
Digital Object Identifier (DOI) 10.1007/s00446-002-0070-8
Distrib. Comput. (2003) 16: 1–20

c© Springer-Verlag 2003

Disk Paxos

Eli Gafni1, Leslie Lamport2

1 Computer Science Department, UCLA
2 Microsoft Research, 1065 La Avenida Mountain View, CA 94043, USA

Received: January 2001 / Accepted: March 2002

Abstract. We present an algorithm, called Disk Paxos, for
implementing a reliable distributed system with a network
of processors and disks. Like the original Paxos algorithm,
Disk Paxos maintains consistency in the presence of arbitrary
non-Byzantine faults. Progress can be guaranteed as long as a
majority of the disks are available, even if all processors but
one have failed.

Keywords: Consensus – State machine – Fault tolerance –
Distributed computing

1 Introduction

Fault tolerance requires redundant components. Maintaining
consistency in the event of a system partition makes it impos-
sible for a two-component system to make progress if either
component fails. There are innumerable fault-tolerant algo-
rithms for implementing distributed systems, but all that we
know of equate component with processor. But there are other
types of components that one might replicate instead. In par-
ticular, modern networks can now include disk drives as inde-
pendent components. Because commodity disks are cheaper
than computers, it is attractive to use them as the replicated
components for achieving fault tolerance. Commodity disks
differ from processors in that they are not programmable, so
we can’t just substitute disks for processors in existing algo-
rithms.

We present here an algorithm called Disk Paxos for im-
plementing an arbitrary fault-tolerant system with a network
of processors and disks. It maintains consistency in the event
of any number of non-Byzantine failures. That is, a processor
may pause for arbitrarily long periods, may fail completely,
and may restart after failure, remembering only that it has
failed; a disk may become inaccessible to some or all pro-
cessors, but it may not be corrupted. Disk Paxos guarantees
progress if the system is stable and there is at least one non-
faulty processor that can read and write a majority of the disks.
Stability means that each processor is either nonfaulty or has
failed completely, and nonfaulty processors can access non-
faulty disks. For example, it allows a system of two processors

and three disks to make progress after the failure of any one
processor and any one disk.

Disk Paxos is a variant of the classic Paxos algorithm [3,
12,14], a simple, efficient algorithm that has been used in
practical distributed systems [15,18]. Classic Paxos can be
viewed as an implementation of Disk Paxos in which there
is one disk per processor, and a disk can be accessed directly
only by its processor.

In the next section, we recall how to reduce the problem of
implementing an arbitrary distributed system to the consen-
sus problem. Section 3 informally describes Disk Synod, the
consensus algorithm used by Disk Paxos. It includes a sketch
of an incomplete correctness proof and explains the relation
between Disk Synod and the Synod protocol of classic Paxos.
Section 4 briefly discusses some implementation details and
contains the conventional concluding remarks. An appendix
gives formal specifications of the consensus problem and the
Disk Synod algorithm, and sketches a rigorous correctness
proof.

An earlier version of this work, with an abridged version
of the appendix lacking any proof, appeared earlier [5].

2 The state-machine approach

The state-machine approach [7,16] is a general method for
implementing an arbitrary distributed system. The system is
designed as a deterministic state machine that executes a se-
quence of commands, and a consensus algorithm ensures that,
for each n , all processors agree on the nth command. This re-
duces the problem of building an arbitrary system to solving
the consensus problem. In the consensus problem, each pro-
cessor p starts with an input value input [p], and it may output
a value. A solution should be:

Nontrivial: Any value output should have been the value of
input [p] at some time, for some processor p. (The value
of input [p] may change if p fails and restarts.)

Consistent: All values output are the same.
Nonblocking: If the system is stable and a nonfaulty proces-

sor can communicate with a majority of disks, then the
processor will eventually output a value.

2 E. Gafni, L. Lamport

It has long been known that a consistent, nonblocking con-
sensus using asynchronous message passing always requires
at least two message delays [6]. Nonblocking algorithms that
use fewer message delays don’t guarantee consistency. For
example, the group communication algorithms of Isis [2] per-
mit two processors belonging to the current group to disagree
on whether a message was broadcast in a previous group to
which they both belonged. This algorithm cannot, by itself,
guarantee consistency because disagreement about whether a
message had been broadcast can result in disagreement about
the output value.

The classic Paxos algorithm [3,12,14] uses a three-phase
consensus protocol, called the Synod algorithm, where each of
the first two phases requires two message delays and the third
phase just broadcasts the output value. However, the value to
be output is not chosen until the second phase. When a new
leader is elected, it executes the first phase just once for the
entire sequence of consensus algorithms performed for all later
system commands. Only the last two phases are performed
separately for each individual command.

In the Disk Synod algorithm, the consensus algorithm used
by Disk Paxos, each processor has an assigned block on each
disk. The algorithm has two phases. In each phase, a processor
writes to its own block and reads each other processor’s block
on a majority of the disks.1 Only the last phase needs to be ex-
ecuted anew for each command. So, in the normal steady-state
case, a leader chooses a state-machine command by executing
a single write to each of its blocks and a single read of every
other processor’s blocks.

Disk Paxos, like classic Paxos, makes no timing assump-
tions; processes may be completely asynchronous. The classic
result of Fischer, Lynch, and Paterson [4] implies that a purely
asynchronous nonblocking consensus algorithm is impossi-
ble. So, clocks and real-time assumptions must be introduced.
The typical industry approach is to use an ad hoc algorithm
based on timeouts to elect a leader, and then have the leader
choose the output [17,19]. It is easy to devise a leader-election
algorithm that works when the system is stable, which means
that it works most of the time. It is very hard to make one
that always works correctly even when the system is unstable.
Both classic Paxos and Disk Paxos also assume a real-time
algorithm for electing a leader. However, the leader is used
only to ensure progress. Consistency is maintained even if
there are multiple leaders. Thus, if the leader-election algo-
rithm fails because the network is unstable, the system can
fail to make progress; it cannot become inconsistent. The sys-
tem will again make progress when it becomes stable and a
single leader is elected.

3 An informal description of disk synod

We now informally describe the Disk Synod algorithm and
explain why it works. We also discuss its relation to classic
Paxos’s Synod Protocol. Remember that, in normal operation,
only a single leader will be executing the algorithm. The other
processors do nothing; they simply wait for the leader to in-
form them of the outcome. However, the algorithm must pre-

1 There is also an extra phase that a processor executes when re-
covering from a failure.

serve consistency even when it is executed by multiple proces-
sors, or when the leader fails before announcing the outcome
and a new leader is chosen.

3.1 The algorithm

We assume that each processor p starts with an input value
input [p].2 As in Paxos’s Synod algorithm, a processor exe-
cutes a sequence of numbered ballots, with increasing ballot
numbers. A ballot number is a positive integer, and different
processors use different ballot numbers. For example, if the
processors are numbered from 1 through N , then processor i
could use ballot numbers i , i + N , i + 2N , etc. A processor
p executes a ballot in two phases, the first trying to choose a
value and the second trying to commit that value:

Phase 1: Determine whether p can choose its input value
input [p] or must choose some other value.

Choose a value v .
Phase 2: Try to commit v .

The choice of the value v occurs in the transition from phase 1
to phase 2. The value is committed, and can be output, when
p finishes phase 2.

In either phase, a processor aborts its ballot if it learns that
another processor has begun a higher-numbered ballot. In that
case, the processor may then choose a higher ballot number
and start a new ballot. (It will do so if it still thinks it is the
leader.) If the processor completes phase 2 without aborting—
that is, without learning of a higher-numbered ballot—then
value v is committed and the processor can output it. A pro-
cessor p does not need to know the value of input [p] until it
enters phase 2, so phase 1 can be performed in advance for
any number of separate instances of the algorithm.

To ensure consistency, we must guarantee that two differ-
ent values cannot be successfully committed—either by dif-
ferent processors (because the leader-election algorithm has
not yet succeeded) or by the same processor in two different
ballots (because it failed and restarted). To ensure that the al-
gorithm is nonblocking, we must guarantee that, if there is
only a single processor p executing it, then p will eventually
commit a value.

In practice, when a processor successfully commits a
value, it will write on its disk block that the value was com-
mitted and also broadcast that fact to the other processors. If
a processor learns that a value has been committed, it will
abort its ballot and simply output the value. It is obvious that
this optimization preserves correctness; we will not consider
it further.

To execute the algorithm, a processor p maintains a record
dblock [p] containing the following three components:

mbal The current ballot number.
bal The largest ballot number for whichp entered phase 2.
inp The value p tried to commit in ballot number bal .

Initially, bal equals 0, inp equals a special value NotAnInput
that is not a possible input value, and mbal is any of its possible
ballot numbers. We let disk [d][p] be the block on disk d in

2 If processor p fails, it can restart with a new value of input [p].

Disk Paxos 3

which processor p writes dblock [p]. We assume that reading
and writing a block are atomic operations.

