
Digital Object Identifier (DOI) 10.1007/s00446-002-0076-2
Distrib. Comput. (2003) 16: 219–237

c© Springer-Verlag 2003

Arbitration-free synchronization

Leslie Lamport

Microsoft Research, 1065 La Avenida Mountain View, CA 94043, USA

Received: November 2001 / Accepted: July 2002

Abstract. Implementing traditional forms of multiprocess
synchronization requires a hardware arbiter. Here, we consider
what kind of synchronization is achievable without arbitra-
tion. Several kinds of simple arbiter-free registers are defined
and shown to have equal power, and the class of synchroniza-
tion problems solvable with such registers is characterized.
More powerful forms of arbiter-free communication primi-
tives are described. However, the problem of characterizing
the most general form of arbiter-free synchronization remains
unsolved.

Key words: Arbiter – Marked graphs – Multiprocess syn-
chronization

1 Introduction

In classic multiprocess synchronization algorithms, processes
communicate by reading and writing shared registers. The
most primitive interprocess communication mechanism that
has been considered seems to be the one-reader safe one-bit
register, introduced in [11]. This register can be written by
one process and read by one other process, a read obtaining
the “correct” value if it does not overlap a write. Such regis-
ters can be used to solve any kind of synchronization problem,
though not necessarily in a wait-free manner [7]. However, im-
plementing a read/write register requires an arbiter – a device
that makes a discrete decision based on a continuous range of
inputs. It is impossible to build an arbiter that always decides
within a bounded length of time [2]. Hence, synchronization
using a shared register may take an unbounded length of time.
We study here what kind of synchronization can be achieved
in bounded time, which means without using an arbiter.

Without an arbiter, we can implement an interprocess com-
munication mechanism called a wait/signal register, in which
one process waits for a signal from another process. We de-
scribe five types of wait/signal registers and show that they
are all equivalent, in the sense that each can be used to im-
plement the others. We then present our main result, that the
synchronization achievable by finite-state deterministic pro-
cesses communicating with wait/signal registers is essentially

that described by marked graphs [3], a special class of Petri
nets [18] that generalize producer/consumer synchronization.

At least one special case of our result has been known
for some time. It is well-known among experts on self-timed
circuits [16] that producer/consumer synchronization can be
implemented without an arbiter. (This is the basic form of syn-
chronization achieved by Sutherland’s micropipelines [19].)
We do not know if the full generalization to marked graphs
was previously known. While arbiter-free self-timed circuits
have been considered [20,21], we know of no characterization
of the interprocess synchronization that they can effect.

Wait/signal registers are not the only synchronization
mechanism implementable without an arbiter. We can also
implement a weak read/write register, which is one that may
not be accessed concurrently by different processes. Adding
weak read/write registers does not significantly alter the class
of solvable synchronization problems unless we also allow
processes to make nondeterministic choices. Implementing
nondeterminism seems to require an arbiter. However, we can
view a process’s nondeterministic choice as representing input
to an arbiter-free system from an environment that may con-
tain arbiters. We briefly describe a class of synchronization
problems that can be solved by nondeterministic processes
with wait/signal and weak read/write registers. However, we
do not know if this is the most general class of problems solv-
able with such a system.

We can enhance wait/signal registers without introducing
arbitration by allowing a process to wait for a signal from any
of a set of processes. We give an example to show that this
enhancement extends the power of wait/signal registers, but
we do not know how to characterize the synchronization it
allows.

In the next section, we review some concepts for describ-
ing nonatomic operations and define what we mean by mul-
tiprocess synchronization. Section 3 discusses arbitration and
shows that some classic synchronization problems require an
arbiter. Section 4 defines several types of wait/signal regis-
ter and proves their equivalence. It also shows how to im-
plement alternation with wait/signal registers. Section 5 re-
views marked graphs and defines a subclass we call process
marked graphs. Section 6 shows that process marked graphs
essentially describe the synchronization achievable by finite-

220 L. Lamport

state processes with wait/signal registers. Section 7 briefly
discusses other synchronization primitives, and we conclude
with an overview of what we have done and what remains
undone.

The basic question that we ask is, what kind of multi-
process synchronization can be achieved without arbitration?
Our attempt to answer it is far from satisfactory. We have
found that just asking the question precisely is difficult and
requires a somewhat arcane formalism. We have only a partial
answer – namely, a characterization of what can be imple-
mented with wait/signal registers, which are just one class of
arbiter-free synchronization primitive. And even that answer
is rather complicated. Much of our exposition is informal; we
have been formal only where we feel that our formalism is
simple and compelling. Still, we feel that the question is an
interesting one, and we hope that our results will stimulate
further progress towards answering it. This work is still in the
realm of pure theory; we know of no practical application of
arbiter-free multiprocess synchronization.

2 Systems and synchronization

Before discussing arbiter-free multiprocess synchronization,
we have to understand what multiprocess synchronization is.
In this section, we define what a multiprocess system is, what
a synchronization problem is, and what it means for a multi-
process system to solve a synchronization problem.

The standard formalisms for describing systems, such as
temporal logic [14] and process algebra [17], describe atomic
actions. The fundamental problem of multiprocess synchro-
nization is that operations are not inherently atomic and can
be executed concurrently by different processes. We therefore
use a formalism that was introduced for describing nonatomic
operations [10,12]. However, our exposition is rather infor-
mal.

2.1 System executions

A system is described by a set of system executions, each
one representing a possible (legal) execution of the system.
A system execution is a structure consisting of a set H of
operation executions and two relations � and � on H .
With each operation execution in H we associate an operation.
If O is the operation associated with an operation execution
A, we say that A is an execution of operation O . We usually
write an operation execution as O [i], where O is its operation
and i is an integer that distinguishes this operation execution
from other executions of O . Usually, O [i] is the i th execution
of operation O .

For operation executions A and B in a system execution,
we say that A precedes B if A � B , that A can affect B
if A � B , and that A and B are concurrent if A �� B and
B �� A.

To motivate the relations � and � and their properties,
we can think of an operation execution as comprising a set of
events. These events might be discrete atomic events in some
lower-level model of the system, or they might be the points
in a continuous region of space-time at which the operation
execution is performed by some physical device. We assume

an irreflexive partial order on the set of all events, where a → b
means that event a happens before event b [8]. An operation
execution A precedes an operation execution B iff every event
of A precedes every event of B :

A � B ≡ ∀ a ∈ A, b ∈ B : a → b (1)

Operation execution A can affect operation execution B iff A
can influence the result of B – for example, if A writes a value
to a register and B reads at least part of that value. For this to
be the case, some event of A has to precede some event of B :1

A � B implies ∃ a ∈ A, b ∈ B : a → b (2)

The following rules are simple consequences of (1) and (2)
and of the assumption that → is an irreflexive partial order:

R1. � is an irreflexive partial order.
R2. A � B � C � D implies A � D , for all A, B , C ,

D ∈ H .

We have used (1) and (2) to motivate rules R1 and R2 in terms
of events. However, events are not part of the formalism, and
we take R1 and R2 to be axioms. A formal characterization of
system executions requires additional axioms, but we will not
need them here.

A multiprocess system is one in which we assign one of
a finite number of processes to each operation. If A is an
execution of operation O to which we assign process p, we say
that p performs A. We assume that an algorithm can enforce
precedence relations between operation executions performed
by the same process. However, we allow a process to execute
some operations concurrently, so we don’t assume that all the
operation executions of a process are totally ordered.

As we shall see, the purpose of a synchronization algo-
rithm is to enforce precedence relations among operation ex-
ecutions. We assume that a process’s algorithm enforces in-
traprocess precedence relations. Interprocess communication
primitives guarantee only causality relations between opera-
tion executions of different processes. For example, if a read
R obtains the value written by a write W , we can conclude
that W � R, not that W � R. Interprocess precedence rela-
tions are obtained with rule R2 from intraprocess precedence
relations and interprocess causality relations.

An operation execution may or may not terminate. If A
is a nonterminating operation execution, then A �� B holds
for all operation executions B . The converse is not necessarily
true.

2.2 A safe read/write register

As an example of how system executions describe systems, we
consider a system containing a one-reader, one-writer one-bit
safe register [13]. A writer process performs a (finite or infi-
nite) sequence W (w1)[1] � W (w2)[2] � · · · of operation
executions, whereW (w i)[i] represents the writing of the value
w i , which is 0 or 1, to the register. A reader process likewise
performs a sequence R(r1)[1] � R(r2)[2] � · · · of operation

1 In previous work [10,12], (2) was taken to be an equivalence
rather than an implication. Here, we are taking � to be an actual
causality relation, not just a temporal relation in which causality is
possible.

Arbitration-free synchronization 221

executions, R(r i)[i] representing a read that obtains the value
r i . The relation W (w i)[i] � R(r j)[j] means that the j th read
can “see traces of” the i th write. The register is specified by
the requirement that, for every execution of the system, the
following conditions hold for all i and j .

S1. If W (w i)[i] � R(r j)[j] and either R(r j)[j] �

W (w i+1)[i+1] or W (w i)[i] is the last write, then r j =
w i ; and if R(r j)[j] � W (w1)[1], then r j = 0. (A read
not concurrent with any write obtains the most recently
written value, where the initial value is assumed to be 0.)

S2. r j equals 0 or 1. (Every read returns a legal value.)
S3. If W (w i)[i] and R(r j)[j] are concurrent, then

W (w i)[i] � R(r j)[j]. (If a read and a write exe-
cution occur and neither precedes the other, then the read
might see traces of the write.)

2.3 The Muller C-element

As another example of a system description, we consider a
system containing a Muller C-element, a basic component
of self-timed circuits [16]. An n-input C-element is a device
with n input lines and one output line that produces an output
signal after receiving an input signal on every input line. After
a signal appears on an input line, the next signal on that line
must not occur until after the C-element produces an output.

An execution of a system with a 2-input C-element con-
tains the following operation executions:2

Input 1 Operation Executions: I
[1]
1

� I
[2]
1

� I
[3]
1

� · · ·
� ��� � ��� � ���

C-Element Operation Executions: O[1] � O[2] � O[3] � · · ·
� ��� � ��� � ���

Input 2 Operation Executions: I
[1]
2

� I
[2]
2

� I
[3]
2

� · · ·
The solid arrows are assumed – the horizontal ones are the
ordering of operation executions within a process, the diagonal
ones must be guaranteed by the system. The dashed arrows
and termination of the O [i] operations are ensured by the C-
element.

In general, an n-input C-element system contains input
operation executions I [i]

j for each input j and output opera-

tion executions O [i]. We assume that (i) the output operation
executions O [i] are totally ordered, (ii) for each input process
j , the operation executions I [i]

j are totally ordered, and (iii) for

each i , operation execution O [i+1] occurs only if I [i]
j occurs,

for every j , and that I [i]
j

� O [i+1]. The C-element then guar-

antees that (i) the operation executions I [i]
j terminate, (ii) an

operation execution O [i] terminates iff I [i]
j occurs, for all in-

puts j , and (iii) I [i]
j

� O [i] for each j . The specification should
actually assert that these guarantees hold for a particular i if
the assumptions hold for all smaller values of i , but we won’t
bother stating this precisely.

2 The C-element is traditionally described in terms of circuit be-
havior, not operation executions. We have translated that description
into our formalism.

2.4 Implementation

When implementing a higher-level system by a lower-level
one, we must explain how to interpret an execution of the
lower-level one as an execution of the higher-level one. This
requires explaining how a set of operation executions in an
execution of the lower-level system is interpreted as a single
operation execution of the higher-level system. The �and �
relations of the higher-level interpretation are defined in terms
of the �and � relations of the lower-level system executions
as follows. If A and B are sets of lower-level operation execu-
tions that are considered to be individual operation executions
of the higher-level system, then:

A � B ∆= ∀A ∈ A, B ∈ B : A � B (3)

A � B ∆= ∃A ∈ A, B ∈ B : A � B (4)

It is easy to check that R1 and R2 are satisfied by the high-level
interpretation if they are satisfied by the lower-level system
execution.

