r·2�log log r�+1 ,j

∣∣∣ Ei,j

]

is at most

Pr
[ �log dj�⋃

l=log(r/D)+1

⋃
m

Al(m)
∣∣∣ Ei,j

]

≤ max
m

{
max

log(r/D)<l≤�log r
4 log r �

ql, max
�log r

4 log r �<l≤�log dj�
q′
l

}

<
7
8

,

where

ql = Pr
[

dj

(
m +

3D · 2l

r

)
≤ 2l

∣∣∣ Ei,j , dj(m) > 2l−1
]

q′
l = Pr

[
dj

(
m+

3D · 2l

r2�log log r�+1

)
≤ 2l

∣∣∣Ei,j , dj(m) > 2l−1
]
.

��

Lemma 5 For sufficiently large p ≥ x we have

∞∑
m=48p+1

(
m + x

x

)
·
(7

8

)m

≤ (0.4)p .
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Proof. Using inequalities xx

ex ≤ x! ≤ xx+1

ex , for x ≥ 2, we
obtain

∞∑
m=48p+1

(
m + x

x

)
·
(7

8

)m

≤

≤
∞∑

m=48p+1

(m+x)m+x+1

em+x

xx

ex · mm

em

·
(7

8

)m

=
∞∑

m=48p+1

(m + x) ·
(m + x

x

)x

·
[7
8

·
(
1 +

x

m

)]m

≤
∞∑

m=48p+1

(m + x) ·
(m + x

x

)x

· (0.89)m .

Using the inequality
(

m+x
x

)x ≤ (1.1)m, for m ≥ 48p ≥ 48x,
we finally obtain

∞∑
m=48p+1

(
m + x

x

)
·
(7

8

)m

≤

≤
∞∑

m=48p+1

(m + x) · (1.1)m · (0.89)m

≤ (0.98)48p · (48p + 1) ·
∞∑

m=0

m · (0.98)m

≤ (0.4)p ,

for sufficiently large p. ��

Lemma 6 Pr [ E4660D,k ] ≥ 1 − 1
r2 .

Proof. Let a be a sequence of nodes (vj1 , . . . , vj4660D
), where

(ji)i≤4660D, ji ≤ k, is a non-decreasing sequence of indices.
Let E(a) =

⋂4660D
i=1 Ei,ji . Let b be a sequence (vt1 , . . . , vtu),

where (ti)i≤u, ti ≤ k, is a strictly increasing sequence of
indices. If after deleting all repetitions from a we obtain a
sequence b, we denote this situation by a � b. Let x� = |{vj :
∃i vji = vj ∧ �log dj� = �}| and let nj = |{i : vji = vj}|.

Fix a sequence b as above. Define the following events:

Csmall =
(∣∣∣{i : Ei,ji

∧ dji
≤ r

D

}∣∣∣ > 49D
)
,

C� =
(∣∣∣{i : Ei,ji

∧�log dji
� = �

}∣∣∣>48(x�+2 log r)
6D2�

r

)
,

for every integer log(r/D) < � ≤ �log r
4 log r � ,

C� =
(∣∣∣{i : Ei,ji

∧�log dji
� = �

}∣∣∣>48(x�+2 log r)
6D2�

2r log r

)
,

for every integer �log r
4 log r � < � ≤ log r .

We have

Pr [ ¬E4660D,k |
⋃

a:a�b

E(a) ] ≤

≤ Pr [ Csmall ∪
log r⋃

�=log(r/D)

C� |
⋃

a:a�b

E(a) ] (2)

≤ Pr [ Csmall |
⋃

a:a�b

E(a) ] +

+
log r∑

�=log(r/D)

Pr [ C� |
⋃

a:a�b

E(a) ] .

Indeed, we argue that inequality (2) holds, since the other one
is Boole inequality. Suppose, to the contrary, that ¬E4660D,k

and ¬(Csmall ∪
⋃log r

�=log(r/D) C�). Note that since v0, . . . , vk is
the shortest directed path from the source to node v, and the
inequality

∑k
i=j dj ≤ n holds for Pv , we have

49D +
�log r

4 log r �∑
�=log(r/D)+1

48(x� + 2 log r) · 6D2�

r
+

+
log r∑

�=�log r
4 log r �+1

48(x� + 2 log r) · 6D2l

2r log r

≤ 49D + 48
6D

r

log r∑
�=log(r/D)+1

x� · 2� +

+ 48(2 log r) · 6D

r
· r

log r
+ 48(2 log r)

6D

2r log r
· 2r

≤ 49D + 48 · 3 · 12D

< 4660D ,

which is a contradiction with ¬E4660D,k. Hence the inequal-
ity (2) has been proved.

We now separately estimate Pr [ Csmall | ⋃
a:a�b E(a) ],

and and Pr [ C� | ⋃
a:a�b E(a) ] for two disjoint ranges of

integer �: log(r/D) < � ≤ �log r
4 log r � and �log r

4 log r � <

� ≤ log r.
Estimation of Pr [ Csmall | ⋃

a:a�b E(a) ].
Let xsmall =

∑
l≤log(r/D) xl ≤ D. Using Lemma 2 and

the fact that, for different nodes vj , we consider disjoint parts
of the computation, we have that the probability

Pr
[

Csmall

∣∣∣ ⋃
a:a�b

E(a)
]

=

= Pr
[ ∣∣∣{vji : Ei,ji ∧ dji ≤ r

D

}∣∣∣ > 48D + D
∣∣∣ ⋃

a:a�b

E(a)
]

is at most
D∑

xsmall=1

∞∑
m=48D+1

(
m + xsmall − 1

xsmall − 1

)
·
(7

8

)m

≤

≤ 8 ·
(7

8

)48D+1
+ 48D · 8 ·

(7
8

)48D

+

+
D∑

xsmall=3

∞∑
m=48D+1

(
m + x

x

)
·
(7

8

)m

.
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Using Lemma 5 for p = D and x = xsmall we get

Pr
[

Csmall

∣∣∣ ⋃
a:a�b

E(a)
]

≤ (0.9)48D +
D∑

xsmall=3

(0.4)D

≤ (0.9)48D + D · (0.4)D

≤ (0.45)D ,

for sufficiently large r. (Since we assumed that D > r2/3

in our analysis, and r is sufficiently large, so D is also suffi-
ciently large and we may correctly apply Lemma 5 in the above
derivation.) Since D > 32r2/3 we obtain (0.45)D ≤ 1

3r2 , for
sufficiently large r.

Estimation of Pr [ C� | ⋃
a:a�b E(a) ], for log(r/D) < � ≤

�log r
4 log r �.

Consider � such that log(r/D) < � ≤ �log r
4 log r �. Ap-

plying Lemma 3 and the fact that, for different nodes vj in the
directed path, we consider disjoint parts of the computation,
we have that

Pr [ C� |
⋃

a:a�b

E(a) ] ≤

≤
∞∑

m=48(x�+2 log r)+1

(
m + x� − 1

x� − 1

)
·
(7

8

)m

.