Processor p executes phase 1 or 2 of a ballot as follows. For
each disk d , it tries first to write dblock [p] to disk [d][p] and
then to read disk [d][q] for all other processors q . It aborts
the ballot if, for any d and q , it finds disk [d][q].mbal >
dblock [p].mbal . The phase completes when p has written and
read a majority of the disks, without reading any block whose
mbal component is greater than dblock [p].mbal . When it com-
pletes phase 1, p chooses a new value of dblock [p].inp, sets
dblock [p].bal to dblock [p].mbal (its current ballot number),
and begins phase 2. When it completes phase 2, p has com-
mitted dblock [p].inp.

To complete our description of the two phases, we now
describe how processor p chooses the value of dblock [p].inp
that it tries to commit in phase 2. Let blocksSeen be the set
consisting of dblock [p] and all the records disk [d][q] read by p
in phase 1. Let nonInitBlks be the subset of blocksSeen con-
sisting of those records whose inp field is not NotAnInput . If
nonInitBlks is empty, then p sets dblock [p].inp to its own in-
put value input [p]. Otherwise, it sets dblock [p].inp to bk .inp
for some record bk in nonInitBlks having the largest value of
bk .bal .

Finally, we describe what processor p does when it re-
covers from a failure. In this case, p reads its own block
disk [d][p] from a majority of disks d . It then sets dblock [p] to
any block bk it read having the maximum value of bk .mbal ,
and it starts a new ballot by increasing dblock [p].mbal and
beginning phase 1.

The algorithm is summarized informally in Figure 1,
which describes how a processor p executes a single ballot.
The processor begins the ballot by executing the Start Ballot
operation. It can begin a new ballot if a ballot aborts, or at
any other time—except when it has failed, in which case it
must execute the Restart After Failure operation. A precise
specification of the algorithm appears in the appendix.

3.2 Why the algorithm works

Safety

We explain intuitively why the Disk Synod algorithm satis-
fies the two safety properties of nontriviality and consistency.
Nontriviality is trivial, since the val field of any block is always
set either to the val field of some other block or to input [p]
for a processor p. Hence, a committed value must at one time
have been an input value of some processor.

We now explain why the Disk Synod algorithm maintains
consistency. First, we consider the following shared-memory
version of the algorithm that uses single-writer, multiple-
reader regular registers.3 Instead of writing to disk, processor
p writes dblock [p] to a shared register; and it reads the values
of dblock [q] for other processors q from the registers. A pro-
cessor chooses its bal and inp values for phase 2 the same way
as before, except that it reads just one dblock value for each

3 A regular register is one in which a read that does not overlap a
write returns the register’s current value, and a read that overlaps one
or more writes returns either the register’s previous value or one of
the values being written [8].

Start Ballot
Set dblock [p].mbal to a value larger than its current value.
Set blocksSeen to {dblock [p]}.
Begin Phase 1.

Phase 1 or 2
Concurrently for every disk d do

Write dblock [p] to disk [d][p].
for every processor q �= p do

Read disk [d][q] and insert it in the set blocksSeen .
Abort the ballot if disk [d][q].mbal > dblock [p].mbal .

until this has been done for a majority of disks.
If phase 1

then Set dblock [p].bal to dblock [p].mbal .
Let nonInitBlks be the set of elements bk in

blocksSeen with bk .inp �= NotAnInput .
If nonInitBlks is empty

then Set dblock [p].inp to input [p].
else Set dblock [p].inp to an element bk of

nonInitBlks with a maximal value of bk .bal .
Begin phase 2.

else Commit dblock [p].inp.
Restart After Failure

Set tempSet to the empty set.
Concurrently for every disk d do

Read disk [d][q] and insert it in the set tempSet .
until this has been done for a majority of disks.

Set dblock [p] to an element bk of tempSet with a maximal
value of mbal .

Begin Start Ballot.

Fig. 1. The algorithm by which a processor p executes a single ballot

other processor, rather than one from each disk. We assume
for now that processors do not fail.

To prove consistency, we must show that, for any proces-
sors p and q , if p finishes phase 2 and commits the value
vp and q finishes phase 2 and commits the value vq , then
vp = vq . Let bp and bq be the respective ballot numbers on
which these values are committed. Without loss of generality,
we can assume bp ≤ bq . Moreover, using induction on bq , we
can assume that, if any processor r starts phase 2 for a ballot br
with bp ≤ br < bq , then it does so with dblock [r].inp = vp .

When reading in phase 2, p cannot have seen the value of
dblock [q].mbal written by q in phase 1—otherwise, p would
have aborted. Hence p’s read of dblock [q] in phase 2 did not
follow q’s phase 1 write. Because reading follows writing in
each phase, this implies that q’s phase 1 read of dblock [p] must
have followed p’s phase 2 write. Hence, q read the current
(final) value of dblock [p] in phase 1—a record with bal field
bp and inp field vp . Let bk be any other block that q read
in its phase 1. Since q did not abort, bq > bk .mbal . Since
bk .mbal ≥ bk .bal for any block bk , this implies bq > bk .bal .
By the induction assumption, we obtain that, if bk .bal ≥ bp ,
then bk .inp = vp . Since this is true for all blocks bk read
by q in phase 1, and since q read the final value of dblock [p],
the algorithm implies that q must set dblock [q].inp to vp for
phase 2, proving that vp = vq .

4 E. Gafni, L. Lamport

To obtain the Disk Synod algorithm from the shared-
memory version, we use a technique due to Attiya, Bar-Noy,
and Dolev [1] to implement a single-writer, multiple reader
register with a network of disks. To write a value, a processor
writes the value together with a version number to a majority
of the disks. To read, a processor reads a majority of the disks
and takes the value with the largest version number. Since two
majorities of disks contain at least one disk in common, a read
must obtain either the last version for which the write was
completed, or else a later version. Hence, this implements a
regular register. With this technique, we transform the shared-
memory version into a version for a network of processors and
disks.

The actual Disk Synod algorithm simplifies the algorithm
obtained by this transformation in two ways. First, the version
number is not needed. The mbal and bal values play the role
of a version number. Second, a processor p need not choose a
single version of dblock [q] from among the ones it reads from
disk. Because mbal and bal values do not decrease, earlier
versions have no effect.

So far, we have ignored processor failures. There is a trivial
way to extend the shared-memory algorithm to allow proces-
sor failures. A processor recovers by simply reading its dblock
value from its register and starting a new ballot. A failed pro-
cess then acts like one in which a processor may start a new
ballot at any time. We can show that this generalized version is
also correct. However, in the actual disk algorithm, a proces-
sor can fail while it is writing. This can leave its disk blocks in
a state in which no value has been written to a majority of the
disks. Such a state has no counterpart in the shared-memory
version. There seems to be no easy way to derive the recovery
procedure from a shared-memory algorithm. The proof of the
complete Disk Synod algorithm, with failures, is much more
complicated than the one for the simple shared-memory ver-
sion. Trying to write the kind of behavioral proof given above
for the simple algorithm leads to the kind of complicated,
error-prone reasoning that we have learned to avoid. Instead,
we sketch a rigorous assertional proof in the appendix.

Liveness

Liveness (progress) of the Disk Synod algorithm requires live-
ness of a leader-election algorithm.A processor executes steps
of the Disk Synod algorithm iff it believes itself to be the leader.
We show that a value will be committed if, eventually, a single
nonfaulty processor p that can read and write a majority of the
disks is forever the unique leader.4

Suppose p is the unique leader and it can read and write
a majority of the disks. Since p can access a majority of the
disks, each phase it executes either completes or aborts. A
phase aborts only if p reads an mbal value greater than its
own, and p increases its own mbal value when it does abort.
Since p is the unique leader, only it writes to the disks. So,
if p does not complete phases 1 and 2, then its mbal value
will eventually be greater than that of every disk block that
it reads. Hence, p must eventually complete phases 1 and 2
without aborting, thus committing a value.

4 Actually, p needs to be the unique leader just long enough to
commit the value.

3.3 Deriving classic Paxos from Disk Paxos

In the usual view of a distributed fault-tolerant system, a pro-
cessor performs actions and maintains its state in local mem-
ory, using stable storage to recover from failures. An alterna-
tive view is that a processor maintains the state of its stable
storage, using local memory only to cache the contents of sta-
ble storage. Identifying disks with stable storage, a traditional
distributed system is then a network of disks and processors
in which each disk belongs to a separate processor; other pro-
cessors can read a disk only by sending messages to its owner.

Let us now consider how to implement Disk Synod on a
network of processors that each has its own disk. To perform
phase 1 or 2, a processor p would access a disk d by sending a
message containing dblock [p] to disk d ’s owner q . Processor q
could write dblock [p] to disk [d][p], read disk [d][r] for all r �=
p, and send the values it read back to p. However, examining
the Disk Synod algorithm reveals that there’s no need to send
back all that data. All p needs are (i) to know if its mbal field
is larger than any other block’s mbal field and, if it is, (ii) the
bal and inp fields for the block having the maximum bal field.
Hence, q need only store on disk three values: the bal and inp
fields for the block with maximum bal field, and the maximum
mbal field of all disk blocks. Of course, q would have those
values cached in its memory, so it would actually write to disk
only if any of those values are changed.

A processor must also read its own disk blocks to recover
from a failure. Suppose we implement Disk Synod by letting
p write to its own disk before sending messages to any other
processor. This ensures that its own disk has the maximum
value of disk [d][p].mbal among all the disks d . Hence, to
restart after a failure, p need only read its block from its own
disk. In addition to the mbal , bal , and inp value mentioned
above, p would also keep the value of dblock [p] on its disk.

