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Abstract. The famous Fischer, Lynch, and Paterson impossi-
bility proof shows that it is impossible to solve the consensus
problem in a natural model of an asynchronous distributed
system if even a single process can fail. Since its publication,
two decades of work on fault-tolerant asynchronous consensus
algorithms have evaded this impossibility result by using ex-
tended models that provide (a) randomization, (b) additional
timing assumptions, (c) failure detectors, or (d) stronger syn-
chronization mechanisms than are available in the basic model.
Concentrating on the first of these approaches, we illustrate
the history and structure of randomized asynchronous consen-
sus protocols by giving detailed descriptions of several such
protocols.
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1 Introduction

The consensus problem [45] is to get a group of n processes in
a distributed system to agree on a value. A consensus protocol
is an algorithm that produces such an agreement. Each process
in a consensus protocol has, as part of its initial state, an input
from some specified range, and must eventually decide on
some output from the same range. Deciding on an output is
irrevocable; though a process that has decided may continue to
participate in the protocol, it cannot change its decision value.
The restricted problem in which the input range is {0, 1} is
called binary consensus. Except as otherwise noted, all of the
protocols discussed hereafter are binary consensus protocols.

Correct consensus protocols must satisfy the following
three conditions:

1. Agreement. All processes that decide choose the same
value.

2. Termination. All non-faulty processes eventually decide.
3. Validity. The common output value is an input value of

some process.
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This is not precisely the definition originally given by
Pease, Shostak, and Lamport [45]. Their paper used the even
stronger condition of interactive consistency, in which all non-
faulty processes compute the same vector of purported inputs,
and this vector correctly identifies the input of each non-faulty
process. But the definition above is the one that is generally
accepted today. It derives from the three-part definition used
by Fischer, Lynch, and Paterson [37], though in their paper the
validity condition is replaced by a much weaker non-triviality
condition. Non-triviality says only that there exist different
executions of the protocol that produce different common de-
cision values. Non-triviality is implied by validity (consider
an execution in which all processes have input 0 versus one in
which all process have input 1), but it is less useful for appli-
cations, since it says nothing about the relationship between
inputs and outputs. Nonetheless, non-triviality is enough to
show that consensus is impossible in the usual model.

The Fischer-Lynch-Paterson (FLP) impossibility re-
sult [37] demonstrates that there is no deterministic protocol
that satisfies the agreement, termination, and non-triviality
conditions for an asynchronous message-passing system in
which any single process can fail undetectably. A similar re-
sult, proved by Loui and Abu-Amara [44] using essentially the
same technique, shows that consensus is also impossible in an
asynchronous shared-memory system with at least one unde-
tectable failure. More details of these and similar results, and
of the models in which they apply, can be found in the survey
by Fich and Ruppert appearing elsewhere in this volume.

And yet we would like to be able to solve consensus. To es-
cape from the FLP result, we must extend the model in some
way. Several such extensions that have been used to solve
asynchronous consensus are described in Sect. 2. In this pa-
per, we concentrate on the use of randomized algorithms, and
give a more detailed description of randomized approaches in
Sects. 3 through 6.

2 Extensions to the model

The extensions to the base model that have been used to cir-
cumvent the FLP result can be divided into four classes.

1. Randomization. Randomized models provide probabili-
ties for some transitions. This means that instead of looking at
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a single worst-case execution, one must consider a probability
distribution over bad executions. If the termination require-
ment is weakened to require termination only with probabil-
ity 1, the FLP argument no longer forbids consensus: non-
terminating executions continue to exist, but they may collec-
tively occur only with probability 0.

There are two ways that randomness can be brought into
the model. One is to assume that the model itself is random-
ized: instead of allowing arbitrary applicable operations to oc-
cur in each state, particular operations only occur with some
probability. Such a randomized scheduling approach was first
proposed by Bracha and Toueg [23] (who called their version
fair scheduling). A recent attempt to revive this approach can
be found in the noisy scheduling model of [11]. Randomized
scheduling allows for very simple algorithms; unfortunately,
it depends on assumptions about the behavior of the world that
may not be justified in practice. Thus it has not been as popular
as the second approach, in which randomness is located in the
processes themselves.

In this randomized algorithm approach, processes are
equipped with coin-flip operations that return random values
according to some specified probability distribution. Again,
we can no longer talk about a single worst-case execution, but
must define a probability distribution on executions. Defining
this distribution requires nailing down all the other nondeter-
minism in the system (i.e., the order in which messages are
sent and delivered, or in which shared-memory operations are
performed), which is done formally by specifying an adver-
sary. An adversary is a function from partial executions to
operations that says which applicable operation to carry out at
each step. (Details are given in Sect. 4.) Given an adversary,
the result of the coin-flip operations are the only remaining
unknowns in determining which execution occurs. So we can
assign to each set of executions the probability of the set of
sequences of coin-flip outcomes that generate them.

The adversary we have just described is the strong adver-
sary; it can observe the entire history of the system, includ-
ing past coin-flip outcomes and the states of processes and
the communications mechanism, but it cannot predict future
coin-flip outcomes. A strong adversary gives a weak model
in which consensus is possible but difficult. Weakening the
adversary gives a stronger model (in the sense of granting
more strength to the processes); many consensus protocols
have been designed for weak adversaries with a restricted
view of the system.

This survey concentrates primarily on randomized algo-
rithms, largely because they lie closest to the domain of ex-
pertise of the author, but also because they require the least
support from the underlying system. Protocols using random-
ization are discussed starting in Sect. 3. An excellent survey
on work using randomization up to 1989 can be found in [29].

