Distrib. Comput. (2003) 16: 21-35
Digital Object Identifier (DOI) 10.1007/s00446-002-0074-4

DISTRIBUTED;
COMPUTTING

(© Springer-Verlag 2003

Protocol synthesis and re-synthesis with optimal allocation of resources

based on extended Petri nets

Hirozumi Yamaguchi'*, Khaled El-Fakih?**, Gregor von Bochmann?, Teruo Higashino'*

! Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

(e-mail: {h-yamagu,higashino} @ics.es.osaka-u.ac.jp)

2 Department of Computer Science, American University of Sharjah, Sharjah, United Arab Emirates

(e-mail: kelfakih @aus.ac.ae)

3 School of Information Technology and Engineering, University of Ottawa, Ottawa, Canada

(e-mail: bochmann @site.uottawa.ca)

Received: July 2001 / Accepted: July 2002

Abstract. Protocol synthesis is used to derive a protocol spec-
ification, that s, the specification of a set of application compo-
nents running in a distributed system of networked computers,
from a specification of services (called the service specifica-
tion) to be provided by the distributed application to its users.
Protocol synthesis reduces design costs and errors by spec-
ifying the message exchanges between the application com-
ponents, as defined by the protocol specification. In general,
maintaining such a distributed application involves applying
frequent minor modifications to the service specification due
to changes in the user requirements. Deriving the protocol
specification after each modification using the existing syn-
thesis methods is considered expensive and time consuming.
Moreover, we cannot identify what changes we should make
to the protocol specification in correspondence to the changes
in the service specification. In this paper, we present a new
synthesis method to re-synthesize only those parts of the pro-
tocol specification that must be modified in order to satisfy
the changes in the service specification. The method consists
of a set of simple rules that are applied to the protocol specifi-
cation written in an extended Petri net model. An application
example is given along with some experimental results.

Keywords: Distributed system — Service specification — Pro-
tocol specification — Protocol synthesis — Protocol re-synthesis
— Petri net

1 Introduction

Synthesis methods have been used (for surveys see [7,8]) to
derive an implementation level’s specification of a distributed
system (hereafter called protocol specification) automatically

* Supported by International Communications Foundation (ICF),
Japan
** Supported by Communications and Information Technology On-
tario (CITO) and Natural Sciences and Engineering Research Council
(NSERC), Canada

from a given specification of services to be provided by the
distributed system to its users (called service specification).
The service specification is written as a program of a cen-
tralized system, and does not contain any message exchange
between different physical locations. However, the implemen-
tation level’s specification of the cooperating programs, called
protocol entities (PE’s), includes the message exchanges be-
tween these entities. Therefore, protocol synthesis methods
have been used to specify and derive such complex message
exchanges automatically in order to reduce the design costs
and errors that may occur when manual methods are used.

A number of protocol synthesis strategies have been de-
scribed in the literature. The first strategy aims at implement-
ing complex control-flows using different computational mod-
els such as CCS based models [5,6], LOTOS [10,11], Petri
nets [16,17,20] and FSM/EFSM [12,14]. The second strat-
egy, [21-23,25-27], aims at satisfying the timing constraints
specified by a given service specification in the derived proto-
col specification. This strategy deals with real-time distributed
systems. The last strategy, [9,13,18,19,24,28,29,31], deals
with the management of distributed resources such as files
and databases. The objective is to determine how the values of
these distributed resources are updated or exchanged among
PE’s for a given resource allocation.

Some methods in the last strategy, especially in our previ-
ous research work [29], consider an efficient implementation
of a given service specification by deriving the corresponding
protocol specification with minimum communication costs
and optimal allocation of resources. This work considers an
optimal resource allocation to reduce the costs of message
exchanges when we derive protocol specifications. As an ex-
ample, we considered a software development process using
a Computer Supported Cooperative Work (CSCW) environ-
ment. This process is carried out cooperatively by multiple
engineers (developers, designers, managers and others). Each
engineer has his/her own workstation (PE) and participates in
the development process using specific distributed resources
(e.g. drafts, source codes, object codes, multimedia video and
audio files, and others) which may be placed on different com-
puters. Considering the need for managing such a process in

22

the distributed environment, we describe the whole software
development process (service specification) and derive the set
of all the engineers’ sub-processes (protocol specification). We
also determine an optimal allocation of resources that would
minimize the communication costs (such as file transfer costs).

In realistic applications, maintaining such a system in-
volves modifying its specification as a result of changes of
the user requirements. Moreover, developers usually imple-
ment incrementally the given specification. Synthesizing the
whole system again after each minor modification is consid-
ered expensive and time consuming, especially for large-scale
distributed systems with large number of users distributed over
multiple sites.

In this paper, we propose a new technique for system main-
tenance called protocol re-synthesis. For a given service spec-
ification S, its corresponding protocol specification P and a
modified service specification S’, our re-synthesis algorithm
produces the changes in the protocol specification AP cor-
responding to the changes AS (= S’ — S) in the service
specification, and derives a modified protocol specification
P’ (= P 4+ AP) corresponding to S’. A computer supported
cooperative software development process is used again as an
example to show that the method reduces the cost of deriv-
ing the revised protocol specification after each change in the
service specification.

The primary goal of our approach is to save maintenance
costs of distributed systems, and to provide a way to spec-
ify requirement changes in a natural manner. To this end, our
re-synthesis algorithm decomposes the changes AS into a se-
quence of atomic changes and sequentially applies their cor-
responding re-synthesis rules to P to derive P’. Since each
re-synthesis rule is designed to modify as small a part of P as
possible, AP can be small and deriving P’ is simple enough
compared with normal protocol synthesis methods, which of-
ten consume much computational resources to derive P’ di-
rectly from S’. Moreover, in contrast to Ref. [32] that consid-
ers requirement changes at the protocol level (in one of the
protocol entities), our re-synthesis method is a service-based
approach.

In our previous work presented in [30], we have stated the
basic principle of our re-synthesis method where only simple
modification cases are considered. In this paper, the method
has been considerably extended so that we can deal with more
realistic service modifications that need changing the alloca-
tion of resources, insertion or deletion of tasks and so on.

This paper is organized as follows. Section 2 gives exam-
ples of service specifications and protocol specifications. Sec-
tion 3 describes the overview of our original protocol synthe-
sis method. Based on this method, we propose a re-synthesis
method in Sect. 4. Some application examples are given in
Sect. 5. Section 6 concludes this paper and includes our in-
sights for future research.

2 Service specifications and protocol specifications
2.1 Petri net model with registers
We use an extended Petri net model called Petri Net with Reg-

isters (PNR in short) [18] to describe both service specifi-
cations and protocol specifications of distributed systems. In

H.Yamaguchi et al.

this model, the service access points between the users and
the system are modeled as gates, and the variables used inside
the system, such as databases and files, are modeled as regis-
ters. Each transition ¢ ina PN R has a label (C(t), £(t), S(t)),
where C(t) is a pre-condition (the firing condition of t), £(t) is
an I/0 event and S(¢) is a set of assignment statements (which
represent parallel updates of register values).

A transition ¢ may fire if (a) each of its input places has
a token, (b) the value of C(t) is true and (c) an input value
is given through the gate in £(t) if £(¢) is an input event. If
t fires, the corresponding I/O event is executed, and the new
values of registers are calculated and substituted in parallel as
defined by S(t).

Consider, for example, transition ¢t of Fig. la where
C(t) =“ > R”, £(t) =“G?¢” and S(t) =“{R + R +
i, R’ + R+ R'+1i}”. Here, i denotes an input variable which
holds an input value. The input value can be referred to only
in this transition ¢. R and R’ denote registers which contain
values, and their values may be used and updated by all the
transitions of the PN R. This means that registers are treated
like global variables. G is a gate, that is, a service access point
(interaction point) between users and the system. Note that
“?”or “I”in £(t) indicate that £(t) is an input or output event,
respectively.

Assume that an integer of value 3 has been given as input
through gate GG, and the current values of the registers R and
R’ are 1 and 2, respectively. In this case, since the value of
the pre-condition “¢ > R” is true, the transition may fire. If it
fires, event “G'74” is executed and the input value 3 is assigned
to the input variable i. Then the assignments “R < R’ + ¢”
and “R’ < R + R’ + 1" are executed in parallel. After the
firing, the tokens are moved, and the values of the registers R
and R are 5 (= 2+ 3) and 6 (= 1+ 2 + 3), respectively (Fig.
1b).

Formally, an I/O event £(t) is one of the following types:
“G lexp”, “G 77, or “77. “G lexp” is an output event, and it
means that the value of the expression “exp” is output through
the gate GG (all the arguments in “exp” must be registers).
“G 7¢” is an input event and it means that the value given

[Tt

through G is assigned to the input variable ‘“4”. The event
“7” means that no external I/O event is associated with this
transition. S(t) is a set of assignment statements, each of which
has the form “R < exp” where R is a register and exp is an
expression whose arguments may be the input variable of £ (t)
or registers.