We can now compare this algorithm with classic Paxos’s
Synod protocol [12]. The mbal , bal , and inp components of
dblock [p] are just lastTried [p], nextBal [p], and prevVote[p]
of the Synod Protocol. Phase 1 of the Disk Synod algorithm
corresponds to sending the NextBallot message and receiving
the LastVote responses in the Synod Protocol. Phase 2 corre-
sponds to sending the BeginBallot and receiving the Voted
replies.5 The Synod Protocol’s Success message corresponds
to the optimization mentioned above of recording on disk that
a value has been committed.

This version of the Disk Synod algorithm differs from
the Synod Protocol in two ways. First, the Synod Protocol’s
NextBallot message contains only the mbal value; it does
not contain bal and inp values. To obtain the Synod Proto-
col, we would have to modify the Disk Synod algorithm so
that, in phase 1, it writes only the mbal field of its disk block
and leaves the bal and inp fields unchanged. The algorithm
remains correct, with essentially the same proof, under this
modification. However, the modification makes the algorithm
harder to implement with real disks.

The second difference between this version of the Disk
Synod algorithm and the Synod Protocol is in the restart proce-

5 In the Synod Protocol, a processor q does not bother sending a
response if p sends it a disk block with a value of mbal smaller than
one already on disk. Sending back the maximum mbal value is an
optimization mentioned in [12].

Disk Paxos 5

dure. A disk contains only the aforementioned mbal , bal , and
inp values. It does not contain a separate copy of its owner’s
dblock value. The Synod Protocol can be obtained from the
following variant of the Disk Synod algorithm. Let bk be the
block disk [d][p] with maximum bal field read by processor p
in the restart procedure. Processor p can begin phase 1 with
bal and inp values obtained from any disk block bk ′, writ-
ten by any processor, such that bk ′.bal ≥ bk .bal . It can be
shown that the Disk Synod algorithm remains correct under
this modification too.

4 Conclusion

4.1 Implementation considerations

Implicit in our description of the Disk Synod algorithm are
certain assumptions about how reading and writing are imple-
mented when disks are accessed over a network. If operations
sent to the disks may be lost, a processor p must receive an
acknowledgment from disk d that its write to disk [d][p] suc-
ceeded. This may require p to explicitly read its disk block
after writing it. If operations may arrive at the disk in a dif-
ferent order than they were sent, p will have to wait for the
acknowledgment that its write to diskd succeeded before read-
ing other processors’ blocks from d . Moreover, some mech-
anism is needed to ensure that a write from an earlier ballot
does not arrive after a write from a later one by the same pro-
cessor, overwriting the later value with the earlier one. How
this is achieved will be system dependent. (It is impossible
to implement any fault-tolerant system if writes to disk can
linger arbitrarily long in the network and cause later values to
be overwritten.)

Recall that, in Disk Paxos, a sequence of instances of
the Disk Synod algorithm is used to commit a sequence
of commands. In a straightforward implementation of Disk
Paxos, processor p would write to its disk blocks the value
of dblock [p] for the current instance of Disk Synod, plus the
sequence of all commands that have already been committed.
The sequence of all commands that have ever been committed
is probably too large to fit on a single disk block. However,
the complete sequence can be stored on multiple disk blocks.
All that must be kept in the same disk block as dblock [p] is a
pointer to the head of the queue. For most applications, it is not
necessary to remember the entire sequence of commands [12,
Section 3.3.2]. In many cases, all the data that must be kept
will fit in a single disk block.

In the application for which Disk Paxos was devised (a
future Compaq product), the set of processors is not known in
advance. Each disk contains a directory listing the processors
and the locations of their disk blocks. Before reading a disk, a
processor reads the disk’s directory. To write a disk’s directory,
a processor must acquire a lock for that disk by executing a
real-time mutual exclusion algorithm based on Fischer’s pro-
tocol [9]. A processor joins the system by adding itself to the
directory on a majority of disks.

4.2 Concluding remarks

We have presented Disk Paxos, an efficient implementation
of the state machine approach in a system in which proces-

sors communicate by accessing ordinary (nonprogrammable)
disks. In the normal case, the leader commits a command
by writing its own block and reading every other processor’s
block on a majority of the shared disks. This is clearly the mini-
mal number of disk accesses needed for a consensus algorithm
that can make progress despite the failure of any minority of
the disks and of any single processor.

Disk Paxos was motivated by the recent development of
the Storage Area Network (SAN)—an architecture consisting
of a network of computers and disks in which all disks can
be accessed by each computer. Commodity disks are cheaper
than computers, so using redundant disks for fault tolerance is
more economical than using redundant computers. Moreover,
since disks do not run application-level programs, they are less
likely to crash than computers.

Because commodity disks are not programmable, we
could not simply substitute disks for processors in the classic
Paxos algorithm. Instead we took the ideas of classic Paxos and
transplanted them to the SAN environment. What we obtained
is almost, but not quite, a generalization of classic Paxos. In-
deed, when Disk Paxos is instantiated to a single disk, we ob-
tain what may be called Shared-Memory Paxos. Algorithms
for shared memory are usually more succinct and clear than
their message passing counterparts. Thus, Disk Paxos for a
single disk can be considered yet another revisiting of clas-
sic Paxos that exposes its underlying ideas by removing the
message-passing clutter. Perhaps other distributed algorithms
can also be made more clear by recasting them in a shared-
memory setting.

References

1. H. Attiya, A. Bar-Noy, D. Dolev. Sharing memory robustly in
message-passing systems. Journal of the ACM, 42(1):124–142,
1995

2. K. Birman, A. Schiper, P. Stephenson. Lightweight causal and
atomic group multicast. ACM Transactions on Computer Sys-
tems, 9(3):272–314, 1991

3. R. De Prisco, B. Lampson, N. Lynch. Revisiting the paxos
algorithm. Theoretical Computer Science, 243:35–91, 2000

4. M.J. Fischer, N. Lynch, M.S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, 1985

5. E. Gafni, L. Lamport. Disk paxos. In: M. Herlihy (ed.)
Distributed Computing: 14th International Conference, DISC
2000, volume 1914 of Lecture Notes in Computer Science,
pp. 330–344. Berlin Heidelberg New York: Springer 2000

6. I. Keidar, S. Rajsbaum. On the cost of fault-tolerant consensus
when there are no faults—a tutorial. TechnicalReport MIT-
LCS-TR-821, Laboratory for Computer Science, Massachusetts
Institute Technology, Cambridge, MA, 02139, May 2001. Also
published in SIGACT News 32(2) (June 2001)

7. L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–565,
1978

8. L. Lamport. On interprocess communication. Distributed Com-
puting, 1:77–101, 1986

9. L. Lamport. A fast mutual exclusion algorithm. ACM Transac-
tions on Computer Systems, 5(1):1–11, 1987

10. L. Lamport. The temporal logic of actions. ACM Transactions
on Programming Languages and Systems, 16(3):872–923, 1994

6 E. Gafni, L. Lamport

11. L. Lamport. How to write a proof. American Mathematical
Monthly, 102(7):600–608, 1995

12. L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, 1998

13. L. Lamport. Specifying concurrent systems with TLA+. In:
M. Broy, R. Steinbrüggen (eds) Calculational System Design,
pp. 183–247, Amsterdam. IOS Press 1999

14. B.W. Lampson. How to build a highly available system using
consensus. In: O. Babaoglu, K. Marzullo (eds) Distributed Al-
gorithms, volume 1151 of Lecture Notes in Computer Science,
pp. 1–17, Berlin: Springer 1996

15. E.K. Lee, C. Thekkath. Petal: Distributed virtual disks. In Pro-
ceedings of the Seventh International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS-VII), pp. 84–92, NewYork, October 1996. ACM
Press

16. F.B. Schneider. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys,
22(4):299–319, 1990

17. W.E. Snaman, Jr. Application design in a VAXcluster system.
Digital Technical Journal, 3(3):16–26, 1991

18. C. Thekkath, T. Mann, E.K. Lee. Frangipani: A scalable dis-
tributed file system. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, pp. 224–237, New York Oc-
tober 1997. ACM Press

19. W. Vogels et al. The design and architecture of the microsoft
cluster service. In Proceedings of FTCS98, pp. 422–431. IEEE,
June 1998

20. Y. Yu, P. Manolios, L. Lamport. Model checking TLA+ spec-
ifications. In: L. Pierre, T. Kropf (eds) Correct Hardware De-
sign and Verification Methods, volume 1703 of Lecture Notes
in Computer Science, pp. 54–66, Berlin, Heidelberg, NewYork,
September 1999. Springer-Verlag. 10th IFIP wg 10.5 Advanced
Research Working Conference, CHARME ’99

Appendix

We now give a precise specification of the consensus prob-
lem solved by the Disk Synod algorithm and of the algorithm
itself. The specification is written in TLA+ [13], a formal lan-
guage that combines the temporal logic of actions (TLA) [10],
set theory, and first-order logic with notation for making def-
initions and encapsulating them in modules. In the course of
writing the specifications, we try to explain any TLA+ notation
whose meaning is not self-evident. These specifications have
been debugged with the aid of the TLC model checker [20].6

We prove only consistency of the algorithm. We feel that
the nonblocking property is sufficiently obvious not to need
a formal proof. We therefore do not specify or reason about
liveness properties. This means that we make hardly any use
of temporal logic.