A set A of operation executions of the lower-level system
represents a terminating operation of the higher-level system
iff A is finite and all its elements are terminating operation
executions.

2.5 Synchronization problems

We define a synchronization problem to be a requirement on
the � relations among a collection of operation executions.
Solving the problem means adding operation executions that
perform the synchronization needed to guarantee that every
system execution satisfies the required � relations.

The best-known synchronization problem is mutual ex-
clusion. In this problem, each process executes a sequence
of critical-section operations, and we require that all critical-
section executions be totally ordered by �. In other words, no
two processes may execute their critical sections concurrently.

Another important synchronization problem is the alterna-
tion problem. In this problem a “producer” process performs
a (possibly infinite) sequence P [1] � P [2] � · · · of operation
executions and a “consumer” process performs a sequence
C [1] � C [2] � · · · of operation executions. We require that
the P and C operation executions alternate:

P [1] � C [1] � P [2] � C [2] � · · ·
More precisely, we require that the following two conditions
hold, for any i ≥ 1:

A1. If execution C [i] occurs, then so does P [i], and P [i] �
C [i].

A2. If P [i+1] occurs, then so does C [i], and C [i] � P [i+1].

The restrictions on the � relations posed by a synchro-
nization problem are safety requirements. Synchronization
problems also have liveness requirements. For example, we
usually require a solution of the mutual exclusion problem
to be “deadlock-free”. This means that a process wanting to
execute a critical-section operation must eventually do so, if
all other processes stop executing critical-section operations.
The “starvation-free” version of the mutual exclusion problem

222 L. Lamport

strengthens this by requiring that any process that wants to ex-
ecute a critical-section operation must eventually do so, even
if other processes keep executing critical-section operations.

The alternation problem’s safety requirement implies that
of the mutual exclusion problem, since it implies that all the
P [i] and C [i] operations are totally ordered. If we ignored
liveness requirements, we could therefore consider a solution
to the alternation problem to solve the two-process mutual
exclusion problem, with the P [i] and C [i] being the critical-
section operation executions. However, as we explain below,
the two problems are fundamentally very different.

To formalize the liveness part of a synchronization prob-
lem, we would have to introduce request operations. For ex-
ample, in the mutual exclusion problem, deadlock freedom
means that, in any execution containing only a finite num-
ber of critical-section operation executions, each request is
followed by a critical-section operation. Starvation freedom
means that this condition holds for the operation executions
of each process. For the class of synchronization problems
that primarily concern us, liveness poses no serious problem,
and little is gained by treating it formally. So, we will content
ourselves with an informal treatment of liveness.

2.6 Operation execution graphs

We now generalize the alternation problem to the n-buffer
producer/consumer problem, for any positive integer n . The
alternation problem is the n = 1 case. As in the alternation
problem, the producer and consumer each perform an infinite
sequence of operation executions P [i] and C [i], respectively,
for all positive integers i . We require that condition A1 above
and the following condition hold for all i ≥ 1:

A2′. If P [i+n] occurs, then so does C [i], and C [i] � P [i+n].

Think of the producer communicating a sequence of values to
the consumer using n buffers. Operation execution P [i] writes
the i th value in buffer i mod n , and C [i] reads that value from
the buffer. We require that the i th value be written before it
can be read (P [i] � C [i]), and that it be read before the next
value is written into the same buffer (C [i] � P [i+n]). Here is
an illustration for n = 3:

Producer: P [1] � P [2] � P [3] � P [4] � P [5] � · · ·
�

��������	
�

��������	
�

��������	
�

������
��

Consumer: C [1] � C [2] � C [3] � C [4] � C [5] � · · ·

(5)

This diagram is an example of what we call an operation exe-
cution graph, which is an acyclic directed graph whose nodes
are operation executions such that (i) each node has only a fi-
nite number of incoming and outgoing edges, (ii) any path has
a first node, and (iii) for each process, there is a path whose
nodes are the set of operation executions of that process. (Con-
dition (ii) means that there is no infinite sequence n1, n2, . . .
of nodes such that there is an edge from ni+1 to ni , for each
i .)

An operation execution graph E defines a synchronization
problem, where each edge in the graph represents a required
� relation. The safety part of the problem requires that a sys-
tem execution be a prefix of the complete operation execution
graph. More precisely, a set OE of operation executions with

a relation � satisfies the safety requirement defined by the
execution graph E iff (i) OE is a subset of the nodes of E and
(ii) if there is a path from node n to node p in E and the oper-
ation execution p is in OE , then the operation execution n is
in OE and n � p. Note that this synchronization problem re-
quires the operations of a single process to be totally ordered.
However, we allow concurrent executions of the operations
used to implement the required synchronization.

For an operation execution graph, there are three natural
choices for the liveness property that we require. If we assume
that the operation executions are generated by the system and
are not issued in response to requests, then these three liveness
properties are:

None. A system execution may be any “prefix” of the operation
execution graph.

Deadlock freedom. If the graph is infinite, then any system ex-
ecution must contain an infinite subset of the graph’s operation
executions.

Process fairness. Any system execution must contain all of
the graph’s operation executions.

It is not hard to define the analogous conditions if operations
are executed in response to external requests.

In the n-buffer producer/consumer problem, the producer
must perform at least as many operation executions as the
consumer, and it can perform at most n more. Hence, deadlock
freedom implies process fairness. A trivial example in which
the two liveness conditions are not equivalent is provided by an
operation execution graph in which each process executes an
infinite sequence of operations, but there are no interprocess
edges.

Since the �relation on a system execution is transitive, the
synchronization problem defined by an operation execution
graph depends only on the connectivity properties of the graph.
Adding an edge from node n to node p does not change the
problem if there is already a path from n to p in the graph.
We define a 1-1 function κ from the nodes of an operation
execution graph E to those of an operation execution graph
E ′ to be an equivalence iff (i) every node n of E has the same
associated operation as κ(n) and (ii) for every pair of nodes n
and p in E , there is a path from n to p iff there is a path from
κ(n) to κ(p) in E ′. If there is an equivalence from E to E ′,
then E and E ′ define the same synchronization problem.

3 Arbitration

We now explain what we mean by an arbiter and give some
examples of synchronization that requires arbitration. We do
not know any reasonable way to prove formally that a synchro-
nization mechanism such as the wait/signal register does not
require an arbiter. So, we will not attempt define to arbitration
formally, and the definitions in this section are quite informal.

To simplify the exposition, we assume in this section a tra-
ditional totally-ordered (Newtonian) model of time in which
all events are ordered by the time at which they occur. The time
at which an operation execution begins or ends is the time of
its earliest or latest event. Operation execution A precedes op-
eration execution B iff A ends before B begins, and A � B
implies that A begins before B ends.

Arbitration-free synchronization 223

3.1 Arbiters

An arbiter is a device that makes a discrete decision based
on a continuous range of values. For our purposes, it suffices
to consider the special case of an arbiter that makes a binary
decision based on when some event occurs. So, we define an
arbiter to be any device that produces an output value equal to
0 or 1, and for which there are two times T 0 and T 1 such that,
if some particular event occurs at time T i , then the arbiter’s
output value is i , for i = 0, 1. This is a looser definition of an
arbiter than is customarily used by hardware designers.

Although we think of computer circuits as producing dis-
crete outputs, they are actually continuous devices. A binary
value is represented by the value of some physical quantity
(usually a voltage) lying in one of two nonadjacent intervals.
A simple argument shows that, if the arbiter’s output is a con-
tinuous function of its input, then it can take an unbounded
length of time to make its decision [9,15]. This means that,
for every ∆, there is a time T , lying between T 0 and T 1, and
an ε > 0 such that, if the event occurs between times T −ε and
T + ε, then the arbiter will not have decided by time T + ∆.

The impossibility of building a bounded-time arbiter
seems to be a fundamental law of physics, not a mathemat-
ical theorem. For example, Anderson and Gouda [1] proved
that a bounded-time arbiter cannot be constructed from cer-
tain kinds of components, but their proof offers no insight into
why the quantum-mechanical arbiter described in [9] doesn’t
work. We take the nonexistence of a bounded-time arbiter as
an axiom.

As a corollary, we conclude that, if an arbiter is forced to
decide within a bounded length of time, then it may produce
an incorrect output – that is, a value other than 0 or 1. If
the arbiter is a circuit, this could mean that it produces an
output voltage that does not represent either a 0 or a 1. Another
digital circuit receiving such a voltage as an input value could
behave strangely. (One can design arbiter circuits for which
the probability of not having decided within ∆ seconds varies
as e−∆, so the probability of producing an incorrect output
can be made vanishingly small by allowing enough time for
the decision.)

A perfectly reliable arbiter can be implemented only with
operations that may take an unbounded length of time to com-
plete. We believe that any form of synchronization that cannot
be implemented with bounded-time operations is equivalent to
implementing an arbiter, but we know of no rigorous statement
and proof of this. We will take arbitration-free synchroniza-
tion to mean synchronization performed using bounded-time
operations. The question we are addressing is, what synchro-
nization problems can be solved by arbitration-free synchro-
nization mechanisms?

3.2 A safe register requires an arbiter

A one-reader, one-writer one-bit safe register requires an ar-
biter. That is, it is impossible to implement it so that each
operation takes a bounded length of time. To show this, we
assume a one-reader, one-writer one-bit safe register in which
all operations take at most δ time units, and we obtain a con-
tradiction.

Suppose the writer performs just two writes: a write
W (0)[1] of 0 that starts at time Tw and a write W (1)[2] of 1
that starts at time Tw + 4δ. Suppose the reader performs a
read operation R whose starting event occurs at time T . If
T = Tw + 2δ, then the assumption that each operation lasts
at most δ time units implies that W (0)[1] � R � W (1)[2],
which by S1 (of Sect. 2.2) implies that R obtains the value 0.
If T = Tw + 5δ, then W (1)[2] � R and S1 implies that R
obtains the value 1. By S2, the read must obtain either a 0 or
a 1. Hence, the reader is an arbiter. Our assumption that an
arbiter cannot always decide within a bounded length of time
then contradicts the assumption that each read operation lasts
at most δ time units.

3.3 Mutual exclusion requires an arbiter

Although one can show directly that mutual exclusion requires
arbitration, it is a little easier to use weak read/write registers
mentioned in the introduction and described in detail in Sect. 7
below. A weak read/write register works correctly if there is
mutually exclusive access to the register by the reading and
writing processes. Thus, we can implement a safe read/write
register that allows concurrent accesses by combining a weak
read/write register with a mutual exclusion algorithm. A weak
read/write register can be implemented without an arbiter,
so an arbiter-free implementation of mutual exclusion would
yield an arbiter-free implementation of a safe register. We have
seen above that this is impossible, so we can conclude that
there is no arbiter-free implementation of mutual exclusion.

3.4 Other problems requiring an arbiter

There are a number of other classical synchronization prob-
lems that imply some form of mutual exclusion, including
the readers-writers problem [4] and the dining philosophers
problem [5]. They all require arbitration.

One synchronization problem that does not involve mutual
exclusion but does require arbitration is concurrent garbage
collection [6]. If an item becomes garbage before a collection
phase begins, then it must be collected; if it becomes garbage
after the collection phase ends, then it must not be collected.
Since the item could become garbage at any time, deciding
whether or not to collect it requires arbitration. However, there
is also an important aspect of the problem that involves pro-
ducer/consumer synchronization – namely, the collector con-
sumes garbage and produces free items, while the mutator
does the inverse. We show in Sect. 6 that producer/consumer
synchronization does not require an arbiter. This implies that,
although an arbiter is required to determine which items are
garbage, concurrent access to the list of free items does not
require arbitration.

