
Distrib. Comput. (2005) 18(1): 85–98
DOI 10.1007/s00446-005-0124-9

SPECIAL ISSUE PODC

Partha Dutta · Rachid Guerraoui

The inherent price of indulgence

Received: October 2002 / Revised: July 2003 / Accepted: September 2004 / Published online: 12 April 2005
C© Springer-Verlag 2005

Abstract An indulgent algorithm is a distributed algorithm
that tolerates asynchronous periods of the network when
process crash detection is unreliable. This paper presents a
tight bound on the time complexity of indulgent consensus
algorithms.

We consider a round-based eventually synchronous
model, and we show that any t-resilient consensus algorithm
in this model, requires at least t + 2 rounds for a global de-
cision even in runs that are synchronous. We contrast our
lower bound with the well-known t + 1 round tight bound
on consensus in the synchronous model. We then prove the
bound to be tight by exhibiting a new t-resilient consensus
algorithm in the eventually synchronous model that reaches
a global decision at round t + 2 in every synchronous run.
Our new algorithm is in this sense significantly faster than
the most efficient indulgent algorithm we know of, which
requires 2t + 2 rounds in synchronous runs.

Our lower bound applies to round-based consensus algo-
rithms with unreliable failure detectors such as �P and �S,
and our matching algorithm can be adapted to such failure
detectors.

Keywords Fault tolerance · Distributed algorithms ·
Consensus time complexity

1 Introduction

1.1 Motivation

Indulgent algorithms are distributed algorithms that can
tolerate asynchronous periods of the network when slow
processes cannot be distinguished from those that have
crashed [9]. These algorithms are indulgent towards their
failure detector in the sense that, for an arbitrary period

This work is partially supported by the Swiss National Science Foun-
dation (project number 510-207).

P. Dutta · R. Guerraoui (B)
Distributed Programming Laboratory, EPFL, Lausanne, Switzerland
E-mail: {Partha.Dutta, Rachid.Guerraoui}@epfl.ch

of time, failure detection mistakes are forgiven. This char-
acteristic makes indulgent algorithms particularly attractive
in systems with unpredictable processing and communica-
tion delays. We consider in this paper indulgent algorithms
that deterministically solve the consensus problem [7, 12]
in a message-passing distributed system with n processes:
we denote by t the maximum number of processes that
might fail and assume that processes can fail only by
crashing.

It is well-known that indulgence entails a resilience
price: [2] has shown that a majority of correct processes
(t < n/2) is necessary for any consensus algorithm to
tolerate unreliable failure detection,whereas non-indulgent
algorithms can solve consensus even with a minority of
correct processes. Does indulgence also entail a perfor-
mance price? That is, does the unreliability of failure
detection make indulgent consensus algorithms inherently
less efficient than non-indulgent consensus algorithms?

We contribute in addressing this question by focusing
on the performance of synchronous runs (i.e., runs in which
failure detection is reliable) of consensus algorithms in
an eventually synchronous model (an important class of
algorithms that tolerate unreliable failure detection). We
investigate whether synchronous runs of algorithms in even-
tually synchronous model are slower than runs of consensus
algorithms specifically designed for a synchronous model.
Besides scientific curiosity, investigating synchronous runs
of indulgent consensus algorithms is interesting because, in
many real systems, most runs are actually synchronous.

1.2 Model

We consider a crash-stop message-passing distributed sys-
tem consisting of a set of n ≥ 3 processes: � = {p1,
p2, . . . , pn}. A process executes the deterministic algorithm
assigned to it until the algorithm terminates or the process
(possibly) crashes. Processes do not recover from a crash. A
correct process is a process that never crashes; all other pro-
cesses are faulty. Every pair of processes can communicate
through send and receive primitives, such that each message

86 P. Dutta, R. Guerraoui

is received at most once, no message is altered, and no mes-
sage is received without having been sent.

We consider two round-based models: the well-known
synchronous crash-stop model [13], which we denote by
SCS, and an eventually synchronous model, denoted by ES.
In both models, the computation proceeds in rounds with
increasing round numbers starting from 1. If a process en-
ters a round then it either completes the round or crashes.
Each round consists of two phases: (1) in the send phase, the
processes are supposed to send messages, timestamped with
the current round number, to all other processes,1 and (2) in
the receive phase, the processes receive some messages and
update their states accordingly. In the receive phase of any
round k, if a process pi does not receive the round k message
from some other process p j , then we say that pi suspects p j
in round k. We say that a message m sent by a process pi to
p j is lost if p j never receives m in that run. We now describe
the two models we consider.

1. In SCS, if a process pi crashes in some round k, then any
subset of the messages sent by pi in that round may be
lost, and the remaining messages sent by pi are received
in the same round. If pi does not crash in round k, then ev-
ery process which completes round k, receives the round
k message from pi .

2. In ES, the runs may be “asynchronous” for an arbitrary
yet finite number of rounds but eventually become “syn-
chronous”. In ES, a message may be delayed for a finite
number of rounds; i.e., received in a round higher than in
which it was sent. More precisely, for every run in ES, the
following properties hold:
– (t-resilience) every process which completes any

round k, receives round k messages from at least n − t
processes,

– (reliable channels) messages sent from correct pro-
cesses to correct processes are never lost but may be
delayed for an arbitrary yet finite number of rounds,
and

– (eventual synchrony) there is an unknown but finite
round number K such that, in every round k ≥ K ,
(a) if a process pi crashes in round k, then any subset
of the messages sent by pi in that round may be lost,
and the remaining messages sent by pi are received in
the same round, and (b) if pi does not crash in round k,
then every process which completes round k, receives
the round k message from pi .

We say that a run in ES is synchronous if K = 1 in that run.2

In a non-synchronous (or asynchronous) run, a process pi

1 For simplicity of presentation, we assume that processes are sup-
posed to send messages to all other processes in every round. If such a
message is not generated by the algorithm, the processes simply send
dummy messages.

2 A closer look at the synchronous runs of ES reveals that they pro-
vide slightly more guarantees than the runs in SCS: messages sent by a
process pi to correct processes, in the round in which pi crashes, can
only be delayed in synchronous runs of ES, whereas, such messages
may be lost in a run of SCS. However, this only strengthens our result,
as we are interested in the worst-case lower bound among synchronous
runs.

may suspect another process p j in some round k even if p j
has not crashed in round k. We call such suspicions false
suspicions.

1.3 Time complexity of consensus

A consensus algorithm assists a set of processes to decide on
a single value among the values proposed by the processes.
We define consensus here using two primitives: propose(∗)
and decide(∗). Each process is supposed to propose a value
v from a known set V of values by invoking propose(v) and
a process decides a value v by invoking decide(v). Con-
sensus ensures the following properties: (1) (validity) if a
process decides v then some process has proposed v, (2)
(uniform agreement) no two processes decide differently,3

and (3) (termination) every correct process eventually de-
cides. Binary consensus is a variant of consensus in which
V = {0, 1}.

We say that a run of a consensus algorithm in a round-
based model (e.g., SCS or ES) achieves a global decision at
round k if (1) all processes which ever decide in that run,
decide at round k or at a lower round and (2) at least one
process decides at round k. It is well-known that in SCS (1)
every consensus algorithm has a run which requires t + 1
rounds for a global decision (provided t ≤ n − 2) [13],
and (2) the FloodSet algorithm of [13] solves consensus in
SCS and achieves global decision at round t + 1 in every
run.

This paper studies the time-complexity of consensus al-
gorithms in ES. From [7] we know that every consensus al-
gorithm in ES has a run which takes an arbitrary number of
rounds for every deciding process to decide (because a run
in ES can remain “asynchronous” for an arbitrary number
of rounds). Thus, we focus on synchronous runs of ES. As
a measure of the time complexity of consensus algorithms
in ES, we seek the round number kE S such that: (1) every
consensus algorithm in ES has a synchronous run which re-
quires at least kE S rounds for a global decision (i.e., every
consensus algorithm in ES has a synchronous run in which
some process decides at round kE S or at a higher round),
and (2) there is a consensus algorithm in ES which achieves
a global decision at round kE S or at a lower round in every
synchronous run.

1.4 Contributions

This paper shows that kE S = t + 2. Roughly speaking, the
price of indulgence is one round.

3 Although we prove our lower bound in the context of the uniform
consensus problem, it immediately extends to the non-uniform version
of the problem: [9] has shown that any indulgent algorithm that solves
non-uniform consensus, also solves uniform consensus. Unless other-
wise mentioned in this paper, consensus always refers to the uniform
variant of the problem.