A.1 The specification of consensus

We now formally specify the consensus problem. We assume
N processors, numbered 1 through N . Each processor p has
two registers: an input register input [p] that initially equals

6 The typeset versions were generated manually from the actual
TLA+ specifications by a procedure that may have introduced errors.

some element of a set Inputs of possible input values, and an
output register output [p] that initially equals a special value
NotAnInput that is not an element of Inputs . Processor p
chooses an output value by setting output [p]. It can also fail,
which it does by setting input [p] to any value in Inputs and
resetting output [p] to NotAnInput . The precise condition to
be satisfied is that, if some processor p ever sets output [p] to
some value v , then

• v must be a value that is, or at one time was, the value of
input [q] for some processor q

• if any processor r (including p itself) later sets output [r]
to some value w other than NotAnInput , then w = v .

We specify only safety. There is no liveness requirement,
so the specification is satisfied if no processor ever changes
output [p].

TLA+ specifications are organized into modules. The
specification of consensus is in a module named Synod , which
begins:

module Synod

extends Naturals

The extends statement imports the Naturals module, which
defines the set Nat of natural numbers and the usual arithmetic
operations. It also defines i . . j to be the set of natural num-
bers from i through j . We next declare the specification’s two
constants: the number N of processors, and the set Inputs of
inputs; and we assert the assumption that N is a positive nat-
ural number. (TLA+, like ordinary mathematics, is untyped.)

constant N , Inputs
assume (N ∈ Nat) ∧ (N > 0)

In TLA+, every value is a set, so we don’t have to assert that
Inputs is a set. We next define two constants: the set Proc of
processors, and the value NotAnInput . In TLA+,

∆= means
is defined to equal, and choose x : F (x) equals an arbitrary
value x such that F (x) is true (if such an x exists).

Proc ∆= 1 . . N
NotAnInput ∆= choose c : c /∈ Inputs

Note that the constants Proc and NotAnInput are defined,
while the constants N and Inputs are simply declared.

We next declare the variables input and output .

variables input , output

To write the specification, we introduce two internal variables:
allInput , which equals the set of all current and past values of
input [p], for all processors p; and chosen , which records the
first input value output by some processor (and hence, the value
that all processors must henceforth output). These variables
are internal or “hidden” variables. In TLA, such variables are
bound variables of the temporal existential quantifier ∃∃∃∃∃∃∃ . Since
internal variables aren’t part of the specification, they should
not be declared in module Synod . One way to introduce such
variables in TLA+ is to declare them in a submodule. So, we
introduce a submodule called Inner .

Disk Paxos 7

module Inner
variables allInput , chosen

Before going further, we explain some TLA+ notation. In pro-
gramming languages, the variables input and output would
be arrays indexed by the Proc. What programmers call an ar-
ray indexed by S , mathematicians call a function with domain
S . TLA+ uses the notation [x ∈ S �→ e(x)] for the function f
with domain S such that f [x] = e(x) for all x in S . It denotes
by [S → T] the set of all functions f with domain S such
that f [x] ∈ T for all x ∈ S . TLA+ allows a conjunction or
disjunction to be written as a list of formulas bulleted by ∧ or
∨. Indentation is used to eliminate parentheses.

We now define IInit to be the predicate describing the
initial state.

IInit ∆= ∧ input ∈ [Proc → Inputs]
∧ output = [p ∈ Proc �→ NotAnInput]
∧ chosen = NotAnInput
∧ allInput = {input [p] : p ∈ Proc}

We next define the two actions, IChoose(p) and IFail(p), that
describe the operations that a processorp can perform. In TLA,
an action is a formula with primed and unprimed variables that
describes the relation between the values of the variables in
a new (primed) state and their values in an old (unprimed)
state. For example, in a system with the two variables x and
y , the action (x ′ = x + 1) ∧ (y ′ = y) corresponds to the
programming-language statement x : = x + 1. A conjunct
with no primed variables is an enabling condition.

In TLA+, the expression [f except ![x] = e] represents
the function f̂ that is the same as f except that f̂ [x] = e . Thus,
f ′ = [f except ![c] = e] corresponds to the programming-
language statement f [c] : = e , except that it says nothing
about variables other than f (whereas f [c] : = e asserts
that other variables are unchanged). An action must explicitly
state what remains unchanged. We do this with the expres-
sion unchanged v , which means v ′ = v . Leaving a tuple
〈v1, . . . , vn 〉 unchanged is equivalent to leaving all its com-
ponents v i unchanged.

The IChoose(p) action represents the processor p choos-
ing its output. It is enabled iff output [p] equals NotAnInput .
If chosen is NotAnInput , then chosen and output [p] are set
to any element of allInput . Otherwise, output [p] is set to
chosen .

IChoose(p) ∆=
∧ output [p] = NotAnInput
∧ if chosen = NotAnInput

then ∃ ip ∈ allInput :
∧ chosen ′ = ip
∧ output ′ = [output except ![p] = ip]

else ∧ output ′ = [output except ![p] = chosen]
∧ unchanged chosen

∧ unchanged 〈input , allInput 〉
The IFail(p) action represents processor p failing. It is always
enabled. It sets output [p] to NotAnInput , sets input [p] to any
element of Inputs , and adds that element to the set allInput .

IFail(p) ∆=
∧ output ′ = [output except ![p] = NotAnInput]

∧ ∃ ip ∈ Inputs :
∧ input ′ = [input except ![p] = ip]
∧ allInput ′ = allInput ∪ {ip}

∧ unchanged chosen

We next define the next-state action INext , which describes all
possible steps. We then define ISpec, the specification with the
internal variables chosen and allInput visible. It asserts that
the initial state satisfies IInit , and every step either satisfies
INext or leaves all the variables unchanged. Formula ISpec is
defined to be a temporal formula, using the ordinary operator
� (always) of temporal logic, and the TLA notation that [A]v
equals A ∨ (v ′ = v), for any action A and state function v ,
for any action A and state function v . These definitions end
the submodule.

INext ∆= ∃ p ∈ Proc : IChoose(p) ∨ IFail(p)
ISpec ∆= IInit ∧ �[INext]〈input, output, chosen, allInput 〉

Finally, we define SynodSpec, the complete specification, to
be ISpec with the variables chosen and allInput hidden—
that is, quantified with the temporal existential quantifier ∃∃∃∃∃∃∃ of
TLA. The precise meaning of the TLA+ constructs used here
is unimportant.

IS (chosen, allInput) ∆= instance Inner
SynodSpec ∆= ∃∃∃∃∃∃∃ chosen, allInput :
IS (chosen, allInput)!ISpec

This ends module Synod .

A.2 The Disk Synod algorithm

The Disk Synod algorithm is specified by a module
DiskSynod that imports all the declarations and definitions
from the Synod module.

module DiskSynod
extends Synod

The algorithm assumes that different processors use different
ballot numbers. Instead of fixing some specific choice of ballot
numbers, we let Ballot(p) represent the set of ballot numbers
that processor p can use, where Ballot is an unspecified con-
stant operator.

We have described the algorithm in terms of a majority
of disks. The property of majorities we need is that any two
majorities has a disk in common. If there are an even number
d of disks, we can maintain that property even if we con-
sider certain sets containing d/2 disks to constitute a ma-
jority. We let IsMajority be an unspecified predicate so that
if IsMajority(S) and IsMajority(T) is true for two sets S
and T of disks, then S and T are not disjoint. (To rule out
the trivial case when no set is a majority, we require that
IsMajority(Disk) be true.)

The module now declares Ballot , IsMajority , and the
constant Disk that represents the set of disks. It also asserts
the assumptions we make about them. InTLA+, the expression
subset S denotes the set of all subsets of the set S .

8 E. Gafni, L. Lamport

constants Ballot(), Disk , IsMajority()
assume ∧ ∀ p ∈ Proc :

∧ Ballot(p) ⊆ {n ∈ Nat : n > 0}
∧ ∀ q ∈ Proc \ {p} :

Ballot(p) ∩ Ballot(q) = {}
∧ IsMajority(Disk)
∧ ∀S ,T ∈ subset Disk :

IsMajority(S) ∧ IsMajority(T) ⇒
(S ∩ T �= {})

We next define two constants: the set DiskBlock of all possible
records that a processor can write to its disk blocks, and the
record InitDB that is the initial value of all disk blocks. In
TLA+, [f 1 �→ v1, . . . , f n �→ vn] is the record r with fields
f 1, . . . , f n such that r .f i = v i , for all i in 1 . . n , and [f 1 :
S 1, . . . , f n : Sn] is the set of all such records with v i an
element of the set S i , for all i in 1 . . n . The set

⋃
S , the union

of all the elements of S , is written union S . For example,
union {A,B ,C} equals A ∪ B ∪ C .