3.5 Nondeterminism requires an arbiter

It seems that, even within a single process, implementing a
truly nondeterministic choice (one that cannot in principle be
predicted by executing a deterministic algorithm) requires an

224 L. Lamport

arbiter. However, we do not know how to prove this. Non-
determinism does not appear to be equivalent to arbitration,
since allowing nondeterministic choice still does not permit a
bounded-time arbiter. Nevertheless, all physical mechanisms
we know of that make a nondeterministic choice require an
arbiter, and hence cannot make the choice within a bounded
length of time. For example, one way to choose a random bit
is by determining if any nucleus in a piece of radioactive ma-
terial decays within a fixed length of time – a procedure that
is easily seen to require arbitration.

4 Wait/Signal registers

A weak read/write register requires that different accesses to it
not be concurrent. Preventing concurrent access by different
processes requires synchronization. Hence, weak read/write
registers cannot, by themselves, be used to synchronize pro-
cesses. We now describe a general class of register, called a
wait/signal register, that has an arbiter-free implementation
and can be used to synchronize two independent processes. In
such a register, a receiver process waits until a sender process
has sent a signal.

We first define a use-once wait/signal register and charac-
terize the synchronization problems that it can solve. We then
define several types of reusable wait/signal registers that are
all equivalent, in the sense that each can be used to imple-
ment the others. We also describe two arbiter-free implemen-
tations of wait/signal registers – one mechanical and another
that uses the C-element defined in Sect. 2.3. The section con-
cludes with an implementation of alternation synchronization
with wait/signal registers. This implementation is the basic
building block that we use in Sect. 6.1 to implement arbitrary
marked-graph synchronization.

4.1 A one-shot wait/signal register

The simplest form of wait/signal register is one that can be
used only once, which we call a one-shot wait/signal regis-
ter. For such a register x , the sender can execute at most one
Signal(x) operation, and the receiver can execute at most one
Wait(x). The Signal(x) operation execution always termi-
nates in a bounded length of time. The Wait(x) operation
execution terminates only after a Signal(x) operation execu-
tion has begun. More precisely, the Wait(x) operation exe-
cution terminates iff there is a Signal(x) operation execution,
in which case Signal(x) � Wait(x) holds. Moreover, the
Wait(x) terminates within a bounded length of time after
both it and the Signal(x) have begun.

4.2 Implementing systems with one-shot registers

A one-shot wait/signal register can be used to implement a
single interprocess edge in an operation execution graph. (An
interprocess edge is an edge that joins operation executions
of different processes.) We implement the synchronization re-
quirement implied by an edge from operation execution A of
process p to operation execution B of process q as follows,
using a one-shot wait/signal register x . Process p executes

A followed by Signal(x), and process q executes Wait(x)
followed by B . We then have

A � Signal(x) � Wait(x) � B

where the � relations are guaranteed by the processes’ algo-
rithms and the � relation is guaranteed by the register x . Rule
R2 then implies the relation A � B required by the edge.

With this simple procedure, we can implement any opera-
tion execution graph by using a separate one-shot wait/signal
register for each interprocess edge. Conversely, we now show
that a system in which deterministic processes communicate
only with one-shot wait/signal registers implements a system
described by an operation execution graph.

Proposition 1. Let S be a multiprocess system consist-
ing of deterministic processes communicating by one-shot
wait/signal registers, and let Ŝ be the system whose execu-
tions are obtained from those of S by removing Wait and
Signal operation executions. Then Ŝ consists of the set of
system executions allowed by an operation execution graph.

Proof: Since each process is deterministic, it performs the
same sequence of operation executions in any system exe-
cution. (A simple induction proof shows that a Wait termi-
nates in one system execution iff it terminates in every system
execution.) There can be only a single pair of Wait(x) and
Signal(x) operation executions for each one-shot register x ,
and Signal(x) � Wait(x) if both operation executions oc-
cur. The possible executions of S are ones satisfying these �
relations between corresponding Signal and Wait operation
executions, together with the intra-process � relations and all
interprocess � relations required by rules R1 and R2.

Let us call Wait and Signal operation executions the syn-
chronizing operation executions. For each operation execution
Op, let Prec(Op) be the last non-synchronizing operation ex-
ecution before Op by the same process, and let Next(Op) be
the next non-synchronizing operation execution after Op by
the same process. (These operation executions need not exist.)
All the � relations implied by intra-process � relations and
the � relations are obtained by transitivity from the intra-
process � relations and all relations Prec(Signal(x)) �
Next(Wait(x)) where the Signal(x) and Wait(x) operation
executions both occur. We construct an operation execution
graph whose nodes are the non-synchronizing operations and
whose edges are determined by the intra-process � relations
and the relations Prec(Signal(x)) � Next(Wait(x)). The
executions of Ŝ are precisely the ones allowed by this opera-
tion execution graph.

If we restrict ourselves to a finite number of registers, then
we can implement any finite operation execution graph. More
generally, we can implement any operation execution graph
that has only a finite number of interprocess edges. These are
the only operation execution graphs that can be implemented
using a finite number of one-shot wait/signal registers for in-
terprocess communication. If we further restrict ourselves to
finite-state processes, then the implementable synchronization
problems are the ones described by an operation graph with a
finite number of interprocess edges such that the sequence of
operations executed by each process is either finite or repeat-
ing.

Arbitration-free synchronization 225

4.3 Resettable wait/signal registers

Finite systems using one-shot wait/signal registers can imple-
ment synchronization problems with only a bounded num-
ber of operation executions, which are of little interest. To
solve more interesting synchronization problems, we need a
wait/signal register with which the sender and receiver can
execute a (finite or infinite) sequence of matching Signal and
Wait operations. A resettable wait/signal register permits this
through the use of an additional Reset operation. The Reset op-
eration must come between each successive pair of Wait and
Signal operation executions. That is, suppose W [i]

x and S [i]
x

are the i th executions of the Wait and Signal operations, re-
spectively, and R[i]

x is the i th execution of the Reset operation.
Then we require the following precedence relations:

S
[1]
x S

[2]
x S

[3]
x��� ��� ��� ��� ���

R
[1]
x R

[2]
x · · ·

��� ��� ��� ��� ���
W

[1]
x W

[2]
x W

[3]
x

(6)

These precedence relations must be guaranteed by the pro-
cesses, in which case the register guarantees S [i]

x � W [i]
x for

each i .
We define two types of resettable wait/signal registers,

sender-resettable and receiver-resettable, depending on which
process executes the Reset. For a sender-resettable register, (6)
becomes:

Sender: S
[1]
x

� R
[1]
x

� S
[2]
x

� R
[2]
x

� S
[3]
x

� · · ·
��� ��� ��� ��� ���

Receiver: W
[1]
x

� W
[2]
x

� W
[3]
x · · ·

(7)

For a receiver-resettable register, (6) becomes:

Sender: S
[1]
x

� S
[2]
x

� S
[3]
x · · ·

��� ��� ��� ��� ���
Receiver: W

[1]
x

� R
[1]
x

� W
[2]
x

� R
[2]
x

� W
[3]
x

� · · ·
(8)

For both types of register, the horizontal � relations are
achieved by having the processes execute the operations in
the appropriate order; the diagonal � relations must be en-
sured by interprocess synchronization.

We now state the precise correctness condition SR for a
sender-resettable wait/signal register. The definition is some-
what subtle. The precedence relations (7) are necessary for
the register to be implementable. However, we can’t simply
require all these precedence relations to hold as a precondition
for the register to work properly, because we must use these
registers to implement the diagonal �relations on which they
depend. Instead, we need an inductive definition saying that
if the operation executions are properly synchronized through
the first k − 1 Wait and Signal executions, then the k th Wait,
Signal, and Reset executions are correct. This condition is vac-
uous for k = 1, so the first Wait, Signal, and Reset executions
are guaranteed to work properly. For each k > 1, we can use
the correctness of the (k − 1)st Wait, Signal, and Reset exe-
cutions to prove the � relations necessary for the correctness
of the k th executions. The correctness condition is:

SR. Assume that a sender and a receiver process execute the
(finite or infinite) sequences of operation executions

Sender: S
[1]
x

� R
[1]
x

� S
[2]
x

�R
[2]
x

� · · ·
Receiver: W

[1]
x

� W
[2]
x

� · · ·

For any k ≥ 1, if W [i]
x � R[i]

x � W [i+1]
x for all i with

1≤i < k − 1, then:
1. If there is an S [k]

x operation execution, then it termi-
nates.

2. If there is a W [k]
x operation execution, then it termi-

nates iff there is an S [k]
x operation execution, in which

case S [k]
x � W [k]

x holds.
3. If there is an R[k]

x operation execution, then it termi-
nates.

The correctness condition RR for the receiver-resettable
wait/signal register is analogous. It is obtained from SR by
interchanging sender with receiver and W with R. We will
not bother to write it out.

4.4 Implementing a resettable wait/signal register

We now show that a receiver-resettable wait/signal register
can be implemented so the Wait and Signal operations take
a bounded length of time. That is, condition RR holds with
“terminating” strengthened to “completing within a bounded
length of time”. (For a Wait, this means within a bounded
length of time of the beginning of the Wait or of the corre-
sponding Signal, whichever occurs last.)

The signaling paradigm embodied in the wait/signal regis-
ter is fundamental to the design of self-timed circuits [16], and
it is well known that it can be implemented in silicon without
an arbiter. An arbiter-free implementation with a C-element is
described in Sect. 4.6 below. Here, we use a mechanical device
to show that a bounded-time receiver-resettable wait/signal
register can, in principle, be implemented. However, we do
not analyze the design in enough detail actually to prove that
it is a bounded-time device.

The heart of the device is shown in Fig. 1. It consists of
two platforms and a tube. The tube has a trap door that can be
opened as indicated by the arrow. Initially there is a ball on the
top platform and the trap door is shut. The Signal operation
removes the ball from the top platform and drops it into the
tube from the top. The Wait operation opens the trap door and
waits for the ball to drop out the bottom of the tube and reach
the bottom platform. The Reset operation moves the ball from
the bottom platform to the top platform and shuts the trap door.
The Reset operation is considered to be completed only after
the trap door is closed and the ball is back on the top platform.

The assumption that the previous Reset is finished before
a Signal is begun means that the Signal does not try to move
the ball until after it has been placed on the platform. Hence,
the Signal operation can easily be completed in a bounded
length of time. Because the Wait operation starts only after
the preceding Reset, it opens the trap door only when the ball
is above the door – either on the platform, falling towards the
door, resting on the door, or perhaps rising above the trap door
after bouncing off the closed door. In any case, there is no
resistance to opening the trap door, so that can be done in a
bounded length of time. Once the trap door is open and the
ball is in the tube, the ball will fall out the bottom of the tube
in a bounded length of time. Moreover, it will hit the bottom
platform with at least the velocity it would achieve by simply
falling from the height of the trap door. Hence, the ball will
have enough momentum to trigger a device that signals the

226 L. Lamport

Fig. 1. A mechanical device used to implement a wait/signal register

receiver process that the Wait has completed and the Reset
can begin. The entire Wait operation therefore completes in
a bounded length of time after either it begins or the corre-
sponding Signal begins. Because a Reset is not begun until
the preceding Wait is completed, it does not try to close the
trap door or move the ball until the ball is resting on the bottom
platform. (We can assume that the bottom platform is made of
a material that prevents the ball from bouncing.) Hence, the
Reset can easily close the trap door and move the ball from
the bottom to the top platform in a bounded length of time.

This implementation of a receiver-resettable wait/signal
register without an arbiter depends on the assumption that the
Signal and Reset operations are not concurrent. Otherwise, the
two processes could concurrently be handling the ball on the
top platform, and arbitration would be required to ensure that
they didn’t interfere with one another.