2. Timing assumptions. Consensus can be achieved despite
the FLP result by adding timing assumptions to the model that
exclude bad executions. Dolev, Dwork, and Stockmeyer [31]
characterize the effects of adding limited synchrony assump-
tions to a message-passing system, and show in particular that
consensus becomes possible with up to n faulty processes un-
der a variety of restrictions on the order in which processes take
steps or messages are delivered. Dwork, Lynch, and Stock-
meyer [34] introduced the partial synchrony model, in which
either there is a bound on message delay that is not known

to the processes, or there is a known bound that applies only
after some initial time T0. They describe consensus protocols
for this model that work with a bound on the number of faulty
processes. Attiya, Dwork, Lynch, and Stockmeyer [16] give
a still more refined model in which there are known bounds
C on the ratio between the maximum and minimum real time
between steps of the same process and d on the maximum
message delay; under these assumptions, they prove an upper
bound of (f + 1)Cd and a lower bound of (f + 1)d on the
amount of real time needed to solve consensus with f faulty
processes. Their upper bound uses timeouts to detect failures
and can be seen as an early example of the failure detector
approach described below.

In the shared-memory framework, a model in which pro-
cesses can deliberately delay operations in order to avoid over-
writing each other’s values was used to obtain a very simple
and efficient consensus protocol by Alur, Attiya, and Tauben-
feld [7]. More recently, Anderson and Moir [8] have used
scheduling assumptions from the operating systems world to
design protocols that run in constant time when processes run
on a uniprocessor under a priority-based scheduling regime or
under one that provides minimum scheduling quanta.

3. Failure detectors. With failure detectors, some mech-
anism exists for notifying other processes that a process has
failed. An example of a failure detector is the timeout-based
mechanism used by Dwork, Lynch, and Stockmeyer [34].
Much more interesting are unreliable failure detectors, where
the failure detector can misidentify faulty processes as non-
faulty and vice versa. Work on protocols for unreliable failure
detectors was initiated by Chandra and Toueg [28]. Chandra,
Hadzilacos, and Toueg [27] extended this work by showing
the minimum conditions an unreliable failure detector must
satisfy to permit consensus. Being able to detect failures, even
unreliably, permits solving consensus by electing a coordi-
nator, without the danger of having the protocol hang forever
waiting for a failed co-ordinator to wake up. Further examples
of work on failure detectors and their limitations in various
models can be found in [5,32].

4. Strong primitives. In these models, stronger shared-
memory primitives extend or supplement the basic operations
of reading and writing registers. Loui and Abu-Amara [44]
showed that consensus is solvable with one (but not two)
failures using test-and-set bits and is solvable for arbitrar-
ily many failures using three-valued read-modify-write reg-
isters. Extending this work, Herlihy [40] defined a hierarchy
of shared-memory objects based on their consensus number,
defined somewhat informally as the maximum number of pro-
cesses for which the object can solve wait-free consensus. The
essence of this line of research is that consensus is used as a
test problem to prove that certain shared-memory objects can-
not implement other, stronger objects. More robust definitions
have appeared in subsequent work (see, for example, [42]), and
there is now the beginning of a broad theory of the power of
shared-memory objects (e.g., [3,48–50]).

Herlihy’s paper also gave one of the first universal con-
structions for arbitrary shared-memory objects based on con-
sensus; showing that objects that can solve consensus with ar-
bitrarily many failures can implement arbitrary shared objects.
Another construction is due to Plotkin [46], based on sticky bits
similar to the 3-valued read-modify-write registers of Loui and
Abu-Amara [44]. Subsequent constructions have shown how
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to implement consensus or protocols of equivalent power us-
ing primitives such as load-linked/store-conditional [41,52].

Some consensus protocols combine aspects of protocols from
different models. For example, a hybrid protocol of Aguilera
and Toueg [4] solves consensus very quickly given a failure
detector, but solves it eventually using randomization if the
failure detector doesn’t work.

3 Consensus using randomization

One of the first approaches to solving consensus despite the
FLP result was to use randomization. The goal of a random-
ized consensus protocol is to give the set of non-terminating
executions a probability of zero. This does not, in a sense,
require breaking the FLP result: these zero-probability execu-
tions continue to exist. However, they are irrelevant in practice,
provided one is willing to accept a probabilistic termination
guarantee. This requires modifying the model as described in
Sect. 4.

The first randomized consensus protocol was given by
Ben-Or [20]; as it provides much of the structure for later
protocols, we give a description of it in Sect. 5.1. Later pa-
pers extended Ben-Or’s work in two directions: the literature
on message-passing consensus protocols has largely concen-
trated on solving agreement problems using cryptographic
techniques or private channels with a linear bound on the
number of faulty processes (including processes with Byzan-
tine faults, which may misbehave arbitrarily instead of simply
stopping); while work in shared-memory systems has used
the underlying reliability of the shared-memory system to
solve consensus in the wait-free case, where there no limit
on how many processes may fail but failures are limited to
crash failures. We describe some of the Byzantine agreement
work briefly in Sect. 5.2 and discuss wait-free shared-memory
algorithms at greater length in Sect. 6.

4 How randomization affects the model

Adding randomization involves changing both the model, to
include the effect of random inputs, and the termination con-
dition, to permit non-terminating executions provided all such
executions together have probability zero.1

From the point of view of the processes, the main change
in the model is the addition of a new coin-flip operation. The
coin-flip operation behaves a bit like a read operation, except
that it returns a random value to the process that executes it
instead of the value from some register. Depending on the
precise details of the model, this value might be the outcome
of a fair coin-flip, or might be a value chosen from a larger
range.