DiskBlock ∆=
[mbal : (union {Ballot(p) : p ∈ Proc}) ∪ {0},
bal : (union {Ballot(p) : p ∈ Proc}) ∪ {0},
inp : Inputs ∪ {NotAnInput}]

InitDB ∆= [mbal �→ 0, bal �→ 0, inp �→ NotAnInput]

We now declare all the specification’s variables—except
for input and output , whose declarations are imported from
Synod . We have described the variables disk (the contents
of the disks) and dblock in Section 3. We let phase[p] be
the current phase of processor p, which will be set to 0
when p fails and to 3 when p chooses its output. For con-
venience, we let each processor start in phase 0 and begin
the algorithm as if it were recovering from a failure. The
variables disksWritten and blocksRead record a processor’s
progress in the current phase; disksWritten[p] is the set of
disks that processor p has written, and blocksRead [p][d] is
the set of values p has read from disk d . More precisely,
blocksRead [p][d] is a set of records with block and proc fields,
where [block �→ bk , proc �→ q] is in blocksRead [p][d] iff p
has read the value bk from disk [d][q] in the current phase. For
convenience, we declare vars to be the tuple of all the spec-
ification’s variables. We also define the predicate Init that
defines the initial values of all variables.

variables
disk , dblock , phase, disksWritten, blocksRead

vars ∆= 〈input , output , disk , phase,
dblock , disksWritten, blocksRead 〉

Init ∆=
∧ input ∈ [Proc → Inputs]
∧ output = [p ∈ Proc �→ NotAnInput]
∧ disk = [d ∈ Disk �→ [p ∈ Proc �→ InitDB]]
∧ phase = [p ∈ Proc �→ 0]
∧ dblock = [p ∈ Proc �→ InitDB]
∧ disksWritten = [p ∈ Proc �→ {}]
∧ blocksRead = [p ∈ Proc �→ [d ∈ Disk �→ {}]]

We now define two operators that describe the state of a pro-
cessor during the current phase: hasRead(p, d , q) is true iff p
has read disk [d][q], and allBlocksRead(p) equals the set of
all disk [d][q] values that p has read during the current phase.

The TLA+ expression let def in exp equals expression exp
in the context of the local definitions in def .

hasRead(p, d , q) ∆=
∃ br ∈ blocksRead [p][d] : br .proc = q

allBlocksRead(p) ∆=
let allRdBlks ∆=

union {blocksRead [p][d] : d ∈ Disk}
in {br .block : br ∈ allRdBlks}

We now define InitializePhase(p) to be an action that sets
disksWritten[p] and blocksRead [p] to their initial values, to
indicate that p has done no reading or writing yet in the current
phase.This action will be used to define other actions that make
up the next-state relation; it itself is not part of the next-state
relation.

InitializePhase(p) ∆=
∧ disksWritten ′ = [disksWritten except ![p] = {}]
∧ blocksRead ′ = [blocksRead except

![p] = [d ∈ Disk �→ {}]]

We now define the actions that will form part of the next-
state action. These actions describe all the atomic actions of
the algorithm that a processor p can perform. The first is
StartBallot(p) in which p initiates a new ballot. We allow
p to do this at any time during phase 1 or 2. The action sets
phase[p] to 1, increases dblock [p].mbal , and initializes the
phase.

StartBallot(p) ∆=
∧ phase[p] ∈ {1, 2}
∧ phase ′ = [phase except ![p] = 1]
∧ ∃ b ∈ Ballot(p) :

∧ b > dblock [p].mbal
∧ dblock ′ = [dblock except ![p].mbal = b]

∧ InitializePhase(p)
∧ unchanged 〈input , output , disk 〉

In action Phase1or2Write(p, d), processor p writes
disk [d][p] and adds d to the set disksWritten[p] of disks
written by p. The action is enabled iff p is in phase 1 or
2.7 In the TLA+ expression [f except ![c] = e], an @ ap-
pearing in e stands for f [c]. Thus, x ′ = [x except ![c] =
@ + 1] corresponds to the programming-language statement
x [c] : = x [c] + 1. The except construct also has a more gen-
eral form for “arrays of arrays”. For example, the formula x ′ =
[x except ![a][b] = e] corresponds to the programming-
language statement x [a][b] : = e .

Phase1or2Write(p, d) ∆=
∧ phase[p] ∈ {1, 2}
∧ disk ′ = [disk except ![d][p] = dblock [p]]
∧ disksWritten ′ =

[disksWritten except ![p] = @ ∪ {d}]
∧ unchanged

〈input , output , phase, dblock , blocksRead 〉
7 We could add the enabling condition d /∈ disksWritten[p], but

it’s not necessary because the action is a no-op, leaving all variables
unchanged, if p has already written its current value of dblock [p] to
disk d .

Disk Paxos 9

Action Phase1or2Read(p, d , q) describes p reading
disk [d][q]. It is enabled iff d is in disksWritten[p], meaning
that p has already written its block to disk d. (This implies
that p is in phase 1 or 2.) We allow p to reread a disk block
it has already read. If disk [d][q].mbal is less than p’s current
mbal value, then blocksRead [p][d] is updated and p continues
executing its ballot. Otherwise, p aborts the ballot and begins
a new one.

Phase1or2Read(p, d , q) ∆=
∧ d ∈ disksWritten[p]
∧ if disk [d][q].mbal < dblock [p].mbal

then ∧ blocksRead ′ =
[blocksRead except

![p][d] = @ ∪ {[block �→ disk [d][q],
proc �→ q]}]

∧ unchanged 〈input , output , disk , phase,
dblock , disksWritten 〉

else StartBallot(p)

The action EndPhase1or2(p) describes processor p success-
fully finishing phase 1 or 2. It is enabled when p is in phase
1 or 2 and, on a majority of the disks, p has written its block
and read every other processor’s block. When p finishes phase
1, it sets dblock [p].inp and dblock [p].bal as described in Sec-
tion 3.1 and starts phase 2. When p finishes phase 2, it sets
output [p], sets phase[p] to 3, and terminates. (However, it
could still fail and start again.) The TLA+ except construct
applies to records as well as functions, and it can have multiple
“replacements” separated by commas.

EndPhase1or2(p) ∆=
∧ IsMajority({d ∈ disksWritten[p] :

∀ q ∈ Proc \ {p} : hasRead(p, d , q)})
∧ ∨ ∧ phase[p] = 1

∧ dblock ′ =
[dblock except

![p].bal = dblock [p].mbal ,
![p].inp =

let blocksSeen ∆=
allBlocksRead(p) ∪ {dblock [p]}

nonInitBlks ∆=
{bs ∈ blocksSeen :

bs.inp �= NotAnInput}
maxBlk ∆=

choose b ∈ nonInitBlks :
∀ c ∈ nonInitBlks :

b.bal ≥ c.bal
in if nonInitBlks = {}

then input [p]
else maxBlk .inp]

∧ unchanged output
∨ ∧ phase[p] = 2

∧ output ′ = [output except ![p] = dblock [p].inp]
∧ unchanged dblock

∧ phase ′ = [phase except ![p] = @ + 1]
∧ InitializePhase(p)
∧ unchanged 〈input , disk 〉

Action Fail(p) represents a failure by processor p. The ac-
tion is always enabled. It chooses a new value of input [p],

sets phase[p] to 0 and initializes dblock [p], output [p],
disksWritten[p], and blocksRead [p].

Fail(p) ∆=
∧ ∃ ip ∈ Inputs : input ′ = [input except ![p] = ip]
∧ phase′ = [phase except ![p] = 0]
∧ dblock′ = [dblock except ![p] = InitDB]
∧ output′ = [output except ![p] = NotAnInput]
∧ InitializePhase(p)
∧ unchanged disk

The next two actions describe failure recovery. In
Phase0Read(p, d), processor p reads disk [d][p], recording
the value read in blocksRead [p]. Again, we allow redundant
reads of the same disk block. In EndPhase0(p), processor
p completes its recovery and enters phase 1, as described in
Section 3.1.

Phase0Read(p, d) ∆=
∧ phase[p] = 0
∧ blocksRead ′ =

[blocksRead except
![p][d] = @ ∪ {[block �→ disk [d][p], proc �→ p]}]

∧ unchanged
〈input , output , disk , phase, dblock , disksWritten 〉

EndPhase0(p) ∆=
∧ phase[p] = 0
∧ IsMajority({d ∈ Disk : hasRead(p, d , p)})
∧ ∃ b ∈ Ballot(p) :

∧ ∀ r ∈ allBlocksRead(p) : b > r .mbal
∧ dblock ′ =

[dblock except
![p] = [(choose r ∈ allBlocksRead(p) :

∀ s ∈ allBlocksRead(p) :
r .bal ≥ s.bal)

except !.mbal = b]]
∧ InitializePhase(p)
∧ phase ′ = [phase except ![p] = 1]
∧ unchanged 〈input , output , disk 〉

As in most TLA specifications, we define the next-state action
Next that describes all possible steps of all processors.We then
define the formula DiskSynodSpec, our specification of the
algorithm, to assert that the initial state satisfies Init and every
step either satisfies Next or leaves all the variables unchanged.