PN R is defined as a tuple (T',P,A,M,,G,R,I,C.E, S,Ry)
where (T, P, A, My) is a Petri net, G is a set of gates, R is
a set of registers, and I is a set of input variables. C, £ and
S define the labels of transitions as explained above, and Ry
defines the initial values of the registers.

2.2 Service specifications

At an abstract level, a distributed system is regarded as a non-
distributed system which provides services as a single “vir-
tual” machine. The number of actual PE’s and communication
channels between them are hidden. A specification of a dis-
tributed system at this level is called a service specification and
denoted by Sspec in this paper. Although the actual resources
of a distributed system may be located on different physical

Protocol synthesis and re-synthesis

23

2 G
G
e @
i>R .
i fire >R
transition t G?i " G?i
. transition t
[R<-R’+i, [R<-R’+i,
R'<-R+R'+i] R'<-R+R'+i]
F 2 E m Fig. 1a,b. Register values and token loca-
b 5 6 tion before and after firing transition in PNR
a
Gin GOHI
Gin ﬁoai PE1 PE2
P1+P2
true
Gin?i i,
{R<R, { Iri1<.-il)
R<-i} -
ID(w)==0.
gla g?w@ ID(w)==
8L ty, |9?W
true D=8 - 1d] 4L ot [ig] Lict1(w
Gout ! R,R’ 92w
’ {_R'<-#1(w)}
{1
{R<-_R} Ro<_i}
ID(w)== ,
[algrw gH1R]
{R'<-#1(w)}
Gout IR, R’

(R[]

a b

Fig. 2. Service specification and b. protocol specification

machines, called protocol entities, the service specification, at
this level, considers only one virtual machine.

For better readability and understanding, hereafter, we use
the simple example of S'spec shown in Fig. 2a. A larger prac-
tical example is given in Sect. 5. Sspec in Fig. 2a uses two
gates G, and G ,,,; and two registers R and R’. At the initial
marking, one token is assigned to place P, and therefore T}
can fire if an input is given through G,,. When T fires, the
system updates the values of the registers R and R’ simulta-
neously using the current values of register R’ and the input
i, respectively'. Then T} fires, and the system outputs the up-
dated values of R and R’ through gate G, and returns to the
initial marking.

2.3 Protocol specifications

A distributed system may be considered as a communication
system which consists of n protocol entities PE;, PEs, ...
and PE,,. We assume a duplex and reliable communication

! At the first firing of 77, the initial value of R’ is used to update
R.

Service Spec.

Pspecl Pspec2

true
L e Gin?i
{R<-R’,
R’<-i}
[ty [{R<i}
{R<R'}
72 @ Gout!R,R’ [t
ol e ’
{}
true
® P Gin?i
{R<-R’,
R’<-i} -~
Gin,Gout Gin,Gout

[R][R] [R]

Fig. 3. Service specification and protocol Specification : timing charts

24

channel between any pair of PE’s (PE; and PE;). The PE;
and PE); sides of the communication channel are represented
as gates g;; and g;;, respectively. Moreover, we assume that all
the registers and the gates for communication with the users
are allocated to certain PE’s in the distributed system.

Two PE’s communicate with each other asynchronously
by exchanging messages. A message is denoted by “M/list
of values|” where “M” is one of the following three message
types («, 3 or y) explained later. We assume that if PF; ex-
ecutes an output event “g;;! M list of values]” on a transition,
this message is sent through gate g;; to the peer protocol en-
tity PE;. On reception, it is written into P E;’s receive buffer.
If PE; executes an input event “g;;7w” with pre-condition
“ID(w) == M” on a transition, PE; removes the received
message from its buffer and the message is kept in the input
variable w. Note that the i-th value of the list included in the
received message w will be denoted by #i(w).

In order to implement a distributed system which con-
sists of n PE’s, we must specify the behavior of these PE’s. A
behavior specification of P FE}, is called a protocol entity spec-
ification and denoted by Pspecy. A set of n protocol entity
specifications is called a protocol specification and denoted as
Pspeci . . We need a protocol specification in order to imple-
ment a given service specification.

Let us assume that there are two PE’s (PFE; and PFE5) in
order to implement the service specification of Fig. 2a. We
also assume that P F4 has both user gates G, and G, and
register R, while PFE5 has register R’. Figure 2b shows an
example of Pspec;. o which provides the services of Fig. 2a,
based on the above allocation of resources. Note that some
additional registers, called temporary registers, are used in
this protocol specification to temporary keep values received
in messages. If P E; receives the value of register R from some
other PE via a message, we assume a temporary register “_R”
(represented as a dotted box in the figure) to keep the value
on PE;. In Fig. 2b, for simplicity of notations, both g;» and
go1 are denoted as g, and internal events “7”, pre-conditions
“true” and empty sets of assignment statements are omitted.

According to the protocol specification of Fig. 2b and its
corresponding timing charts in Fig. 3, P first receives an
input through G;,, and checks the values of the firing con-
dition C(Ty) on t14. Since it is always true, PF; executes
E(T1) on t1, and keeps the received input 7 in the temporary
register _¢. Then it sends a message “a” during transition ¢1;
in order to ask PFE5 to send the current value of R’ which is
necessary to update the value of R. PFE, receives the mes-
sage during transition ¢1; and sends a message “3[R’]” during
transition ¢1;. PE; receives the message during ¢, and now
knows the value of R’. In parallel with the sending of the -
message, PE; sends the message “3[.i]” during ¢4 thereby
sending the value of the input “s” to PEs. PFE» receives the
message during t1; and now knows the value of the input.
After sending/receiving the 3-messages, PF; and P E5 know
that now they can execute S(77) using the received values.
They independently execute “R + R'” and “R’ + ¢” during
the transitions t1. and ¢1;, respectively. After the firing of ¢1,
and t;, the system is in a state where the service specification
should check whether transition 75 would be executed. For
that purpose, PF5 sends a message “y[R’]” in order to send
the (updated) value of R’ and let PE; know that the execu-
tion of “R’ < 7” had been completed. When receiving the

H.Yamaguchi et al.

v-message, PE) is ready to start the execution of T5. After
executing £(T3) on to,, both PE; and PE, are back in their
initial markings.

As shown in the above example, two PE’s cooperate with
each other in order to provide the same event sequences (in-
cluding values) at the user gates GG, and G+ as specified in
Sspec. Moreover, our synthesis method described below guar-
antees that the values of a register in Sspec and Pspec; o are
identical and the buffers of all the communication channels
are empty at corresponding markings. For example, the mark-
ing of Sspec where place P; has a token and the marking of
Pspec . o where place P; of PE; and place “P;+ P»” of PE)
have tokens are such corresponding markings. This is because
our implementation never starts the execution of a transition
unless the execution of all the previous transitions have been
completed, and it allows us to easily keep consistency between
Sspec and Pspecy. ». It also allows us to use receive buffers
of finite capacity for the communication channels, since we
can determine the maximum number of messages that may be
in transmit between any pair of protocol entities.

3 Synthesis overview

We have presented in our previous work, especially in [29],
the protocol synthesis method which is the basis for and thus
highly relevant to the re-synthesis method presented in this pa-
per. In order for the complete understanding of the re-synthesis
method with the conviction of correctness, it is important to
present our synthesis method designed to be suitable to the
re-synthesis method.

The synthesis method derives a protocol specification
from a given service specification and is based on a set of
synthesis rules that specify how to execute each transition
T = (C(T),E(T),S(T)) of the service specification by the
corresponding PE’s in the protocol specification. Based on
these rules, the behavior of all PE’s and an optimal allocation
of resources (registers and user gates) for minimum communi-
cation costs can be determined. This leads to the specifications
of all the PE’s (protocol entity specifications) written in the
same PNR model formalism.

3.1 Synthesis rules

For executing a transition 7' = (C(T"),E(T"), S(T)) of the
service specification by a set of transitions of the PE’s in the
protocol specification, we use the following algorithm. Fig-
ure 4 shows how our algorithm is applied to transition 7 of
Sspec of Fig. 2a. Note that the notation used in the following
algorithm is summarized in Table 1.

— The PE that has the gate G used in £(T") (which we denote
by PEstart(T)) decides to start the execution of T' by
checking the value of the pre-condition C(T'). If it is true,
PEstart(T) executes the event £(T).

In Fig. 4, PEstart(Ty) is PE; since PF; has gate G;;,.
PE; checks the value of C(T})="true” (always true) and
then executes £(T1)="Gn 71"

— Then, PEstart(T') sends synchronization messages called

a-messages to those PE’s that have the registers used to

Protocol synthesis and re-synthesis

Service Spec. Pspecl

C(T1)="true"

E(T1)="Gin?i"
T1)={ R<-R’,
S(T1) {R’<<-i}

Pspec2

- PEI checks C(T1) and then executes E(TI) since PEI has gate ""Gin'"".