Using Lemma 5 we obtain

Pr [ C� |
⋃

a:a�b

E(a) ] ≤ (0.4)x�+2 log r ≤ 1
2r2 log r

for sufficiently large r.

Estimation of Pr [ C� | ⋃
a:a�b E(a) ], for �log r

4 log r � < � ≤
log r.

Consider � such that �log r
4 log r � < � ≤ log r. Applying

Lemma 4 and the fact that, for different nodes vj in the directed
path, we consider disjoint parts of the computation, we have
that

Pr [ C� |
⋃

a:a�b

E(a) ] ≤

≤
∞∑

m=48(x�+2 log r)+1

(
m + x� − 1

x� − 1

)
·
(7

8

)m

.

Using Lemma 5 we obtain that

Pr [ C� |
⋃

a:a�b

E(a) ] ≤ (0.4)x�+2 log r ≤ 1
2r2 log r

for sufficiently large r.
Finally we get that for sufficiently large r

Pr [ ¬E4660·D,k |
⋃

a:a�b

E(a) ] ≤

≤ Pr [ Csmall |
⋃

a:a�b

E(a) ] +

+
log r∑

�=log(r/D)+1

Pr [ C� |
⋃

a:a�b

E(a) ]

≤ 1
2r2 + log D · 1

2r2 log r
,

which is at most 1
r2 . Since for different sequences b the con-

ditions
⋃

a:a�b E(a) are disjoint, we obtain

Pr [ E4660·D,k ] ≥ 1 − 1
r2 ,

for sufficiently large r. ��
Procedure Randomized-Broadcasting(D)used the follow-

ing extra assumptions: knowledge of D and the assumption
that r and D are powers of 2. Our final algorithm is formu-
lated as follows. Use the upper bound 2�log r� instead of r.
This does not change complexity and permits to use the as-
sumption about r. The assumptions about D are eliminated
using the “doubling technique”, which probes possible values
of D in exponentially increasing jumps.

Algorithm Optimal-Randomized-Broadcasting
for i := 1 to log r do

Procedure Randomized-Broadcasting(2i)

Theorem 1 Algorithm Optimal-Randomized-Broadcasting
performs broadcasting on any n-node network of radius D
in time O(D log(n/D) + log2 n), with probability at least
1 − 1

r , for sufficiently large r.

Proof. Consider an n-node directed graph G of radius D. If
D ≤ 32r2/3, the result follows from [3]. Suppose that D >
32r2/3 and let i = �log D�. By Lemma 6, the probability that
a fixed node v of G does not receive the source message by
stage 4660 · 2i of Procedure Randomized-Broadcasting(2i) is
at most 1/(r2). Hence the probability that some node does not
receive the source message by this stage is at most r · 1

r2 =
1
r . For any j ≤ i the execution of Procedure Randomized-
Broadcasting(2j) takes time O(2j log(n/2j)+log2 n). (recall
that r is linear in n). Hence the total time until Algorithm
Optimal-Randomized-Broadcasting informs all nodes of the
graph, with probability at least 1− 1/r, is O(2i log(n/2i)) =
O(D log(n/D)). ��

The following corollary is a straightforward consequence
of Theorem 1 (by iterating Algorithm Optimal-Randomized-
Broadcasting).

Corollary 1 There exists a randomized algorithm which per-
forms broadcasting on any n-node network of radius D in
expected time O(D log(n/D) + log2 n).

3 The lower bound for deterministic broadcasting

Our main result for deterministic broadcasting is the lower
bound Ω(n log n

log(n/D) ) on broadcasting time in n-node radio
networks of radius D. We first present an intuitive sketch of
the argument. Given a broadcasting algorithm A, we construct,
step-by-step, a network on which this algorithm works slowly.
We use consecutive steps of algorithm A, and assume that par-
ticular nodes got particular messages in given steps. In order to
express this, we use the notion of abstract history of a node,
formally defined below. Intuitively, an abstract history of a
node v at a given step k consists of a sequence of messages
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received by this node until step k. Since the network is not yet
constructed, neighborhoods of some nodes are not determined
by step k, and consequently it is not yet known which abstract
history will become the real one — the one given by algorithm
A running on the final network. We can ensure that, if a given
node had some history of received messages up to a certain
step, then it would behave in a given way. Based on that we
do the next step of the construction of the network, and simul-
taneously define abstract histories of nodes in this step. These
abstract histories are defined so as to prevent nodes in consec-
utive layers of the network from getting any message for a long
time. Layers are of size Θ(n/D), and we are able to prevent
transmissions from layer to layer for time Θ( n

D · log n
log(n/D) ).

This is done using properties of function Jamming (defined
later), and also a lower bound on the size of selective families
from [10]. When the construction is finished, we prove that if
the algorithm A runs on the resulting network then the real
histories of all nodes are identical to the abstract (assumed)
ones, and consequently, nodes of the last layer will indeed fail
to receive the source message for Ω(n log n

log(n/D) ) steps.

3.1 Construction

Fix a deterministic broadcasting algorithm A. For this algo-
rithm, running on any network G = (V, E), we define the
following objects.

Histories and message format. Hk denotes the history of
computation of algorithm A until the end of step k. This is the
set {Hk(v) : v ∈ V }, where Hk(v) is the history of computa-
tion at node v, until the end of step k. For any v and k, Hk(v)
is a sequence of messages (M0(v), M1(v), . . . , Mk(v)). Mes-
sages are defined inductively, as follows. M0(v) is ei-
ther the pair (∅, ∅), called the empty message, or the pair
(0, source message). Ml(v) (for l = 1, . . . , k) is the empty
message if node v did not get any message in step l. Otherwise,
it is a pair consisting of:

• the label of node w from which node v received a message
in step l,

• history Hl−1(w).
Notice that we restrict attention to messages conveying the en-
tire history of the transmitter. If a particular protocol requires
transmitting specific information, the receiver can deduce this
information from the received history, since programs of all
nodes are the same. History Hk(v) containing only empty
messages is called the empty history.

Action function and sets of transmitters. Given algorithm A,
we denote by π(v, Hk−1(v)) the action of node v in step k, if
its history until the end of step k − 1 is Hk−1(v). The values
of the function π can be 1 or 0: if the value is 1, node v is
sending the message (v, Hk−1(v)) in step k, otherwise it is
receiving in step k. Since spontaneous transmissions are not
allowed, we assume that π(v, Hk−1(v)) = 0, if v �= 0 and
Hk−1(v) is the empty history. Under a fixed history Hk−1,
we define the set of neighbors of v transmitting in step k as
follows: Tk(v) = {w ∈ Nv : π(w, Hk−1(w)) = 1}, where
Nv denotes a set of all neighbors of node v.