Next ∆= ∃ p ∈ Proc :
∨ StartBallot(p)
∨ ∃ d ∈ Disk :

∨ Phase0Read(p, d)
∨ Phase1or2Write(p, d)
∨ ∃ q ∈ Proc \ {p} :

Phase1or2Read(p, d , q)
∨ EndPhase1or2(p)
∨ Fail(p)
∨ EndPhase0(p)

DiskSynodSpec ∆= Init ∧ �[Next]vars
The module ends by asserting the correctness of the algorithm,
which means that the algorithm’s specification implies the for-
mula SynodSpec that is its correctness condition.

theorem DiskSynodSpec ⇒ SynodSpec

10 E. Gafni, L. Lamport

A.3 An assertional proof

To prove correctness of the Disk Synod algorithm, we must
prove that DiskSynodSpec implies SynodSpec, which is the
theorem asserted at the end of module DiskSynod . In general,
a theorem and its proof must appear in a context that defines
the meaning of the identifiers they mention. When proving a
theorem that appears in a module, we assume the context (the
definitions and declarations) provided by the module.

In our proof of the theorem that DiskSynodSpec im-
plies SynodSpec, we will be informal in our use of iden-
tifier names. We will use identifiers like ISpec that are de-
fined in submodule Inner of the Synod module and assume
that they have their expected meaning. Readers who under-
stand the fine points of TLA+ will realize that those iden-
tifiers are not defined in the context of module DiskSynod ,
and they should be prefaced with IS (chosen, allInput)! , as
in IS (chosen, allInput)!ISpec. However, we will ignore this
formal detail. (We chose our identifier names so that dropping
the IS (chosen, allInput)! causes no name clashes.)

We now sketch the proof that DiskSynodSpec
implies SynodSpec. Formula SynodSpec equals
∃∃∃∃∃∃∃ chosen, allInput : ISpec. To prove such a formula, we
must find Skolem functions with which to instantiate the
bound variables chosen and allInput , and then prove that
DiskSynodSpec implies ISpec, when chosen and allInput
are defined to equal those Skolem functions. The choice of
Skolem functions is called a refinement mapping. However,
we cannot define such a refinement mapping because chosen
and allInput record history that is not present in the actual
state of the algorithm. Instead, we add chosen and allInput
to the algorithm specification as history variables. Formally,
we define a specification HDiskSynodSpec such that

DiskSynodSpec ≡ ∃∃∃∃∃∃∃ chosen, allInput : HDiskSynodSpec

We then prove that HDiskSynodSpec implies ISpec, from
which we infer by simple logic that DiskSynodSpec implies
SynodSpec.

The first step in our proof that DiskSynodSpec implies
SynodSpec is to define the required formulaHDiskSynodSpec
and to state formally and prove the theorem that it implies
ISpec. To define HDiskSynodSpec, we must define its initial
predicate and next-state action. The initial predicate HInit is
the conjunction of the initial predicate Init of DiskSynodSpec
with formulas that specify the initial values of chosen and
allInput . Its next-state action HNext is the conjunction of the
next-state action Next of DiskSynodSpec with formulas that
specify the values of chosen ′ and allInput ′ as functions of
the (unprimed and primed) values of the other variables. A
general theorem of TLA asserts that, if no variable among the
tuple x of variables occurs in I , N , or the tuple y of variables,
then

I ∧ �[N]y ≡
∃∃∃∃∃∃∃x : (I ∧ (x = f (y))) ∧ �[N ∧ (x′ = g(x,y,y′))]〈x,y〉

for any f and g . Substituting Init for I , Next for N , and the
formulas implied by the definitions of HInit and HNext below
for f and g , this result implies that the specification obtained
from HDiskSynodSpec by hiding (existentially quantifying)
chosen and allInput is equivalent to DiskSynodSpec. Hence,
as explained above, proving that HDiskSynodSpec implies

ISpec will show that DiskSynodSpec implies SynodSpec,
proving the correctness of the Disk Synod algorithm.

We define HDiskSynodSpec in a module HDiskSynod
that extends the DiskSynod module and declares chosen and
allInput as variables.

module HDiskSynod
extends DiskSynod
variables allInput , chosen

The initial values of chosen and allInput are the same as in
the initial predicate of Ispec.

HInit ∆= ∧ Init
∧ chosen = NotAnInput
∧ allInput = {input [p] : p ∈ Proc}

The action HNext ensures that chosen equals the first output
value that is different from NotAnInput , and that allInput
always equals the set of all input values that have appeared
thus far.

HNext ∆=
∧ Next
∧ chosen ′ =

let hasOutput(p) ∆= output ′[p] �= NotAnInput
in if ∨ chosen �= NotAnInput

∨ ∀ p ∈ Proc : ¬hasOutput(p)
then chosen
else output ′[choose p ∈ Proc :

hasOutput(p)]
∧ allInput ′ = allInput ∪ {input ′[p] : p ∈ Proc}

The module then defines HDiskSynodSpec in the usual way,
and asserts that it implies ISpec, with chosen and allInput
replaced by the variables of the same name declared in the
current module. (Again, the details of how this is expressed in
TLA+ are not important.)

HDiskSynodSpec ∆=
HInit ∧ �[HNext]〈vars, chosen, allInput 〉

theorem
HDiskSynodSpec ⇒ IS (chosen, allInput)!ISpec

To prove the correctness of the Disk Synod algorithm, it
suffices to prove the theorem above, that HDiskSynodSpec
implies ISpec. (Remember that we are dropping the
IS (chosen, allInput)! from identifiers defined in submod-
ule Inner .) We now outline the proof of this theorem. Let
ivars be the tuple of all variables of ISpec:

ivars ∆= 〈input , output , chosen, allInput 〉
To prove that HDiskSynodSpec implies ISpec we must prove

theorem R1 HInit ⇒ IInit
theorem R2 HInit ∧ �[HNext]〈vars, chosen, allInput 〉 ⇒

�[INext]ivars
The proof of R1 is trivial. To prove R2, standard TLA rea-
soning shows that it suffices to find a state predicate HInv for
which we can prove:

theorem R2a HInit ∧ �[HNext]〈vars, chosen, allInput 〉 ⇒
�HInv

theorem R2b HInv ∧ HInv ′ ∧ HNext ⇒
INext ∨ (unchanged ivars)

Disk Paxos 11

A predicate HInv satisfying R2a is said to be an invariant of
the specification HInit ∧ �[HNext]〈vars, chosen, allInput 〉. To
prove R2a , we make HInv strong enough to satisfy:

theorem I1 HInit ⇒ HInv
theorem I2 HInv ∧ HNext ⇒ HInv ′

A predicate HInv satisfying I 2 is said to be an invariant of
the action HNext . A standard TLA theorem asserts that I 1
and I 2 imply R2a . Hence, R2b, I 1, and I 2 together imply
HDiskSynodSpec ⇒ ISpec, which implies the correctness of
the algorithm. So, we must now just define HInv and prove
R2b, I 1, and I 2.

There are two general approaches to defining HInv . In
both, we write HInv as a conjunction HI 1 ∧ . . .∧HI k . In the
bottom-up method, we define the HI i in increasing order of
i , so that each conjunction HI 1 ∧ . . . ∧ HI k is an invariant of
HNext . We stop when we obtain an invariant strong enough
to prove R2b. In the top-down method, we start by defining
HI k so that R2b is satisfied with HI k substituted for HInv .
We then define the HI i in decreasing order of i so that HI i ∧
. . . ∧ HI k ∧ HNext ⇒ HI ′

i+1, stopping when we obtain an
invariant of HNext . In practice, one uses a combination of the
two methods—with a lot of backtracking. Here, we present
the invariant in a bottom-up fashion.

If the set of disks is empty, then IsMajority(D) is false
for all subsets D of Disk . (This follows from the assumption
about IsMajority by substituting D for both S and T .) Hence,
HDiskSynodSpec implies that the system remains forever in
its initial state, trivially satisfying ISpec. It therefore suffices
to consider only the case when Disk is nonempty:

assume Disk �= {}
The standard starting point for a TLA proof is a simple

“type invariant”, which we call HInv1, asserting that all vari-
ables have the correct type:

HInv1 ∆=
∧ input ∈ [Proc → Inputs]
∧ output ∈ [Proc → Inputs ∪ {NotAnInput}]
∧ disk ∈ [Disk → [Proc → DiskBlock]]
∧ phase ∈ [Proc → 0 . . 3]
∧ dblock ∈ [Proc → DiskBlock]
∧ output ∈ [Proc → Inputs ∪ {NotAnInput}]
∧ disksWritten ∈ [Proc → subset Disk]
∧ blocksRead ∈

[Proc →
[Disk →

subset [block : DiskBlock , proc : Proc]]]
∧ allInput ∈ subset Inputs
∧ chosen ∈ Inputs ∪ {NotAnInput}

Our first lemma asserts that HInv1 is an invariant of HNext :

lemma I2a HInv1 ∧ HNext ⇒ HInv1′.

The proofs of Theorem R2b and of most lemmas appear in
Section A.4 below.

Before going any further, we define some useful state func-
tions. First, we let MajoritySet be the set of all subsets of the
set of disks containing a majority of them; we let blocksOf (p)
be the set of all copies of p’s disk blocks in the system—that

is, dblock [p], p’s blocks on disk, and all blocks of p read by
some processor; and we let allBlocks be the set of all copies
of all disk blocks of all processors.