4.5 No-reset wait/signal registers

We can eliminate the Reset operations from a wait/signal reg-
ister, as long as we keep the precedence relations between the
Signal and Wait executions that they imply. This replaces (7)
and (8) with

Sender: S
[1]
x

� S
[2]
x

� S
[3]
x

� · · ·
������ ������ ������

Receiver: W
[1]
x

� W
[2]
x

� W
[3]
x

� · · ·
(9)

We define an NR wait/signal register to be one satisfying the
following obvious analog of condition SR.

NR. Assume that a sender and a receiver process execute the
sequences of operation executions S [1]

x � S [2]
x � · · ·

and W [1]
x � W [2]

x � · · ·, respectively. (The name in-
dicates the direction of the diagonal arrows.) For any

k ≥ 1, if W [i]
x � S [i+1]

x and S [i]
x � W [i+1]

x hold for all
i with 1≤i < k − 1, then
1. If there is an S [k]

x operation execution, then it termi-
nates.

2. If there is a W [k]
x operation execution, then it ter-

minates iff there is an S [k]
x operation execution, in

which case S [k]
x � W [k]

x holds.

We can weaken the synchronization requirements for such
a register by eliminating either the upwards or downwards
pointing � relations from (9), getting:

Sender: S
[1]
x

� S
[2]
x

� S
[3]
x

� · · ·
��� ��� ���

Receiver: W
[1]
x

� W
[2]
x

� W
[3]
x

� · · ·
(10)

Sender: S
[1]
x

� S
[2]
x

� S
[3]
x

� · · ·
��� ��� ���

Receiver: W
[1]
x

� W
[2]
x

� W
[3]
x

� · · ·
(11)

Each of these possibilities yields a new type of register, which
we call an SW wait/signal register and a WS wait/signal regis-
ter, respectively. Their correctness properties SW and WS are
obtained from NR by eliminating W [i]

x � S [i+1]
x (for SW) or

S [i]
x � W [i+1]

x (for WS) from the hypothesis.
Conditions SW and WS each imply condition NR, since

they have the same conclusion but weaker hypotheses. Hence
SW and WS wait/signal registers are also NR wait/signal reg-
isters.

We have defined five classes of wait/signal register: sender-
resettable, receiver-resettable, NR, SW, and WS. Section A.1
of the appendix shows that these classes are all equivalent in
the sense that a register of any class can be implemented with
registers of any other class.

4.6 Implementing a WS wait/signal register

We now describe a simple implementation of a WS wait/signal
register with a 2-input Muller C-element, described in
Sect. 2.3. We let the sender be one input process, and we
let the receiver be both the second input process and the
C-element process. The sender’s S [i]

x operation execution is
implemented by the input process’s I [i]

1 operation execution.

The receiver’s W [i]
x operation execution is implemented by

the sequence I [i]
2

� O [i] of operation executions. The or-

dering assumptions O [i] � I [i+1]
j of the C-element are im-

plied by the intraprocess order (for j = 2) and the assumption
W [i]

x � S [i+1]
x of the wait/signal register (for j = 1). The

requirements that W [i]
x terminates only if S [i]

x occurs and that
S x � W [i]

x follow from the C-element’s guarantees that O [i]

occurs only if I [i]
2 does and that I [i]

2
� O [i].

It is well-known in the self-timed circuit community that a
C-element does not require an arbiter [19], so this is an arbiter-
free implementation of the WS wait/signal register. The equiv-
alence of all the different types of wait/signal registers, proved
in the appendix, shows that any type of wait/signal register has
an arbiter-free implementation.

Arbitration-free synchronization 227

4.7 Implementing alternation

We now show how to implement alternation synchronization
using wait/signal registers. We use two WS wait/signal regis-
ters, x and y , where the producer is the sender for x and the
receiver for y , and the consumer sends with y and receives
with x . The algorithm for the two processes is:

Producer: while (true) {P ; Signal(x); Wait(y)}
Consumer: while (true) {Wait(x); C ; Signal(y); }

(12)

The proof of correctness of the algorithm is illustrated by the
diagram of Fig. 2. The horizontal solid arrows are implied by
the algorithm. The vertical dashed arrows are obtained from
the properties of the WS registers x and y . We first assume
those dashed arrows and show that they imply that the P and
C operation executions alternate as they are supposed to. We
next prove that those dashed arrows are implied by condition
WS.

To verify the safety property of alternation synchroniza-
tion, we have to prove P [k] � C [k] � P [k+1] for all k ≥ 1.
The proof follows. (Refer to Fig. 2 to help follow the proof.)

1. P [k] � C [k]

1.1. P [k] � S [k]
x and W [k]

x � C [k]

Proof: By the algorithm.
1.2. S [k]

x � W [k]
x

Proof: Proved below.
1.3. Q.E.D.

Proof: Steps 1.1 and 1.2 and rule R2 of Sect. 2.1
imply P [k] � C [k].

2. C [k] � P [k+1]

2.1. C [k] � S [k]
y and W [k]

y � P [k+1]

Proof: By the algorithm.
2.2. S [k]

y � W [k]
y

Proof: Proved below.
2.3. Q.E.D.

Proof: Steps 2.1 and 2.2 and rule R2 imply P [k] �
C [k].

To complete the proof of safety, we must prove 1.2 and 2.2.
These properties follow from the conclusion of condition WS
for registers x and y . To prove them, we must prove the hy-
pothesis of WS, which states that the following two conditions
hold for all i with 1≤i < k − 1:

W [i]
x

� S [i+1]
x W [i]

y
� S [i+1]

y (13)

The proof is by induction. We assume that (13) holds for
1≤i < k − 2 and prove it as follows for 1 ≤ i = k − 2.

1. W [k−2]
x � S [k−1]

x

1.1. W [k−2]
x � S [k−2]

y and W [k−2]
y � S [k−1]

x .
Proof: By the algorithm and the transitivity of �
(rule R1).

1.2. S [k−2]
y � W [k−2]

y
Proof: This follows from condition WS for register y
and the induction assumption, which asserts that (13)
holds for 1 ≤ i < k − 2.

1.3. Q.E.D.
Proof: Steps 1.1 and 1.2 and rule R2 imply
W [k−1]

x � S [k]
x .

2. W [k−2]
y � S [k−1]

y

2.1. W [k−2]
y � S [k−1]

x and W [k−1]
x � S [k−1]

y .
Proof: By the algorithm and the transitivity of �
(rule R1).

2.2. S [k−1]
x � W [k−1]

y

Proof: The induction assumption asserts thatW [i]
x �

S [i]
x for 1 ≤ i < k − 2. By step 1, this also holds for

i = k − 2, so it holds for 1 ≤ i < k − 1. Condition
WS for register x then implies S [k−1]

x � W [k−1]
y .

2.3. Q.E.D.
Proof: Steps 2.1 and 2.2 and rule R2 imply
W [k−2]

y � S [k−1]
y .

Thus far, we have ignored liveness. For alternation, there are
two possible liveness properties: none or deadlock freedom,
which is equivalent to process fairness. Whether or not our
implementation satisfies deadlock freedom depends on the
liveness assumption for the concurrent execution in the two-
process algorithm (12). We obtain deadlock freedom if we as-
sume deadlock freedom for the concurrent execution – namely,
if no process is executing an operation and some process is
ready to execute an operation, then some operation is eventu-
ally executed. To prove this, we must prove that each Signal
and Wait execution that is begun eventually terminates. We
have proved (13) for all i such that the operation executions
in the formulas occur. A simple induction using condition WS
for registers x and y then shows that all the Signal and Wait
executions terminate, completing the proof.

5 Marked graphs

Our main result is that the synchronization achievable by deter-
ministic processes communicating with wait/signal registers
is essentially described by marked graphs. This section pro-
vides the definitions and results about marked graphs needed to
state and prove that result. It reviews the definition of a marked
graph [3], defines its execution graph, and gives some prop-
erties of marked graphs and their execution graphs. We don’t
know if all these properties have already been published, but
most of them would have been obvious to researchers working
on marked graphs in the early 1970s. We also define process
marked graphs to be a subclass of marked graphs that represent
multiprocess systems.

5.1 Definitions and simple properties

A marking m of a directed graph G is a function that assigns
a non-negative integer m(α) to each arc3 α of G . We describe
a marking m by saying that it places m(α) “tokens” on each
arc α of G . We define the number of tokens on a path in a
marking of G to the be sum of the number of tokens on each
arc of the path. A marked graph is a pair 〈G ,m 〉 where G is
a finite directed graph and m is a marking of G . Here is an
example of a marked graph with two nodes, P and C .

3 To help avoid confusion, we use the term arc for an edge of a
marked graph and reserve the term edge for execution graphs.

228 L. Lamport

· · · S
[i−1]
x

� W
[i−1]
y

� P [i] � S
[i]
x

� W
[i]
y · · ·

� � � �
· · · W

[i−1]
x

� C [i−1] � S
[i−1]
y

� W
[i]
x

� C [i] � S
[i]
y · · · Fig. 2. Implementing alternation with wait/signal registers

(14)

The path whose sequence of nodes is C ,P ,P ,C ,P contains
7 tokens.

For markings m and m ′ and node n of G , we write m n→
m ′ iff m ′ is obtained from m by removing one token from
each input arc of n and adding one token to each output arc
of n . We usually describe m n→ m ′ as the assertion that firing
n in marking m produces marking m ′. A node n can be fired
in marking m iff m puts at least one token on each input arc
of n . In the marking (14), only node P can be fired. Firing it
produces the marking obtained by removing one token from
the bottom arc and putting one token on the top arc. (The token
on the arc from P to itself is removed from the arc and then
put back on it by firing P .)

A (finite or infinite) sequence 〈n1, n2, . . .〉 of nodes is
a firing sequence of a marked graph 〈G ,m 〉 iff there is
a sequence of markings 〈m, m1, m2, . . .〉 of G such that
m n1→ m1

n2→ m2 We call 〈m, m1, m2, . . .〉 the sequence
of markings of the firing sequence. A marked graph 〈G ,m 〉
is said to be live iff, for every node n of G , there is a fir-
ing sequence of 〈G ,m 〉 in which n appears infinitely often.
The sequence 〈P , P , C , P , C 〉 is a firing sequence of the
marked graph (14). In general, a sequence of P ’s and C ’s is
a firing sequence for this marked graph iff, in every prefix of
the sequence, the number of P ’s minus the number of C ’s is
between 0 and 3.

Perhaps the most important property of marked graphs is:

MG1. For any marked graph 〈G ,m 〉 and any cycle of G , the
number of tokens on the cycle is the same in all the
markings of any firing sequence of 〈G ,m 〉.

This property follows immediately from the observation that
firing a node leaves the number of tokens on any cycle un-
changed.

To help understand the possible firing sequences of a
marked graph 〈G ,m 〉, we number the tokens and modify the
firing rules as follows:

• The tokens on an arc form a queue, with the tokens initially
on arc α numbered successively from 1−m(α) (at the head
of the queue) through 0 (at the tail).

• The k th firing of a node removes the token from the head
of the queue on each of its input arcs and adds to the tail
of the queue on each of its output arcs a token numbered
k .

It is then easy to check the following property, where we let
Src(α) and Dest(α) be the source and destination nodes, re-
spectively, of an arc α.

MG2. For any arc α and k ≥ 1, the k th firing of Dest(α)
removes token number k − m(α) from α.

5.2 Execution graphs

The marked graph (14) describes the 3-buffer pro-
ducer/consumer problem defined in Sect. 2.6. A sequence of
P ’s and C ’s is a firing sequence for the marked graph iff the
corresponding sequence of operation executions is a system
execution (totally ordered by �) that is allowed by the 3-buffer
problem. The operation execution graph (5) and the marked
graph are related as follows: there is an edge from n [i] to p[j]

in (5) iff there is an arc from node n to node p in the marked
graph that contains j − i tokens. For example, the edge from
C [2] to P [5] in (5) corresponds to the arc from C to P in (14)
containing three tokens.