The inherent price of indulgence 87

– First, we show that, for every consensus algorithm A in
ES, among all synchronous runs of A, there is at least one
run in which some process decides at round t + 2 or at
a higher round, provided 0 < t < n/2.4 Our proof ex-
tends the technique of [1], used to prove the t + 1 round
lower bound for consensus algorithms in SCS, to consen-
sus algorithms in ES: indistinguishability of runs in our
proof results from process crashes as well as from false
suspicions.

We also discuss how our lower bound can be extended
to synchronous runs of an asynchronous round-based
model enriched with unreliable failure detectors, such as
�P and �S. Furthermore, a variant of ES, which does
not have the t-resilience property and in which all delayed
messages are lost, is identical to the fail-stop basic round
model of [6] (Sects. 3.1 and 3.2.1 of [6]), and trivial sim-
plification of our lower bound proof in ES applies to that
model of [6].

– Second, we show that our bound is tight by exhibiting a
consensus algorithm in ES which achieves a global de-
cision at round t + 2 in every synchronous run. It is
a flooding algorithm that tries to detect false suspicions
by exchanging the set of suspected processes and expe-
dites decision whenever it detects the absence of false
suspicions.

We then explain how to modify our algorithm to rely
on an asynchronous round-based model enriched with a
�S failure detector. The resulting algorithm is signifi-
cantly more efficient (in worst-case synchronous runs)
than any other �S-based consensus algorithm we know
of. Our �S-based algorithm achieves a global decision at
round t + 2 in “synchronous runs”. In contrast, the �S-
based consensus algorithm of [10], which used to be the
most efficient in worst-case synchronous runs among the
indulgent consensus algorithms we knew of, has a syn-
chronous run which requires 2t + 2 rounds for a global
decision.

1.5 Roadmap

Section 2 presents our lower bound proof. Section 3 exhibits
a consensus algorithm that achieves the bound. Section 4
relates ES with round-based asynchronous models enriched
with unreliable failure detectors. Section 5 presents two ex-
tensions of our matching algorithm: a matching algorithm
in a round-based asynchronous model enriched with fail-
ure detector �S, and a simple optimization of our algorithm
for failure-free synchronous runs. Finally, Sect. 6, discusses
the case of fast early decision in synchronous runs, and fast
eventual decision for runs which are synchronous after some
round k.

4 We exclude the following two cases in our result. (1) t = 0: in
this case, processes can decide after exchanging proposal values in
the very first round (say on the proposal value of p1). (2) t ≥ n/2:
in this case, as we recalled earlier, there is no indulgent solution to
consensus.

2 The lower bound

Proposition 1 Let 0 < t < n/2. Every consensus algorithm
in ES, has a synchronous run in which some process decides
at round t + 2 or at a higher round.

Proof overview We assume by contradiction that there is
a binary consensus algorithm A which globally decides at
round t+1 in every synchronous run. The primary idea of the
proof is that the indistinguishability of some synchronous
runs from some non-synchronous runs, at the end of round
t + 1 at some process, obstructs all synchronous runs from
globally deciding in t + 1 rounds.

We use the traditional bivalency based technique of [7]
to prove our lower bound result. To define the valency of
a partial run (or a configuration) we consider only a subset
of all runs that extend the partial run; namely, synchronous
runs in which at most one failure occur in each round. First
we consider only synchronous partial runs. We show that it
is impossible to globally decide in one round from a biva-
lent partial run. Thus, to show a contradiction we need to
construct a t-round bivalent partial run of A. Following [1],
we start with a bivalent initial configuration and extend it
to a (t − 1)-round bivalent partial run. It is easy to see that
we cannot construct a bivalent t-round partial run by play-
ing with only synchronous runs: this would contradict the
t +1 round tight bound on consensus in SCS. We need to in-
troduce non-synchronous runs to maintain bivalency for an
extra round.

We assume that all one round synchronous extensions
of our (t − 1)-round bivalent partial run rt−1 are univalent.
From this assumption we construct two synchronous exten-
sions s0 and s1 of rt−1 whose decision values are 0 and 1,
respectively. Informally speaking, to derive a contradiction
we show how to construct two non-synchronous runs a0 and
a1 such that (1) at the end of round t +1 some process p can-
not distinguish s0 from a0, as well as s1 from a1 (and hence,
p decides 0 in a0 and 1 in a1), and (2) the other processes
can never distinguish a0 from a1. �

Proof Suppose by contradiction that there is a binary con-
sensus algorithm A (possible proposal values are 0 and 1)
in every synchronous run of which, any process which ever
decides, decides at the end of round t + 1. We prove four
lemmas (Lemma 2 to Lemma 5) on algorithm A. Lemma 5
contradicts Lemma 2.

Before stating and proving the lemmas we present some
definitions and notations. We say that a run r of A is a se-
rial run if r is a synchronous run and at most one process
crashes in every round of r .5 Clearly, as every serial run is
a synchronous run, in every serial run of A, every process
which ever decides, decides at the end of round t + 1.

An l-round (serial) partial run of A is a partial run of
A which is identical to the first l rounds of some (serial)

5 Note that, even in a synchronous run of ES, messages sent by a
process pi in the round in which pi crashes, may be delayed for an
arbitrary number of rounds.

88 P. Dutta, R. Guerraoui

run of A. Conversely, a run r of A is an extension of an
l-round partial run rl if the first l rounds of r is identical
to rl . Furthermore, if the extension r of rl is a serial run,
then we say r is a serial extension of rl . A one-round (serial)
extension of an l-round serial partial run rl is an (l+1)-round
(serial) partial run whose first l rounds are identical to rl .

Note that the configuration of the system at the end of
any partial run consists of the state of individual processes
and the set of delayed messages in the communication
channels.

We say that a k-round serial partial run rk is 0-valent
(1-valent) if the only decision value in all serial extensions
of rk is 0 (respectively, 1). A k-round serial partial run is
univalent if it is either 0-valent or 1-valent; otherwise, it is
bivalent. An initial configuration C0 is 0-valent (1-valent)
if the only possible decision value in all serial runs starting
from C0 is 0 (respectively, 1). An initial configuration is
univalent if it is either 0-valent or 1-valent; otherwise, the
initial configuration is bivalent.

Without loss of generality, we assume that in a round
a process sends the same message to all processes: this
message can be an array of messages where element j
(1 ≤ j ≤ n) of the array contains the original message
intended for p j . We denote the message sent by any process
pi at round k of run r by mr (i, k). Mr (i, k) denotes the set
of messages received by pi at round k of run r . �

Lemma 2 Every t-round serial partial run is univalent.

Proof Suppose by contradiction that there is a t-round serial
partial run rt which is bivalent. Suppose that run r0 is a se-
rial extension of rt such that no process crashes after round
t . Without loss of generality, we assume that r0 has decision
value 0. Since run r0 is serial, every process which ever de-
cides in r0, decides 0 at the end of round t +1. Furthermore,
as rt is bivalent, there is a serial run r1 which has decision
value 1: every process which ever decides in r1, decides 1 at
the end of round t + 1. Notice that as both runsr0 and r1 are
extensions of rt , the processes cannot distinguish the runs at
the beginning of round t + 1, and therefore, the messages
sent by any process at round t + 1 are identical in both runs,
i.e., ∀pl ∈ �, mr0(l, t + 1) = mr1(l, t + 1).

Consider a process pi which is correct in both runs r0

and r1(t < n/2 implies that there is a process which is cor-
rect in both runs). Mr0(i, t +1) and Mr1(i, t +1) are the sets
of messages received by pi at round t + 1 of r0 and r1, re-
spectively. Since pi is correct, pi must decide (at round t +1
of serial runs r0 and r1). To decide at round t +1, pi must be
able to distinguish r0 from r1 at round t + 1, which implies
that Mr0(i, t + 1) �= Mr1(i, t + 1). As no process crashes at
round t + 1 of r0, we have Mr1(i, t + 1) ⊂ Mr0(i, t + 1).

Now we construct a one-round asynchronous extension
of rt , say a0,1, as follows. Round t + 1 of a0,1 is identical to
round t+1 of r0, except that pi makes some false suspicions
and pi receives Mr1(i, t+1) instead of Mr0(i, t+1) (which is
possible because Mr1(i, t +1) ⊂ Mr0(i, t +1)), i.e., pi is the
only process which can distinguish the first t+1 rounds of r0

from the partial run a0,1. Process pi cannot distinguish the

partial run a0,1 from the first t + 1 rounds of r1, and hence,
pi decides 1 at the end of a0,1. Consider a process p j which
is correct in r0 and distinct from pi . The assumption that
0 < t < n/2 implies that t+2 ≤ n, i.e., there are two correct
processes in any run. Clearly, p j cannot distinguish the first
t + 1 rounds of r0 from a0,1. Thus, p j decides 0 in a0,1.
Consider a run r whose first t+1 rounds are identical to a0,1.
Clearly, r violates consensus agreement: a contradiction. �

Lemma 3 There is an initial configuration which is biva-
lent.