- PEI sends an o. message since PE2 has register R’ necessary for the execution
on "R<-R’ "

- PE1 sends a B message "Bli]" (a) to let PE2 know the timing to execute S(T1)
and (b) to let PE2 know the value of input ''i'' necessary to execute S(T1).
PE2 sends a B message ""BIR’]" (a) to let PEI know the timing to execute S(T1)
and (b) to let PE1 know the value of input "R’ "' necessary to execute S(T1).

25

- PEI and PE2 execute S(T1). PEI executes ""R<-R’ '’ and
PE2 executes "R’ <-i "', since they have ''R" and "R’ "', respectively.

- PE2 sends a Y message ""Y[R’]" (a) to let PE1 know that the execution

of S(T2) on PEI has been finished and (b) to let PE1 know the value of R’
necessary to execute E(T2).

true Gout!R,R’
Gout!R,R’
{}

Gin Gout Gin Gout

[R][R] [R]

Fig. 4. Applying synthesis rules to T

Table 1. Notation

Notation
C(T), E(T), S(T)

pre-condition, event and set of assign-
ment statements of 1’

PEstart(T) the PE where the gate used in £(T) is
located
PEsubst(T) the set of those PE’s that contain a register

updated by S(T")
the set of the PE’s that start the execution
of the next transitions after T’

(i-. Uzscree PEstart(T") where T'o o
is the set of the next transitions after 77)

PEstart(T e o)

execute the assignment statements in S(7°). On reception,
those PE’s send the register values to the PE’s that execute
assignment statements whose expressions require those reg-
ister values. Note that a-messages are also sent to some
other PE’s. This is explained later.
In Fig. 4, we assume that “R < R’” and “R’ <+ 4" are
executed by PF, and PFEs respectively, since PE; has
R and PE5 has R’ (see Sect. 3.2 for the discussion of this
allocation problem). For this execution, PFE; needs the
value of R’ and P E5 needs the value of 7. Here, since PE;
does not have “R’”, the value must be sent from PE5. An
a-message is sent from PEstart(T)) = PE; to PEs in
order to let PE, send the value of R’. Also, since PFE»
does not know the value of 7, it must be sent from PFE; to
PE,. Here, since PE; is itself PEstart(T}), it knows
the timing to send the value of “2” (just after the execution
of £(T1)). Therefore no a-message is sent from PE; to
itself.

— On the reception of an a-message, the PE sends the values
of registers to those PE’s that need those values for the exe-
cution of part of assignment statements in S(7") (the set of
these PE’s is denoted as P E'subst(T')). These messages are
called 3-messages. Using those register values, each PE in
PEsubst(T') executes the assignment statements. Note that
if a PE in PEsubst(T) does not need any register value for

the execution of the assignment statements, P Estart(T)
directly sends a -message to the PE.
In the example of Fig. 4, we have PEsubst(Ty) =
{PE,, PE5>} since PE; has register R and PF has
R'. PE; sends a 3-message to PFEy with the value of
1, which is used by PFEj to execute “R’ < 3”. Moreover,
PFE5 sends a -message to PE; with the value of R/,
which is used by PE; to execute “R < R'”. Then PE;
and PFE, execute “R < R’ and “R’ <+ i”, respectively.
— After all assignment statements in S(7") are executed, each
PE in PEsubst(T) sends so-called ~y-messages to those
PE’s that will start the execution of the next transitions. The
set of those PE’s is denoted as P E'start(T e e). These mes-
sages confirm the completion of the assignment statements
and also contain the values of registers necessary to start the
execution of next transitions. Note that the PE’s that do not
belong to P E'subst(T) may also need to send some values
of registers to the PE’s in PEstart(T e o). These values
are also sent as y-messages. In this case, a-messsages are
sent to these PE’s to initiate the sending of y-messages.
In our example, P E5 sends a y-message to P Estart (T e
o) = { PE, }. PE; thenknows the value of R’ and the fact
that the execution of S(T3) on P E5 has been completed.

The above algorithm is presented as a set of rules called
synthesis rules (see Appendix A). The synthesis rules are clas-
sified into action rules and message rules. The action rules
specify which PE’s should check the pre-condition, execute
the I/O event and assignment statements of 7. The message
rules specify which PE’s should exchange messages. The con-
tents and types of these messages are also specified.

Consequently, three types of messages are exchanged for
the execution of a transition 7"

— a-messages are sent from the PE that starts the execution of
T (i.e. PEstart(T)) to the PE’s that send $-messages (and
PE’s that send y-messages and are not in PEsubst(T)).
Their reception leads to the sending of 3-messages and/or
~y-messages. An a-message does not contain any register
value.

26

— [-messages are sent from PE’s that have registers to be used
to execute assignment statements of S(7"), to those PE’s that
execute these assignment statements. The latter PE’s form
the set P E'subst(T). Note that for the PE’s that need no reg-
ister values for the execution of the assignment statements,
(B-messages are sent from PEstart(T) for synchroniza-
tion. The reception of S-messages leads to the execution of
the assignment statements.

— ~-messages are sent from the PE’sin PEsubst(T) and PE’s
that have registers to be used to check/execute C(7")/E(T")
to PE’s in PEstart(T e e), where T” is a next transition
after T. They let the PE’s in PEstart(T e o) know the
values of registers required for C(7”)/E(T") and the timing
for executing the next transition.

Our synthesis method assumes that the Petri net of the service
specification is a live and safe free-choice net[1,2]. A free-
choice net is a sub-class of Petri nets which has simple choice
structures. It is known that a live and safe free-choice net can
be decomposed into a set of finite state machines [1,2] and
this property is used in our algorithm. In addition, we assume
that for two transitions 1" and T” of Sspec in a choice struc-
ture, PEstart(T) = PEstart(T') (i.e. the gates in E(T)
and £(T") are allocated to the same PE). This guarantees that
a single PE makes the decision to select the next transition in
the choice structure. Otherwise an agreement would be needed
among several PE’s to make this decision. This would be done
by implementing a leader election algorithm as the one shown
in [4]. Finally, it is assumed that for two transitions 7" and 7’
of Sspec that may be executed in parallel, there is no register
that is updated by one and referred or also updated by another.
This assumption is used to prevent the inconsistency that may
result in having multiple accesses to the same register. This
assumption may also be relaxed by implementing a mutual
exclusion algorithm (see for instance [4]).

3.2 Optimal resource allocation
for minimum communication costs

The above synthesis rules assume that an allocation of user
gates and registers to PE’s is given. However, the communica-
tion costs (especially the number of messages) depend on this
allocation. Therefore we may carefully design this allocation
in order to minimize the communication costs.

As a simple example, let us consider the timing charts in
Fig. 5b. This chart is the same as in Fig. 4 and obtained when R
and R’ are allocated to PE; and P 5, respectively. If we use
another allocation where both R and R’ are allocated to PE5,
we obtain a different protocol specification whose timing chart
is shown in Fig. 5c. We note that the allocation of the user
gates are usually fixed by the nature of the application, and
therefore cannot be changed freely. These examples show that
the resource allocation affects the communication costs of the
protocol specifications and that it is not easy to find an optimal
allocation, given the complex message exchanges between the
PE’s.

We can formulate this optimal resource allocation problem
as an Integer Linear Programming (ILP) problem. For this
purpose, we introduce 0-1 integer (boolean) variables, which
represent the fact that (a) a message (of type «, (3 or y) is sent
from one PE to another, (b) a message contains the value of

H.Yamaguchi et al.

a given register, or (c) a user gate or a register is allocated
to a given PE. For example, a 0-1 integer variable “a ;" is
introduced for PE;, PE; and transition T}, of Sspec, whose
value is one iff an a-message is sent from PE; to PE; during
the execution of transition 77, otherwise zero. A O-l integer
variable “ALC;(R,,)” is introduced for register R,, and entity
PE;, whose value is one iff register R,, is allocated to PE;,
otherwise zero.

Using these variables, we define an objective function that
minimizes the communication cost (e.g. the number of mes-
sages) and linear inequalities that represent the synthesis rules.
For example, an 1nequahty o = By, represents the fact that
if the value of /6‘” & is one, the value of o ; must be one, which
corresponds to the synthes1s rule “a PE that sends $-messages
must receive an a-message”’. Then an optimal resource alloca-
tion is obtained as the solution of the ILP problem. Note that
a general ILP problem is known to be a hard problem of expo-
nential complexity, and therefore a solution to our optimiza-
tion problem is not readily available for large-scale systems
in terms of the numbers of transitions, resources and PE’s.
There are some possibilities to tackle this complexity: (i) we
may adopt partially fixed allocations to reduce the computa-
tion time. If the sizes of the values of some registers are small
enough and these registers are rarely accessed, fixing their al-
location may not cause significant performance degradation.
(i) We may use heuristic algorithms, for instance genetic al-
gorithms as in [28]. This is part of our future work.