Abstract objects. Let v ∈ V . An abstract history Ĥk(v) of
node v, is defined as a sequence (M̂0(v), . . . , M̂k(v)) of ab-
stract messages. M̂0(v) = M0(v), and M̂l(v), for l > 0, is
either the empty message or is of the format (w, Ĥl−1(w)),
for some w ∈ V . Notice that, in general, abstract histories and
abstract messages are not necessarily linked to any particular
protocol.

We also define the notion of the abstract action func-
tion π̂(v, Ĥk−1(v)) as an extension of the action func-
tion π described above: if π(v, Ĥk−1(v)) is defined for
some v then π̂(v, Ĥk−1(v)) = π(v, Ĥk−1(v)). Otherwise,
π̂(v, Ĥk−1(v)) = 0. We now define sets of abstract transmit-
ters to node v in step k by the formula: T̂k(v) = {w ∈ Nv :
π̂(w, Ĥk−1(w)) = 1}.

We finally define the procedure Radio. It is used to obtain
an abstract message M̂j(v) in step j, provided that a neighbor-
hood Nv of node v is constructed by step j − 1, and provided
that, for all w ∈ Nv , the abstract histories Ĥj−1(w) are al-
ready defined. This procedure corresponds to the natural way
of receiving messages in radio networks, and hence of form-
ing histories. It is more general in that it concerns arbitrary
abstract objects (more precisely, abstract action functions and
abstract transmitters) which were defined above. The parame-
ters of the procedure are the step j and the receiving node v. It
defines the abstract message M̂j(v) depending on the value of
the abstract function π̂(v, Ĥj−1(v)) and of the set of abstract
transmitters T̂j(v).

Procedure Radio(j, v)

if π̂(v, Ĥj−1(v)) = 1
then M̂j(v) is the empty message

if π̂(v, Ĥj−1(v)) = 0 and |T̂j(v)| �= 1
then M̂j(v) is the empty message

if π̂(v, Ĥj−1(v)) = 0 and T̂j(v) = {w}
then M̂j(v) := (w, Ĥl−1(w))

The following result establishes the lower bound of
Ω( n log n

log(n/D) ) on broadcasting time in n-node networks of ra-
dius D.

Theorem 2 For all parameters n and D ≤ n, and for ev-
ery broadcasting algorithm A, there is an n-node network
GA of radius Θ(D), such that algorithm A requires time
Ω(n log n

log(n/D) ) to complete broadcasting on GA.

In order to prove the theorem, fix a broadcasting algorithm
A, and parameters n, D. We construct the network GA on
which A requires time Ω( n log n

log(n/D) ) to broadcast, proceeding
layer by layer. The construction and the major part of the
analysis is carried out under the assumption that 4

√
n3 < D ≤

n
16 . At the end we show how to handle other values of D.
We may assume that D is even. Otherwise we perform the
construction for n − 1 nodes and even diameter D − 1, and
then we add the nth node as a neighbor of the only node in the
last, already constructed, (D − 1)th layer.

Fix L2i = {i} for i = 0, 1, . . . , D
2 − 1. For every i =

0, 1, . . . , D
2 − 1 we assume that layer L2i+1 is partitioned
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Fig. 1. Network GA used to prove the lower bound for deterministic
broadcasting

into nonempty sets L
′
2i+1 and L∗

2i+1, each of size at most
k = � n

4D �. Notice that 4 ≤ k < 4
√

n/4. Edges in graph
GA are defined to be between the only v ∈ L2i and every
w ∈ L2i+1, and between every w ∈ L∗

2i+1 and the only
v ∈ L2(i+1), for i = 0, . . . , D

2 − 2. Layer LD contains all
nodes outside of any previous layer, all of them attached to all
nodes of L∗

D−1 (see Fig. 1). We denote the family of all such
networks by Cn,D.

The construction proceeds in stages. During stage 0 ≤ i ≤
D
2 − 1, layer L2i+1 is constructed. Let Ri+1 = {1, . . . , n} \⋃i

j=1(L2j ∪ L2j−1). We assume that stage 0 ≤ i < D
2 − 1

ends in step ti, and the following stage-invariant holds:

0. π̂(i, Ĥti(i)) = 1 and π̂(i, Ĥt(i)) = 0, for all t < ti.
1. All layers up to L2i are defined, sets L

′
2j+1 and L∗

2j+1 are
defined and are of size at most k each, for every j < i, and
abstract histories Ĥti(v) are defined for all nodes v.

2. For every v /∈ {0} ∪ ⋃i
j=1(L2j ∪ L2j−1) the abstract

history Ĥti(v) is empty.

Jamming function. Assume that stage-invariant holds for
stage i. Before describing stage i + 1 of the construction,
we define the function (i + 1)-Jamming, which is its main

combinatorial ingredient. This function is used to construct the
next layer of odd number so as to prevent fast transmission to
this layer.

Denote |Ri+1| by m. Notice that m > n/4, by stage-
invariant for stage i. For simplicity, we assume that k is even
and that it divides 2m. In other cases the proof is easy to
modify.

Let {B(p)}k/2
p=1 be a fixed partition of Ri+1 into k/2 blocks

of size |B(p)| = 2m/k. Denote by Bl(p) the pth block after
step l of the construction, B0(p) = B(p). We will construct a
set X such that, after every step l of the construction, |Bl(p)∩
X| = 2 and Bl(p) ⊆ Bl−1(p), for every p ≤ k/2. Sets Bl(p)
have the important property that it is impossible to tell which
of their elements are connected to the previous layer and which
are not. The set X will become layer L2i+1, currently under
construction, depending on sets Bl(p) which shrink as the
algorithm progresses.

Let Al = {p ≤ k/2 : |Bl(p)| ≥ k}. For 1 ≤ l ≤ k log m
8 log k −

1 and for a setYl, we define the function (i+1)-Jammingl(Yl)
which returns either the number 0 (no node from Yl transmits)
, or a node v (v is the only transmitting node from Yl), or the
symbol ⊥ (at least two nodes from Yl transmit).

We first describe the intuitive goal of executing function
(i+1)-Jamming. Suppose that the network GA is defined up
to layer L2i = {i} and node i transmitted the source message
for the first time.

We want to construct:

i) layer L2i+1 ⊆ Ri+1 so that node i will not receive a
message from a single node in L2i+1 fast (in fewer than
�k log(n/4)

8 log k � steps), and also
ii) a subset L∗

2i+1 of L2i+1, such that no single node from
this subset will transmit fast.

To do so, function (i + 1)-Jammingl(Yl) computes an ap-
proximate worst possible “answer” for node i during the lth
step, where set Yl ⊆ Ri+1 is a set of potential transmitters
during step l of stage i + 1. The computation uses sets Bl(p).
This function also modifies sets Bl(p) in a way to preserve
the property that every set X having at least two common el-
ements with every Bl(p) would produce the same answers if
L2i+1 = X . Additionally we require the existence of a block
Bl(p∗) of size at least k 4

√
m to have the possibility of choosing

many suitable sets X such that |X ∩ Bl(p∗)| ≥ 2. This prop-
erty will imply that we can choose a subset L∗

2i+1 of L2i+1
such that no single node in this subset will transmit fast, and
hence node i + 1 will not receive the source message fast.