Proof Suppose by contradiction that every initial configura-
tion is univalent. Consider the initial configurations C0 and
Cn in which all processes propose 0 and 1, respectively.
From consensus validity, it follows that C0 is 0-valent and
Cn is 1-valent. Define Ci (for every i such that 0 < i < n)
as the initial configuration in which every process p j such
that j ≤ i proposes 1 and all other processes propose 0.
Consider a serial run rCi starting from Ci (0 ≤ i < n) in
which process pi+1 crashes initially and other processes de-
cide d ∈ {0, 1} at round t + 1. Notice that, even if the initial
configuration in rCi is changed to Ci+1, the decision value
remains d (because pi+1 crashes before sending any mes-
sages in rCi). Thus, if Ci (0 ≤ i < n) is d-valent then Ci+1
is also d-valent.

Using the above result and a simple induction we can
show that, if C0 is 0-valent, then so is Cn: a contra-
diction. �

Lemma 4 (From [1]) There is a (t −1)-round serial partial
run which is bivalent.

Proof The proof is by induction on round number k (0 ≤
k < t − 1).
Base Step. From Lemma 3 it follows that there is a 0-round
serial partial run which is bivalent.
Induction Hypothesis. There is a k-round serial partial run
rk which is bivalent (0 ≤ k < t − 1).
Induction Step. By contradiction, we assume that every one-
round serial extension of rk is univalent.

Suppose that every one-round serial extension of rk is
univalent. Let r0

k+1 be a (k+1)-round serial partial run which
is an extension of rk such that no process crashes at round
k + 1. Without loss of generality, we can assume that r0

k+1 is
0-valent. Since rk is bivalent, there is a (k + 1)-round serial
partial run r∗

k+1 which is an extension of rk and which is 1-
valent. There must be exactly one process p′

1 which crashes
in round k + 1 of r∗

k+1 and there is a (possibly empty) set
of processes {p′

2, . . . , p′
m} that can distinguish r0

k+1 from
r∗

k+1(0 ≤ m − 1 < n): i.e., the processes which received
a message from p′

1 at round k + 1 of r0
k+1 and did not re-

ceive a message from p′
1 at round k + 1 of r∗

k+1.
Consider the following (k + 1)-round serial partial runs

r1
k+1, . . . , rm

k+1 such that: (1) r1
k+1 is identical to r0

k+1, except
that in r1

k+1, p′
1 crashes at round k + 1, though the round

k + 1 message sent from p′
1 to other processes are received

The inherent price of indulgence 89

at round k + 1. (2) r j
k+1(2 ≤ j ≤ m) is identical to r0

k+1

except that, in r j
k+1, p′

1 crashes at round k + 1 such that the
(k + 1)-round messages sent by p′

1 to {p′
2, . . . , p′

j } are lost
(although non-crashed processes in �\{p′

2, . . . , p′
j } receive

the (k + 1)-round message sent by p′
1 in the same round).

Now consider the following two claims which contradict the
fact that r∗

k+1 is 1-valent.

4.1. If r i
k+1(0 ≤ i < m) is 0-valent then so is r i+1

k+1: partial

runs r i
k+1 and r i+1

k+1 differ only in the state of process
p′

i+1 at the end of round k+1. Consider a one-round se-
rial extension rk+2 of r i

k+1 in which p′
i+1 crashes at the

beginning of round k + 2 (before sending any message
in round k + 2) and no other process crashes in round
k + 2. Also, consider a one-round serial extension r ′

k+2

of r i+1
k+1 in which p′

i+1 crashes at the beginning of round
k +2 (if p′

i+1 = p′
1 then it has already crashed in round

k + 1) and no other process crashes in round k + 2.6

Obviously, at the end of round k + 2 no non-crashed
process can distinguish rk+2 from r ′

k+2. Consider serial
extensions of rk+2 and r ′

k+2 in which no process crashes
after round k+2. Since, k+2 < t+1, at the end of round
t + 1, the two runs are identical at all non-crashed pro-
cesses. Thus the decision values are the same in both
extensions. So, if r i

k+1 (0 ≤ i < m) is 0-valent, then

r i+1
k+1 is also 0-valent. It follows that rm

k+1 is 0-valent.
4.2. r∗

k+1 is 0-valent: serial partial runs r∗
k+1 and rm

k+1
are identical. Therefore, r∗

k+1 is 0-valent: a contra-
diction. �

Lemma 5 There is a t-round serial partial run which is bi-
valent.

Proof Suppose by contradiction that every t-round serial
partial run is univalent. From Lemma 4 we know that there
is a bivalent (t − 1)-round serial partial run, which we de-
note by rt−1. Let r0

t be a one-round serial extension of rt−1
such that no process crashes at round t . Without loss of gen-
erality, we can assume that r0

t is 0-valent. Since rt−1 is biva-
lent, there is a one-round serial extension r∗

t of rt−1 which
is 1-valent. There must be exactly one process p′

1 which
crashes in round t of r∗

t and there is a (possibly empty) set
of processes {p′

2, . . . , p′
m} that can distinguish r0

t from r∗
t

(0 ≤ m − 1 < n): i.e., the processes which received a mes-
sage from p′

1 at round t of r0
t and did not receive a message

from p′
1 at round t of r∗

t .
Consider the following t-round serial partial runs

r1
t , . . . , rm

t such that: (1) r1
t is identical to r0

t , except that
in r1

t , p′
1 crashes at round t , though the round t message

sent from p′
1 to other processes are received at round t . (2)

r j
t (2 ≤ j ≤ m) is identical to r0

t , except that in r j
t , p′

1

6 Note that p′
i+1 may crash at the beginning of round k + 2 in r ′

k+2
because, by the definition of serial runs, at most k + 1 < t processes
can crash in the first k + 1 rounds. k + 1 < t because the induction is
done over 0 ≤ k < t − 1.

crashes at round t such that the t-round messages sent by
p′

1 to {p′
2, . . . , p′

j } are lost (although non-crashed processes
in �\{p′

2, . . . , p′
j } receive the t-round message sent by p′

1
in the same round). Now consider the following two claims
which contradict the fact that r∗

t is 1-valent.

5.1. If r i
t (0 ≤ i < m) is 0-valent then so is r i+1

t : the proof
is given in the following subsection. The claim implies
that rm

t is 0-valent.
5.2. r∗

t is 0-valent: partial runs rm
t and r∗

t are identical.
Therefore r∗

t is 0-valent: a contradiction. �

Proof of Claim 5.1

The proof of Claim 4.1 does not work for the present case.
To see why, notice that in Claim 4.1, k + 1 processes may
have crashed in serial partial run r i+1

k+1. Since k + 1 < t (in
Lemma 4), we can crash one more process in any extension
of r i+1

k+1, which is necessary to show that r i
k+1 and r i+1

k+1 have
the same valency. However, in the present case, t processes
may have already crashed in r i+1

t .

Proof Suppose by contradiction that r i
t is 0-valent and r i+1

t

is 1-valent. Serial partial runs r i
t and r i+1

t differ only in the
state of p′

i+1 at the end of round t . There are two cases:
(1) p′

i+1 = p′
1, or (2) p′

i+1 �= p′
1.

If p′
i+1 = p′

1 (i.e., p′
i+1 is up at the end of r i

t = r0
t but

crashes in r i+1
t = r1

t , and in both partial runs, no message
is lost in round t), then we reach a contradiction as follows.
From the definition of a serial run, we know that at most t
processes can crash in r i+1

t . Since r i
t and r i+1

t are identical
except for state of p′

i+1(p′
i+1 crashes in r i+1

t but not in r i
t),

at most t − 1 processes could have crashed in r i
t . So, we

can construct a serial run r ′ by extending r i
t in which p′

i+1
crashes at the beginning of round t + 1 (before sending any
messages in that round). From round t + 1 onwards, no pro-
cess can ever learn whether r ′ is a serial extension of r i

t or a
serial extension of r i+1

t . Consequently, if r i
t is 0-valent then

so is r i+1
t : a contradiction.

Consider the case when p′
i+1 �= p′

1. Process p′
i+1 is the

only process which can distinguish r i
t from r i+1

t at the end
of round t : p′

i+1 receives a t-round message from p′
1 in r i

t

and does not receive a t-round message from p′
1 in r i+1

t .
In the following we construct two synchronous and three

asynchronous runs. Figure 1 depicts round t and t + 1 of the
five runs. For clarity of presentation, we only indicate the
messages which assist in distinguishing the constructed runs
from each other.