We now generalize the construction of (5) from (14). For
any marked graph 〈G ,m 〉, we define the execution graph
E (G ,m) of 〈G ,m 〉 as follows:

• The nodes of E (G ,m) are all the elements of the form
n [i] where n is a node of G and i is a positive integer.

• For each arc α of G and every i ≥ 1, there is an edge from
Src(α)[i] to Dest(α)[i+m(α)].

Here are two properties relating a marked graph and its exe-
cution graph.

MG3. A marked graph 〈G ,m 〉 is live iff E (G ,m) is acyclic.
MG4. A sequence σ of nodes of G is a firing sequence of a

marked graph 〈G ,m 〉 iff it satisfies the following con-
dition for every arc α and all k ≥ 1+m(α): if there are
k occurrences of Dest(α) in σ, then the (k −m(α))th
occurrence of Src(α) precedes the k th occurrence of
Dest(α) in σ.

Property MG4 follows from MG2. Property MG3 is proved
by a simple induction argument using the following two
properties, which are easy consequences of the definition of
E (G ,m).

• Node n can be fired in 〈G ,m 〉 iff n [1] has no incoming
edges in E (G ,m).

• m n→ m ′ implies that E (G ,m ′) is obtained from
E (G ,m) by removing node n [1] (and its outgoing edges)
and renaming node n [i] to n [i−1], for all i > 1.

5.3 Process marked graphs

Marked graphs describe synchronization among the firings
of nodes. We can relate that to synchronization among op-
eration executions by labeling each node with an operation,
where firing a node corresponds to executing its operation. For
a marked graph 〈G ,m 〉 to describe a multiprocess synchro-
nization problem, the executions of operations belonging to an
individual process must be totally ordered. This is guaranteed
by the following condition:

PG. For every process p, the set of nodes labeled with an op-
eration of p is the set of nodes of a cycle in G containing
a single token.

Arbitration-free synchronization 229

We define a process marked graph to be a live marked graph
〈G ,m 〉 in which each node is labeled by an operation, and
each operation is associated with one of a finite set of pro-
cesses, such that PG holds. Requiring a process marked graph
to be live allows us to prove the following result.

Proposition 2. If 〈G ,m 〉 is a process marked graph, then
E (G ,m) is an operation execution graph, where we asso-
ciate with each node n [i] of E (G ,m) the operation labeling
n .

Proof: To show thatE (G ,m) is an operation execution graph,
we must verify four conditions:
1. E (G ,m) is acyclic.

Proof: By MG3 and the assumption that 〈G ,m 〉 is live.
2. Each node in E (G ,m) has only a finite number of incom-

ing and outgoing edges.
Proof: By the definition of E (G ,m).

3. Any infinite path has a first node.
Proof: By the definition of E (G ,m).

4. The nodes labeled with the operations performed by a pro-
cess p form a path.
Proof: By PG and the definition of E (G ,m).

We next prove a necessary and sufficient condition for an
operation execution graph to be generated by a process marked
graph. But first, we need some definitions.

An isomorphism of operation execution graphs is defined
in the obvious way to be a graph isomorphism that maps each
node to a node with the same associated operation. An isomor-
phism is an equivalence, but the converse is not true in gen-
eral. (Equivalence of operation execution graphs is defined in
Sect. 2.6.) For ι to be an isomorphism, there must be an edge
from n to p iff there is one from ι(n) to ι(p); for it to be an
equivalence, there must be a path from n to p iff there is one
from ι(n) to ι(p).

For any function ι and any natural number k , we define ιk

to be the composition of ι with itself k times, where ι0 is the
identity function.

Let a node subgraph of a graph G be a subgraph consisting
of some subset S of the nodes of G and all the edges in G
whose source and destination are nodes in S . We define a
repeating isomorphism on an operation execution graph E to
be a graph isomorphism ι from E onto a node subgraph of E
such that (i) there is no edge in E from a node in ι(E) to a
node not in ι(E) and (ii) n and ι(n) have the same labels, for
every node n of E .

Proposition 3. If ι is a repeating isomorphism of an opera-
tion execution graph E , then there is a process marked graph
〈G ,m 〉 and an isomorphism κ from E (G ,m) to E such that
ιk (κ(n [i])) = κ(n [i+k]) for every node n of G and all i ≥ 1
and k ≥ 0.

Proof: Let 〈G ,m 〉 be the operator marked graph such that
(i) the set of nodes of G is the set of the nodes in E that are
not in ι(E), (ii) for any nodes n and p of G and any k ≥ 0,
there is an arc from n to p containing k tokens iff there is an
edge in E from n to ιk (p), and (iii) the nodes of G are labeled
with the operations of the corresponding nodes of E .

In an operation execution graph, the nodes associated with
operations of each individual process form a path with a first
node. It therefore follows from the definition of a repeating

isomorphism that every node of E equals ιk (n) for a unique
node n in G and k ≥ 1. We can therefore define a 1-1 cor-
respondence κ from the nodes of E (G ,m) to the nodes of
E such that κ(ιk (n)) = n [k+1] for all modes n of G and all
k ≥ 0. It is easy to check that κ is the required isomorphism.

For any marked graph 〈G ,m 〉, the function ι defined by
ι(n [k]) = n [k+1], for all nodes n of G and all k ≥ 1, is a
repeating isomorphism of E (G ,m). Proposition 3 therefore
implies that an operation execution graph has a repeating iso-
morphism iff it is isomorphic to E (G ,m) for some process
marked graph 〈G ,m 〉.

The following result will be used to reduce the problem of
implementing an arbitrary process marked graph to that of im-
plementing alternation. It asserts that, for any process marked
graph, there is an equivalent one in which no arc ever has more
than one token, and in which arcs come in oppositely-pointing
pairs. This result is proved in Sect. A.2 of the appendix.

Proposition 4. For any process marked graph 〈G ,m 〉, there
is a process marked graph 〈G ′,m ′ 〉 such that (i) for each arc
α in G ′ there is an oppositely-pointing arc α̂ such that m ′
assigns exactly one token to the cycle formed by α and α̂, and
(ii) E (G ′,m ′) is equivalent to E (G ,m).

5.4 Process marked graphs as systems

We have described the firing of a node in a marked graph as an
atomic action. However, we are interested in systems in which
executing an operation is not necessarily an atomic action.
We now show how to describe a process marked graph as a
system, where firing a node consists of executing nonatomic
operations that remove the tokens from the input arcs, perform
the operation labeling the node, then add the tokens to the
output arcs. Removing or adding a single token is a separate
operation. The system executions of a process marked graph
〈G ,m 〉 are defined as follows.

Let O be the set of all operation executions of the form
n [k], RemT (α)[k], or AddT (α)[k], where k is a positive inte-
ger, α is an arc of G and n is a node of G . (RemT stands for
remove token and AddT for add token.) Let n [k] be an execu-
tion of the operation labeling n , let RemT (α) be an operation
performed by the process associated with the destination node
of α, and let AddT (α) be an operation performed by the pro-
cess associated with the source node of α. We define a system
execution of 〈G ,m 〉 to be any system execution whose op-
eration executions are a subset of O such that the following
constraints are satisfied, for every arc α and all k ≥ 1:

• If there is a Dest(α)[k] operation execution, then there is
a RemT (α)[k] operation execution and RemT (α)[k] �

Dest(α)[k] holds. (Tokens are removed from the input arcs
before the node’s operation is executed.)

• If there is an AddT (α)[k] operation execution, then there
is a Src(α)[k] operation execution and Src(α)[k] �

AddT (α)[k] holds. (The node’s operation is executed be-
fore tokens are added to the output arcs.)

• If there is a RemT (α)[k] operation execution and k −
m(α) ≥ 1, then there is an AddT (α)[k−m(α)] operation
execution and AddT (α)[k−m(α)] � RemT (α)[k] holds.
(By MG2, this means the operation execution that removes

230 L. Lamport

a token must observe the operation execution that adds the
token.)

Observe that applying R2 to the � and � relations implied
by these constraints yields a relation n [i] � p[j] iff there is an
edge from n [i] to p[j] in E (G ,m). This observation leads to
the following result, where the synchronizing operations are
the RemT and AddT operations.

Proposition 5. For any process marked graph 〈G ,m 〉, a set
of executions of the operations labeling the nodes of G to-
gether with a � relation satisfies the safety problem defined
by the operation execution graph E (G ,m) iff it is the restric-
tion to the non-synchronizing operation executions of a system
execution of 〈G ,m 〉.

6 Implementation with wait/signal registers

We now prove our main results, which describe the relation be-
tween wait/signal synchronization and process marked graphs.
We first show that the synchronization problem defined by a
process marked graph can be solved using wait/signal regis-
ters. We then show that a system composed of deterministic
finite-state processes communicating with wait/signal regis-
ters implements the synchronization described by prefixing a
finite operation execution graph to the execution graph of a
process marked graph.

6.1 Implementing marked-graph synchronization

By Proposition 3, an operation execution graph has a repeat-
ing isomorphism iff it is equivalent to the execution graph of
a process marked graph 〈G ,m 〉. We now show how to solve
the synchronization problem described by such an operation
execution graph. By Proposition 5, we can solve the synchro-
nization problem by implementing the corresponding marked
graph system. By Proposition 4, we may assume that 〈G ,m 〉
is such that any arc α has an opposite-pointing arc α̂, and
the cycle formed by α and α̂ has one token. (This additional
constraint is not required by our construction, but it simplifies
the proof.) We now solve the problem of implementing such
a marked graph.

The alternation implementation (12) of Sect. 4.7 imple-
ments the following “two-cycle” marked graph:

Register x controls the token passing on the bottom arc and
register y controls the token passing on the top arc. A Wait
implements a RemT operation, and a Signal implements an
AddT operation.

The marked graph that we must implement is a superpo-
sition of such two-cycles. We implement it by combining the
implementations of all the two-cycles. We first rewrite the al-

ternation implementation (12) as follows by unwinding the
while loops a bit.

Producer: P ; Signal(x);
while (true) {Wait(y); P ; Signal(x); }

Consumer: Wait(x); C ; Signal(y);
while (true) {Wait(x); C ; Signal(y); }

(15)

We now give an implementation of the synchronization con-
straints in which each node is a separate process. We use a
separate wait/signal register for each arc. The program for a
node n consists of a prefix followed by a while loop. The
body of the while loop contains a Wait(x) for each register
x associated with an input arc of n , followed by the operation
labeling node n , followed by a Signal(y) for each register y
associated with an output arc of n . The Wait operations may
all be performed concurrently, as may the Signal operations.
The prefix consists of the loop body, except with the Wait
removed for each input arc containing a token in marking m .

If we ignore all operations other than the ones relevant
to an individual two-cycle, we have the protocol (15), which
we proved in Sect. 4.7 implements the required alternation
synchronization. Hence, the implementation satisfies all the
requirements of the original synchronization problem. How-
ever, we have implemented each node as a separate process.
We now combine the algorithms of the individual nodes into
an algorithm for each process.

By definition of a process marked graph, the nodes of a sin-
gle process form a cycle containing a single token. Let n1, . . . ,
nk be the nodes of the cycle for a process p, where m places
the token of the cycle on the input arc of n1. In every firing
sequence, the nodes of the process must fire in order, starting
with n1. So, we can combine the algorithms for these k nodes
into a single algorithm with a prefix and a while loop, where
the prefix and the loop body are the sequential compositions
of the prefixes and loop bodies of all the nodes in order. Doing
this for each process provides the desired implementation of
the marked graph 〈G ,m 〉. (We can remove the operations for
all registers corresponding to arcs that connect nodes of the
same process; since the marked graph is live by definition,
the synchronization implied by those arcs is subsumed by the
sequential firing of the process’s nodes.)