Function (i + 1)-Jammingl(Yl)

1. For all p ≤ k/2 set Bl(p) := Bl−1(p).
2. We modify sets Bl(p) and define (i + 1)-Jammingl(Yl)

as follows:
A. If there is p0 ∈ Al−1 such that |Bl−1(p0) ∩ Yl| >

2
k · |Bl−1(p0)|, then (i + 1)-Jammingl(Yl) :=⊥ and
Bl(p0) := Bl−1(p0) ∩ Yl. (Notice that |Bl(p0)| ≥ 2.)
If |Bl(p0)| < k then we choose two elements v, w ∈
Bl(p0) and set Bl(p0) := {v, w}.

B. If, for every p ∈ Al−1, the inequality |Bl−1(p)∩Yl| ≤
2
k · |Bl−1(p)| holds, then we set Bl(p) := Bl−1(p)\Yl

for every p ∈ Al−1. For every p ∈ Al−1 such that
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|Bl(p)| < k, we choose two elements v, w ∈ Bl(p)
and set Bl(p) := {v, w}. Then
(a) if |Yl ∩ ⋃

p/∈Al
Bl(p)| = 0

then (i + 1)-Jammingl(Yl) := 0,
(b) if Yl ∩ ⋃

p/∈Al
Bl(p) = {v}

then (i + 1)-Jammingl(Yl) := v,
(c) if |Yl ∩ ⋃

p/∈Al
Bl(p)| > 1

then (i + 1)-Jammingl(Yl) :=⊥.

Using function (i+1)-Jamming, we can formally define
stage i+1 of the construction (see Fig. 2). Below we describe
its intuitive meaning. In part 2, we fix an abstract history based
on the results of function (i+1)-Jamming applied to the set
of abstract transmitters. We will preserve invariant INV (to be
defined later) for a given l. In part 3, assuming that INV holds
for the last value of l in the loop of part 2, we define sets L∗

2i+1

and L
′
2i+1. In part 4, we continue defining the abstract history

until node i+1 (the unique node of layer L2i+2) transmits for
the first time. In part 5, we fix the time of the first transmission
to layer L2(i+1)+1. In part 6, we fix the empty abstract history
at all nodes outside of already constructed layersL0, ..., L2i+2.

3.2 Analysis

We first show that stage i + 1 of the construction is correct,
assuming that stage-invariant holds after stage i. To do this,
we define an invariant INV after each iteration of the loop in
part 2 of stage i+1 of the construction. In Lemma 7 we show
that invariant INV holds. This implies that the assumptions of
part 3 of stage i + 1 of the construction are satisfied.

Suppose l ≤ �k log(n/4)
8 log k �.We say that setX models (i+1)-

Jammingl(Yl), and we denote this fact by X |= (i + 1)-
Jammingl(Yl), if:

X ∩ Yl = ∅ when (i + 1)-Jammingl(Yl) = 0,

X ∩ Yl = {v} when (i + 1)-Jammingl(Yl) = v, and

|X ∩ Yl| ≥ 2 when (i + 1)-Jammingl(Yl) =⊥.

We define the following invariant INV after step l ≤
�k log(n/4)

8 log k � of stage i + 1 of the construction (by “step” we
mean an iteration of the loop in part 2 of this stage, for a given
l):

0. Sets Bl′(p) and values (i+1)-Jammingl′(Yl′), for l′ ≤ l
and p ≤ k/2, are defined; moreover |Bl(p)| ≥ k for all
p ∈ Al, and |Bl(p)| = 2 for p /∈ Al.

1. Bl(p) ⊆ Bl−1(p), for all p ≤ k/2.
2. There exists p ≤ k/2 such that |Bl(p)| ≥ k 4

√
m.

3. Let p∗ ≤ k/2 be any integer such that |Bl(p∗)| ≥ k 4
√

m.
Let X ′ be any set of size k − 2 > 0 such that |X ′ ∩
Bl(p)| = 2 for every p �= p∗. Then, for every nonempty
set X∗ ⊆ Bl(p∗) of size at most k, we have (X ′ ∪X∗) |=
(i + 1)-Jammingl′(Yl′), for all l′ ≤ l.

Lemma 7 The invariant INV holds after every step l ≤
�k log(n/4)

8 log k � of stage i + 1 of the construction.

Proof. The proof is by induction on l. For l = 1 it is obvious,
by definition of B0(p) and the bounds on k. Suppose that after
step l < �k log(n/4)

8 log k � ≤ k log m
8 log k the invariant is satisfied. We

show it for l + 1.
Point 0 of INV holds in view of the invariant after previous

steps, and because all sets which were decreased below k in
function (i + 1)-Jamming are modified to contain exactly
two elements. Notice that all sets Bl+1(p), which have size at
least k at the beginning of step l + 1 of the construction, can
be subsequently decreased by a factor of at most 2/k, hence
they are of size at least 2. Additionally, if the size is below k,
they are again decreased to have size 2.

Point 1 of INV is straightforward.
We now prove point 2 of INV after step l+1. Let lA(p) ≤

l+1 be the number of steps in which point 2.A was applied for
p0 = p during the execution of function (i + 1)-Jamming.
Let lB ≤ l + 1 be the number of steps in which point 2.B was
applied during the execution of function (i + 1)-Jamming.
Clearly,

∑k/2
p=1 lA(p) ≤ k log m

8 log k and lB ≤ k log m
8 log k . Hence there

is p∗ such that lA(p∗) ≤ log m
4 log k . This implies

|Bl+1(p∗)| ≥
(2

k

)lA(p∗)
·
(
1 − 2

k

)lB · |B(p∗)|

≥
(1

k

) log m
4 log k ·

(
1 − 2

k

) k log m
8 log k · 2m

k

≥ 2− log m
4 −2 log m

4 log k +log m−log k

≥ 2log
√

m−log k ,

which is greater than k · 4
√

m = 2log k+ 1
2 log

√
m since log m >

4 log k ≥ 8. This proves point 2 of INV after step l + 1.
We finally prove point 3 of INV after step l + 1. Let

p∗ ≤ k/2 be any integer such that |Bl(p∗)| ≥ k 4
√

m. Let X ′
be any set such that |X ′| = k − 2 > 0 and for every p �= p∗,
|X ′ ∩ Bl+1(p)| = 2. Let X∗ be any nonempty subset of
Bl+1(p∗) of size at most k. We show that (X ′∪X∗) |= (i+1)-
Jammingl′(Yl′), for l′ ≤ l + 1. Observe that Bl+1(p) ⊆ X ′
for every p /∈ Al+1, and X ′ ⊆ ⋃

p	=p∗ Bl+1(p), since

|X ′| = 2 · (k
2 − 1), |X ′ ∩ Bl+1(p)| = 2 for p �= p∗, and

sets Bl+1 are pairwise disjoint. This implies

⋃
p/∈Al+1

Bl+1(p) ⊆ (X ′ ∪ X∗) ⊆
k/2⋃
p=1

Bl+1(p) .