We note that different optimization criteria may be consid-
ered by adopting corresponding objective functions. Instead
of considering the number of messages, we may also consider
the size and/or the cost of sending messages over particular
communication channels. The reader may refer to [29] for the
details of the problem formulation and cost criteria.

3.3 Synthesis of protocol specifications

We derive a protocol specification using the following three
steps.

Stepl. Based on the synthesis rules, a set of actions and
message exchanges to be executed on each PE is defined for
each transition 1" of Sspec. Then these actions and message
exchanges are represented, for each PE, as a set of transi-
tions where two transitions are connected through a place if
a temporal ordering between the transitions is specified in
the synthesis rules (e.g. an a-message must be received be-
fore the corresponding J-messages are sent). As a result, for
each transition T" in Sspec, a set of sub-PNR’s S Pnetq(T),

., SPnet, (T) are produced for the n protocol entities. For
example, for transition T} of Sspec in Fig. 2a, SPnet (T1)
consists of t14,....t17, and SPnety(T1) consists of t1p,....t1m
in Fig. 2b. Note that S Pnet;(T) may be an empty net in the
case that P E; has no action and no message exchange related
to the execution of 7. In this case, we suppose that the sub-
PNR has only a single e-transition with a label {true,“7”,{}}
where 7 is an internal event. For example, S Pneto (T 2) s an
empty net and therefore it only has one e-transition.

Step2. An intermediate protocol entity specification of PFE;
(denoted as Pspec;) is derived by connecting all sub-PNR’s
SPnet;(T) in the same way as the transition 7" is connected

Protocol synthesis and re-synthesis

Pspecl Pspec2
Service Spec. true
Gin?i
® e
Gin?i
{R<-R,
R’<-i}
{R<R'} &

27

Gout!R,R’
ég}gﬁt!R,R’
Gin Gout Gin Gout
[R] [R]
a b

Pspecl Pspec2
true ‘
Gin?i
O\
pIi
{R<-R’,
R’<-i}
[R’
Gout!R,R’ @
Gin Gout

[R][R]

Fig. Sa—c. Two protocol specifications: they provide the same service as the service specification, however their resource allocations are
different. a Service specification; b protocol specification on a resource allocation; ¢ protocol specification on another resource allocation

a b c

Fig. 6a—e. Removing e-transitions in Pspeca

in Sspec. More specifically, Pspec; is obtained using the net
structure of S'spec, by replacing each T" with the corresponding
sub-PNR S Pnet;(T). Note that if SPnet;(T") has more than
one head (or tail) transition, an e-transition is attached as its
head (or tail) transition so that the sub-PNR can be treated like
a single transition. Pspecs is shown in Fig. 6a.

Step3. Finally, a protocol entity specification of PE; (Pspec;)
is derived by removing e-transitions from Pspec;. The remov-
ing technique is based on the well-known technique to remove
e-moves in finite automata. In order to apply this technique to

our PNR model containing parallel synchronization, we use
the fact that a live and safe free-choice net can be decomposed
into a set of live and safe finite state machines (FSM’s) [1,2].
This simplification algorithm proceeds as follows. First, for
each e-transition that has « input places and v output places,
(LCM (u,v)/u) — 1 copies of each input place are produced
and (LC M (u,v)/v) — 1 copies of each output place are pro-
duced, where LC'M (u, v) is the least common multiple of u
and v. This replacement never changes the behavior of the net
and shows that the number of FSM’s which synchronize on
the e-transition is LC'M (u, v). Then we split these FSM’s by

28

splitting the e-transition and at this moment the e-transition is
no longer a synchronization point. Then the e-transition is re-
moved using the technique to remove e-moves in FSM’s. For
example, in the intermediate specification of PEs in Fig. 6a,
t1p and top are e-transitions. Here, to;, can be easily removed
by merging places P, and P into a single place “P; + P»”
as shown in Fig. 6b. Then the input place “P; + P»” of the -
transition ¢, is copied as shown in Fig. 6¢. This means that two
FSM’s synchronize on t15. Then ¢y, is splitinto two transitions
(Fig. 6d) and removed (Fig. 6e). Note that the specification of
Fig. 2b includes ¢y, in order to make the correspondence with
the service specification more direct.

4 Protocol re-synthesis

In this section, we present our new method for re-synthesizing
a protocol specification. Given a service specification Sspec, a
corresponding protocol specification Pspec; . ,, and modified
service specification (denoted by Sspec’), our method derives
the corresponding modified protocol specification (denoted by
Pspec) ,,) by making changes to Pspec; ., only as much as
required by the difference between Sspec and Sspec’. The ad-
vantage of our re-synthesis method is to avoid the applications
of the complete protocol synthesis algorithm for each minor
change of the requirements which frequently occurs in soft-
ware maintenance. Even in the case of a minor change on the
service specification, the application of the protocol synthesis
algorithm described in Sect. 3 may lead to a revised proto-
col specification that is different from the original protocol
specification in very many aspects and the resulting mainte-
nance cost would be high. With our re-synthesis method only
the minimal sequence of changes will be introduced to the
protocol specification.

Requirement changes on service specifications may gen-
erally be complex and of wide variety. In our re-synthesis
method, we present a technique to decompose requirement
changes into sequence of atomic changes, and present re-
synthesis rules for the atomic changes. This approach allows
us to treat a variety of requirement changes in a simple manner.
Moreover, since the re-synthesis rules are designed to mod-
ify as small a part of the protocol specifications as possible,
changes on the protocol specifications will remain limited.

4.1 Atomic changes and re-synthesis rules

We consider the following four types of atomic changes
(AC14), (AC24), (AC34) and (AC44), and their correspond-
ing re-synthesis rules (RS14), (RS24), (RS3+) and (RS4).
As an example, we use the specifications Sspec and Pspecy 3
shown in Fig. 7a as timing charts.

Note that for each atomic change (AC;), we also define
its “inverse” atomic change (AC;_) and the corresponding
re-synthesis rule (RS;_). We note that since re-synthesis rule
(RS;_) can be understood as the inverse of (RS,), the de-
tailed explanation is omitted in this paper. For details, see the
formal description of all the atomic changes and re-synthesis
rules given in Appendix B.

Atomic Change AC1 . A PE (say P E}) becomes a new mem-
ber of PEsubst(T).

H.Yamaguchi et al.

As an example, let us assume that S(T') =“{R <+ 0}" is
modified to “{R < 0, R’ « 0} as shown in Fig. 7b. In
this case, PE3 must execute “R’ < 0” (since PE3 has R),
and thus PEj3 is now a member of PEsubst(T). In general,
P E), must know when to execute S(T°) and then let some PE’s
know when to start the execution of the next transitions after
T. Therefore, in the corresponding re-synthesis rule (RS),
one additional 3-message is sent to PE), by PFEstart(T).
Moreover, y-messages are sent by P L}, to the PE’s that start
the execution of the next transitions.

In the above example, a new (3-message is sent to P E3 by
PFE, and after the execution of “R’ +— 0” a new y-message
is sentto PE by PEs5 .

Atomic Change AC5.. An additional register (say Rp) is
needed by a PE (say PE},) in order to execute S(7T').

For example, assume that S(T") =“{R «+ 0} is modified to
“{R < R’}” as shown in Fig. 7c. In this case, the value of
R’ is now needed by PE, to execute S(T'). In general, PEj,
must receive the value of Rj,. Therefore, in the corresponding
re-synthesis rule (RS>,), if there exists already a J-message
sent to PE;, from a PE which has Ry, then the value of Ry,
is included in this message. Otherwise, a new (3-message in-
cluding the value of R will be sent to PE), by the PE that
has Ry (in this case, some existing 3-messages may be re-
moved). Note that adding this new (-message may need a
new c-message to be sent from PE'start(T) to the PE that
sends the new [-message in order to let this PE know when
to send the J-message.

In the example above, anew 3-message including the value
of R’ is sent from PFj5 (and the existing 3-message from
PFE; is removed since it has no role now). Moreover, a new
a-message sent from PE to PEs is added in order to let P F5
know when to send the new (3-message.

Atomic Change ACs,. A PE (say PF,,) becomes a new
member of PEstart(T e e), the set of PE’s that start the next
transitions after 7":

For example, let us assume that a new transition 7" with
E(T") = “G'null” is added as a next transition after 7’ where
G’ is allocated to PFE3 as shown in Fig. 7d. In this case, PF3
is now a new member of PEstart(T ee). In general, the PE’s
that execute S(7") must let PE,, know that the execution of
S(T') had been completed. Therefore, in the corresponding re-
synthesis rule (RS3.), new y-messages sent from those PE’s
to PE,, are added. If S(T') is empty, PEstart(T) sends a
new y-message to PE,,.