1 Permitting probability-zero non-terminating executions is not
required in a synchronous model, where algorithms exist that use
randomization to obtain high efficiency but that still terminate after
finitely many rounds in all executions [38,53]. The difference can be
accounted for by the fact that deterministic fault-tolerant consensus
is possible in a synchronous model. In an asynchronous model, if
a randomized consensus protocol terminated in all executions, we
could simply replace all coin-flips with hard-wired constants and get
a deterministic consensus protocol, contradicting the FLP result.

Adding coin-flip operations requires additional changes
to the model to handle probabilities of executions. In each
state of the system there may be a large number of opera-
tions of different processes that may occur next. Previously
the choice of which of these operations occurs has been im-
plicit in the choice of a single execution, but now we want to
consider ensembles consisting of many executions, where the
probabilities of individual executions are determined by the
return values of the coin-flip operations. In this framework,
it is convenient to assign control of which operation occurs in
each configuration to an explicit adversary, a function from
partial executions to operations. The idea is that the adver-
sary always chooses what operation happens next, but if that
operation is a coin-flip, the result of the operation is random.

The adversary thus takes on the role of the single worst-
case execution in the deterministic model. It also takes on the
responsibilities of the worst-case execution, in that it must
guarantee the fairness conditions required by the algorithm.
Once the adversary is specified, which execution occurs is de-
termined completely by the outcome of coin-flip operations,
and the probability of an execution or set of executions is de-
termined by the probability of the corresponding coin-flips.
We can then talk about the worst-case expected complexity of
an algorithm, by considering the worst possible adversary, and
then taking the average of some complexity measure over all
executions weighted by their probability given this adversary.2

Defining the adversary as a function from partial execu-
tions to applicable operations means that the adversary can in
effect see the entire history of the execution, including out-
comes of past coin-flips, internal states of the processes, and
the contents of messages and memory locations. Restricting
the adversary’s knowledge provides an opening for further
variations on the model.

The adversary defined above is called the strong adver-
sary. The strong adversary has the advantage of mathematical
simplicity, but for practical purposes it may be too strong.
While the choice of which operation occurs next in a system
might depend on the configuration in a complicated way (for
example, whether or not reading a particular register causes a
page fault might be very difficult to predict without examining
the entire previous execution), one can reasonably argue that
Nature is not so malicious that only the strong adversary can
encompass its awful power. This observation has motivated
the development of a variety of weak adversaries that permit
faster consensus protocols.3 A weak adversary might be unable
to break cryptographic tools used by the processes, or it might
be restricted more directly by not being allowed to observe
anything (such as message or register contents) that would not

2 Technically, it may be that in some models no single worst-case
adversary exists; or in other words, that for any adversary, there is a
slightly nastier adversary that produces worse performance. An ex-
ample might be when running under a fairness condition that requires
an adversary to eventually permit some operation, but allows different
adversaries to delay the operation for arbitrarily long finite times at
increasing cost to the algorithm. To handle such possibilities, one can
define the worst-case expected complexity instead as the supremum
over all adversaries of the expected complexity.

3 Conventionally, weak adversaries give rise to strong models, and
strong adversaries to weak models; the strength or weakness of the
model is a function of how much power it gives to the processes.
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affect the scheduling mechanism in a real system. Formally,
this usually involves restricting the adversary based on a notion
of equivalent executions. Two executions are equivalent if they
consist of the same sequence of operations (ignoring param-
eters of operations and their return values), and the adversary
must choose the same operation (again ignoring parameters)
after any two equivalent partial executions. An adversary that
is restricted in this way is called a content-oblivious adver-
sary, since it cannot see the contents of processes, messages,
or registers. A still weaker oblivious adversary cannot even
distinguish between different operations; it chooses in each
state only which process takes the next step. Other models
restrict the actions of the adversary, by imposing additional
timing assumptions or perturbing the adversary’s choices ran-
domly. We describe some of these weak-adversary models in
Sect. 6.1.

In addition to changing the model, we also adapt the cor-
rectness conditions for a consensus protocol to reflect the pres-
ence of randomness. In particular, the universal quantifier in
the termination requirement, which previously spanned all ex-
ecutions, now instead spans all adversaries; and we only re-
quire for any particular adversary that the protocol terminate
with probability 1.

A similar change in quantification would not be useful for
the agreement and validity requirements. Since any violation
of agreement or validity must occur after finitely many steps
– and thus finitely many coin-flips – any such violation would
occur with nonzero probability. Thus we continue to demand
that the agreement and validity conditions hold in all execu-
tions, which is equivalent to demanding that they hold with
probability 1.4

5 Fault-tolerant message-passing protocols

This section describes fault-tolerant message-passing proto-
cols. These achieve consensus given a bound on the number
of faults (which may vary from protocol to protocol). We begin
with Ben-Or’s original exponential-time protocol in Sect. 5.1
and describe some of its faster descendants in Sect. 5.2.

5.1 Ben-Or’s protocol

Ben-Or’s protocol is the earliest protocol that achieves con-
sensus with probabilistic termination in a model with a strong
adversary. Designed for a message-passing system, it tolerates
t < n/2 crash failures, and requires exponential expected time
to converge in the worst case.