First we construct two synchronous runs s1 and s0 in
which p′

i+1 decides different values.

s1: This serial run is an extension of r i+1
t in which no pro-

cess crashes after round t . Since the partial run r i+1
t is

1-valent and s1 is a serial run, p′
i+1 decides 1 at the end

of round t + 1.

90 P. Dutta, R. Guerraoui

p’
 1

p’
i+1

1

1

1

1

0

0

0

0

1

s1 s0

a2

a1 a0

messages that are lost, delayed or their sender crashed before sending

messages that are received in the same round in which they were sent

p’
 1

p’
i+1

p’
 1

p’
i+1

p’
 1

p’
i+1

p’
 1

p’
i+1

crash of a process decision of a process

0

Fig. 1 Rounds t and t + 1 of the runs in the proof of Claim 5.1

s0: This serial run is an extension of r i
t in which no process

crashes after round t . Since the partial run r i
t is 0-valent

and s0 is a serial run, p′
i+1 decides 0 at the end of round

t + 1.

We now construct three (t +1)-round asynchronous runs
a2, a1, and a0. In the construction of these runs we maintain
the property of ES that in each round of each run, every non-
crashed process receives at least n − t messages sent in that
round.

a2: This asynchronous run is constructed as follows for
each round k:
– k ≤ t − 1: The first t − 1 rounds of a2 are identical

to those of s1.
– k = t : No process crashes in this round. Unlike s1,

p′
1 does not crash in round t of this run. Every pro-

cess distinct from p′
1 receives the same set of mes-

sages as in round t of s1. (In other words, p′
1 is falsely

suspected by {p′
2, . . . , p′

i+1} and the corresponding
messages are delayed.) Process p′

1 receives messages
from all non-crashed processes at round t .

– k ≥ t + 1: Process p′
i+1 crashes before sending any

messages in round t + 1. There are no other crashes
or false suspicions at round t +1 or at a higher round.
All the delayed messages of round t are received at
round t + 2. (Notice that no new delayed message is

generated after round t .) From the termination prop-
erty of consensus, there is a round k′ ≥ t + 1 such
that a2 reaches a global decision at k′.

Observations: (1) At the end of round t of a2, only p′
1

can distinguish the first t rounds of a1 from the first t
rounds of s1. (2) At most t − 1 processes have crashed
in the first t rounds of a2. To see why, notice that the first
t − 1 rounds of a2 is identical to the first t − 1 rounds of
s1. As s1 is a serial run, at most t−1 processes can crash
in the first t − 1 rounds of s1. As no process crashes in
round t of a2, by the end of round t in a2, at most t − 1
processes have crashed.

a1: This asynchronous run is constructed as follows for
each round k:
– k ≤ t : The first t rounds a1 are identical to those of

of a2.
– k ≥ t + 1: Unlike in a2, p′

i+1 does not crash in
round t + 1. However, the processes that are dis-
tinct from p′

i+1 falsely suspect p′
i+1 in round t + 1

and p′
i+1 falsely suspects p′

1 in round t + 1. Process
p′

i+1 crashes before sending any message in round
t + 2. There are no other crashes or false suspicions
in round t +2 or at a higher round. The delayed mes-
sages of round t are received at round t + 2, and the
delayed messages generated in round t + 1 (i.e., the
messages sent by p′

i+1) are received in round k′ + 1.
(Round k′ is defined in the description of run a2.)

We claim that p′
i+1 cannot distinguish a1 from s1 at the

end of round t + 1. Notice that the first t − 1 rounds
of s1, a2, and a1 are identical. At the end of round t ,
a2 and a1 are identical, and only p′

1 can distinguish a2

from s1. Thus, at the end of round t , only p′
1 can distin-

guish a1 from s1. Now consider the messages received
by p′

i+1 in round t + 1 of a1 and s1. Process p′
i+1 does

not receive any message from p′
1 (due to the crash of p′

1
in s1, and due to the false suspicion of p′

1 by p′
i+1 in

a1). Since, no process distinct from p′
1 can distinguish

a1 from s1 at the end of round t , p′
i+1 receives identi-

cal sets of messages in round t + 1 of both a1 and s1.
Thus p′

i+1 cannot distinguish a1 from s1 at the end of
round t + 1, and hence, decides 1 at the end of round
t + 1.

a0: This asynchronous run is constructed as follows for
each round k:
– k ≤ t − 1: The first t − 1 rounds of a0 are identical

to those of s0.
– k = t : No process crashes in this round. Unlike

in s0, p′
1 does not crash in round t of a0. But, ev-

ery process distinct from p′
1 receives the same set

of messages as in round t of s0. (In other words, p′
1

is falsely suspected by {p′
2, . . . , p′

i } and the corre-
sponding messages are delayed.) Process p′

1 receives
messages from all non-crashed processes at round t .

– k ≥ t + 1: Processes distinct from p′
i+1 falsely sus-

pect p′
i+1 in round t + 1 and p′

i+1 falsely suspects

The inherent price of indulgence 91

Fig. 2 The consensus algorithm At+2

p′
1 in round t + 1. Process p′

i+1 crashes before send-
ing any message in round t + 2. There are no other
crashes or false suspicions in round t + 2 or at a
higher round. The delayed messages of round t are
received in round t + 2, and the delayed messages
generated in round t + 1 (i.e., the messages sent by
p′

i+1) are received in round k′ + 1.

We make the following two claims.

– Process p′
i+1 cannot distinguish a0 from s0 at the end

of round t + 1. Notice that only process p′
1 can distin-

guish a0 from s0 at the end of round t , and p′
i+1 falsely

suspects p′
1 in round t +1. Thus, at round t +1, p′

i+1 re-
ceives identical sets of messages in a0 and s0. Thus p′

i+1
cannot distinguish a0 from s0 at the end of round t + 1,
and hence decides 0 at the end of round t + 1.

– At the end of round k′, processes distinct from p′
i+1 can-

not distinguish a2, a1, and a0. To see why observe that
the first t − 1 rounds of the three runs are identical. At
the end of round t , the runs a2, a1 and a0 (1) differ at
process p′

i+1: p′
i+1 falsely suspects p′

1 in round t of a2

and a1, but receives the round t message from p′
1 in a0,

and consequently (2) also differ in one delayed message
in the communication channels: there is a round t de-
layed message from p′

1 to p′
i+1 in a2 and a1, which is

not delayed in a0. The message sent by p′
i+1 to other pro-

cesses at round t + 1 are received in round k′ + 1, in a1

and a0, and p′
i+1 crashes before sending any messages

at round t + 1 in a2. Thus, the processes that are distinct
from p′

i+1 cannot distinguish the three runs before round
k′ + 1. However, every process which decides in a2, de-
cides by round k′ in a2. Thus, every process distinct from
p′

i+1, which decides in any of the three runs, does so by
round k′ and decide the same value in all the three runs
(because it cannot distinguish between the runs before
round k′ + 1). Clearly, either a1 or a0 violates uniform
agreement because p′

i+1 decides 1 in a1 and 0 in a0; a
contradiction. �

3 A matching consensus algorithm

Figure 2 presents a consensus algorithm At+2 in ES when
0 < t < n/2, which achieves the lower bound of
Proposition 1. Namely, besides solving consensus, At+2 sat-
isfies the following property:

Fast decision In every synchronous run of At+2, any pro-
cess which ever decides, decides by round t + 2.

92 P. Dutta, R. Guerraoui

The algorithm assumes an underlying independent
consensus module C ,7 accessed through procedure
proposeC (∗), and which decides through procedure
decide(∗). The fast decision property is achieved by At+2
regardless of the time complexity of C . More precisely, our
algorithm assumes:
1. the ES model with 0 < t < n/2;
2. that no process ever suspects itself;
3. an independent consensus algorithm C in ES when

0 < t < n/2;
4. that the set of proposal values in a run is a totally ordered

set; e.g., each process pi can tag its proposal value with
its index i and then the values can be ordered based on
this tag.

3.1 Basic idea

Our algorithm At+2 is a variant of the FloodSetWS8 algo-
rithm of [3], modified for exchanging and tracking false
suspicions. Algorithm At+2 has two phases: Phase 1 lasts
the first t + 1 rounds and Phase 2 involves round t + 2 and
the underlying consensus algorithm C . In Phase 1, the pro-
cesses exchange their estimates of the decision (initialized to
the proposal values) and every process updates its estimate
to the minimum of all estimates seen in the round. The pri-
mary objective of repeating this exchange for t +1 rounds is
to converge towards the same estimate at all processes. How-
ever, this may be hindered by false suspicions, i.e., processes
may have different estimates at the end of Phase 1. There-
fore, the algorithm tries to detect the false suspicions to en-
sure the following elimination property: given any two pro-
cesses which complete Phase 1, either both processes have
the same estimate value or at least one of them detects a false
suspicion.