Our implementation of a process marked-graph 〈G ,m 〉
solves the safety part of the synchronization problem described
by E (G ,m). To implement liveness properties, we have to as-
sume fairness properties of our multiprocess algorithm. Define
weak fairness for a set of processes to mean that, if some oper-
ation of one of the processes is enabled, then some operation
from one of those processes must eventually be executed. We
obtain a deadlock-free solution by assuming weak fairness for
the entire set of processes. We obtain a process-fair solution
by assuming weak fairness for each set of processes whose
nodes all lie in the same connected component of G .

6.2 What is implementable with wait/signal registers

In any system, we can replace a reusable wait/signal regis-
ter with an infinite sequence of one-shot wait/signal registers,
replacing the k th Wait or Signal operation with a Wait or
Signal to the k th one-shot register. We observed in Sect. 4.2

Arbitration-free synchronization 231

that the synchronization problems solvable with an arbitrary
number of one-shot wait/signal registers are precisely those
described by an operation execution graph. So, this is also
the class that is solvable with an arbitrary number of reusable
wait/signal registers. There remains the question of what class
of operation execution graphs can be implemented with a finite
number of reusable wait/signal registers.

In Sect. 4.2, we showed how to implement a finite op-
eration execution graph with a finite number of wait/signal
registers. (We can trivially substitute reusable registers for the
one-shot registers used in that algorithm.) We just showed in
Sect. 6.1 how to implement the execution graph of a process
marked graph. We now show that, for finite-state processes,
we can implement the class of synchronization problems ob-
tained by combining a finite operation execution graph with a
process marked graph.

Proposition 6. A synchronization problem is solvable by
a system of deterministic, finite-state processes using
wait/signal registers iff it is described by an operation exe-
cution graph E with the following property: there is a finite
set P of nodes of E such that (i) there is no edge from a node
not in P to a node in P , and (ii) the node subgraph formed by
the nodes not in P has a repeating isomorphism.

Proof: We first sketch the proof of the “if” part. Let Em be
the node subgraph formed by the nodes not in P , and let ι be
its repeating isomorphism. Choose a set N of nodes of Em
such that each node of Em equals ιk (n) for a unique n in N
and a unique k . Choose r large enough so that there is no edge
in E from a node in P to any node ιk (n) for k ≥ r .

Implement Em with the algorithm described in Sect. 6.1
above. Next, unwind the first r iterations of each while loop,
appending r copies of the body to the prefix code that precedes
the loop. (If a process contains no nodes in Em , that process
is implemented with a halt operation, and there is no loop
unrolling.) We then prepend to each process’s algorithm the
operations implementing the nodes of P and the Wait and
Signal operations implementing the edges from nodes in P ,
as described in Sect. 4.2. (The Wait that implements an edge
from a node inP to a node not inP is inserted in the appropriate
place among the operations implementing Em .) The resulting
algorithm implements the synchronization problem described
by E .

We now sketch the proof of the “only if” part. Let S
be a system of deterministic, finite-state processes synchro-
nizing only with reusable wait/signal registers. We use the
same construction of an operation execution graph E as in
the proof of Proposition 1, except using � relations only of
the form Signal(x)[k] � Wait(x)[k] between the k th exe-
cutions of corresponding Signal and Wait operations. As in
that proof, E describes all possible executions of the system
Ŝ whose operation executions consist of the executions of
non-synchronization operations of S . Thus, E describes the
synchronization problem solved by S . We must only show that
E satisfies the required property.

Because S consists of a finite number of finite-state pro-
cesses, the operation execution sequences of the processes,
and their pattern of interaction (which Wait operation execu-
tion corresponds to which Signal operation execution) must
eventually repeat. That is, by removing a finite prefix of E ,

we can obtain a node subgraph of E that has a repeating iso-
morphism. The omitted nodes form the required set P .

We can generalize process marked graphs to a class of au-
tomata that correspond precisely to the class of synchroniza-
tion problems solvable by a system of deterministic, finite-
state processes using wait/signal registers. We add to an ordi-
nary process marked graph an acyclic graph of prefix nodes,
where the prefix nodes of a process must fire before the non-
prefix nodes. To connect the last non-prefix node of a process
to the first non-prefix node of the process, we use a special
two-source arc whose other source is the last non-prefix node
of the process. (The order of a process’s nodes in an ordinary
marked graph is the order in which they can fire.) Firing either
of its source nodes places a token on the arc. We also allow
arcs with no source, so we can begin the execution of the prefix
nodes of a process. Here is an example consisting of the two-
process producer/consumer marked graph with an additional
producer prefix node O and two additional consumer prefix
nodes A and B .

Node O must fire before the first firing of node P ; nodes A
and B must fire before the first firing of node C . Node B
cannot fire until nodes A and O have fired. Once the three
prefix nodes have fired, this generalized marked graph acts
like the ordinary marked graph (14).

In general, we require that the marked graph have a firing
sequence in which each prefix node appears once and each
non-prefix node appears infinitely often. We can then define
the execution graph of a generalized process marked graph and
restate Proposition 6 to assert that a synchronization problem
is solvable by a system of deterministic, finite-state processes
using wait/signal registers iff it is described by the execution
graph of a generalized process marked graph. The interested
reader can fill in the details.

7 Other arbiter-free devices

We have characterized the synchronization achievable by de-
terministic processes communicating with wait/signal regis-
ters. This raises two questions: what extra power does non-
determinism add, and are there synchronization devices other
than the wait/signal register that do not require arbitration?

Nondeterminism appears to be closely tied to the ability
to communicate values. We do not know how to make any
interesting use of nondeterministic choice unless one process
can communicate the result of its choice to another process.
Conversely, there is no need for a process to communicate a
value unless that value arises from a nondeterministic choice.
We introduce a weak read/write register, which allows pro-
cesses to communicate values to one another. We start with a

232 L. Lamport

one-reader, one-writer one-bit register and use it to construct
a multi-reader, multi-writer multi-valued register. We show
that nondeterministic processes communicating with weak
read/write registers and wait/signal registers can implement
a simple generalization of process marked graphs. We conjec-
ture that this is essentially all they can implement.

Finally, we introduce or-waiting, which is an arbitration-
fee mechanism that also enlarges the class of synchronization
problems that can be solved with wait/signal registers. We do
not know any characterization of the class of synchronization
problems that can be solved with them.

7.1 A weak one-reader, one-writer one-bit register

We showed in Sect. 3.2 that a one-bit read/write register can-
not be implemented with bounded-time operations. However,
a computer depends on reading or writing one-bit registers
(flip-flops) within a single clock cycle. There is no contradic-
tion because those registers are not read and written concur-
rently. It is easy to implement registers if no two operations
are concurrent.

We define a weak one-reader, one-writer one-bit register
to be one satisfying condition S1 of the safe register defined
in Sect. 2.2, except under the assumption that no read can
be concurrent with a write. (This assumption makes S3 vac-
uous and, together with S1, it implies S2.) More precisely,
the register allows the writer to perform a (finite or infinite)
sequence W (w1)[1] � W (w2)[2] � · · · of terminating op-
eration executions, where each w i equals 0 or 1. For any j ,
if the reader performs a sequence of operation executions
R(r1)[1] � · · · � R(r j)[j], none of which are concurrent
with any of the W (wk)[k], then R(r j)[j] terminates and S1
holds.

A weak one-reader, one-writer one-bit register can be im-
plemented with bounded-time operations. More precisely, the
write operations can be executed in a bounded length of time,
regardless of what the reader does. If none of the first j reads
are concurrent with any writes, then each of those reads can
also be executed in a bounded length of time.

7.2 General weak read/write registers

We can generalize the weak one-reader, one-writer one-bit reg-
ister to a p-reader, q-writer n-bit register, for any p, q , and n .
We assume that all the writes are totally ordered by �, so they
form a (finite or infinite) sequence W (w1)[1] � W (w2)[2] �
· · · where each w i is a number from 0 to 2n − 1. Here, the
W (w i)[i] are all the writes by all the p writer processes. For
any reader process and any j , if the process performs a se-
quence of operation executions R(r1)[1] � · · · � R(r j)[j],
none of which are concurrent with any of the W (wk)[k], then
S1 holds.

We now show how to implement a p-reader, q-writer n-
bit register with a collection of one-reader, one-writer one-
bit registers. Unlike the comparable construction for general
read/write registers, the construction for weak registers is quite
simple and proceeds in three steps: constructing an n-bit reg-
ister from one-bit registers, constructing a p-reader register
from one-reader registers, and constructing a q-writer register

from one-writer registers. These constructions can be applied
in any order to implement a p-reader, q-writer n-bit register
with a collection of one-reader, one-writer one-bit registers.
The three constructions are:

• An n-bit register x is built from n one-bit registers y [1],
. . . , y [n], where y [i] holds the i th bit of x .

• A p-reader register x is built from p one-reader registers
y [1], . . . , y [p], where reader i reads y [i], and a value v is
written to x by writing it to each y [i].

• A q-writer register x is built from q one-writer registers
y [1], . . . , y [q], where y [i] is written only by writer i . The
value of x is y [1] ⊕ y [2] ⊕ · · · ⊕ y [q], where ⊕ denotes
bit-wise exclusive-or. The value of x is read by reading all
the y [i] and taking the exclusive-or. Writer i writes x by
reading the values of y [j] for all j �= i and then writing
the appropriate value to y [i].

If each writer is also a reader (so p ≤ q), then this process
implements a p-reader, q-writer n-bit register with p ∗ q ∗ n
one-reader, one-writer one-bit registers.

The correctness of these constructions follows easily from
the definition (3) of � for a high-level operation execution in
terms of its component operation executions. This definition
implies that, for each of the constructions, if A and B are
executions of two operations to x such that A � B, and if A
and B are executions of operations to y [i] such that A is part of
the implementation of A and B is part of the implementation
of B, then A � B . Hence, the assumption that the writes to x
are totally ordered by �implies that, for all i , the writes to y [i]
are also totally ordered by �, and if no read of x is concurrent
with any write of x , then no read of y [i] is concurrent with
any write of y [i].

7.3 Using weak read/write registers

Processes using a weak read/write register must be synchro-
nized to prevent concurrent access to the register. Wait/signal
registers can be used to implement this synchronization. Com-
bining a weak read/write register with producer/consumer
style synchronization, one process can transmit values to an-
other. However, for deterministic processes, this accomplishes
nothing because it is known in advance what values will be
transmitted. To make use of weak read/write registers, we must
add nondeterminism.

Implementing nondeterminism requires an arbiter. How-
ever, we can consider the nondeterministic choice to be made
by the environment and given to the system as input. So, al-
lowing a process to make a nondeterministic choice can be
thought of as a way of modeling an arbiter-free system that
accepts inputs from an environment that can use an arbiter.
We therefore consider the synchronization problems that can
be solved using wait/signal registers, weak read/write regis-
ters, and the operation of nondeterministically choosing one
of a finite number of values. To describe these problems, we
extend marked graphs to value-marked graphs as follows:

• We let each token have one of a finite number of values.4

4 The value of a token should not be confused with the number
assigned to it, which is referred to in property MG2.

Arbitration-free synchronization 233

• We label each arc with a set of operations and a “nonde-
terministic function” that, as a function of the values of
the tokens removed from the input arcs, nondeterministi-
cally chooses an operation to perform and the values of
the tokens placed on the output arcs.

A process value-marked graph is defined in the obvious way,
with the requirement that all the operations labeling a node
are operations of the same process.