In the example above, a new ~y-message sent from PFEs to
PFEj5 is added in order to let P E'3 know that the execution of
S(T) had been completed.

Atomic Change ACy4,. An additional register (say Rp) is
needed by a PE (say PFE,,) to execute £(T") and/or to check
C(T") where T is a next transition after 7.

For example, assume that £(T") =“G!null” is modified to
“GIR’” as shown in Fig. 7e. In this case, the value of R’ is
needed by PFE} in order to execute £(7"). In general, the value
of Ry must be sent to PE,,,. Therefore, in the corresponding
re-synthesis rule (RS,), if there exists a y-message sent to
PE,, fromthe PE; thathas Ry, the value of Ry, is included in
the message. Otherwise, a new y-message including the value

Protocol synthesis and re-synthesis

29

Sspec Pspecl Pspec2 Pspec3
G!null G!null
{R<-0}
3
@ {R<-0}
G!null G!null
G[R][R] G [R]

Sspec’ Pspeci’ Pspec2’ Pspec3’
[T] ctnun Gnull
G!null G!null

G[R][R]

a
Sspec’ Pspecl’ Pspec2’ Pspec3’ Sspec’ Pspect’
G!nuII G!null
{R<-0}

G!null

GG'R|[R] G

G[R][R] G

c d

R]

b
Pspec2’ Pspec3’ Sspec’ Pspeci’ Pspec2’ Pspec3’
G!null G!null
{R<-0}
Gésﬁ:i an
R] &R} GRJR] & [r]
e

Fig. 7a—e. Atomic changes on Sspec and re-synthesized Pspec .3 : timing charts. a Original specifications; b (AC+1) on Sspec and resynthe-
sized Pspec; ¢ (AC2+) on Sspec and resynthesized Pspecs; d (AC3+) on Sspec and resynthesized Pspec; e (AC4+) on Sspec and resynthesized

Pspec

of Ry, is sent from PE; to PE,, (in this case, some existing
v-messages may be removed). Note that adding this new -
message may need an a-message sent from PFEstart(T) to
PE; in order to let PE; know when to send the y-message,
in case that PE; does not execute S(7').

In the example above, a new y-message including the value
of R’ is sent from P E3 which has R’ (the existing y-message
is left since it has a role to let PE; know that the execution
of S(T) had been completed). Moreover, a new a-message is
sent from PFE; to PEj5 in order to let P E'3 know when to send
the new y-message.

According to the above re-synthesis rules, we can determine
which messages or actions should be add/removed or modified
in the protocol specification. Adding a new message requires
two new transitions that send and receive the message, while
adding an action requires a single transition to be inserted.
They are inserted so that they satisfy the temporal relations
between the existing transitions, as specified in the synthesis
rules. On the other had, for removing an existing message sent
from PE; to PEj;, the two transitions that send and receive
the message are replaced with e-transitions and then removed.
Removing an action can be done in a similar way.

4.2 Decomposing service modifications into atomic changes

In this section, we consider general changes in the service
specification and discuss how they can be realized by a se-
quence of atomic changes, as discussed above. If the sequence

of atomic changes is determined, we can then apply the corre-
sponding re-synthesis rules to the protocol specification in the
same sequence and thus obtain the modified protocol specifi-
cation corresponding to the modified service specification.
We consider three types of general changes by which (a)
the nature of a transition in a service specification is changed
(event, pre-condition or set of assignment statements), (b) a
new transition is added or an existing transition is deleted in the
service specification, and (c) a register allocation is changed.

(a) Changing the nature of a transition. We assume that the
event (T, pre-condition C(7") and the assignment statements
S(T') of T are changed. This modification can be realized by
the following atomic changes.

— For each transition 7" preceding T', P Estart(T" e e) may
be changed if P E'start(T) is changed from PE,,, to PE,,.
(PE,, may no longer be a member of PEstart(T”’ ee) and
PE,,, may be a new member of PEstart(T’ e e)). This
is represented by atomic changes (AC5_) for the pair of
PE,, and T", and (ACs..) for the pair of PE,,, and T".

— In addition, some registers (say R;) may no longer be
needed by PE,, if PE,, is no longer PEstart(T). In-
stead, some other registers (say Rp’) may now be needed
by PE,, if PE,, isnow PEstart(T). This is represented
by atomic changes (ACy_) for the pair of R, and 7", and
(AC4.) for the pair of Ry, and T”, where T" is any transi-
tion preceding 7.

— Since the set of registers updated in S(7°) may be changed,
some PE’s (say PFEj) may no longer be members of
PEsubst(T), and some other PE’s (say P E}/) may be new

30

members of PEsubst(T). This is represented by (AC_)
for the pair of PEy, and T and (AC1 ;) for the pair of PEy,
and 7.

— Inaccordance, some registers (say [2,) are no longer needed
by some P Ej, toexecute S(T). Instead, some other registers
(say Ry) are now needed by some PFEy to execute S(T).
This is represented by (AC5_) for the pair of PE}, and Ry,
and (AC5.) for the pair of PEy and Ry, .

(b) A transition is inserted or removed. If anew transition 7' is
inserted in S'spec, we synthesize its corresponding sub-PNR’s
according to the synthesis rules described in Sect. 3.1. Then we
insert each sub-PNR of 7" in the intermediate specification of
PE}, (Pspecy), and obtain Pspecy, by removing e-transitions
from Pspecy,. On the other hand, if an existing transition 7" is
removed from S'spec, we replace each transition in sub-PNR’s
of T with e-transitions and remove them. However, both cases
cause some additional modifications which are presented by
atomic changes as follows.

— Since the set of next transitions after 77 may be changed by
the insertion/removal of 7', where T” is any transition pre-
ceding T', some PE’s (say P E,,,) may no longer be members
of PEstart(T’ e) and some other PE’s (say PFE,,/) may
become new members of PEstart(T’ e o). This is rep-
resented by (AC5_) for the pair of PE,, and T’, and by
(AC3y4) for the pair of PE,,,» and T".

— In accordance, some registers (say Rj) may no longer be
used by some PE’s (say P F,,,) and some other registers (say
R;/) may be used in addition by some PE’s (say PE,,/) to
start the execution of the next transitions after 7”. This is
represented by (AC,_) for the PE,,, Ry, and T’, and by
(AC44) for the PE,,/, Ry, and T".

Note that the assumptions made on Sspec as presented in
Sect. 3.1 must also hold on the modified Sspec, i.e., (a) the
Petri net of the modified Sspec must be a live and safe free-
choice net, (b) only one PE is involved in the decision to select
the next transition in any choice structure, and (c) two parallel
transitions of the modified Sspec must not refer/update the
value of the same register. For (a), a set of rules is presented
in [1,2] to transform a free-choice net keeping its liveness
and safeness properties. We assume that users follow these
rules for the insertion/deletion of transitions to/from service
specifications. Checking (b) is trivial and (c) can be checked
easily using the decompositionality of live and safe free-choice
net.

(c) The register allocation is changed. Our synthesis method
allows copies of a single register to be allocated to multiple
PE’s. In our synthesis method, the values of all these copies
on different PE’s are updated to keep a consistent state. This
idea is very useful in some application areas. For example,
in distributed databases, adding copies of an existing register
to some PE’s increases the robustness to faults, balances the
load, and may reduce the communication costs.

Now we assume that an existing register IRy, already al-
located to some PE(s), is now to be allocated to an additional
PE (say PFE}). This causes the following changes.

— For each transition 7" which has an assignment statement
in S(T) that updates Ry, PE), becomes a new member

H.Yamaguchi et al.

of PEsubst(T). This is represented by (AC,.) for the
transition 7.

— For the same PFE},, some registers (say I?,) are needed to
execute S(77). This is represented by (AC5) for the pair
of Rgand T

— The value of Rj; needs no longer be transferred to PEj
since now P Iy, has its own copy of Rj,. This is represented
by (AC>_) and (AC,_) for the transition T' where R}, is
used.

On the other hand, if register R}, allocated to more than one
PE is removed from one of them, the opposite occurrence of
the above case is applied.

We note that sometimes one may want to change the al-
location of a register Ry, from one PE (say PFE,) to another
PE (say PE,). This modification may be obtained by first
allocating Ry, to PE, and then removing R}, from PE,.

5 Experimental results
5.1 Modeling the ISPW-6 example

Protocol synthesis methods have been applied to many appli-
cations such as communication protocols, factory manufactur-
ing systems [16], distributed cooperative work management
[15] and so on.