First we show that the above defined sets X ′ and X∗ satisfy
the assumptions of point 3 of INV after step l, which will prove
that (X ′ ∪X∗) |= (i+1)-Jammingl′(Yl′), for l′ ≤ l. Indeed,
since X ′ ⊆ ⋃

p	=p∗ Bl+1(p) and Bl+1(p) ⊆ Bl(p) ⊆ B(p),
we have X ′ ∩Bl+1(p) = X ′ ∩Bl(p) for every p �= p∗. Hence
the condition |X ′ ∩ Bl+1(p)| = 2 implies |X ′ ∩ Bl(p)| = 2,
for every p �= p∗. Additionally X ⊆ Bl+1(p∗) ⊆ Bl(p∗), and
|Bl(p∗)| ≥ k 4

√
m. By INV after step l we have (X ′ ∪ X∗) |=

(i + 1)-Jammingl′(Yl′), for l′ ≤ l.
In order to conclude the proof of point 3 of INV after step

l + 1, it is sufficient to show that Yl+1 ∩ (X ′ ∪ X∗) is the
empty set if (i + 1)-Jammingl+1(Yl+1) = 0, equals {v} if
(i + 1)-Jammingl+1(Yl+1) = v, and is of size at least two if
(i + 1)-Jammingl+1(Yl+1) =⊥.

Suppose that (i + 1)-Jammingl+1(Yl+1) = 0. Hence
point 2.B.a was applied in step l + 1 during the execution of
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1. Set l := 0
2. Iterate � k log(n/4)

8 log k
� times

• l := l + 1;
• define set Yl := {v ∈ Ri+1 : π̂(v, Ĥti+l−1(v))=1};
• perform function (i + 1)-Jammingl(Yl);
• for any node v ∈ Ri+1, if π̂(i, Ĥti+l−1(i)) = 1 and π̂(v, Ĥti+l−1(v)) = 0 then define M̂ti+l(v) := (i, Ĥti+l−1(i)). Otherwise

define M̂ti+l(v) to be the empty message;
• for v = i, define M̂ti+l(i) as

– (w, Ĥti+l−1(w)), if π̂(i, Ĥti+l−1(i)) = 0 and there is a unique w ∈ L∗
2i−1 such that

π̂(w, Ĥti+l−1(w)) = 1, and
(i + 1)-Jammingl(Yl) = 0;

– (w, Ĥti+l−1(w)), if π̂(i, Ĥti+l−1(i)) = 0 and there is w ∈ Ri+1 such that
w = (i + 1)-Jammingl(Yl), and
for every node w′ ∈ L∗

2i−1 we have π̂(w′, Ĥti+l−1(w′)) = 0;
– the empty message in other cases;

• for v ∈ ⋃i−1
j=0(L2j ∪ L2j+1), define M̂ti+l(v) using Radio(ti + l, v)

• for other nodes v, define M̂ti+l(v) as the empty message.

3. Consider sets Bl(p) defined in the last execution of function (i + 1)-Jamming. Let p∗, X ′, X∗ be such that:

• |Bl(p∗)| ≥ k 4
√

m,
• |X ′ ∩ Bl(p)| = 2, for p 	= p∗, and |X ′| < k,
• X∗ ⊆ Bl(p∗) is such that |X∗| ≤ k and X∗ is a witness that the family of sets {Yl′ ∩ Bl(p∗)}l

l′=1 (defined for set Ri+1) is not a
(|Bl(p∗)|, k)-selective family.

(The existence of these objects will follow from invariant INV holding in part 2.)
Define sets L

′
2i+1 := X ′ and L∗

2i+1 := X∗.
4. Iterate until π̂(i + 1, Ĥti+l(i + 1)) = 1

Set l := l + 1
• for v = i + 1, define M̂ti+l(v) as (w, Ĥti+l−1(w)), if there is a unique w ∈ L∗

2i+1 such that π̂(w, Ĥti+l−1(w)) = 1, and as the
empty message otherwise;

• for v ∈ ⋃i
j=0(L2j ∪ L2j+1) \ {i + 1}, define M̂ti+l(v) using Radio(ti + l, v);

• for other nodes v, define M̂ti+l(v) as the empty message.

5. Set ti+1 := ti + l
6. For every node v ∈ Ri+2 and step 0 ≤ l′ ≤ ti+1, define Ĥl′(v) as the empty history.

Fig. 2. Description of stage i + 1 of the recursive construction of network GA.

function (i + 1)-Jammingl+1(Yl+1). It follows that Yl+1 ∩
Bl+1(p) = ∅ for every p. In this case Yl+1 ∩ (X ′ ∪ X∗) ⊆
Yl+1 ∩ ⋃

p Bl+1(p) = ∅.
Suppose that (i + 1)-Jammingl+1(Yl+1) = v. Hence

point 2.B.b was applied in step l + 1 during the execution of
function (i + 1)-Jammingl+1(Yl+1). It follows that Yl+1 ∩⋃

p Bl+1(p) = {v}. Moreover Yl+1 ∩ Bl+1(p) = {v} for the
unique p = pv , and additionally Bl+1(pv) has size 2. Hence
Bl+1(pv) ⊆ X ′ and

Yl+1 ∩ (X ′ ∪ X∗) ⊇ Yl+1 ∩ Bl+1(pv) = {v}
Yl+1 ∩ (X ′ ∪ X∗) ⊆ Yl+1 ∩

⋃
p

Bl+1(p) = {v} .

Suppose that (i + 1)-Jammingl+1(Yl+1) =⊥. Hence ei-
ther point 2.A or point 2.B.c was applied in step l + 1 dur-
ing the execution of function (i + 1)-Jammingl+1(Yl+1).
First consider the case when point 2.A was applied. Hence
Bl+1(p0) ⊆ Yl+1, which implies that the set Yl+1 ∩ (X ′ ∪
X∗) ⊇ Bl+1(p0) ∩ (X ′ ∪ X∗) is of size at least 2. Finally,
consider the case when point 2.B.c was applied. Then the set
Yl+1 ∩ (X ′ ∪ X∗) ⊇ Yl+1 ∩ ⋃

p/∈Al+1
Bl+1(p) is of size at

least 2. This completes the proof of (X ′ ∪ X∗) |= (i + 1)-
Jammingl+1(Yl+1). ��
Lemma 8 The stage-invariant is satisfied after every stage
i ≤ D

2 − 1.

Proof. The proof is by induction on i. For i = 1 it is obvious.
Suppose that the stage-invariant holds for i < D

2 −1. We show
it for i + 1.