Each process starts off with a preference equal to its in-
put. The protocol proceeds in rounds, each of which has two
stages, a voting stage and a ratification stage. Nothing in the
system guarantees that all processes proceed through different
rounds at the same time; instead, each process keeps track of
its own round and uses round labels on messages from other

4 It does change the problem to allow disagreement with nonzero
probability. A version of the Byzantine agreement problem that per-
mits disagreement but seeks to minimize its probability is studied
by Graham and Yao [39]. They cite an earlier unpublished paper of
Karlin and Yao as originating this approach.

Input: boolean value input
Output: boolean value stored in output
Data: boolean preference, integer round
begin

preference ← input
round ← 1
while true do

send (1, round, preference) to all processes
wait to receive n − t (1, round, ∗) messages
if received more than n/2 (1, round, v) messages
then

send (2, round, v, ratify) to all processes
else

send (2, round, ?) to all processes
end
wait to receive n − t (2, round, ∗) messages
if received a (2, round, v, ratify) message then

preference ← v
if received more than t (2, round, v, ratify) mes-
sages then

output ← v
end

else
preference ← CoinFlip()

end
round ← round + 1

end
end

Algorithm 1. Ben-Or’s consensus protocol. Adapted from [20]

processes to decide whether to use them in its current round,
throw them away (for messages from rounds the process has
already finished), or save them for later (for messages from
rounds the process has not yet reached).

The first stage of each round implements a voting pro-
cedure; each process transmits its current preference p to all
processes (including itself) by sending a message of the form
(1, r, p), and then waits to receive n − t such messages. If
any process receives more than n/2 votes for a single value,
it causes all processes to decide on this value using the ratifi-
cation mechanism.

This mechanism is implemented by the second stage of
each round. Any process that has observed a majority of votes
forv sends a message (2, r, v, ratify) to all processes.A process
that has not observed a majority for either value sends instead
a place-holder message (2, r, ?).

As in the first stage, each process waits to receive at least
n − t second-stage messages. Any process that receives even
a single (2, r, v, ratify) message in round r changes its prefer-
ence for round r +1 to v. If, in addition, it receives more than
t such messages, it immediately decides on v. If, on the other
hand, it receives only (2, r, ?) messages, it flips a fair coin to
choose a new preference for the next round. The process then
continues with the first stage of round r + 1.

This procedure is summarized as Algorithm 1.
The algorithm guarantees agreement because:

1. At most one value can receive a majority of votes in the first
stage of a round, so for any two messages (2, r, v, ratify)
and (2, r, v′, ratify), v = v′.

2. If some process sees t + 1 (2, r, v, ratify) messages, then
every process sees at least one (2, r, v, ratify) message.
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3. If every process sees a (2, r, v, ratify) message, every pro-
cess votes for v in the first stage of round r + 1 and every
process that has not already decided decides v in round
r + 1.

Validity follows by a similar argument; if all processes vote
for the their common input v in round 1, then all processes send
(2, r, v, ratify) and decide in the second stage of round 1.

Assuming a weak adversary that cannot observe the con-
tents of messages, termination follows because if no process
decides in round r, then each process either chooses its new
preference based on the majority value v in a (2, r, v, ratify)
message; or it chooses its new preference randomly, and there
is a nonzero probability that all of these random choices equal
the unique first-stage majority value (or each other, if there is
no majority value). The situation is more complicated with a
strong adversary, as different processes may be in the first and
second stages at the same time, and so the first-stage majority
value may not be determined until after the adversary has seen
some of the coin-flips from the second stage. The algorithm
continues to work with a strong adversary, but a much more
sophisticated proof is needed [6].

Unfortunately, in either case the probability that the al-
gorithm terminates in any given round may be exponentially
small as a function of the number of processes, requiring expo-
nentially many rounds. Note also that each process continues
to run the protocol even after deciding; however, the protocol
can be modified so that each process exits at most one round
after first setting its output value.

5.2 Faster protocols

Ben-Or’s protocol not only showed that consensus becomes
possible with randomization, but also initiated a large body
of work on randomized protocols for the harder problem of
Byzantine agreement, in which faulty processes can exhibit
arbitrary behavior instead of simply crashing. This work has
generally assumed the availability of cryptographic tools. Ra-
bin [47] showed that Byzantine agreement can be solved in
constant expected time given a shared coin visible to all pro-
cesses, and described an implementation of such a coin based
on digital signatures and a trusted dealer. Feldman and Mi-
cali [35] gave a constant-round shared-coin for a synchronous
system that uses secret sharing to avoid the need for a trusted
dealer.

A constant-time shared coin for an asynchronous system
was given by Canetti and Rabin [25] based in part on fur-
ther unpublished work by Feldman. For the Canetti and Rabin
protocol the cryptographic assumptions can be replaced by the
assumption of private channels. A simplified presentation of
the Canetti-Rabin protocol that tolerates crash failures only is
given in [17, Sect. 14.3.2].

6 Wait-free shared-memory protocols

A protocol that tolerates up to n−1 crash failures is called wait-
free, because it means that any process can finish the protocol
in isolation without waiting for the others. Wait-free message-
passing protocols for all but trivial problems are easily shown
to be impossible, as a process running in isolation cannot tell

whether it is the sole survivor or simply the victim of a network
partition [23].

With shared memory, things become easier. Even though
processes may fail, it is usually assumed that data in the shared
memory survives.5 This eliminates the possibility of partition
– even a process running in isolation can still read the notes
left behind by dead processes that ran before. The consensus
problem then becomes a problem of getting the contents of the
shared memory into a state that unambiguously determines the
decision value, even for processes that may have slept through
most of the protocol.