At the beginning of Phase 2, the processes compute their
new estimate as follows: if a process detects a false suspi-
cion, then its new estimate is set to ⊥; otherwise, the new
estimate is the estimate value at the end of Phase 1. The pro-
cesses exchange their new estimate values in round t + 2.
Due to the elimination property of Phase 1, in every run, the
number of distinct new estimate values different from ⊥ is
at most one. If a process receives only non-⊥ new estimate
values in round t + 2, then it decides on any non-⊥ value
received. Otherwise, achieving a decision is delegated to al-
gorithm C : due to the consensus termination property of C ,
at every correct process, procedure proposeC (∗) eventually
invokes decide(∗).

3.2 Description

Each process is supposed to invoke procedure propose(∗)
with its proposal value as a parameter, and the procedure

7 The algorithm C can be any round-based �P or �S consensus al-
gorithm (e.g., the one based on �S in [2]) transposed to the ES model.

8 (Algorithm FloodSetWS assumes perfect failure detection (P) and
achieves global decision at round t + 1 in every run. It is itself inspired
by the FloodSet consensus algorithm of [13] in SCS.)

progresses in rounds of message exchanges. After receiving
messages in any round k (in Phase 1), the processes invoke
procedure compute() to update their local states. The algo-
rithm tries to achieve consensus in the first t + 2 rounds.
However, if a process does not decide at round t + 2, it in-
vokes the underlying consensus algorithm C .

Every process pi maintains the following variables:

ki : the current round number,
esti : the estimate of pi which is set to the minimum

value seen by pi until round ki , initialized to the
proposal value vi ,

Halti : the set of processes p j such that, in the present
round or in a lower round, pi suspected p j or p j
suspected pi ,

nEi : the new estimate of pi computed at the beginning
of round t + 2,

vci : the proposal value for the underlying consensus
algorithm C , initialized to the proposal value vi ,
and

decidedi : a boolean indicating whether process pi has de-
cided.

Phase 1 In this phase, which consists of the first t + 1
rounds, the processes exchange ESTIMATE messages con-
taining est and Halt . On receiving the messages at round
k, pi updates its variables (by invoking the procedure com-
pute()) as follows:

1. Halti is the set of processes such that for every p j ∈
Halti , pi suspected p j (i.e., pi did not receive a message
from p j) in round k or in a lower round, or p j suspected
pi (i.e., pi ∈ Halt j) in round k − 1 or in a lower round.

2. msgSeti is the set of messages received by pi at round k
such that the senders of the messages are not in Halti .

3. esti is updated to the minimum est value in msgSeti .

Phase 2 We say that pi detects a false suspicion in the first
t + 1 rounds if |Halti | > t at the beginning of round t + 2.
In fact, if |Halti | > t at the beginning of round t + 2
then either pi falsely suspected some other process or some
other process falsely suspected pi . To see why, suppose that
|Halti | > t . If there is a process p j ∈ Halti such that
pi ∈ Halt j then, obviously p j falsely suspected pi . If no
such p j is in Halti , then pi suspected more than t processes,
and hence, at least one of the suspicions is a false suspi-
cion. In Lemma 13, we give a detailed proof of the claim
that |Halti | > t at the beginning of round t + 2 implies that
there is a false suspicion in the run.

In Phase 2, the processes first compute nE as follows.
If pi does not detect any false suspicion in the first t + 1
rounds, then pi sets nEi to the minimum est value pi has
seen (i.e., the latest esti value). Otherwise, nEi is set to ⊥.
The processes exchange nE in round t + 2. If pi receives
only non-⊥ nE values, then pi decides on any of the nE val-
ues received, and in round t +3, pi sends a DECIDE message
with the decision value to other processes and returns from
the invocation. Otherwise, either pi receives some nE ′ �= ⊥

The inherent price of indulgence 93

and sets vci to nE ′, or every nE value received by pi is ⊥
and vci retains its initial value, vi . Subsequently, in round
t + 3, pi invokes proposeC (vci) which eventually decides.

If pi receives a DECIDE message from round t + 3,
then pi waits until it reaches round t + 3, and (if pi has
not decided yet then) pi decides on the decision value
received.

3.3 The elimination property of At+2

For presentation simplicity, we introduce the following no-
tation. Given any variable vari at process pi , we denote by
vari [ki] the value of vari immediately after the completion
of procedure compute() at round ki , i.e., at the end of line 7
(1 ≤ ki ≤ t + 1). We assume that there exists a symbol un-
defined which is distinct from any possible value of the vari-
ables in the algorithm At+2. If pi crashes before completing
the procedure compute() of round ki , then for every variable
vari at pi , we define vari [ki] = undefined. Similarly, if pi
completes compute() at round ki , we define sender M Si [ki]
as the set of processes which have sent the messages which
are in msgSeti [ki], and sender M Si [ki] is undefined if pi
crashes before completing round ki . If pi sends any NEWES-
TIMATE message (line 14), we denote the value of nEi sent
in that message by nEi [t + 2]. If pi crashes before sending
any NEWESTIMATE message, then nEi [t + 2] = undefined.

Lemma 6 (Elimination) If there are two distinct processes
px and py such that (1) px and py sent NEWESTIMATE mes-
sages, (2) nEx [t + 2] �= ⊥, and (3) nEy[t + 2] �= ⊥, then
nEx [t + 2] = nEy[t + 2].
Proof Suppose by contradiction that there is a run rdiff of
At+2 and two distinct processes px and py such that in run
rdiff: (1) nEx [t + 2] = c �= ⊥, (2) nEy[t + 2] = d �= ⊥, and
(3) c �= d . We prove five lemmas (Lemma 7 to Lemma 11)
on run rdiff. Lemma 11 contradicts Lemma 8.

Without loss of generality we can assume that c < d . For
run rdiff of At+2 we define the set Ck as follows:

– C0 is the set of processes whose proposal values are less
than or equal to c.

– For every k such that 1 ≤ k ≤ t +1, Ck = {p j |est j [k] ≤
c or est j [k] = undefined}. In other words, Ck consists
of the processes which either crash before completing
compute() in round k or complete compute() in round k
with est ≤ c. �

From the definition of Ck , we can immediately make the
following two observations about rdiff.

Observation O1 |C0| ≥ 1. Since nEx [t + 2] = c, some
process must have proposed c.

Observation O2 For any k such that 0 ≤ k ≤ t , Ck ⊆ Ck+1.
Suppose by contradiction that pi ∈ Ck and pi /∈ Ck+1.
Since pi /∈ Ck+1, pi completes compute() in round k + 1

with est > c, and therefore, completes compute() in round
k if k ≥ 1 (or completes line 2 if k = 0). Since pi ∈ Ck ,
pi completes round k with est ≤ c if k ≥ 1 (or completes
line 2 with est ≤ c if k = 0). Thus, pi sends round k + 1
message with est ≤ c. Recall that we assume that a pro-
cess never suspects itself. Therefore, pi /∈ Halti [k + 1] and
pi receives round k + 1 message from itself. Consequently,
while updating esti in compute() of round k + 1, pi updates
esti to a value less than or equal to c; a contradiction.

Lemma 7 For any k such that 1 ≤ k ≤ t + 1, and for
any process pl , if sender M Sl [k] �= undefined then sender
M Sl [k] = � − Haltl [k].
Proof Suppose sender M Sl [k] �= undefined. There are the
following two cases to consider for every process pm ∈ �:

– pm ∈ Haltl [k]: from line 34, the message from pm to pl
is not in msgSetl [k]. Hence, pl /∈ sender M Sl [k].

– pm /∈ Haltl [k]: from line 33, pl received the round k
message from pm . Thus, the message from pm to pl is in
msgSetl [k] and pl ∈ sender M Sl [k]. �

Lemma 8 |Ct | ≤ t .