During the execution of point 2 of stage i+1, the abstract
history of node i+1 is empty. During the execution of point 4
of stage i + 1 the condition π̂(i + 1, Ĥti+l(i + 1)) = 0 holds,
for ti + l < ti+1. This proves point 0 of the stage-invariant.

Abstract histories are defined for all nodes. We need to
prove that sets L

′
2i+1 and L∗

2i+1 are defined. This follows from
Lemma 7 and, more precisely, from point 3 of INV after step
�k log(n/4)

8 log k � in the execution of point 2 of stage i + 1.

The fact that, for every v outside of {0} ∪ ⋃i+1
j=1(L2j ∪

L2j−1), the abstract history Ĥti+1(v) is empty, follows from
the definition of histories in points 2, 4 and 6 during stage i+1
of the construction. ��
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From stage-invariant point 1, for D
2 − 1, from Lemma 8,

and from the definition of layer LD it follows that network
GA is well defined.

The following lemma states that abstract and actual histo-
ries at all nodes are identical for a large number of steps.

Lemma 9 For every node v of GA and every step l ≤ (D
2 −

1) · (�k log(n/4)
8 log k �), we have Hl(v) = Ĥl(v), where Hl is the

history yielded by the run of algorithm A on network GA.

Proof. The proof is by induction on l. For l = 0 all histories
and abstract histories are empty, except for node 0. H0(0) =
Ĥ0(0) = (0, source message).

Suppose that Hl(v) = Ĥl(v) for every node v. We will
show that Hl+1(v) = Ĥl+1(v), for every node v, by proving
that M̂l+1(v) = Ml+1(v).

First suppose that step l + 1 occurs during the execution
of point 2 of some stage i + 1 ≤ D/2 − 1.

• For v ∈ Ri+1 we defined M̂l+1(v) as (i, Ĥl(i)) if
π̂(i, Ĥl(i)) = 1 and π̂(v, Ĥl(v)) = 0, and as the empty
message otherwise. Notice that if v ∈ Ri+1 \ L2i+1 then
M̂l+1(v) is the empty message by point 6 of the con-
struction, and also Ml+1(v) is the empty message since
Hl(i + 1) = Ĥl(i + 1) is the empty history and node v
belongs to the layer with index larger than 2i + 2.
Assume that v ∈ L2i+1. First consider the case when
π̂(i, Ĥl(i)) = 1 and π̂(v, Ĥl(v)) = 0. Then M̂l+1(v) =
(i, Ĥl(i)). Consequently, we have π(i, Hl(i)) = 1 and
π(v, Hl(v)) = 0 by the inductive assumption and by prop-
erties of function π̂. Moreover, Hl(i + 1) = Ĥl(i + 1) is
the empty history by the stage-invariant after stage i and
by the definition of M̂l′(i + 1) for ti < l′ ≤ l, hence
π(i+1, Hl(i+1)) = 0. This proves Ml+1(v) = (i, Hl(i))
in this case.
Now suppose that π̂(i, Ĥl(i)) = 0 or π̂(v, Ĥl(v)) = 1.
This implies that π(i, Hl(i)) = 0 or π(v, Hl(v)) = 1.
If π(i, Hl(i)) = 0 then, by the fact that Hl(i + 1) is the
empty history, we have π(i+1, Hl(i+1)) = 0, and conse-
quentlyMl+1(v) is the empty message. Ifπ(v, Hl(v)) = 1
then Ml+1(v) is also the empty message. Hence it equals
M̂l+1(v)

• For v = i we defined M̂l+1(i) as
– (w, Ĥl(w)), if π̂(i, Ĥl(i)) = 0 and there is a unique

w ∈ L∗
2i−1 such that π̂(w, Ĥl(w)) = 1 and (i +

1)-Jammingl+1−ti
(Yl+1−ti

) = 0. It follows from
Lemma 7, that invariant INV holds for X

′
= L

′
2i+1

and X∗ = L∗
2i+1 after �k log(n/4)

8 log k � steps in point 2 of
stage i + 1 . This implies that L2i+1 ∩ Yl+1−ti = ∅.
By the inductive assumption about histories, we ob-
tain that no node in L2i+1 transmits in step l + 1
of algorithm A. On the other hand, by the inductive
assumption, w is the unique node in L∗

2i−1 which
transmits in step l + 1 of algorithm A. Consequently
Ml+1(i) = (w, Hl(w)) = (w, Ĥl(w)).

– (w, Ĥl(w)), if π̂(i, Ĥl(i)) = 0 and there is w ∈ Ri+1
such that w = (i + 1)-Jammingl+1−ti(Yl+1−ti) and
for every w′ ∈ L∗

2i−1 we have π̂(w′, Ĥl(w′)) = 0.

Similar arguments as in the previous case show, that w
is the unique node in L2l+1 which transmits in step l+1
of algorithm A, and no node in L∗

2i−1 transmits in this
step. Hence Ml+1(i) = (w, Hl(w)) = (w, Ĥl(w)).

– the empty message in other cases. First note that if
π̂(i, Ĥl(i)) = 1 then, by the inductive assumption,
π(i, Hl(i)) = 1, and consequently Ml+1(i) is the
empty message. Suppose that π̂(i, Ĥl(i)) = 0. If
(i+1)-Jammingl+1−ti

(Yl+1−ti
) =⊥ then, similarly

as above, at least two nodes from L2i+1 transmit in step
l + 1 of algorithm A, and then Ml+1(i) is the empty
message.
If (i + 1)-Jammingl+1−ti(Yl+1−ti

) = w but there
is a node w′ ∈ L∗

2i−1 such that π̂(w′, Ĥl(w′)) =
1 then, by the inductive assumption, we have also
π(w, Hl(w)) = 1 and π(w′, Hl(w′)) = 1. Conse-
quently, Ml+1(i) is the empty message. Finally, if
(i + 1)-Jammingl+1−ti(Yl+1−ti) = 0 but |Tl+1 ∩
L∗

2i−1| �= 1, then Ml+1(i) is also the empty message.

• For v ∈ ⋃i−1
j=0(L2j ∪ L2j+1) we defined M̂l+1(v) using

Radio(l + 1, v). By properties of procedure Radio and
the inductive assumption, we obtain that Ml+1(v) is equal
to M̂l+1(v).