In this section, we begin describing the history of wait-free
shared-memory consensus, and then give examples of differ-
ent approaches to the problem, showing the range of the trade-
off between efficiency and robustness against adversaries of
increasing strength.

The first randomized protocol to use shared memory to
solve consensus was described by Chor, Israeli, and Li [30],
for a model in which processes can generate random values
and write them to shared memory in a single atomic operation
(this is equivalent to assuming a weak adversary that cannot
see internal coin-flips until they are written out). A noteworthy
feature of the protocol is that it works for values in any input
range, not just binary values.

We describe the Chor-Israeli-Li protocol in more detail in
Sect. 6.1.1. To give a brief summary, the essential idea of the
Chor-Israeli-Li protocol is to have the processes run a race,
where processes advance through a sequence of rounds as in
the Ben-Or protocol, and slow processes adopt the preferences
of faster processes that have already reached later rounds. If
a single process eventually pulls far enough ahead of all pro-
cesses that disagree with it, both this leader and the other
processes can safely decide on the leader’s preference, know-
ing that any other processes will adopt the same preference by
the time they catch up. Processes flip coins to decide whether
or not to advance to the next level. With the probability of
advancement set at 1

2n , a leader emerges after O(n2) total
work.

With a strong adversary, the Chor-Israeli-Li protocol fails.
The winning strategy for the adversary is to construct a “lock-
step execution” that keeps all processes at the same round, by
stopping any process that has incremented its round until all
other processes have done so as well. This strategy necessarily
requires that the adversary be able to observe internal states
of the processes when making its scheduling decisions. It is
still possible to solve consensus with a strong adversary, but a
different approach is needed.

Wait-free consensus protocols that tolerate a strong adver-
sary began to appear soon after the publication of the con-
ference version of the Chor-Israeli-Li paper. Abrahamson [1]
gave the first randomized wait-free consensus protocol for a
strong adversary. Though described in terms of processes ac-
quiring locks of increasing strengths, if the strengths of the
locks are interpreted as round numbers it superficially resem-
bles the Ben-Or protocol translated to shared memory. As in
Ben-Or’s protocol, the method for obtaining agreement is to
have the processes choose new preferences at random; after
2O(n2) steps on average, the processes’ random choices will

5 See [2,43] for models in which the shared memory itself can be
faulty.
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have agreed for a long enough period that the adversary cannot
manipulate them into further disagreement.

Also as with Ben-Or’s protocol, eliminating exponential
waiting time required replacing the independent local coins of
the processes with global coin protocols shared between the
processes. The first protocol to do this was given by Aspnes
and Herlihy [12]; it used a round structure similar to the Chor-
Israeli-Li protocol but relied on a shared coin protocol based
on majority voting to shake the processes into agreement. The
Aspnes and Herlihy protocol was still fairly expensive, re-
quiring an expected O(n4) total operations in the worst case,
though much of this cost was accounted for by the overhead
of using a primitive O(n2)-work snapshot subroutine con-
structed specifically for the protocol. Subsequent work with
the strong adversary by many authors [9,14,15,21,22,33,51]
has largely retained the overall structure of the Aspnes and
Herlihy protocol, while reducing the overhead and eliminating
in some cases annoyances like the use of unboundedly large
registers. The net result of these developments was to reduce
the expected total work to achieve consensus to O(n2 log n)
using the shared-coin protocol of Bracha and Rachman [22]
and the expected per-process work to O(n log2 n) using the
shared-coin protocol of [14]. An O(n2 log n) consensus pro-
tocol using the Bracha-Rachman coin is described in Sect. 6.2.

Further improvements in the strong-adversary model
stalled at this point. It was later shown by Aspnes [10] that
no strong-adversary consensus protocol could run in less than
Ω(n2/ log2 n) total work in essentially any model in which
the FLP bound applies. The essential idea of this lower bound
was to extend the classification of states in the FLP argument
as bivalent or univalent to a randomized framework, by defin-
ing a state as bivalent if the adversary can force either decision
value to occur with high probability, univalent if it can force
only one decision value to occur with high probability, and
null-valent if it can force neither decision value to occur with
high probability. This last case is equivalent to saying that the
adversary cannot bias the outcome of the protocol too much
– or, in other words, that the protocol acts like a shared coin.
Aspnes showed, using a variant of the FLP argument, that any
consensus protocol that reaches a decision in less than n2 steps
is likely to pass through a null-valent state, and provided a sep-
arate lower bound on shared coins to show that Ω(n2/ log2 n)
expected work (specifically, Ω(n2/ log2 n) expected write op-
erations) would be needed to finish any protocol starting in a
null-valent state. Combining these two results gives the lower
bound on consensus.

Even before this lower bound was known, the lack of fur-
ther improvement in strong-adversary protocols led to greater
interest in protocols for weak adversaries. Aumann and Ben-
der [19] gave a shared coin algorithm for the value-oblivious
adversary that cannot observe the internal states of the pro-
cesses or values that have been written to memory but not yet
read. Based on propagating values through a butterfly net-
work, their algorithm gives a constant-bias shared coin in
O(n log2 n) total work. Concurrently, Chandra devised an
algorithm for repeatedly solving consensus in a model with
essentially the same adversary, with a polylogarithmic per-
process time bound. Chandra’s protocol uses a stockpile of
pre-flipped coins that the processes agree to use. The initial
execution of the protocol is expensive, due to the need to gen-

erate an initial stockpile of unused coins, but subsequent exe-
cutions can solve new instances of the consensus problem in
only O(log2 n) time. Chandra’s algorithm also gives a very
streamlined implementation of the rounds mechanism from
earlier strong-adversary protocols, reducing the shared data
needed to just two arrays of multi-writer bits. (We use a ver-
sion of this algorithm to reduce consensus to shared coin in
Sect. 6.2.1.) Soon afterwards, Aumann [18] showed how to
achieve O(log n) expected per-process work even for a sin-
gle iteration of consensus. It is not clear whether O(log n)
expected steps is the best possible in this model, or whether
further improvements may be obtained.