MajoritySet ∆= {D ∈ subset Disk : IsMajority(D)}
blocksOf (p) ∆=

let rdBy(q , d) ∆=
{br ∈ blocksRead [q][d] : br .proc = p}

in {dblock [p]} ∪ {disk [d][p] : d ∈ Disk} ∪
{br .block :

br ∈ union {rdBy(q , d) :
q ∈ Proc, d ∈ Disk}}

allBlocks ∆= union {blocksOf (p) : p ∈ Proc}
The next conjunct ofHInv describes some simple relations

between the values of the different variables.

HInv2 ∆=
∧ ∀ p ∈ Proc :

∀ bk ∈ blocksOf (p) :
∧ bk .mbal ∈ Ballot(p) ∪ {0}
∧ bk .bal ∈ Ballot(p) ∪ {0}
∧ (bk .bal = 0) ≡ (bk .inp = NotAnInput)
∧ bk .mbal ≥ bk .bal
∧ bk .inp ∈ allInput ∪ {NotAnInput}

∧ ∀ p ∈ Proc, d ∈ Disk :
∧ (d ∈ disksWritten[p]) ⇒ ∧ phase[p] ∈ {1, 2}

∧ disk [d][p] = dblock [p]
∧ (phase[p] ∈ 1, 2) ⇒ ∧ (blocksRead [p][d] �= {}) ⇒

(d ∈ disksWritten[p])
∧ ¬hasRead(p, d , p)

∧ ∀ p ∈ Proc :
∧ (phase[p] = 0) ⇒

∧ dblock [p] = InitDB
∧ disksWritten[p] = {}
∧ ∀ d ∈ Disk : ∀ br ∈ blocksRead [p][d] :

∧ br .proc = p
∧ br .block = disk [d][p]

∧ (phase[p] �= 0) ⇒
∧ dblock [p].mbal ∈ Ballot(p)
∧ dblock [p].bal ∈ Ballot(p) ∪ {0}
∧ ∀ d ∈ Disk :

∀ br ∈ blocksRead [p][d] :
br .block .mbal < dblock [p].mbal

∧ (phase[p] ∈ {2, 3}) ⇒
(dblock [p].bal = dblock [p].mbal)

∧ output [p] = if phase[p] = 3 then dblock[p].inp
else NotAnInput

∧ chosen ∈ allInput ∪ {NotAnInput}
∧ ∀ p ∈ Proc : ∧ input [p] ∈ allInput

∧ (chosen = NotAnInput) ⇒
(output [p] = NotAnInput)

The invariance of HInv1 ∧ HInv2 follows from Lemma I 2a
and:

lemma I2b HInv1 ∧ HInv2 ∧ HNext ⇒ HInv2′

The next conjunct of HInv expresses the observation that
if processors p and q have each read the other’s block from
disk d during their current phases, then at least one of them
has read the other’s current block.

12 E. Gafni, L. Lamport

HInv3 ∆=
∀ p, q ∈ Proc, d ∈ Disk :

∧ phase[p] ∈ {1, 2}
∧ phase[q] ∈ {1, 2}
∧ hasRead(p, d , q)
∧ hasRead(q , d , p)
⇒ ∨ [block �→ dblock [q], proc �→ q] ∈

blocksRead [p][d]
∨ [block �→ dblock [p], proc �→ p] ∈

blocksRead [q][d]

lemma I 2c
HInv1 ∧ HInv2 ∧ HInv3 ∧ HNext ⇒ HInv3′

The next conjunct of the invariant expresses relations among
the mbal and bal values of a processor and of its disk blocks.
Its first conjunct asserts that, when p is not recovering from
a failure, its mbal value is at least as large as the bal field of
any of its blocks, and at least as large as the mbal field of its
block on some disk in any majority set. Its second conjunct
asserts that, in phase 1, its mbal value is actually greater than
the bal field of any of its blocks. Its third conjunct asserts that,
in phase 2, its bal value is the mbal field of all its blocks on
some majority set of disks. The fourth conjunct asserts that
the bal field of any of its blocks is at most as large as the mbal
field of all its disk blocks on some majority set of disks.

HInv4 ∆=
∀ p ∈ Proc :

∧ (phase[p] �= 0) ⇒
∧ ∀ bk ∈ blocksOf (p) : dblock [p].mbal ≥ bk .bal
∧ ∀D ∈ MajoritySet :

∃ d ∈ D :
∧ dblock [p].mbal ≥ disk [d][p].mbal
∧ dblock [p].bal ≥ disk [d][p].bal

∧ (phase[p] = 1) ⇒
(∀ bk ∈ blocksOf (p) : dblock [p].mbal > bk .bal)

∧ (phase[p] ∈ {2, 3}) ⇒
(∃D ∈ MajoritySet :

∀ d ∈ D : disk [d][p].mbal = dblock [p].bal)
∧ ∀ bk ∈ blocksOf (p) :

∃D ∈ MajoritySet :
∀ d ∈ D : disk [d][p].mbal ≥ bk .bal

lemma I 2d
HInv1 ∧ HInv2 ∧ HInv2′ ∧ HInv4 ∧ HNext ⇒ HInv4′

Before going further, we definemaxBalInp(b, v) to assert
that every block in allBlocks with bal field at least b has inp
field v .

maxBalInp(b, v) ∆=
∀ bk ∈ allBlocks : (bk .bal ≥ b) ⇒ (bk .inp = v)

We now come to a conjunct of HInv that provides some high-
level insight into why the algorithm is correct. It asserts that,
if a processor p is in phase 2, then either its bal and inp values
satisfy maxBalInp, or else p must eventually abort its current
ballot. Processor p will eventually abort its ballot if there is
some processor q and majority set D such that p has not read
q’s block on any disk in D , and all of those blocks have mbal
values greater than dblock [p].bal . (Since p must read at least
one of those disks, it must eventually read one of those blocks
and abort.)

HInv5 ∆=
∀ p ∈ Proc :

(phase[p] = 2) ⇒
∨ maxBalInp(dblock [p].bal , dblock [p].inp)
∨ ∃D ∈ MajoritySet , q ∈ Proc :

∀ d ∈ D : ∧ disk [d][q].mbal > dblock [p].bal
∧ ¬hasRead(p, d , q)

lemma I2e HInv1 ∧ HInv2 ∧ HInv2′ ∧ HInv3 ∧
HInv4 ∧ HInv5 ∧ HNext ⇒ HInv5′

Before defining our final conjunct, we define a predicate
valueChosen(v) that is true if v is the only possible value that
can be chosen as an output. It asserts that there is some ballot
number b such that maxBalInp(b, v) is true. This condition is
satisfied if there is no block bk in allBlocks with bk .bal ≥ b.
So, valueChosen(v) must require that some processor p has
written blocks with bal field at least b to a majority set D of the
disks. (By maxBalInp(b, v), those blocks must have inp field
v). We also ensure that, once valueChosen(v) becomes true, it
can never be made false. This requires the additional condition
that no processor q that is currently executing phase 1 with
mbal value at least b can fail to see those blocks that p has
written. So, valueChosen(v) also asserts that, for every disk
d in D , if q has already read disk [d][p], then it has read a
block with bal field at least b.

valueChosen(v) ∆=
∃ b ∈ union {Ballot(p) : p ∈ Proc} :

∧ maxBalInp(b, v)
∧ ∃ p ∈ Proc, D ∈ MajoritySet :

∀ d ∈ D :
∧ disk [d][p].bal ≥ b
∧ ∀ q ∈ Proc :

∧ phase[q] = 1
∧ dblock [q].mbal ≥ b
∧ hasRead(q , d , p)

⇒ (∃ br ∈ blocksRead [q][d] :
br .bal ≥ b)

It’s obvious that, if valueChosen(v) = valueChosen(w),
then v = w .

The final conjunct of HInv asserts that, once an output has
been chosen, valueChosen(chosen) holds, and each proces-
sor’s output equals either chosen or NotAnInput .

HInv6 ∆=
∧ (chosen �= NotAnInput) ⇒ valueChosen(chosen)
∧ ∀ p ∈ Proc : output [p] ∈ {chosen,NotAnInput}

lemma I2f HInv1 ∧ HInv2 ∧ HInv2′ ∧ HInv3 ∧
HInv6 ∧ HNext ⇒ HInv6′

We define HInv to be the conjunction of HInv1–HInv6.

HInv ∆=
HInv1 ∧ HInv2 ∧ HInv3 ∧ HInv4 ∧ HInv5 ∧ HInv6

Theorem I 2 then follows easily from Lemmas I 2a–I 2f .

A.4 Proofs

We now sketch the proofs of most of the lemmas from Sec-
tion A.3 and of Theorem R2b. We give hierarchically struc-
tured proofs [11]. A structured proof consists of a sequence

Disk Paxos 13

of statements and their proofs; each of those proofs is either
a structured proof or an ordinary paragraph-style proof. The
j th step in the current level-i proof is numbered 〈i〉j. Within a
paragraph-style proof, 〈i〉j denotes the most recent statement
with that number. The proof statement “〈i〉j. Q.E.D.” denotes
the current goal—that is, the level i−1 statement being proved
by this step. A proof statement

Assume: A
Prove: P

asserts that the assumption A implies P . If P is the current
goal, then this is abbreviated as

Case: A

An assumption constant c ∈ S asserts that c is a new
constant parameter that we assume is in S . We prove
∀ c ∈ S : P(c) by proving

Assume: constant c ∈ S
Prove: P(c)

The assumption constant c ∈ S s.t. A(c) also assumes
that c satisfies A(c). A proof statement

〈i 〉j choose c ∈ S s.t. P(c)

asserts the existence of a value c in S satisfying P(c), and
defines c to be such a value. To prove this statement, we must
demonstrate the existence of c.