• For all other nodes v we defined M̂l+1(v) as the empty
message. We have just proved that Hl(i + 1) is the empty
history and consequently π(i + 1, Hl(i + 1)) = 0. If v is
different from i + 1, then it is in a layer with index larger
than 2i + 2, and we conclude that Hl+1(v) is the empty
history.
It remains to consider the case v = i + 1, which is more
dificult. We show that Ml+1(i + 1) is the empty mes-
sage. We have just proved that Hl(i + 1) is the empty
history. It follows that every neighbor from L2i+3 of node
i + 1 has also the empty history after step l and hence
does not transmit in step l + 1. Consider neighbors in
L∗

2i+1. This set was defined after the end of point 2 of
stage i+1, considering abstract histories of nodes in block
B

ti+
 k log(n/4)
8 log k �(p

∗) ⊆ Ri+1. By definition, in step l such

that ti < l ≤ ti + �k log(n/4)
8 log k �, the set {w ∈ L∗

2i+1 :

π̂(w, Ĥl(w)) = 1} is of size different from 1. In view of
the equality Ĥl(w) = Hl(w) and of the definition of func-
tion π̂, we obtain |{w ∈ L∗

2i+1 : π(w, Hl(w)) = 1}| �= 1,
and consequently Ml+1(i + 1) is the empty message.

Now suppose that step l + 1 occurs during the execution
of point 4 of some stage i + 1 ≤ D/2 − 1.

• For v = i + 1, M̂l+1(v) was defined as (w, Ĥl(w)), if
there is a unique w ∈ L∗

2i+1 such that π̂(w, Ĥl(w)) = 1,
and as the empty message otherwise. In the first case we
have also π(w, Hl(w)) = 1, for other nodes z ∈ L∗

2i+1
we have π(z, Hl(z)) = 0, and for nodes z ∈ L2i+3 we
have π(z, Hl(z)) = 0, in view of Ĥl = Hl and becsuse
Ĥl(z) is the empty history for every z ∈ ⋃D/2−1

j=i+1 (L2j+1∪
L2j+2). Hence Ml+1(v) = (w, Hl(w)) = (w, Ĥl(w)). In
the second case similar arguments show that Ml+1(v) is
the empty message.
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• For v ∈ ⋃i
j=0(L2j ∪L2j+1)\{i+1}, we defined M̂l+1(v)

using Radio(l + 1, v). By the formulation of procedure
Radio(l + 1, v) and by the inductive assumption Ĥl =
Hl, we obtain the required equality.

• For other nodes v, we defined M̂l+1(v) as the empty mes-
sage. In this case v is in a layer with index larger than
2(i+1). By the stage-invariant (cf. Lemma 8), after stage
i + 1 we know that π̂(i + 1, Ĥl(i + 1)) = 0. Conse-
quently, by the inductive assumption Ĥl = Hl, we obtain
π(i + 1, Hl(i + 1)) = 0. Hence Ml+1(v) is the empty
message. ��
Proof of Theorem 2. For D > n

16 , the result holds in view

of the lower bound Ω(D log n) proved in [5]. For D ≤ 4
√

n3,
the result follows from the lower bound Ω(n) from [3] (correct
under our scenario), cf. also [15]. Hence it is sufficient to
consider the case 4

√
n3 < D ≤ n

16 , for which the previous
construction was made.

Every layer of graph GA is well defined in view of
Lemma 8. The graph contains all nodes from 0 to n and has
radius D. Node D

2 − 1 in layer LD−2 does not transmit be-

fore step
(

D
2 − 1

) · �k log(n/4)
8 log k � of algorithm A, in view of

Lemma 8 and Lemma 9. Hence algorithm A requires time
Ω(n log n

log(n/D) ) to broadcast on graph GA. ��

4 Deterministic broadcasting algorithms

4.1 Simulating collision detection

Our algorithms in Sect. 4.2 use a technique of simulating col-
lision detection which is not a priori available in our model.
We introduced this technique in [13]. Consider a node v which
already has the source message, a set A of neighbors of v, and
a distinguished neighbor w �∈ A. Our goal is to let the the node
v distinguish whether A has 0,1, or more than 1 element. This
can be done using the following 2-step procedure:

Procedure Echo(w, A)
Step 1. Every node in A transmits its label.
Step 2. Every node in A ∪ {w} transmits its label.

There are 3 possible effects of Procedure Echo(w, A) at
node v:

Case 1. v receives a message in step 1 and no message in step
2. In this case v knows that A has 1 node and knows the
label of this unique node.

Case 2. v receives no message in step 1 and receives a mes-
sage (from w) in step 2. In this case v knows that A is
empty.

Case 3. v receives no message in either step. In this case v
knows that A has at least 2 nodes.

Suppose that node v knows one of its neighbors w. Denote
by S a set of neighbors of v different from w. Suppose that v
also knows that some nodes in S have labels at most m, where
m is a power of 2. Then Procedure Echo can be used by v to
select one neighbor from S in time O(log m). This is done by
the following algorithm:

Algorithm Binary-Selection
Time steps are divided into segments of length 3. In
the first step of each segment, node v transmits a
range R of labels, and orders the execution of Pro-
cedure Echo(w, R ∩ S) during the last two steps of
the segment. In the first segment, R := {1, ..., m/2}.
If a range R = {x, ..., y} is transmitted in a given
segment, the range to transmit in the next segment
is chosen according to the three possible effects of
Echo(w, R ∩ S), described above. In case 1, a sin-
gle neighbor from S is selected. In case 2, R :=
{y + 1, . . . , y + (y − x + 1)/2}. In case 3, R :=
{x, . . . , (y + x − 1)/2}.

4.2 Algorithms for arbitrary networks

We present an algorithm working in time O(n log n) for arbi-
trary n-node networks. The algorithm is based on a DFS visit
of all nodes of the network by a token, where the next node to
visit is chosen using Algorithm Binary-Selection.

Algorithm Select-and-Send

1. In the beginning the token is at node 0 (the source). In step
1 the source sends a message ordering its neighbor with
label i to transmit a message in step 2i, for all i > 0. After
receiving the first message in step 2j the source sends a
message in step 2j+1 ordering to stop this procedure, and
sends the token to node with label j.

2. For v �= 0, parent(v) denotes the node from which v got
the token for the first time. At each step, V denotes the
set of nodes already visited by the token. If the token is at
node v, S denotes the set of neighbors of v outside V .
If the token is at node v �= 0, this node sends the
source message (which results in waking up all neighbors
and allowing them to transmit), and initiates Procedure
Echo(parent(v), S). If the token is at node 0 (after step
1), this node calls Procedure Echo(j, S). Depending on
the outcome of this procedure, node v acts as follows:
• If |S| = 0 and v �= 0 then v sends the token to

parent(v) and stops.
• If |S| = 0 and v = 0 then v stops.
• If |S| = 1 then v sends the token to the unique node

in S.
• If |S| > 1 then v initiates Procedure

Echo(parent(v), S∩[1, ..., 2k]), for k = 1, 2, ..., un-
til S ∩ [1, ..., 2k] is nonempty. (If v = 0, Procedures
Echo(j, S ∩ [1, ..., 2k]) are used instead). Then v se-
lects one neighbor w in S ∩ [1, ..., 2k] using Algorithm
Binary-Selection. v sends the token to w.

Theorem 3 Algorithm Select-and-Send performs broadcast-
ing in any n-node network in time O(n log n).