Proof Suppose by contradiction that |Ct | > t . Consider any
process pm ∈ Ct . Either pm has completed compute() of
round t with est ≤ c or pm has crashed before completing
compute() of round t . If pm sends a message msg in round
t + 1, then est ≤ c in msg. Now consider the messages re-
ceived by process py in round t+1. (Recall that nEy[t+2] =
d > c.) If msgSety[t + 1] contains a message from pm ,
then from line 35 and line 13, nEy[t + 2] ≤ c, a contradic-
tion. Therefore, msgSety[t + 1] does not contain any mes-
sage from pm (i.e., pm /∈ sender M Sy[t + 1]), and there-
fore, from Lemma 7, pm ∈ Halty[t + 1]. In other words,
∀pm ∈ Ct , pm ∈ Halty[t + 1], i.e., Ct ⊆ Halty[t + 1].
Therefore, |Halty[t +1]| ≥ |Ct | > t . It follows from line 10
that nEy[t + 2] is ⊥; a contradiction. �

Lemma 9 px ∈ Ct+1 and px /∈ Ct−1.

Proof Notice that nEx [t +2] = c �= ⊥ implies that estx [t +
1] = c (line 13). Thus, from the definition of Ct+1 it follows
that px ∈ Ct+1.

For the next part of the proof, suppose by contradiction
that px ∈ Ct−1. Since px completes compute() in round t+1
(because nEx [t + 2] = c), px also completes compute() in
round t − 1. Therefore, estx [t − 1] ≤ c, and if px sends a
message msg in round t , then est ≤ c in msg. Consider any
process pm ∈ �\Ct . From the definition of Ct , we know that
estm[t] > c. Therefore, msgSetm[t] does not contain any
estimate message from px . (Otherwise, on receiving est ≤ c
from px , pm sets estm to a values less than or equal to c.)
Therefore, from Lemma 7 it follows that px ∈ Haltm[t].
Consequently, if pm sends a message msg in round t + 1
then, px ∈ Halt in msg.

From the algorithm it follows that, in round t + 1, if px
receives a msg from pm then px includes pm in Haltx (be-
cause px ∈ Halt in msg sent by pm), and if px does not

94 P. Dutta, R. Guerraoui

receive any message from pm , then from line 33, we know
that px includes pm in Haltx . It follows that, in either case,
∀pm ∈ �\Ct , pm ∈ Haltx [t+1], i.e., �\Ct ⊆ Haltx [t+1].

From Lemma 8 it follows that |�\Ct | ≥ n − t > t
(recall that t < n/2). So, |Haltx [t + 1]| > t . From line 10
it follows that, if |Haltx [t + 1]| > t then nEx [t + 2] = ⊥;
a contradiction. �

Lemma 10 For all k such that 0 ≤ k ≤ t − 1: Ck ⊂ Ck+1
(i.e., Ck ⊆ Ck+1 and Ck �= Ck+1).

Proof Consider any k such that 0 ≤ k ≤ t − 1. Recall from
Observation O2 that Ck ⊆ Ck+1. Thus, either Ck ⊂ Ck+1 or
Ck = Ck+1. Suppose by contradiction that there is a round
k′ such that 0 ≤ k′ ≤ t − 1 and Ck′ = Ck′+1. We make the
following observation:

Observation O3 ∀p j /∈ Ck′+1, Ck′+1 ⊆ Halt j [k′+1]. Con-
sider any process p j /∈ Ck′+1. From the definition of Ck′+1,
est j [k′+1] > c. Therefore, msgSet j [k′+1] does not contain
an (ESTIMATE, k′+1, ∗, ∗) message from any process in Ck′ :
otherwise, est j [k′ + 1] must be less than or equal to c and
p j ∈ Ck′+1. Therefore, from Lemma 7, Ck′ ⊆ Halt j [k′+1].
Since Ck′ = Ck′+1, Ck′+1 ⊆ Halt j [k′ + 1].

For every 1 ≤ k ≤ t + 1, we define aliveCk as the
set of processes which complete compute() in round k with
est ≤ c. We also define, aliveC0 = C0. From the definitions,
aliveCk ⊆ Ck .

Claim 10.1 aliveCt+1 ⊆ Ck′+1.

Proof We prove the claim by induction on the round number
s(k′ + 1 ≤ s ≤ t).

Base case (s = k′ + 1) From the definition of aliveC, it
immediately follows that aliveCk′+1 ⊆ Ck′+1.

Induction hypothesis (k′ + 1 ≤ s ≤ t) aliveCs ⊆ Ck′+1.

Induction Step. We need to show that aliveCs+1 ⊆ Ck′+1.
Suppose by contradiction that there is a process p j ∈
aliveCs+1 such that p j /∈ Ck′+1. Thus, p j completes com-
pute() in round s + 1 with est ≤ c. Since p j /∈ Ck′+1,
and from the induction hypothesis, aliveCs ⊆ Ck′+1, it
follows that p j /∈ aliveCs . Thus, p j completes compute()
in round s with est > c. Since p j completes compute()
in round s + 1 with est ≤ c, there is a message with
est ≤ c in msgSet j [s + 1] from some process pm . Ob-
viously, pm completes round s with est ≤ c, and hence,
pm ∈ aliveCs . From the induction hypothesis, it follows that
pm ∈ Ck′+1.

Since p j /∈ Ck′+1, from Observation 3, it follows that
Ck′+1 ⊆ Halt j [k′ + 1] ⊆ Halt j [s + 1]. Thus, pm ∈
Ck′+1 ⊆ Halt j [s + 1]. However, a message from pm is in
msgSet j [s + 1]; a contradiction with Lemma 7. �

Proof of Lemma 10 continued. Now we show that, for 0 ≤
k′ ≤ t − 1, Ck′+1 ⊆ Ct−1 (Observation O4). If k′ ≤ t −
2, then it follows from Observation O2 that Ck′+1 ⊆ Ct−1
(because k′+1 ≤ t−1). If k′ = t−1, then from the definition
of k′, Ct−1 = Ct , and thus, Ck′+1 = Ct ⊆ Ct−1.

Since aliveCt+1 ⊆ Ck′+1 (from Claim 10.1), Ck′+1 ⊆
Ct−1 (from Observation O4), and px /∈ Ct−1 (from
Lemma 9), it follows that px /∈ aliveCt+1. However, as
nEx [t +2] = c, px completed round t +1 with est ≤ c, i.e.,
px ∈ aliveCt+1, a contradiction. �

Lemma 11 |Ct | ≥ t + 1.

Proof From Lemma 10 we have for every k such that 0 ≤
k ≤ t − 1, |Ck+1| − |Ck | ≥ 1. We know from Observation
O1 that |C0| ≥ 1. Therefore, |Ct | ≥ t + 1. �

3.4 Correctness of At+2

The proof of the validity and the termination properties of
the algorithm are straightforward. We now prove the agree-
ment and the fast decision properties of At+2.

Lemma 12 (Agreement) No two processes decide differ-
ently.

Proof If no process ever decides, then agreement trivially
holds. Consider the lowest round k in which some process
decides. Say pi decides v in round k. If k > t + 2 then
no process decides in the first t + 2 rounds and hence no
process sends a DECIDE message in line 23. Therefore, the
agreement property follows from the agreement property of
C . So, we consider the case when k = t + 2. (From the
algorithm, t + 2 is the lowest round in which a process can
decide.)

Since pi decides v at round t+2, every message received
by pi in round t +2 has nE �= ⊥ and pi received at least one
message with nE = v. From the property of the ES model,
there are at least n − t > n/2 messages received by pi in
round t + 2. Therefore, at least a majority of the processes
send NEWESTIMATE messages with nE �= ⊥. Furthermore,
from Lemma 6 (elimination property), for every NEWESTI-
MATE message, nE ∈ {v, ⊥}. Any process which completes
round t + 2 receives at least a majority of NEWESTIMATE
messages (because n − t > n/2), and therefore, receives at
least one message with nE = v. Consequently, if a process
decides at round t +2 then this process decides v and sends a
DECISION message with decision value v in round t +3, and
if a process invokes proposeC (∗) then the invocation value
is v. By the validity property of algorithm C , no process can
decide on a value different from v. �

Lemma 13 (Fast Decision) In every synchronous run of
At+2, any process which ever decides, decides by round
t + 2.

The inherent price of indulgence 95

Proof Suppose by contradiction that there is a synchronous
run in which some process completes round t + 2 without
deciding. Then it follows from line 16 that some process pm
has sent a NEWESTIMATE message with nE = ⊥. Therefore
in that synchronous run, |Haltm[t + 1]| > t (line 10).

For every k such that 1 ≤ k ≤ t + 1, let us define H [k]
as {pi |∃p j , pi ∈ Halt j [k]}. We define H [0] = ∅. First we
show the following claim for any synchronous run. �

Claim 13.1 In any synchronous run, if any process pi is in
H [t +1] then pi has crashed before completing round t +1.

Proof We prove the claim by induction on the round number
k (0 ≤ k ≤ t).

Base Case (k = 0). Obvious, because H [0] = ∅.