6.1 Weak-adversary protocols

In this section, we first describe the Chor-Israeli-Li protocol
that demonstrated the possibility of wait-free consensus, and
then sketch out some more recent work that uses a similar
approach. The unifying theme of these protocols is to have the
processes run a race where advancement to the next phase is
controlled by some random process and winning the race (by
getting far enough ahead of the other processes) determines
the outcome of the protocol.Although the adversary can use its
control over timing to handicap particular processes, a weak
adversary cannot identify which phase each process is in and
thus cannot prevent a victor from emerging.

6.1.1 The Chor-Israeli-Li protocol

Pseudocode for a simplified version of the Chor-Israeli-Li pro-
tocol is given as Algorithm 2.

Communication between processes is done by having each
process alternate between writing out its current round and
preference to its own output register in Line 1, and reading all
the other processes’ registers to observe their recent states in
Line 2. The only interactions with the shared memory are in
these two lines. A process notices that the race has been won
if it observes that processes with preference v are far enough
ahead of all disagreeing processes in Line 3; in this case, it
decides on v and exits. If the process does not decide, it adopts
the common preference of the fastest processes provided they
all agree (Lines 4 and 5).

The only tricky part is ensuring that eventually some pro-
cess does win the race, i.e. moves far enough ahead of any
processes that disagree with it. This is done in Line 6 by hav-
ing each process choose whether to advance to the next round
at random. Chor et al. show that, provided the adversary can-
not delay a process’s write depending on its choice to advance
or not, a leader emerges on average after O(n) passes through
the loop. The expected total work is O(n2), since each pass
requires O(n) read operations.

6.1.2 Protocols for still weaker adversaries

For still weaker adversaries, it is possible to remove the ran-
domization from the Chor-Israeli-Li protocol and still solve
consensus. This is essentially what is done in the uniprocessor
consensus protocol of Anderson and Moir [8], which relies on
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Input: input (an arbitrary value)
Output: return value
Local data: preference, round, maxround
Shared data: one single-writer multi-reader register for

each process
begin

preference ← input
round ← 1
while true do

1 write (preference, round)
2 read all registers R

maxround ← maxR R.round
3 if for all R where R.round ≥ maxround − 1,

R.preference = v then
return v

else
4 if exists v such that for all R where R.round =

maxround, R.preference = v then
5 preference ← v

end
6 with probability 1

2n
do

round ← max(round + 1, maxround − 2)
end

end
end

end

Algorithm 2. Chor-Israeli-Li protocol. Adapted with modifications
from [30]

quantum and/or priority-based scheduling to avoid lockstep
executions and which achieves consensus deterministically in
constant work per process; and in the “noisy environment”
consensus protocol of Aspnes [11], which assumes that the
adversary’s schedule is perturbed by cumulative random noise
and achieves consensus in expected O(log n) work per pro-
cess.

6.2 Strong-adversary protocols

The main tool for defeating a strong adversary – one that can
react to the internal states of processes and the contents of
memory – has been the use of weak shared coin protocols.
These provide a weak shared coin abstraction with the property
that, regardless of the adversary’s behavior, for each value 0 or
1 there is a constant minimum probability ε that all processes
agree on that value as the value of the shared coin. The coin
is said to be weak because ε is in general less than 1

2 : there
will be some executions in which the adversary either seizes
control of the coin or prevents agreement altogether.

We describe a typical weak shared coin protocol in
Sect. 6.2.2. As in most such protocols, the shared coin is ob-
tained by taking a majority of many local coin flips generated
by individual processes. While the adversary can bias the out-
come of the coin by selectively killing processes that are plan-
ning to vote the wrong way, it can only hide up to n − 1 votes
in this way, and with enough votes it is likely that the majority
value will not shift as a result of the adversary’s interference.

Before presenting a shared coin protocol, we will show
that having such a protocol does indeed give a solution to
consensus.

6.2.1 Consensus from a shared coin

Given a polynomial-work shared coin protocol, it is easy to
build a wait-free shared-memory consensus protocol requiring
similar total work. The basic idea is the same as in the Ben-
Or protocol: disagreements are eliminated by sending all but
the fastest processes off to flip coins. The actual structure of
the algorithm resembles the Chor-Israeli-Li algorithm, in that
processes proceed through a sequence of rounds, and slow
processes adopt the preferences of faster ones, but now the
rounds structure is no longer used to distinguish winners from
losers but instead simply ensures that the fastest processes do
not have to wait for processes stuck in earlier rounds. With
appropriate machinery, we can arrange that in each round all
processes either (a) think they are leaders and agree with all
other leaders, or (b) participate in the shared coin protocol.
Since all processes in the first category agree with each other,
and all processes in the second category will also choose this
agreed-upon value with probability at least ε, after O(1/ε) =
O(1) rounds all processes agree.