We apply our synthesis and re-synthesis methods to the
distributed development of software that involves five engi-
neers (project manager, quality assurance, design, and two
software engineers). Each engineer has his/her own machine
connected through a network, and participates in the develop-
ment through a gate (interfaces) of this machine, using dis-
tributed resources placed on this machine. This distributed
development process includes tasks for scheduling and assign-
ing tasks, design modification, design review, code modifica-
tion, test plan modification, modification of unit test packages,
unit testing, and progress monitoring. The engineers cooperate
with each other to finish these sub-sequential tasks in a suit-
able order. The reader may refer to ISPW-6 Core Problem [33]
for a complete description of this process, which was provided
as an example to help the understanding and comparison of
various approaches to process modeling.

Figure 8 shows a workflow model of the above develop-
ment process using PNR, where the engineers and resources
needed to accomplish the tasks are indicated. We note that for
convenience, we do not show the progress monitoring tasks in
Fig. 8.

5.2 Experimental results

We regard this workflow as the service specification, and we
derived the corresponding protocol specification according to
the synthesis method described in Sect. 3 using the tool de-
scribed in [29]. The tool Ip_solve[34] was used to solve the ILP
problem to determine the optimal allocation of resources as
described in Sect. 3.2. The resulting allocation is shown in Ta-
ble 2. The derived protocol specification includes 29 messages
and is not included here due to space limitations.

In this section, we show the effectiveness of our re-
synthesis method by comparing the time it takes to derive the

Protocol synthesis and re-synthesis

Assign Tasks Modify Design __ SEfrvw.des
; : DE!Rreq,Rdesign, : . .
MNG?req,ntf | Rdesign_rf DE?dsg
:

authorization(htf)
=="yes" I

[Rdesign_rf <- Rrvw_de+Rrvw_se1+Rrvw_se2+Rrvw_ga
MNG

[Rrvw_de <- vw
Rdcs_de <- dcs]

s

Rdcs_se2 <-dcs]
QA?rvw,dcs
’

[Rrvw_ga <- vw
Rdcs_ga <- dcs]

31

DE!Rcode,Rdesign, ;
A MNG!Rdcs| ib 9 DE?mcd
;

[Rcode <-mcd
Robject<-compiled(mcd)]

Recommended"

des== Q
"Minor Changes
Recommended"

[Rde:

1Rdcs
\ T2
I

[

QAIRreq,Rtestplan QA2tsp; CA'RIEstplan.Runittest, g,y
; ’ = ;

Test Unit

Rurj(Runittest,Robject)/T

QA!Rtestresult QA?als
QAIRals_qa,Rals_de

O
g (2R < i)
DE!Rtestresult DE?als

QA?

dcs=="ModifyUnit Test Package and Source Code"

O
(radd

<-als]

QA?(@ [Rtest_fb <- Rtestresult

I 0 T
MNG!"complete" QA?dcs |[Rtest_fb <- Rtestresult

des=="ModifyUnit Test Package" I.—‘é F{‘alsiqe +Rals_de] '
1 H '

: L dcs:f“ea(nplele”l_ + ‘Rals,qe + F‘Ials,de 1
S L |
3 ‘ Rdesign ‘ ‘ Rreq ‘ ‘ Rrvw_de ‘ ‘ Rdcs_de ‘ ‘ Rals_qa ‘

‘ Robject HRdesign Jb‘ ‘ Rrvw_se2 H Rdcs_se2 ‘ ‘ Rdcs ‘

‘ Rcode ‘ktestresult ‘ ‘Rrvwfsel HRdcsfseI H Rals_de ‘ 3

‘ Runittest ‘ ‘ Rtest_fb ‘ ‘ Rrvw_qa ‘ ‘ Rdcs_qa ‘

Fig. 8. Modeling the ISPW-6 core problem

Table 2. Optimal allocation of resources for engineers’ machines

PEing PEq. PE;c1 PE;co PEg,
Gate MNG DE SE1 SE2 QA
Register Rges Ryreq Raesign (Rcode2 i1s added (Runittest2 1S Rrpw.de Racs_de
(Rcode isaddedin Rgesign_fb in case 1) added in case 2) Rrvw_sel
case 4) Rcode Rtest,fb Rdcs,sel
Robject Rrvw,seQ
Rdcs,se?
Rrvw,qa Rdcs,qa
Rcode Robject
Rtestplan
Runittest
Rtest'result

Ralc,qa Rals,de

complete protocol specification again after each minor mod-
ification with the time it takes to re-synthesize a modified
protocol specification.

We consider the following three cases, each corresponding
to one of the general changes described in Sect. 4.2.

Case 1. QA needs to read the present design to modify the
test plans. For this purpose, the value of Rgesigy is emitted to
QA in transition T5.

Case 2. MNG needs to check the test feedback (register
Ryest_sp) before it is shown to DE (that is, between the ex-
ecution of T3 and Tig) in order to know how DE and QA
proceed the code development process. For this purpose, a
new transition T35 is added between 13, and 179 where the
value of Ryeq_pp is emitted to MNG.

Case 3. For resource accessibility, robustness against storage
faults (or failure of machine), and reduction of communication

32

Table 3. Experimental results

a each case consists of a single general change on Sspec

H.Yamaguchi et al.

Case Changes on Sspec

Re-synthesis Rules Re-synth. Synth.

time mes. time mes.

1 The label of T5; is modified (a change of type (a)).
5/(T21) :“QA!Rrap Rdesigrh Rtestplan”

(RS4y) for Ty is applied. 4s 29 520s 29

2 T35 is inserted between 131 and Thg (a change of type (b)).
E(Ts5) =“MNG!Riest_sp”

Sub-PNR’s for T35 are syn- 24s 31 840s 31
thesized.

(RS4—)forTs1,(RSs—)for

T31, (RSg_) for T31 and

(RSs34) for T3 are applied.

3 Recode 18 also placed on PFEyy,,4 (a change of type (c)).

(RS1+)and (RSa24)forTyy 14s 31 520s 29
are applied.

b each case consists of multiple (general) changes on Sspec

Case Changes on Sspec

Re-synthesis Rules Re-synth. Synth.

time mes. time mes.

4 The labels of 179 and T are modified
(two changes of type (a)).
EI(T19) :“DE!Rcodey Rcode27 Rdesign7 Rtest,fb”
E'(Tx) =“DE?med, mcd2”
&' (T20) =“[Reode + mcd, Reodez +— med2,
Ropject + compiled(med, med2)]”

(RS14+) for Tis, (RSay) 29s 35 507s 29
for Ts1, (RS1+) for Tho,

(RS2+) for T20 and (RSQ+)

for T3 are applied.

5 The labels of T»3, T4 and T»5 are modified
(three changes of type (a)).
SI(TQB) :“QA!Rtestplany Runittesh Runittest27
Rdesigru Rtest,fb”
E'(Tos) =“QA%utp, utp2”
8/(T24) :“[Runittest — Utpy Runittest2 <~ Utp2}”
S

,(TQS) :“[thstplan — Run(Runittesta RunittestZ; Robjcct)]

(RS44+) for Toa, (RS4y) 35s 39 742s 30
for T31, (RS4+) for T32,

(RSl+) for T24, (RSQ+) for

T4 and (RS24+) for Tos are

applied.

”»

costs, the source code R ,qe is duplicated and a new copy is
placed on MNG’s machine.

After each case, we have used the program developed
in [29] to measure the time (in seconds) to synthesize from
scratch a new protocol specification. Moreover, we have also
measured the time to re-synthesize a modified protocol spec-
ification using a program that we have developed for this pur-
pose. Both programs are written in perl, and the experiments
have been performed on a Linux PC (with an Athlon 750 MHz
CPU and 256MB memory).

Table 3(a) shows synthesis/re-synthesis times and the
number of messages (mes) in the synthesized/re-synthesized
protocol specifications for the above three cases. The reader
can clearly see that the re-synthesis time is much less than that
of a complete synthesis. This is mainly due to the fact that by
using the re-synthesis rules, we do not have to re-derive the
whole protocol specification. Moreover, we do not re-optimize
the number of messages sent between different PE’s. Never-
theless, the resulting protocol specifications still have optimal
or near-optimal solutions as shown in Table 3(a).

We also consider the following two cases, each of which
consists of more than one general change.

Case 4. A second version of the source code (register R.oqe2)
is placed on the machine of the software engineer 1 (SE1),
and the design engineer (DE) modifies and compiles it as well

as Rcode, in “Modify Code” (transitions 719 and 7). This
modification is treated as two general changes of type (a) on
T19 and T5p. The general change on 79 changes the set of
registers used to start the execution of the succeeding transi-
tions of T1g and T3, and the general change on T5y changes
PEsubst(Ty) and the set of registers used to execute S(Tx0)
on PE,.