Induction Hypothesis (0 ≤ k ≤ t) If a process pi is in H [k]
then pi crashes before completing round k.

Induction Step We need to show that if a process pi is in
H [k + 1] then pi crashes before completing round k + 1.
Suppose by contradiction that there is a process pi which
completes round k + 1 and pi ∈ H [k + 1]. Thus, there is a
process p j such that pi ∈ Halt j [k + 1]. Notice that, since
both pi and p j complete round k, it follows from the induc-
tion hypothesis that pi , p j /∈ H [k]. Thus, p j /∈ Halti [k],
and hence, the message sent by pi in round k + 1 has Halti
such that p j /∈ Halti . Since pi /∈ H [k], it follows that
pi /∈ Halt j [k]. Furthermore, as the run is synchronous and
pi does not crash in round k + 1, p j receives round k + 1
message from pi . Thus, from line 33, pi /∈ Halt j [k + 1], a
contradiction. �

Proof of Lemma 13 continued Since, Haltm[t +1] ⊆ H [t +
1], |H [t+1]| > t . From Claim 13.1 it follows that more than
t processes have crashed before completing round t + 1, a
contradiction. �

4 Extending the scope of the lower bound

In this section we show that our lower bound can be ex-
tended to asynchronous round-based models enriched with
unreliable failure detectors. First, we define such models,
and then discuss how to simulate such a model from ES.

An asynchronous round-based model where t processes
may crash can be defined as follows. In each round, every
process is supposed to send messages to all other processes,
wait for n − t messages sent in that round, and updates its
state according to messages received [8]. The model may
have reliable channels: messages sent from a correct process
to a correct process is eventually received. In each round, a
process may wait for n − t messages without blocking be-
cause at least n − t processes are correct in each run.

Informally speaking, a failure detector [2] is a dis-
tributed oracle which provides some information to each
process about the crash of other processes. Each process

has a local failure detector module. A failure detector is
unreliable if it may provide any possible output (in its
range) for an arbitrary yet finite period of time [9]. An
example is eventually perfect failure detector �P [2] which
outputs a set of suspected processes at each process such
that (1) (strong completeness) eventually every process that
crashes is permanently suspected by every correct process,
and (2) (eventual strong accuracy) there is a time after
which correct processes are not suspected by any correct
process. The eventually strong failure detector �S differs
from �P in its accuracy property: (eventual weak accuracy)
there is a time after which some correct process is never
suspected by any correct process.

In a round of an asynchronous round-based model en-
riched with a failure detector with the eventual strong com-
pleteness property, a process may also wait for messages
from all processes not suspected by the local failure detec-
tor module. In this round-based model, we say that a run is
synchronous if the messages received in each round satisfies
the guarantees of synchronous runs in ES.

To simulate a round-based model enriched with �P or
�S from ES, we give a possible output of the failure de-
tector for every run in ES. This is done as follows: (1) at
the beginning of the run, the simulated output is set to ∅,
(2) on receiving messages of round k in ES, the simulated
failure detector output is changed to the set of processes
from which no message was received in round k of ES.
To see why the properties of �P for instance hold, con-
sider the round k such that (1) no message is delayed in
round k or in a higher round, and (2) every faulty pro-
cess crashes before starting round k. (Such a round exists
from the property of ES and the from definition of faulty
processes.) After round k, correct processes (1) never re-
ceive current round messages from faulty processes (since
all faulty processes crash before starting round k), and (2) re-
ceive messages from all correct processes in every round
(since no message is delayed after round k). Consider a
time t such that all correct processes start round k before
time t . It is easy to see that in our simulated failure detector
output, after time t , every correct process permanently sus-
pects every faulty process and does not suspect any correct
process.

5 Extending the algorithm

5.1 A �S-based algorithm

Our algorithm At+2 can be easily transformed to a consen-
sus algorithm that uses a �S failure detector [2, 10]. We
denote the new algorithm by A�S which is obtained by the
following modifications to At+2: (1) substitute the under-
lying consensus algorithm C by any �S-based consensus
algorithm C ′ (e.g., that of [2]), and (2) modify line 6 and
line 15 of Fig. 2 as shown in Fig. 3.

The correctness of A�S is easy to verify, since con-
sensus termination is ensured by the presence of at least

96 P. Dutta, R. Guerraoui

Fig. 3 Modifications for using �S

n − t correct processes, and the termination property of
C ′. More interestingly, A�S retains the fast decision prop-
erty of At+2 because this property is relevant only in syn-
chronous runs where the synchrony guarantees are much
stronger than those of either ES or �S-based asynchronous
rounds.

5.2 Optimizing the failure-free case

In practice, failure-free runs are most prevalent among syn-
chronous runs. There are many indulgent consensus algo-
rithms in the literature which are optimized for failure-free
runs in which the system is “well-behaved” [11]. These al-
gorithms decide in two rounds if there are no failures and
the underlying failure detector does not make any false
suspicions. It has been shown in [11] that two rounds is
a lower bound for global decision in such well-behaved
runs.

Our algorithms At+2 and A�S can be easily improved
to achieve a global decision at round 2 in every failure-free
synchronous run. After receiving messages in round 2, if
any process pi is certain that there were no suspicions in
round 1 (i.e., pi receives round 2 messages from each of
the n processes with Halt = ∅) then pi decides immedi-
ately on any est value received, and sends a DECIDE mes-
sage with the decision value to other processes in round 3.
Otherwise, if pi does not detect any suspicion at round 1
(i.e., pi does not receive round 2 messages from all n pro-
cesses, however, every round 2 message received by pi has
Halt = ∅) then pi sets the proposal variable vci for the
underlying consensus algorithm C to any estimate value re-
ceived. Figure 4 describes the modification more precisely:
the six lines in Fig. 4 are inserted between line 6 and line 7 of
Fig. 2.

It is straightforward to see that Fig. 4 performs the
required optimization without violating any of the consen-
sus properties or the fast decision property. Suppose for
instance that some process pi decides d at round 2. To
see why consensus agreement is not violated, notice that
pi decides in line 6.5 only if there has been a complete
exchange of estimate messages at round 1 (i.e., no process
suspected any process). As the proposal values form a
totally ordered set, every ESTIMATE message at round 2 has
the same est value d (where d is precisely the minimum
of all proposed values), and therefore, every message sent
at round 2 is (ESTIMATE, 2, d , ∅). Thus, the only possible
decision value at round 2 is d , and every process p j which
completes round 2 without deciding, sets both vc j and est j
to d . Therefore, any process which decides at round t + 2,
decides d and any process which invokes proposeC (∗), does
so with value d . Agreement is obvious.

6 Concluding remarks

Our lower bound result immediately implies a lower bound
on early decision in synchronous runs of ES; i.e., for every
f such that 1 ≤ f ≤ t , every consensus algorithm in ES,
with 0 < t < n/2, has a synchronous run with at most
f crashes, in which some process decides at round f + 2
or at a higher round. To see why, suppose by contradiction
that there is an f ≤ t and a consensus algorithm A in ES
(where at most t processes may crash) which globally de-
cides by round f + 1 in every synchronous run with at most
f crashes. Since f ≤ t , A is also a consensus algorithm in
ES where at most f processes may crash. Thus, in ES where
at most f processes may crash, every synchronous run of
A globally decides by round f + 1, a contradiction with
Proposition 1. For f ≤ t −2, this lower bound also immedi-
ately follows from the f +2 round lower bound on consensus
in SCS [4, 11]. However, whether this early decision bound
in synchronous runs is tight was an open question (except
for the failure-free case where it is known to be tight [11]).
In a recent paper [5], we have shown that the f + 2 bound is
indeed tight for all f ≤ t .

Our t + 2 round bound for synchronous runs also raises
the question of eventual fast decision. Recall that, in ES, for
each run r in ES, there is a round K such that, in every round
k ≥ K , (a) if a process pi crashes in round k, then any sub-
set of the messages sent by pi in that round may be lost, and
the remaining messages sent by pi are received in the same
round, and (b) if pi does not crash in round k, then every
process which completes round k, receives the round k mes-
sage from pi . We say that such a run r is synchronous after
round K − 1. Thus, a synchronous run in ES is synchronous
after round 0. A simple modification of the proof of Proposi-
tion 1 implies that,9 for every f such that 0 ≤ f ≤ t , every
consensus algorithm in ES, with 0 < t < n/2, has a run:
(1) that is synchronous after round k, (2) that has at most f
crashes after round k, and (3) where some process decides at
round k + f + 2 or at a higher round.

Whether the above bound is tight is an open question.
In the following, we partially answer the question by
describing a consensus algorithm that matches the bound
for 0 ≤ t < n/3. Closing the gap for n/3 ≤ t < n/2 is an
open problem.