The first wait-free consensus protocol to use this tech-
nique was the protocol of Aspnes and Herlihy [12], which
included an ad-hoc snapshot algorithm and various other ad-
ditional mechanisms to allow the protocol to be built from
single-writer registers using the techniques of the day. A more
recent algorithm due to Chandra [26] gives a much simpler im-
plementation of the multi-round framework using two arrays
of multi-writer bits.

Pseudocode for a simplified version of this algorithm is
given as Algorithm 3. The main simplification the use of un-
bounded bit-vectors, which avoids some additional machin-
ery in Chandra’s algorithm for truncating the protocol if it has
not terminated in O(log n) rounds and switching to a slower
bounded-space algorithm.6 The simplified algorithm requires
very few assumptions about the system. In particular, it works
even when processes do not have identities [24] and with in-
finitely many processes [13].

We will not give a detailed proof of correctness of Algo-
rithm 3, referring the interested reader instead to [26]. How-
ever, we can give some intuition about why it works.

The two arrays of bits substitute for the round fields in
the Chor-Israeli-Li algorithm, allowing a process to quickly
determine if its preference is in the lead without having to
read n separate registers. A process P that reaches round r
with preference p registers this fact by setting mark[p][r] in
Line 1.

What P does next depends on whether it sees itself behind,
tied with, one round ahead, or two rounds ahead of the fastest
process with the opposite preference:

• If it sees a mark in mark[1 − p][r + 1], it knows that it is
behind, and switches to the other preference (Line 2).

6 This trick, of switching from a fast algorithm that is running too
long to a slower but bounded algorithm was originally devised by
Goldreich and Petrank [38] for synchronous Byzantine agreement
protocols. Chandra’s original algorithm was designed for a weak ad-
versary and its shared coin subroutine consumes “pre-flipped” shared
coins stored in memory. Switching to a second algorithm is needed
to avoid running out of these pre-flipped coins. But since the switch
occurs with low probability, the cost of the slower algorithm is rarely
incurred, and thus does not change the total asymptotic expected cost.
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Input: boolean value input
Local data: boolean preference p, integer round r, boolean

new preference p′

Shared data: boolean mark[b][i] for each b ∈ {0, 1}, i ∈
Z+, of which mark[0][0] and mark[1][0] are
initialized to true while all other elements are
initialized to false.

Subprotocols: Shared coin protocols SharedCoinr for
r = 0, 1, . . ..

begin
p ← input
r ← 1
while true do

1 mark[p][r] ← true
if mark[1 − p][r + 1] then

2 p′ ← 1 − p
else if mark[1 − p][r] then

3 p′ ← SharedCoinr()
else if mark[1 − p][r − 1] then

4 p′ ← p
else

5 return p
end
if mark[p][r + 1] = false then

6 p ← p′

end
7 r ← r + 1

end
end

Algorithm 3. Wait-free consensus using shared coins. Adapted with
modifications from [26], Fig. 1

• If the latest mark it sees is in mark[1 − p][r], it assumes
it is tied, and chooses a new preference using the shared
coin (Line 3).

• If the latest mark it sees is in mark[1 − p][r − 1], it keeps
its current preference (Line 4) but does not yet decide, as it
may be that some process Q with the opposite preference
is close enough that Q will immediately set mark[1−p][r]
and then think it is tied with P .

• Finally, if it sees no mark later than mark[1 − p][r − 2]
(which it doesn’t bother to read), then any Q with a differ-
ent preference has not yet executed Line 1 in round r − 1;
and so after Q has done so, it will see the mark that P
already put in mark[p][r], and then switch its preference
to P ’s preference p. In this case P can safely decide p
(Line 5) knowing that any slower process will switch to
the same preference by the time it catches up.

As a last step, the process checks to see if at least one process
with its old preference has already advanced to the next round.
In this case, it discards its decisions from the current round and
sticks with its previous preference; otherwise, it adopts the
new preference it determined in the preceding lines (Line 6).
This avoids a problem where some process P decides p in r,
but a process P ′ with the same preference later sees a tie in
r − 1 (after some other processes catch up with it), executes
the shared coin, and suddenly switches its preference while
catching up with P .

Intuitively, agreement holds precisely because of the ex-
planations for Lines 5 and 6. But a full correctness proof is

subtle, and depends among other things on the precise order in
which mark[1−p][r+1], mark[1−p][r], and mark[1−p][r−1]
are read in Algorithm 3. However, if one accepts that the algo-
rithm satisfies agreement, it is trivial to see that it also satis-
fies validity, because no process every changes its preference
unless it first sees that some other process has a different pref-
erences.

Termination follows from the properties of the shared coin.
Note that it is possible that some processes tied for the lead will
skip the coin because they read mark[1 − p][r] just before the
others write it. But it is not hard to show that these processes
will at least agree with each other. So the processes that do
participate in the coin will fall into agreement with the non-
participants with at least a constant probability, due to the
bounded bias of the coin, and agreement is reached after a
constant number of rounds on average. Since the overhead of
the consensus protocol is small (five operations per round in
the worst case), the cost is dominated by the cost of the shared
coin protocol.

6.2.2 Bracha and Rachman’s shared coin protocol

We can use any shared coin subroutine we like in Chandra’s
protocol; as discussed previously, the expected cost of the al-
gorithm will be within a constant factor of the cost of the
shared coin, provided the shared coin guarantees at most con-
stant bias. The most efficient shared coin protocol currently
known for the strong adversary, when measured according to
expected total work, is Bracha and Rachman’s 1991 voting
protocol [22]. Pseudocode for this protocol is given as Algo-
rithm 4.