Proof. The algorithm sends a token equipped with the source
message from one node at a time, hence no collisions can oc-
cur during this sending. Since the token visits all nodes in a
DFS manner, all nodes get the message. The only difficulty
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is the selection of exactly one unvisited neighbor of the cur-
rently visited node: this node will receive the token next. In the
beginning, when the token starts at the source, this selection
is done by reserving a different time unit for each possible
neighbor and waiting for the lowest-labeled neighbor to reply.
In the remaining steps of the algorithm the selection is done us-
ing Algorithm Binary-Selection. Hence exactly one unvisited
neighbor of the current node can be selected whenever such a
node exists. Consequently the DFS traversal of the graph by
the token can be performed which proves that the algorithm is
correct.

The complexity of the algorithm can be computed as fol-
lows. Part 1 takes time O(n), because the upper bound r on
all labels is linear in n. In part 2, selecting a new node takes
O(log n) calls of Procedure Echo, and additionally, every
node can make at most one call of this procedure resulting in
an empty set S. Thus the total number of calls of Procedure
Echo is O(n log n). Consequently, the algorithm works in
time O(n log n). ��

Observe that repeated use of the round-robin scheme gives
a broadcasting algorithm working in time O(nD) which is
faster than O(n log n) for very small D. Interleaving both
algorithms, we get broadcasting in time O(n min(D, log n)),
in any n-node network of radius D.

4.3 Broadcasting in complete layered networks

Let Li denote the ith layer of a network. A complete layered
(undirected) network of radius D is a network G = (V, E),
such that E = {{x, y} : ∃i < D (x ∈ Li, y ∈ Li+1)}. A
directed version of this notion is simply obtained by replacing
undirected edges {x, y} by directed edges (x, y).

In [10] the authors constructed, for any broadcasting algo-
rithm, a directed n-node complete layered network of radius
D, such that this algorithm requires time Ω(n log D) to broad-
cast on this network. This implies the lower bound Ω(n log D)
on broadcasting time in directed n-node networks of radius D.
It is claimed in [10] that the same argument shows the lower
bound Ω(n log D) on broadcasting time for undirected net-
works, if spontaneous transmissions are not allowed. Unfor-
tunately, this claim is incorrect. Indeed, we construct a broad-
casting algorithm which works in time O(n + D log n) for
all undirected complete layered n-node networks of radius
D, even if spontaneous transmissions are not allowed. For all
unbounded D ∈ o(n) this is faster than the claimed lower
bound.

Algorithm Complete-Layered

The algorithm works in phases. In phase 1 the source
first sends the source message and orders its neighbor
with label i to transmit a message in step 2i, for i > 0.
After receiving the first message in step 2j the source
sends a message in step 2j + 1 ordering to end this
phase.
We preserve the following invariant after phase k,
where k ≥ 1.
• All nodes of layers Li, for i ≤ k got the source

message and know their layer number.

• A node vi ∈ Li is selected, for all i ≤ k, node vi

knowing vi−1. v0 is the source and v1 = j.
• All nodes in layers Li, for i ≤ k −2 have stopped.

In phase k +1, node vk first sends the source message
(waking up all nodes in Lk+1). Then it initiates Pro-
cedure Echo(vk−1, S), where S is the set of neigh-
bors of vk which obtained the source message in the
previous step (these are all nodes in Lk+1). If the out-
come of this procedure is |S| = 0 (this means that
D = k) then node vk sends a message ordering all
of its neighbors to stop and stops itself. Otherwise, vk

initiates Procedure Echo(vk−1, S ∩ [1, ..., 2p]), for
p = 1, 2, ..., until S ∩ [1, ..., 2p] is nonempty. Then vk

selects one neighbor vk+1 in S ∩ [1, ..., 2p] using Al-
gorithm Binary-Selection. After being selected, vk+1
knows the identity of vk. Finally, node vk orders all of
its neighbors in Lk−1 to stop. This terminates phase
k + 1. The invariant is preserved.

Notice that the lower bound Ω(D log n) from [5] holds
even for the class of complete layered networks. The lower
bound Ω(n) holds even for the class of complete layered net-
works of radius 2 [3,15]. (It should be noted that the latter
bound holds only under our scenario where nodes do not know
their neighborhood). Hence our algorithm is optimal for the
class of complete layered networks.

Theorem 4 Algorithm Complete-Layered performs broad-
casting in an arbitrary n-node complete layered network of
radius D, in time O(n + D log n).

Proof. The correctness of the algorithm is straightforward.
Phase 1 takes time O(n) and each of the subsequent D − 1
phases takes time O(log n). ��

5 Conclusion and open problems

We considered broadcasting time in undirected radio net-
works of unknown topology. We proved the upper bound
O(D log(n/D) + log2 n) for randomized broadcasting (it
also holds in the more general setting of directed graphs).
This closes the gap on randomized broadcasting time, in
view of the lower bounds of Alon et al. [1] and Kushile-
vitz and Mansour [16]. For deterministic broadcasting time,
a small gap still remains. In this paper we obtained the
best lower bound Ω(n log n

log(n/D) ) known to date. As for the
best upper bound, the O(n log n)-time algorithm obtained
in this paper, together with the recent result from [11], give
O(n · min{log2 D, log n}). Closing the gap between these
bounds is an interesting open problem.
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ministic radio broadcasting, Proc. 27th Int. Coll. on Automata,
Languages and Programming (ICALP’2000), 717–728

9. M. Chrobak, L. Ga̧sieniec and W. Rytter, Fast broadcasting and
gossiping in radio networks, Journal of Algorithms 43 (2002),
177–189

10. A.E.F. Clementi, A. Monti and R. Silvestri, Selective families,
superimposed codes, and broadcasting on unknown radio net-
works, Proc. 12th Ann. ACM-SIAM Symposium on Discrete
Algorithms (SODA’2001), 709–718

11. A. Czumaj and W. Rytter, Broadcasting algorithms in radio net-
works with unknown topology, Proc. 44th Ann.Symposium on
Foundations of Computer Science (FOCS’2003), 492–501

12. I. Gaber and Y. Mansour, Centralized broadcast in multihop
radio networks, Journal of Algorithms 46(1) (2003), 1–20

13. D. Kowalski and A. Pelc, Time of deterministic broadcasting in
radio networks with local knowledge, SIAM Journal on Com-
puting 33 (2004), 870–891

14. D. Kowalski and A. Pelc, Faster deterministic broadcasting in
ad hoc radio networks, SIAM Journal on Discrete Mathematics
18 (2004), 332–346

15. D. Kowalski and A. Pelc, Time complexity of radio broadcast-
ing: adaptiveness vs. obliviousness and randomization vs. de-
terminism, Theoretical Computer Science 333 (2005), 355–371

16. E. Kushilevitz and Y. Mansour, An Ω(D log(N/D)) lower
bound for broadcast in radio networks, SIAM Journal on Com-
puting 27 (1998), 702–712