Case 5. An additional new unit test (register Rynittest2) 1S
placed on the machine of the software engineer 2 (SE2), and
the QA engineer (QA) modifies it as well as Rypittest, i
“Modify Test Unit Package” (153 and T54). Moreover, an ad-
ditional test is done using the unit test in “Test Unit” (T55).
Table 3(b) shows the experimental results for the above
two cases. The re-synthesis time is still much less than the
time for a complete synthesis. Regarding the number of mes-
sages, since the present (thus fixed) allocation is used in the
re-synthesis method, some deviation from the optimal solu-
tion is found for these cases. However, a closer look at the
protocol specification obtained by synthesis from the modi-
fied service specification indicates that the structure of this
protocol specification is quite different from the original pro-
tocol specification, which is due to several changes in the reg-
ister allocation which, in turn, is due to the re-optimization of
the resource allocation as described in Sect. 3.2. We think that
this result is a much larger maintenance cost as compared with

Protocol synthesis and re-synthesis

the re-synthesized protocol specification which has a structure
similar to the original one.

Note that, as shown above, there exists a tradeoff between
the optimality and maintenance cost. Re-optimization of the
resource allocation may be applied after several applications
of re-synthesis, as the need arises depending on each applica-
tion’s cost criteria [29].

6 Conclusion

We have proposed a synthesis method to derive a protocol
specification of a distributed system from a given service spec-
ification. The method involves the optimization of register
(storage) allocation that minimizes communication costs of
the distributed system. We have also proposed a method to
re-synthesize the modified protocol specification when some
changes of the user requirements have given rise to a mod-
ified service specification. The method consists of a set of
simple rules that are applied to the original protocol speci-
fication. The rules correspond to the changes in the service
specification, and are designed to modify only small parts of
the protocol specification. Therefore, the resulting modifica-
tions on the protocol specification are small compared with the
changes that result from the application of the normal protocol
synthesis method on the modified service specification. The
experimental results have shown that our re-synthesis method
could save the maintenance costs, compared with the normal
synthesis method.

We are planning to develop an integrated development
environment for distributed systems, including tool support
for specifying requirements of service (service specifications)
through a graphical interface, synthesizing/re-synthesizing
protocol specifications, and Java code generation from the pro-
tocol specifications. This is part of our future work.

References

1. T. Murata, Petri Nets: Properties, Analysis and Applications,
Proc. of IEEE, 77(4), 541-580, 1989

2. E. Best, Structure Theory of Petri Nets: the Free Choice Hiatus,
Advances in Petri Nets Part I: Petri Nets, Central Models and
Their Properties, in Lecture Notes in Computer Science, Vol.
254, pp. 168-205, 1986

3. R. Milner, Communication and Concurrency, Englewood Cliffs:
Prentice-Hall 1989

4. N. A. Lynch, Distributed Algorithm, Los Altos, CA: Morgan
Kaufmann Publishers 1996

5. V. Carchiolo, A. Faro, D. Giordano, Formal Description Tech-
niques and Automated Protocol Synthesis, Journal of Informa-
tion and Software Technology 34(8), 513-421, 1992

6. H. Erdogmus, R. Johnston, On the Specification and Synthesis
of Communicating Processes, IEEE Trans. on Software Engi-
neering, SE-16(12), 1412-1427, 1990

7. R. Probert, K. Saleh, Synthesis of Communication Protocols:
Survey and Assessment, IEEE Trans. on Computers 40(4), 468—
476, 1991

8. K. Saleh, Synthesis of Communication Protocols: an Annotated
Bibliography, ACM SIGCOMM Computer Communication Re-
view 26(5), 40-59, 1996

10.

12.

13.

14.

15.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

33

. R. Gotzhein, G. v. Bochmann, Deriving Protocol Specifications

from Service Specifications Including Parameters, ACM Trans.
on Computer Systems 8(4), 255-283, 1990

R. Langerak, Decomposition of Functionality; a Correctness-
Preserving LOTOS Transformation, Proc. of 10th IFIP WG6.1
Symp. on Protocol Specification, Testing and Verification
(PSTV-10), 1990, pp. 229-242

. C.Kant, T. Higashino, G. v. Bochmann, Deriving Protocol Spec-

ifications from Service Specifications Written in LOTOS, Dis-
tributed Computing 10(1), 29-47, 1996

P.-Y. M. Chu, M. T. Liu, Protocol Synthesis in a State-transition
Model, Proc. of COMPSAC ’88, 1988, pp. 505-512

T. Higashino, K. Okano, H. Imajo, K. Taniguchi, Deriving Proto-
col Specifications from Service Specifications in Extended FSM
Models, Proc. of 13th Int. Conf. on Distributed Computing Sys-
tems (ICDCS-13), 1993, pp. 141-148

M. Nakamura, Y. Kakuda, T. Kikuno, Component-based Proto-
col Synthesis from Service Specifications, Computer Commu-
nications Journal 19(14), 1200-1215, 1996

K. Yasumoto, T. Higashino, K. Taniguchi, Software Process De-
scription Using LOTOS and its Enaction, Proc. of 16th Int. Conf.
on Software Engineering (ICSE-16), 1994, pp. 169-179

. D.Y. Chao, D. T. Wang, A Synthesis Technique of General Petri

Nets, Journal of System Integration, 4, 67-102, 1994

. F-Y. Wang, K. Gildea, H. Jungnitz, D.D. Chen, Protocol Design

and Performance Analysis for Manufacturing Message Specifi-
cation: A Petri Net Approach, IEEE Trans. on Industrial Elec-
tronics 41(6), 641-653, 1994

H. Yamaguchi, K. Okano, T. Higashino, K. Taniguchi, Synthesis
of Protocol Entities’” Specifications from Service Specifications
in a Petri Net Model with Registers, Proc. of 15th Int. Conf. on
Distributed Computing Systems (ICDCS-15), 1995, pp. 510—
517

H. Kahlouche, J. J. Girardot, A Stepwise Requirement Based Ap-
proach for Synthesizing Protocol Specifications in an Interpreted
Petri Net Model, Proc. of INFOCOM ’96, 1996, pp. 1165-1173
A. Al-Dallal, K. Saleh, Protocol Synthesis Using the Petri Net
Model, Prof. of 9th Int. Conf. on Parallel and Distributed Com-
puting and Systems (PDCS’97), 1997

A. Khoumsi, K. Saleh, Two Formal Methods for the Synthesis of
Discrete Event Systems, Computer Networks and ISDN Systems
29(7), 759-780, 1997

M. Kapus-Koler, Deriving Protocol Specifications from Service
Specifications with Heterogeneous Timing Requirements, Proc.
of 1991 Int. Conf. on Software Engineering for Real Time Sys-
tems, 1991, pp. 266-270

A. Khoumsi, G. v. Bochmann, R. Dssouli, On Specifying Ser-
vices and Synthesizing Protocols for Real-time Applications,
Proc. of 14th IFIP WG6.1 Symp. on Protocol Specification, Test-
ing and Verification (PSTV-14), 1994, pp. 185-200

A. Khoumsi, G. v. Bochmann, Protocol Synthesis Using Basic
LOTOS and Global Variables, Proc. of 1995 Int. Conf. on Net-
work Protocols (ICNP’95), 1995

A. Nakata, T. Higashino, K. Taniguchi, Protocol Synthesis from
Timed and Structured Specifications, Proc. of 1995 Int. Conf. on
Network Protocols (ICNP’95), 1995, pp. 74-81

H. Yamaguchi, K. Okano, T. Higashino, K. Taniguchi, Protocol
Synthesis from Time Petri Net Based Service Specifications,
Proc. of 1997 Int. Conf. on Parallel and Distributed Systems
(ICPADS’97), 1997, pp. 236243

J. -C. Park, R. E. Miller, Synthesizing Protocol Specifications
from Service Specifications in Timed Extended Finite State Ma-
chines, Proc. of 17th Int. Conf. on Distributed Computing Sys-
tems (ICDCS-17), 1997

34

28. K. El-Fakih, H. Yamaguchi, G.v. Bochmann, A Method and a
Genetic Algorithm for Deriving Protocols for Distributed Ap-
plications with Minimum Communication Cost, Proc. of 11th
IASTED Int. Conf. on Parallel and Distributed Computing and
Systems (PDCS’99), 1999, pp. 863-868

29. H. Yamaguchi, K. El-Fakih, G.v. Bochmann, T. Higashino, A
Petri Net Based Method for Deriving Distributed Specification
with Optimal Allocation of Resources, Proc. of ASIC Int. Conf.
on Software Engineering Applied to Networking and Parallel/
Distributed Computing (SNPD’00), 2000, pp. 19-26

30. K. El-Fakih, H. Yamaguchi, G.v. Bochmann, T. Higashino, Pro-
tocol Re-synthesis Based on Extended Petri Nets, Proc. of Int.
Workshop on Software Engineering and Petri Nets (SEPN-
2000), 2000, pp. 173-188