The intuition behind this protocol is the same as for all
voting-based protocols: The processes collectively generate
many “common votes,” which in this case consist of all votes
generated before n2 votes have been written to the registers.
Each process’s view of the common votes is obscured both by
additional “extra votes” that are generated by processes that
have not yet noticed that there are enough votes in the registers,
and by the adversary’s selective removal of “hidden votes” by
delaying processes between generating votes in Line 1 and
writing them out in Line 2.7 The reason the protocol works
is that we can argue that the n2 common votes have at least
a constant probability of giving a majority large enough that
neither the random drift of up to n2/ log n extra votes nor
the selective pressure of up to n − 1 hidden votes is likely to
change the apparent outcome.

Because the extra votes are not biased by the adversary,
they are less dangerous than the hidden votes and we can tol-
erate more of them. This is why the protocol can amortize the
cost of the n read operations to detect termination in Line 3
over the n

log n votes generated in the inside loop. This amor-
tized termination test was the main contribution of the Bracha
and Rachman protocol, and was what finally brought the ex-

7 Our explanation of the Bracha-Rachman protocol follows the
analysis of a similar protocol from [14]. Bracha and Rachman’s orig-
inal analysis in [22] uses a slightly different classification that in-
cludes common and extra votes but does not separate out the issue
of hidden votes. Their classification requires the analysis of a more
sophisticated random process than the one considered here.
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Input: none
Output: boolean output
Local data: boolean preference p; integer round r; utility

variables c, total, and ones
Shared data: single-writer register r[p] for each process p,

each of which holds a pair of integers (flips,
ones), initially (0, 0)

begin
repeat

for i ← 1 to n
log n

do
1 c ← CoinFlip()
2 r[p] ← (r[p].flips + 1, r[p].ones + c)

end
3 Read all registers r[p]

total ← ∑
p r[p].flips

until total > n2

4 Read all registers r[p]
total ← ∑

p r[p].flips
ones ← ∑

p r[p].ones

5 if total
ones ≥ 1

2 then
return 1

else
return 0

end
end

Algorithm 4. Bracha and Rachman’s voting protocol. Adapted from
[22], Fig. 2

pected total work for consensus down to nearly O(n2) from
the O(n3) (or worse) bounds on previous protocols.

In detail, the votes are classified as follows. These classes
are not exclusive; a vote that is in either of the first two classes
may also be in the last.

1. Common votes consist of all votes generated before the
sum of the r[p].total fields exceeds n2. In a sense, these
are all the votes that would be seen by all processes if they
had been written out immediately. There will be between
n2 + 1 and n2 + n such votes.

2. Extra votes for process P are those votes Xi that are not
part of the common votes and that are generated by some
process Q before P reads r[Q] in Line 4. Each process
Q contributes at most n

log n such extra votes, because it
cannot generate more without executing the termination
test staring in Line 3. The common votes plus the extra
votes for P include all votes that P would have seen had
they been written out immediately.

3. Hidden votes for P are those votes which were generated
by some process Q but not written to r[Q] when P reads
r[Q]. Each process Q contributes at most one hidden vote
for P .

The total vote for P is given by:

(common votes)

+ (extra votes for P )

− (hidden votes for P ).

When the adversary permits a process to flip its coin in Line 1,
it is already determined whether or not that coin-flip will count
towards the common votes or the extra votes for any particular

process P . So both the common votes and the extra votes
consist of a sequence of unbiased fair coins, and the only
power the adversary has over them is the choice of when to
stop the sequence.

Using the normal approximation to the binomial distri-
bution, it is possible to show that the net majority for 1 of
the approximately n2 common votes is at least 3n with some
constant probability p.Adding in the n2

log n extra votes for a par-
ticular process P may adjust this total up or down; it reduces it
below n only if at some point during an unbiased random walk
of length n2

log n the total drops below −2n. Standard results8

show that this probability is bounded by 1
n2 , so even when we

multiply the probability for a single process by the number of
processes n, the probability that the extra votes are less than
n for any P is still less than 1

n . We thus have a probability of
at least p

(
1 − 1

n

)
that the common votes plus the extra votes

for all P are at least n. Since each P has at most n− 1 hidden
votes, each P then sees a positive net vote and decides 1.

The preceding argument shows that when n > 1, all pro-
cesses decide 1 with at least a constant probability ε = p/2.
The case for decision value 0 is symmetric.

The total work of Algorithm 4 is O(n2 log n); there are
O(n2) votes cast by all of the processes together, and each
vote has an amortized cost of O(log n). Plugging the Bracha-
Rachman shared coin into Algorithm 3 thus gives a consensus
protocol whose expected total work is also O(n2 log n).

This is the current best known bound on expected total
work for wait-free consensus in the strong-adversary model.
Since the Bracha-Rachman algorithm, the only further im-
provement in this model has been the Aspnes-Waarts shared
coin [14], which modifies the Bracha-Rachman coin to pre-
vent any single process from having to perform more than
O(n log2 n) work, at the cost of increasing the total work
bound to O(n2 log2 n).

There is still some room left to improve the total work, but
not much. We have previously mentioned the Ω(n2/ log2 n)
lower bound on the expected number of write operations for
any wait-free consensus protocol from [10]. The same paper
conjectured that the actual lower bound is Ω(n2/ log n). Using
this conjectured lower bound, and throwing in an extra loga-
rithmic factor for the cost of amortizing reads over coin-flips
and writes, a reasonable guess for the true cost of consensus
in this model might be Θ(n2).
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