The algorithm of Sect. 6.1 for implementing a process
marked graph can be modified to implement a process value-
marked graph. We again replace the graph by an equivalent one
in which each arc can have at most one token. To each arc we
associate a weak read/write register as well as a wait/signal
register. The operation of putting a token with value v on
the arc is implemented by writing v to the register and then
performing the Signal operation. The operation of removing
the token from the arc consists of first performing the Wait
and then reading the value of the register. It is easy to show that
this protocol guarantees that there are no concurrent operations
to the register. The nondeterministic choice operation is used
to decide what operation to execute and what values to put on
the output tokens, as a function of the values read from the
registers.

The generalization of process marked graphs described at
the end of Sect. 6.2 can be applied to value-marked graphs
as well. The implementation of an ordinary process value-
marked graph can be extended to generalized process value-
marked graphs. We conjecture that generalized process value-
marked graphs are the most general class of system that can be
implemented by nondeterministic finite-state processes using
wait/signal registers, weak read/write registers.

7.4 Or-waiting

Waiting for a signal can be implemented without an arbiter.
Waiting for either of two signals can also be implemented
without an arbiter, as long as no attempt is made to determine
which of the two signals occurred. If the Wait operation is
implemented as a circuit that generates a signal when the op-
eration completes, then combining the two outputs with an
or gate implements waiting for either of the two signals. So,
there is an arbiter-free implementation of the or-waiting op-
eration OrWait(x , y) whose execution completes if there is
a matching execution of a Signal(x) or Signal(y) operation
(or both). Completion of an execution OW of OrWait(x , y)
implies a relation S � OW , where S is the corresponding
execution of one of the two Signal operations.

When an OrWait(x , y) operation completes, we know
that either a Signal(x) or a Signal(y) operation has begun;
but we cannot tell which. (To do so would require an arbiter.)
If x and y are reusable registers, the OrWait must be followed
by Wait operations to each register before the register can be
reused. For every requirement Op � W for the execution W
of the followingWait operation, the relationOp � OW must
hold for the execution of the OrWait . For example, suppose
x is a sender-resettable register. Using the notation of (7) in
Sect. 4.3, if OW [i] is an execution of OrWait(x , y) waiting
for the execution S [i]

x of Signal(x), then the algorithm must
guarantee R[i−1]

x � OW [i] � W [i]
x .

We generalize the OrWait operation in the obvious way
to allow waiting for a Signal to any of n wait/signal registers.
We allow multiple OrWait operations involving the same
register to precede the Wait for that register. For example,
a process could execute OrWait(x , y), OrWait(x , z), and
OrWait(y , z) before executing the next Wait(x), Wait(y),
and Wait(z) operations.

Let Sig(x) be the predicate asserting that the next
Signal(x) has been issued, so OrWait(x , y , z) waits for
the predicate Sig(x) ∨ Sig(y) ∨ Sig(z). Performing two
OrWaits in sequence is equivalent to waiting for the con-
junction of their conditions. For example, the sequence
OrWait(x , y); OrWait(x , z) waits for (Sig(x)∨Sig(y))∧
(Sig(x)∨Sig(z)), which is equivalent to Sig(x)∧ (Sig(y)∨
Sig(z)). Reduction to conjunctive normal allows us to im-
plement with OrWait operations any expression formed by
taking the conjunction and disjunction of Sig predicates.

Or-waiting extends the class of synchronization problems
that can be solved with wait/signal registers. As an example,
consider the following artificial (and useless) variant of al-
ternation, in which there is one consumer and two producer
processes performing the following sequence of operation ex-
ecutions:

Producer 1: P
[1]
1

� P
[2]
1

� P
[3]
1

� · · ·
Producer 2: P

[1]
2

� P
[2]
2

� P
[3]
2

� · · ·
Consumer: C [1] � C [2] � C [3] � · · ·

The synchronization requirement is that, for each i , (a) P [i]
1

or P [i]
2 or both must precede C [i], and (b) C [i] must precede

both P [i+1]
1 and P [i+1]

2 .
This problem cannot be described by an operation execu-

tion graph, so it cannot be solved with only Wait and Signal
operations. However, we can solve it using OrWait . We use
two copies of the alternation algorithm (12), except we pre-
cede the consumer’s C operation with an OrWait and move
its Wait operations after the C operation:

Producer 1: while (true) {P ; Signal(x1); Wait(y1)}
Producer 2: while (true) {P ; Signal(x2); Wait(y2)}
Consumer: while (true){OrWait(x1, x2); C ;

Wait(x1); Wait(x2);
Signal(y1); Signal(y2)}

The proof that this implements the synchronization require-
ment is similar to the proof that (12) implements alternation.

As this example shows, allowing or-waiting enlarges the
class of synchronization problems that can be solved with
wait/signal registers. We do not know how to characterize the
class of problems solvable with or-waiting.

8 Conclusion

The impossibility of implementing arbitration in a bounded
length of time seems to be a fundamental law of nature. Hence,
what kind of synchronization can be achieved without arbitra-
tion should be a fundamental question in any theory of mul-
tiprocess synchronization. We know of no previous attempt
to answer this question. Not coincidentally, we know of no

234 L. Lamport

practical benefits that might come from answering it. Never-
theless, we consider it to be an interesting question in its own
right.

The problematic nature of arbiters has been recognized
in the hardware community since at least the early 1970s [2].
There has been some consideration of arbiter-free circuits [21],
but we know of no characterization of what can be imple-
mented with such circuits. Moreover, the relation between
arbiter-free circuits and multiprocess synchronization is un-
clear.

We believe that this article is the first to study arbiter-free
multiprocess synchronization. We began by examining alter-
nation, the simplest and most common form of arbiter-free
synchronization, in which two processes take turns. For ex-
ample, alternation is employed when one process transmits a
sequence of values, one at a time, to another process. A typ-
ical implementation of alternation at the circuit level can be
described in terms of wait/signal registers. With a wait/signal
register, a receiver process can perform a Wait operation that
waits for a sender process to perform a matching Signal op-
eration. We identified five types of wait/signal registers, and
showed that each can implement the others. Proposition 6 char-
acterizes the class of synchronization implementable by de-
terministic, finite-state processes using wait/signal registers. It
shows that this class is essentially the class of synchronization
described by marked graphs [3].

Although a general read/write register requires an arbiter,
no arbiter is needed to implement a weak read/write register
that assumes a write is never concurrent with any other op-
eration to the register. Adding weak read/write registers and
nondeterministic choice to wait/signal registers allows the im-
plementation of a generalization of marked graphs in which
tokens have values and firing a node involves nondeterministic
choice. We conjecture that such graphs essentially character-
ize the synchronization achievable by finite nondeterministic
processes communicating with wait/signal registers and weak
read/write registers.

We can also extend the capabilities of wait/signal registers,
without adding arbitration, by allowing a process to wait for
a signal to occur on any one of a set of registers. We do not
know how to characterize the synchronization achievable with
this extension.

Wait/signal registers, or-waiting, and weak read/write reg-
isters can all be implemented without arbiters. We do not know
if there are other arbiter-free synchronization devices that can-
not be implemented with them. Nor do we know how to char-
acterize the multiprocess synchronization problems that can
be implemented without an arbiter, independent of the syn-
chronization mechanisms used. Much remains unknown in
the theory of arbiter-free synchronization.

References

1. Anderson JH, Gouda MG (1991) A new explanation of the
glitch phenomenon. Acta Informatica 28(4): 297–309

2. Chaney TJ, Molnar CE (1973) Anomalous behavior of synchro-
nizer and arbiter circuits. IEEE Trans Comput C-22: 421–422

3. Commoner F, Holt AW, Even S, Pnueli A (1971) Marked di-
rected graphs. Journal of Computer and System Sciences 5(6):
511–523

4. Courtois PJ , Heymans F, Parnas DL (1971) Concurrent control
with “readers” and “writers”. Communications of the ACM
14(10): 667–668

5. Dijkstra EW (1971) Hierarchical ordering of sequential pro-
cesses. Acta Informatica 1: 115–138

6. Dijkstra EW, Lamport L, Martin AJ, Scholten CS, Steffens EFM
(1978) On-the fly garbage collection: an exercise in cooperation.
Communications of the ACM 21(11): 966–975

7. Herlihy MP (1991) Wait-free synchronization. ACM Transac-
tions on Programming Languages and Systems 13(1): 124–149

8. Lamport L (1978) Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM 21(7):
558–565

9. Lamport L Buridan’s principle. Currently available from
http://research.microsoft.com/users/lamport/pubs/pubs.html,
or by searching the Web for the 23-letter string obtained by
removing the - characters from all-lamports-pubs-onthe-web,
January 1986

10. Lamport L (1986) The mutual exclusion problem—part i: A
theory of interprocess communication. Journal of the ACM
33(2): 313–326

11. Lamport L (1986) On interprocess communication. Distributed
Computing 1: 77–101

12. Lamport L (1985) On interprocess communication—part i: Ba-
sic formalism. Distributed Computing 1: 77–85

13. Lamport L (1986) On interprocess communication—part ii:
Algorithms. Distributed Computing 1:86–101

14. Manna Z, Pnueli A The Temporal Logic of Reactive and Con-
current Systems. New York: Springer 1991

15. Marino LR (1981) General theory of metastable operation.
IEEE Transactions on Computers C-30(2): 107–115,

16. Mead C, Conway L Introduction to VLSI Systems, chapter 7.
Reading, Mass.: Addison-Wesley 1980

17. Milner R A Calculus of Communicating Systems, volume 92
of Lecture Notes in Computer Science. Berlin Heidelberg New
York: Springer 1980

18. Reisig W Elements of Distributed Algorithms: Modeling and
Analysis with Petri Nets. Berlin Heidelberg New York: Springer
1998

19. Sutherland IE (1989) Micropipelines. Communications of the
ACM 32(6): 720–738

20. Verhoeff T Analyzing specifications for delay-insensitive cir-
cuits. In Proceedings of the International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems, pp
172–183, San Diego, California, 1989

21. Verhoeff T A Theory of Delay-Insensitive Systems. PhD thesis,
Eindhoven University of Technology, May 1994

Appendix

A.1 Equivalence of wait/signal registers

A.1.1 Equivalence of resettable registers

We first demonstrate that sender-resettable and receiver-
resettable registers are equivalent. We show how to implement
a sender-resettable register x with two receiver-resettable reg-
isters y1 and y2. The converse construction of a receiver-
resettable register from two sender-resettable registers is sim-
ilar and is omitted.

The Signal executions of register x are implemented alter-
nately by Signal executions ofy1 andy2. The Reset executions

Arbitration-free synchronization 235

· · ·
S

[2i−1]
x

S
[i]
y1

�
R

[2i−1]
x

�
S

[2i]
x

S
[i]
y2

�
R

[2i]
x

· · ·
��� ��� ���

· · ·
W

[2i−1]
x

R
[i−1]
y2 , W

[i]
y1

�
W

[2i]
x

R
[i]
y1, W

[i]
y2

� · · · Fig. 3. Implementing a sender-resettable register with two receiver-
resettable registers

of register x do nothing. Each Wait of x is implemented by a
Reset of one of the y registers and a Wait of the other. (The first
two Wait executions of x are implemented just by Wait execu-
tions.) The construction and the proof are illustrated by Fig. 3.
The labeled boxes indicate how each operation on register x is
implemented by operations on registers y1 and/or y2. For all
i , operation execution S [2i−1]

x is implemented by operation
execution S [i]

y1, operation execution R[2i−1]
x is implemented

by an operation that does nothing, W [2i−1]
x is implemented

by the pair of operation executions R[i]
y1 and W [i]

y2, which may

be concurrent, and so on. For i = 1 and i = 2, the R[0]
y1 and

R[0]
y2 operations are omitted.