An efficient consensus algorithm when t < n/3 In Fig. 5,
we present a new consensus algorithm A f +2 in ES for
t < n/3. A f +2 is an optimized version of the second
leader-based algorithms of [14], which we denote by
AM R . Algorithm A f +2 has the following fast eventual
decision property: for every f such that 0 ≤ f ≤ t , if a
run becomes synchronous after round k, and there are f
crashes after round k, then the run globally decides by round

9 Informally speaking, the modification is done as follows: (1) re-
define bivalency by considering only runs that are synchronous after
round k, (2) construct a k-round asynchronous partial run which is bi-
valent, and (3) repeat the original proof after round k.

The inherent price of indulgence 97

Fig. 4 Optimizing At+2 for failure-free syn-
chronous runs

Fig. 5 The consensus algorithm A f +2

k + f + 2.10 A f +2 is based on the following observation
made in AM R : when t < n/3, in a collection S of n values
(where values may be repeated), if some value v appears
n − t times, then in every collection consisting of at least
n − t values from S, v appears at least n − 2t times, and all
other values appear less than n − 2t times.

We now give a brief description of A f +2. Consider any
process pi . Upon proposing some value v, pi adopts v as
the estimate est of the decision value. In each round, pi ex-
changes its est , until pi crashes or decides. A process sends
two types of messages: an ESTIMATE message that contains
the most recent est of the process, and a DECIDE message
that contains the decision value of the process. Upon re-
ceiving the messages of round k, pi first checks whether
it has received any DECIDE message from round k or from
a lower round, and if so, decides on the decision value re-
ceived. Otherwise, among the messages received in round
k, pi selects n − t messages with the lowest n − t sender
ids. (In other words, pi arranges the messages in the as-
cending order of their respective senders’ process ids, and
then selects the first n − t messages.) The set of these n − t
messages is denoted by msgSeti at pi . If every message in
msgSeti contains the same est (say est ′) then pi decides
est ′. Otherwise, if some est value appears at least n − 2t

10 We would like to point out that such a run of AMR would require
k + 2 f + 2 rounds to globally decide. To translate the leader-based
algorithm AMR to ES, we simply need to implement an eventual leader
primitive in ES, which can be done as follows: (1) every process pi
sends messages to all processes in every round, (2) pi initially sets its
variable leader to p1, and (3) on receiving messages of a round k in
ES, pi sets its variable leader to the process with the minimum process
id, among the senders of messages received by pi in round k.

times in msgSeti then pi adopts that value as esti . If no est
value appears at least n − 2t times, then pi adopts the min-
imum est value in msgSeti as esti . Upon deciding, a pro-
cess sends its decision value to other processes in the next
round.

Correctness of A f +2 The validity property of the algorithm
is rather straightforward. Thus we focus on the agreement,
termination, and the fast eventual decision property.

Lemma 14 (Agreement) No two processes decide differ-
ently.

Proof Consider the lowest round k at which some process
decides. A process can decide either in line 8 or in line 11.
If a process decides at line 8 of round k then some process
has sent a DECIDE message at round k or at a lower round,
and hence, some process has decided at round k − 1 or at a
lower round; a contradiction with the definition of k. Thus
every process which decides at round k, decides in line 11.

Let pi be a process which decides some value v in line 11
of round k. From the algorithm it follows that pi received at
least n − t messages in round k with est = v. Since t < n/3,
in round k, every process which completes round k, receives
at least n − 2t messages with est = v, and the number of
messages received with est �= v is less than n − 2t . Thus
every process which completes round k, either decides v or
adopts v as est . A simple induction shows that processes
can not have an estimate value (and hence a decision value)
distinct from v in a higher round. �

Lemma 15 (Fast eventual decision) Consider a run of al-
gorithm A f +2 which is synchronous after round k. If there

98 P. Dutta, R. Guerraoui

are f crashes (0 ≤ f ≤ t) after rounds k, then the run
globally decides by round k + f + 2.

Proof Suppose by contradiction that there is a run of the
algorithm that is synchronous after round k, f crashes occur
after round k, and some process p j completes round k+ f +2
without deciding. There are the following two cases.

– Some process decides before round k + f + 2. Let k′ ≤
k + f + 1 be the lowest round in which some process de-
cides. Let some process pi decides v in round k′. As in
Lemma 14, we can show that pi receives at least n − t
messages with est = v, and every process which com-
pletes round k′, either does so with est = v or de-
cides v. Thus, every process which sends a message in
round k′ + 1 either sends an ESTIMATE message with
est = v or sends a decision message with decision value
v. Consequently, every process which completes round
k′ + 1 either receives a decision message or receives the
same est value in every received message. In either case,
the process decides in round k′ + 1 ≤ k + f + 2, a
contradiction.

– No process decides before round k + f + 2. Since the
algorithm is synchronous after round k and there are f
crashes after round k, there is at least one round k′, among
the f + 1 rounds from k + 1 to k + f + 1, in which no
crash occurs, and hence, every process which completes
round k′ receives the same set of messages. Thus the
msgSet at every process which completes round k′ is the
same (say msgSet ′), and from the algorithm, msgSet ′
contains exactly n − t messages. If msgSet ′ contains
no two distinct estimate values, then all processes which
complete round k′, decide at the end of the round. Else,
if some value v occurs at least n − 2t times in msgSet ′
then no other distinct value can occur n − 2t times in
msgSet ′, and thus every process which completes round
k′, adopts v as est . If no value appears at least n − 2t
times in msgSet ′, then every process which completes
round k, adopts the minimum value in msgSet ′ as its
est . Thus, either there is a global decision in round k′,
or every process which completes round k′, completes
the round with the same est . In the second case, every
process which completes round k′ + 1, receives the same
est value in every received message, and hence, decides.
Thus every process which decides, decides by round
k′ + 1 ≤ k + f + 2. �

Lemma 16 (Termination) Every correct process eventu-
ally decides.

Proof Consider any run r of A f +2. We know that for every
run in ES, there is round k ≥ 0, such that, r is synchronous
after round k. Since at most t processes may fail in a run,
from Lemma 15 it follows that r globally decides by round
k + t + 2. �

Acknowledgements We thank Petr Kouznetsov and Bastian Pochon
for their helpful comments on earlier drafts of the paper. We are also
grateful to the reviewers who helped us improve the presentation of the
paper.

References

1. Aguilera, M.K., Toueg, S.: A simple bivalency proof that t-
resilient consensus requires t + 1 rounds. Inform. Proces. Lett.
71(3–4), 155–158 (1999)

2. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

3. Charron-Bost, B., Guerraoui, R., Schiper, A.: Synchronous system
and perfect failure detector: solvability and efficiency issues. In:
Proceedings of the IEEE International Conference on Dependable
Systems and Networks (DSN), pp. 523–532 New York (2000)

4. Charron-Bost, B., Schiper, A.: Uniform consensus harder than
consensus. DSC Technical Report 2000-28, Department of Com-
munication Systems, Swiss Federal Institute of Technology,
Lausanne (2000)

5. Dutta, P., Guerraoui, R., Pochon, B.: Tight bounds on early local
decisions in uniform consensus. In: Proceedings of the 17th Inter-
national Conference on Distributed Computing (DISC), Sorrento,
Italy (2003)

6. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the pres-
ence of partial synchrony. J. ACM 35(2), 288–323 (1988)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2), 374–
382 (1985)

8. Gafni, E.: Round-by-round fault detectors: Unifying synchrony
and asynchrony. In: Proceedings of the 17th ACM Symposium
on Principles of Distributed Computing (PODC-17), pp. 143–152
Puerto Vallarta, Mexico (1998)

9. Guerraoui, R.: Indulgent algorithms. In: Proceedings of the
19th ACM Symposium on Principles of Distributed Computing
(PODC-19), pp. 289–298 Portland, OR (2000)

10. Hurfin, M., Raynal, M.: A simple and fast asynchronous consen-
sus protocol based on a weak failure detector. Distribut. Comput.
12(4), 209–223 (1999)

11. Keidar, I., Rajsbaum, S.: A simple proof of the uniform consen-
sus synchronous lower bound. Inform. Process. Lett. 85(1), 47–52
(2003); A preliminary version appeared in SIGACT News 32(2),
45–63 (2001)

12. Lamport, L., Shostak, R., Pease, M.: The byzantine generals prob-
lem. ACM Trans. Program. Languages Syst. 4(3), 382–401 (1982)

13. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
14. Mostefaoui, A., Raynal, M.: Leader-based consensus. Parallel

Proce. Lett. 11(1), 95–107 (2001)