31. K. El-Fakih, H. Yamaguchi, G.v. Bochmann, T. Higashino, Au-
tomatic Derivation of Petri Net Based Distributed Specification
with Optimal Allocation of Resources, Proc. of 15th IEEE Int.
Conf. on Automated Software Engineering (ASE’2000), 2000,
pp. 305-308

32. B.B. Bista, K. Takahashi, H. Kaminaga, N. Shiratori, A Flexible
Protocol Synthesis Method for Adopting Requirement Changes,
Proc. of the 1996 Int. Conf. on Parallel and Distributed Systems
(ICPADS’96), 1996, pp. 319-326

33. Kellner, M. et al. : ISPW-6 Software Process Example, Proc. of
the 1st Int. Conf. on the Software Process, 1991, pp. 176-186

34. Ipsolve,ftp://ftp.ics.ele.tue.nl/pub/lp_solve/

35. S. Schach, Software Engineering, Boston: Aksen Assoc, 1992

Appendix A: Synthesis rules

Action rules

(Sa1) PE; that has the gate G used in £(T) checks that
(1) the value of C(T) is true,
(2) the execution of the previous transitions of 7" is
completed
(3) an input has been given through G, if £(T') is an
input event.
Then PE; executes £(T). This PE; is denoted
PEstart(T).
(Sa2) After (Sa1), each PE (say PE}) executes the subset

of the assignment statements of S(T") that update the
registers allocated to P E,. The set of these PE’s is de-
noted by PEsubst(T'). These assignment statements
are executed when the corresponding J-messages are
received (see below).

Message rules

(Spma) After (Sa1), PEstart(T) only sends a-messages.
The PE’s to which a-messages are sent are deter-
mined in (S]wgg) and (SM73).

(Samp1) Each PE), € PEsubst(T") must receive at least one
B-message from some PE’s (each called PE}) in or-
der to know the timing to execute S(7'). This mes-
sage also lets P E}, know the values of registers used
in S(T') (see (Sarp2))-

(Sap2) For each register Ry, that is used to execute S(T')
by PE}, PE) must receive its value through a 3-
message if Ry, is not allocated to PE}.

H.Yamaguchi et al.

(Samps) Bach PE; that sends a (-message to PEj €
PEsubst(T) knows the timing to send the message
by receiving an a-message from P Estart(T) unless
PE; is PEstart(T).

(Sar1) Each PE,, € PEstart(T e o), where T' o o is the
set of the next transitions after 7', must receive a -
message fromeach PEy, € PFEsubst(T) after (S 42).
This lets PE,,, know that the execution of S(7") had
been completed on PEy. If PEsubst(T) is empty,
PE,, must receive at least one y-message from any
PE in order to know that the execution of T had
been completed. v-messages also let PFE,,, know the
values of registers used in the pre-conditions and/or
events of next transitions (see (Syr43)).

(Sar42) Foreachregister Ry, used by PE,, to start the execu-
tion of the next transitions of T', PFE,,, must receive
its value through a «-message if Ry, is not allocated
to PE,,.

(Sary3) Each PE; that sends a 7y-message to PL, ¢
PEstart(T e o) must be in PEsubst(T)
(see (Sar1)), must receive an a-message from
PEstart(T) or must be PEstart(T), in order to
know the timing to send the y-message to PFE,,,.

Appendix B: Re-synthesis rules

PEsubst(T) has been changed:

(AC44) PEsubst(T) = PEsubst(T) U{PEy}

(RS14+) Add a -message sent from PE; = PFEstart(T)
to PFEy in order to let PFy know the timing to execute
S(T). Also add y-messages sent from PEj, to VPE,, €
PESstart(T e) in order to let PE,, know that the exe-
cution of S(T') on PE}, had been completed.

(AC,_) PEsubst(T) = PEsubst(T) \ {PE}

(RS1_) Delete the $-messages sent to PEj, since PEj no
longer executes S(T'). Also delete the y-messages which
include no value sent from P Fy. Finally, if at least one
v-message from P E; still exists, add an a-message from
PFE; to PE},.

Rsubsty(T) has been changed: (Rsubsty(T) is the set
of registers used to execute S(T") on PE},)

(AC54) Rsubsty(T) = Rsubsty,(T) U {Rp}

(RS2+) Include the value of R; in one of the existing (-
messages sent from PE; which has Ry to PEy, since
PE}), needs the value of Ry, for the execution of S(T').
If such a message does not exist, add a new (-message
including the value of Rj, sent from PFE; which has
Ry, to PEj. Also add an o-message from PE; to PE;
(PE; = PEstart(T), i # j) if PE; does not receive an
a-message.

(AC5-) Rsubsty(T) = Rsubsty(T) \ {Rn}

(RS2-) Exclude the value of Rj; from the existing (-
messages sent to PEy, since PEj no longer needs the
value of Ry, for the execution of S(7'). Then delete each
of the S-messages only if (a) it has no register value and
(b) another B-message sent to P Fy, exists. Finally, delete
the a-message sent to PE; (PE; = PEstart(T)) only
if there is no -message nor -message sent from PE;.

Protocol synthesis and re-synthesis

PEstart(T e e) has been changed:

(ACs31) PEstart(T e o) = PEstart(T e e) U{PE,,}

(RSs34) Add ~-messages from PE; to VPE, €
PEsubst(T), since PE,, needs to know that the
execution of S(T') had been completed. If PEsubst(T)
is empty, add a y-message sent from PFE; to PFE,, where
PE; = PEstart(T).

(AC5_) PEstart(T e ¢) = PEstart(T e o)\ {PE,,}

(RS3_) Delete the existing y-messages sent to PE,,, since
PE,, no longer needs to know that the execution of S(7T')
had been completed.

Rstart,,(T e o) has been changed: (Rstart,,(T ee)is
the set of registers used by PFE,, to start the execution of
next transitions)

(AC4y) Rstart,,(T e o) = Rstart,,(T e e) U{R;}

(RS44) Include the value of Ry in one of the existing -
messages sent from PFE; which has Ry to PE,,, since
PFE,, needs the value of Rj, for the execution of next
transitions of 7T'. If such a message does not exist, add a
new y-message including the value of Ry, sent from PFE;
which has Rj, to PFE,,. Also add an c-message sent from
PE; = PEstart(T) to PE; if PE; does not receive an
a-message and PE; ¢ PEsubst(Ty).

(AC4_) Rstart,,(T e e) = Rstart,, (T ee) \ {Ry}

(RS4-) Exclude the value of R from y-messages sent to
PE,, since PFE,, no longer needs the value of R, for the
execution of the next transitions of 7'. Then delete each
of the v-messages sent to PF,,, only if (a) it is sent from
PE; ¢ PEsubst(T), (b) ay-message sent to PFE,,, exists
and (c) the y-message has no register value. Finally, delete
the a-message sent to PE; only if there is no S-message
nor y-message sent from PE).

Hirozumi Yamaguchi received his B.E., M.E. and Ph.D. degrees in
Information and Computer Sciences from Osaka University, Japan.
Since 1999, he has been a research associate at Osaka University.
His research interests are design and implementation of distributed
systems and communication protocols, and resource management in
multicast applications.

35

Khaled El-Fakih received his B.S. and M.S. degrees in Computer
Science from the Lebanese American University. Currently, he is a
Ph.D. student at the University of Ottawa and an instructor at the
American University of Sharjah. His current research interests are in
automating the design of distributed systems, test development from
given specifications, and fault diagnosis of distributed systems.

Gregor von Bochmann is professor at the School of Information
Technology and Engineering at the University of Ottawa since Jan-
uary 1998. Previously he was professor at the University of Montreal
for 25 years. He is a fellow of the IEEE and ACM and a member of the
Royal Society of Canada. He has worked in the area of programming
languages, compiler design, communication protocols, and software
engineering and has published many papers in these areas. He has also
been actively involved in the standardization of formal description
techniques for communication protocols and services. His present
work is aimed at methodologies for the design, implementation and
testing of communication protocols and distributed systems. Ongo-
ing projects include distributed systems management and quality of
service negotiation for distributed multimedia applications.

Teruo Higashino received the B.E., M.E., and Ph.D. degrees in In-
formation and Computer Sciences from Osaka University, Osaka,
Japan, in 1979, 1981 and 1984, respectively. He joined the faculty of
Osaka University in 1984. Currently, he is a professor of Graduate
School of Information Science and Technology, Osaka University.

In 1990 and 1994, he was a Visiting Researcher of Dept. I.R.O.
at University of Montreal, Canada. His current research interests in-
clude design and analysis of distributed systems, specification and
verification of communication protocols, and formal approach of pro-
gram design. He is a senior member of IEEE and a member of IFIP
TC6/WG 6.1.