The arrows between boxes in Fig. 3 are the relations on
the operations of register x that we can assume. We have to
use these assumptions and the correctness properties of regis-
ters y1 and y2 to prove the conclusions of SR, the correctness
property of register x . We prove the conclusions of SR for
k = 2j ; the proof for k odd is similar. The hypothesis of SR
asserts that the � relations in Fig. 3 hold for all the opera-
tion executions of x up to and including S [2j]

x and W [2j]
x . We

must prove the three conclusions of SR for k = 2j . These
conditions, and their high-level proofs, are as follows. (The
lower-level proofs of 1.1, 2.1, and 2.2 are given later.)

1. If there is an S [2j]
x operation execution, then it terminates.

1.1. If S [j]
y2 occurs, then it terminates.

1.2. Q.E.D.
Proof: Step 1.1 obviously implies the desired con-
clusion, since S [2j]

x is implemented by S [j]
y2.

2. If there is a W [2j]
x operation execution, then it terminates iff

there is an S [2j]
x operation execution, in which case S [2j]

x �

W [2j]
x holds.

2.1. If R[j]
y1 occurs, then it terminates.

2.2. If W [j]
y2 occurs then it terminates iff S [j]

y2 occurs, in

which case S [j]
y2

� W [j]
y2 holds.

2.3. Q.E.D.
Steps 2.1 and 2.2 imply the desired conclusion be-
cause (i) an operation to x terminates iff all the oper-
ations that implement it terminate, and (ii) by (4) of
Sect. 2.4, S [j]

y2
� W [j]

y2 implies S [2j]
x � W [2j]

x .

3. If there is an R[k]
x operation execution, then it terminates.

Proof: An operation that does nothing always terminates.

To complete the proof, we must prove 1.1, 2.1, and 2.2. These
are the conclusions of condition RR for register y2, with j
substituted for k . Since we are assuming that y2 satisfies RR,
we just have to prove that the hypothesis of RR holds for k = j .
That is, we must prove S [i]

y2
� R[i]

y2
� S [i+1]

y2 , for all i with

1≤i < j − 1. It’s easy to read these � relations from the
diagram above, since definition (3) of Sect. 2.4 asserts that a
� relation between two boxes implies � relations among the
operation executions within the boxes. Formally, we assume
1≤i < j − 1 and prove:

1. S [i]
y2

� R[i]
y2

1.1. S [2i]
x � R[2i]

x � W [2i+1]
x

Proof: This holds by hypothesis if 1 ≤ 2i + 1 ≤ 2j
(we are assuming the hypothesis of SR for k = 2j),
and the assumption 1≤i < j −1 implies 1 ≤ 2i+1 ≤
2j .

1.2. Q.E.D.
Proof: The conclusion follows from step 1.1, the tran-
sitivity of �, and (3), since S [i]

y2 implements S [2i]
x and

R[i]
y2 is part of the implementation ofW [2i+1]

x (because
i ≥ 1 implies 2i + 1 > 2).

2. R[i]
y2

� S [i+1]
y2

2.1. W [2i+1]
x � R[2i+2]

x � S [2i+2]
x

Proof: This holds by hypothesis if 1 ≤ 2i + 1 and
2i+2 ≤ 2j , both of which follow from the assumption
that 1≤i < j − 1.

2.2. Q.E.D.
Proof: The conclusion follows from step 2.1, the
transitivity of �, and (3), since R[i]

y2 is part of the

implementation of W [2i+1]
x (because i ≥ 1 implies

2i + 1 > 2) and S [i+1]
y2 implements S [2i+2]

x .

This completes the correctness proof for our implementation
of a sender-resettable wait/signal register by two receiver-
resettable ones.

A.1.2 Equivalence of no-reset registers

An SW or WS wait/signal register trivially implements an NR
wait/signal register, since it is one. To show the equivalence of
all three classes of register, we must show how to implement
an SW and a WS register from NR registers. We implement a
WS register; the implementation of an SW register is similar.

The implementation of a WS register x uses two NR reg-
isters y and z . It is described by the following diagram:

· · ·
S

[i−1]
x

S
[i−1]
y

� S
[i−1]
z

�
S

[i]
x

S
[i]
y

� S
[i]
z

� · · ·
��� ���

· · ·
W

[i−1]
x

W
[i−1]
y

� W
[i−1]
z

�
W

[i]
x

W
[i]
y

� W
[i]
z

� · · ·
An operation to x is implemented by the corresponding oper-
ation to y followed by the corresponding operation to z .

236 L. Lamport

To prove the correctness of the implementation, we assume
that y and z satisfy condition NR and that the hypothesis of
WS holds for some value of k , and we prove that the two
conclusions of WS hold for k . It is easy to check that the two
conclusions of WS follow from the corresponding conclusions
of NR for registers y and z . So, we just have to verify the
hypothesis of NR for these registers. That is, we must prove
W [i]

v � S [i+1]
v and S [i]

v � W [i+1]
v for v equal to y and to z ,

for all i with 1 ≤ i < k−1. The proof is by induction on k . We
assume that these relations hold for all i with 1 ≤ i < k − 2
and prove them for 1 ≤ i = k − 2. The proofs are as follows.

1. W [k−2]
y � S [k−1]

y

Proof: By the assumption that W [k−2]
x � S [k−1]

x (from
the hypothesis of WS) and (3).

2. S [k−2]
y � W [k−1]

y

2.1. S [k−2]
y � S [k−2]

z

Proof: By definition of the implementation of S [i−1]
x .

2.2. S [k−2]
z � W [k−2]

z

Proof: By the induction assumption (W [i]
z � S [i+1]

z

and S [i]
z � W [i+1]

z for 1 ≤ i < k − 2) and condition
NR for register z .

2.3. W [k−2]
z � W [k−1]

y

Proof: By (3) and the assumption W [k−2]
x �

W [k−1]
x .

2.4. Q.E.D.
Proof: Steps 2.1–2.3 and rule R2 of Sect. 2.1 imply
S [k−2]

y � W [k−1]
y .

3. W [k−2]
z � S [k−1]

z

Proof: By (3) and the assumption W [k−2]
x � S [k−1]

x .
4. S [k−2]

z � W [k−1]
z

4.1. S [k−2]
z � S [k−1]

y

Proof: By (3) and the assumption S [k−2]
z � S [k−1]

z .
4.2. S [k−1]

y � W [k−1]
y

Proof: By the induction assumption (W [i]
y � S [i+1]

y

and S [i]
y � W [i+1]

y for 1 ≤ i < k − 2) and condition
NR for register y .

4.3. W [k−1]
y � W [k−1]

z
Proof: By definition of the implementation of
W [i−1]

x .
4.4. Q.E.D.

Proof: Steps 4.1–4.3 and rule R2 imply S [k−2]
z �

W [k−1]
z .

A.1.3 Equivalence of resettable and no-reset registers

To complete the proof of equivalence of our five types of regis-
ter, it suffices to implement some type of no-reset register with
a resettable register, and vice-versa. It is easy to implement a
sender-resettable register with a WS register – just implement
Reset with an operation that does nothing. It is easy to check
that this implementation satisfies condition SR. We now show
how to implement an NR register x using two SR registers y

and z . The implementation and the hypotheses of NR used in
the proof are described by the following diagram.

· · ·
S

[2i−1]
x

R
[i−1]
y2

� S
[i]
y1

�
S

[2i]
x

R
[i]
y1

� S
[i]
y2

� · · ·
������ ������

· · ·
W

[2i−1]
x

W
[i]
y1

�
W

[2i]
x

W
[i]
y2

� · · ·

(16)

(For i = 1, the operation R[0]
y2 is eliminated.)

To prove the correctness of the implementation, we assume
that y1 and y2 satisfy condition SR and that the hypothesis
of NR holds for some value of k , and we prove that the two
conclusions of NR hold for k . We give the proof for k = 2j ;
the proof for k odd is similar. Here are the statements of those
conclusions and their high-level proof outline.

1. If there is an S [2j]
x operation execution, then it terminates.

1.1. If there are R[j]
y1 and S [j]

y2 operation executions, then
they terminate.

1.2. Q.E.D.
Proof: Step 1.1 implies the desired conclusion, since
an operation on x terminates iff all its component op-
erations do.

2. If there is a W [2j]
x operation execution, then it terminates iff

there is an S [2j]
x operation execution, in which case S [2j]

x �

W [2j]
x holds.

2.1. If there is an R[j]
y1 operation execution, then it termi-

nates.
2.2. If there is a W [j]

y2 operation execution, then it termi-

nates iff there is an S [j]
y2 operation execution, in which

case S [j]
y2

� W [j]
y2.

2.3. Q.E.D.
Proof: The W [2j]

x operation execution occurs iff
W [j]

y2 occurs, and step 2.1 implies that S [2j]
x occurs iff

S [j]
y2 does. The desired conclusion then follows from

step 2.2, since S [j]
y2

� W [j]
y2 implies S [2j]

x � W [2j]
x

by (4).

To complete the proof, we must prove statements 1.1, 2.1,
and 2.2. These all follow from the conclusions of condition SR
for registers y1 and y2 and k = j . So, to prove them, we must
prove the hypothesis of SR with k = j . Those hypotheses are
that W [i]

v � R[i]
v � W [i+1]

v holds for v equal to y1 and to
y2, and for 1≤i < j − 1. It is easy to see from diagram (16)
that these conditions are implied by (3) and the hypothesis of
NR for register x (the inter-box arrows in the diagram above).

A.2 Proof of Proposition 4

We first choose j ≥ 1 such that every arc of G is contained in
a cycle that has at most j tokens. To see that such a j exists,
observe first that if there were no cycle containing α, then
Dest(α) could fire only a finite number of times, contradicting
the assumption that 〈G ,m 〉 is a process marked graph, and
hence is live. The existence of j then follows because a marked

Arbitration-free synchronization 237

graph is finite by definition. Let ⊕ and � denote addition and
subtraction modulo j .

By MG1, there can be at most j tokens on any arc through-
out a firing sequence of 〈G ,m 〉. We construct 〈G ′,m ′ 〉 by
making j copies of each node and arc of G so that a marking
of G with i tokens on an arc α corresponds to a marking of G ′
with one token on i of the copies of α. The precise construc-
tion is as follows. The nodes of G ′ consist of all nodes of the
form 〈n, i 〉 where n is a node of G and 0 ≤ i < j . Each node
〈n, i 〉 is labeled with the operation labeling n . There is an arc
from 〈n, i 〉 to 〈n, i ⊕ 1〉 for all n and i . Marking m ′ puts a
token on this arc iff i = j . For every arc α of G and every
i with 0 ≤ i < j , the graph G ′ also contains an arc 〈α, i 〉
from 〈Dest(α), i � m(α)〉 to 〈Src(α), i 〉, for all i . Marking
m ′ puts a token on this arc iff 0 ≤ i < m(α).

It can be shown that there is a 1-1 correspondence between
the firing sequences of 〈G ′,m ′ 〉, and 〈G ,m 〉 where:

• For any n and any i , the k th firing of 〈n, i 〉 corresponds
to the j ∗ (k −1)+ i +1st firing of n , for any n and i , and

• For any α and i with 0 ≤ i ≤ j , a marking of G having i
tokens on arc α corresponds to a marking of G ′ such that,
for some h , arc 〈α, h ⊕ k 〉 has one token if 0 ≤ k < i and
no token if i ≤ k < j .

We omit the proof.

It is easy to check that 〈G ′,m ′ 〉 is a process marked graph.
(The cycle in G containing the nodes of a process leads to a
corresponding cycle j times as long in G ′.) It then follows that
the execution graphs E (G ′,m ′) and E (G ,m) are isomorphic.

No arc ever contains more than one token during a firing
sequence of 〈G ′,m ′ 〉. Therefore, adding a backwards pointing
arc β̂ for an arc β of G ′, with one token on the cycle formed
by β and β̂, does not change the firing sequences of 〈G ′,m ′ 〉.
Adding all such arcs therefore leaves E (G ′,m ′) the same up
to isomorphism. This completes the proof of the proposition.