We recommend that proofs be read hierarchically, from
the top level down. To read the proof of a long level-i step,
you should first read the level-(i + 1) statements that form
its proof, together with the proof of the final “Q.E.D.” step
(which is usually a short paragraph), and then read the proofs
of the level-(i + 1) steps in any desired order.

We also use a hierarchical scheme for naming subformu-
las of a formula. If F is the name of a formula that is a con-
junction, then F .i is the name of its i th conjunct. A similar
scheme is used for a disjunction, except using letters instead
of numbers, so F .c is the name of the third disjunct of F .
If F is the name of the formula P ⇒ Q , then F .L is the
name of P and F .R is the name of Q . If F is the name of
the formula ∃ x : P(x) or ∀ x : P(x), then F (e) is the name
of the formula P(e), for any expression e . This is general-
ized in the obvious way for abbreviated quantifications like
∃ x , y : P(x , y). For example, HInv5(n).R.b(E ,m)(dd).2 is
the formula ¬hasRead(n, dd , m).

We now give the proofs. We omit the proofs of Lemmas
I 2a and I 2b, which require a simple but tedious case analysis
for the different disjuncts of Next . In the informal paragraph-
style proofs, we use HInv1 implicitly in many places by tac-
itly assuming that variables have values of the right type. For
example, we deduce phase ′[p] = 2 from

phase ′ = [phase except ![p] = 2]

without mentioning that this follows only if phase is a function
whose domain contains p, which is implied by HInv1.4.

A.4.1 Lemma I2c

We prove Lemma I 2c by proving:

Assume: 1. HInv1 ∧ HInv2 ∧ HInv3 ∧ HNext

2. constants p, q ∈ Proc, d ∈ Disk
3. HInv3(p, q , d).L′

Prove: HInv3(p, q , d).R′

〈1〉1. Case: ¬HInv3(p, q , d).L
〈2〉1. Case: (p �= q) ∧ Phase1or2Read(p, d , q)

〈3〉1. (phase[q] ∈ {1, 2}) ∧ hasRead(q , d , p)
Proof: Assumption 3 implies

(phase ′[q] ∈ {1, 2}) ∧ hasRead(q , d , p)′

and the level 〈2〉 case assumption implies that
hasRead(q , d , p) and phase[q] are left unchanged.

〈3〉2. disk [d][q] = dblock [q]
Proof: 〈3〉1 and HInv2.2(q , d).2 imply d ∈
disksWritten[q], which by HInv2.2(q , d).1 implies
disk [d][q] = dblock [q].

〈3〉3. Q.E.D.
Proof: Phase1or2Read(p, d , q) (the level 〈2〉 case as-
sumption) implies:

[block �→ disk [d][q], proc �→ q] ∈ blocksRead ′[p][d]
and we then obtain HInv3(p, q).R.a ′ from 〈3〉2,
since (p �= q) ∧ Phase1or2Read(p, d , q) implies
dblock ′[q] = dblock [q].

〈2〉2. Case: (p �= q) ∧ Phase1or2Read(q , d , p)
Proof: The proof is the same as that of 〈2〉1 with p
and q interchanged and HInv3(p, q).R.a ′ replaced by
HInv3(p, q).R.b′.

〈2〉3. Case: EndPhase0(p)
Proof: This implies ¬hasRead(p, d , q)′, so
HInv3(p, q , d).L′ is false, making HInv3(p, q , d)′
true.

〈2〉4. Case: EndPhase0(q)
Proof: The proof is the same as that of 〈2〉3 with p and q
interchanged.

〈2〉5. Q.E.D.
Proof: By assumption 3 and the level 〈1〉 case assumption,
one of the four conjuncts of HInv3(p, q , d).L is changed
from false to true. Steps 〈2〉1–〈2〉4 cover the four subac-
tions of Next that can make one of those conjuncts true.

〈1〉2. Case: HInv3(p, q , d).L
Proof: HInv3(p, q , d).L and HInv3 (which holds by
assumption 1) imply HInv3(p, q , d).R. The only sub-
actions of HNext that can change HInv3(p, q , d).R
from true to false are ones that remove elements from
blocksRead [p][d] or blocksRead [q][d] or that change
dblock [p] or dblock [q]. All such subactions have an
InitializePhase(p) or InitializePhase(q) conjunct that
makes HInv3(p, q , d).R′ false, contrary to assumption 3.

〈1〉3. Q.E.D.
Proof: By 〈1〉1 and 〈1〉2.

A.4.2 Lemma BksOf

The following simple result will be used below.
lemma BksOf

HNext ∧ HInv1 ⇒
∀ p ∈ Proc :

blocksOf (p)′ ⊆ blocksOf (p) ∪ {dblock ′[p]}
The lemma follows from the observation that the only way
an HNext step creates a new block for a processor p (rather
than copying an existing one, which leaves blocksOf (p) un-
changed) is by changing dblock [p].

14 E. Gafni, L. Lamport

A.4.3 Lemma I2d

Assume: 1. HInv1 ∧ HInv2 ∧ HInv2′ ∧ HInv4 ∧ HNext
2. constant p ∈ Proc

Prove: HInv4(p)′

〈1〉1. HInv4(p).1′
〈2〉1. Case: (phase[p] = 0) ∧ (phase ′[p] �= 0)

〈3〉1. EndPhase0(p)
Proof: By the level 〈2〉 case assumption, since
EndPhase0(p) is the only subaction of HNext that
changes phase[p] from zero to a nonzero value.

〈3〉2. Assume: constant bk ∈ blocksOf (p)′ s.t.
bk �= dblock ′[p]

Prove: dblock ′[p].mbal ≥ bk .bal
〈4〉1. bk ∈ blocksOf (p)

Proof: Lemma BksOf and the level 〈3〉 assumption.
〈4〉2. choose D1 ∈ MajoritySet s.t.

∀ d ∈ D1 : disk [d][p].mbal ≥ bk .bal
Proof: HInv4.4 and 〈4〉1 imply the existence of D1.

〈4〉3. ∀D ∈ MajoritySet :
∃ d ∈ D : disk [d][p].mbal ≥ bk .bal

Proof: By 〈4〉2, since for any majority set D , we can
choose d to be a disk in D1 ∩ D , which is nonempty
because any two majority sets have an element in com-
mon.

〈4〉4. ∃ d ∈ Disk :
∃ rb ∈ blocksRead [p][d] :

rb.block .mbal ≥ bk .bal
〈5〉1. ∀ d ∈ Disk :

∀ rb ∈ blocksRead [p][d] :
rb.block = disk [d][p]

Proof: By HInv2.3(p).1.R.3, which holds by as-
sumption 1 and case assumption 〈2〉.

〈5〉2. ∀ d ∈ Disk : hasRead(p, d , p) ⇒
∃ rb ∈ blocksRead [p][d] :

rb.block = disk [d][p]
Proof: By 〈5〉1 and the definition of
hasRead(p, d , p), which implies that
blocksRead [p][d] is nonempty.

〈5〉3. ∃D ∈ MajoritySet :
∀ d ∈ D : ∃ rb ∈ blocksRead [p][d] :

rb.block = disk [d][p]
Proof: By 〈5〉2 and step 〈3〉1, from which we de-
duce that hasRead(p, d , p) holds for all d in some
majority set.

〈5〉4. Q.E.D.
Proof: Steps 〈4〉3 and 〈5〉3 imply that there is a
disk d and an rb in blocksRead [p][d] such that
rb.block .mbal = disk [d][p].mbal ≥ bk .bal .

〈4〉5. Q.E.D.
Proof: 〈4〉4 and 〈3〉1 imply dblock ′[p].mbal >
bk .bal .

〈3〉3. HInv4(p).1.R.2′
〈4〉1. ∃D ∈ MajoritySet :

∀ d ∈ D :
∧ dblock ′[p].mbal > disk [d][p].mbal
∧ dblock ′[p].bal ≥ disk [d][p].bal

Proof: 〈3〉1 implies dblock ′[p].mbal > br .mbal
and dblock ′[p].bal ≥ br .bal , for all br ∈
allBlocksRead(p). Step 〈3〉1, the level 〈2〉

case assumption, and HInv2.3(p).3 imply that
allBlocksRead(p) contains all blocks disk [d][p] for d
in some majority set D of disks.

〈4〉2. ∀D ∈ MajoritySet :
∃ d ∈ D :

∧ dblock ′[p].mbal > disk [d][p].mbal
∧ dblock ′[p].bal ≥ disk [d][p].bal

Proof: By 〈4〉1, since any two majority sets have a
disk in common.

〈4〉3. Q.E.D.
Proof: HInv4(p).1.R.2′ follows from 〈4〉2 and 〈3〉1,
which implies that disk is unchanged.

〈3〉4. Q.E.D.
Proof: By 〈3〉2 and 〈3〉3, since 〈3〉2 implies
HInv4(p).1.R.1(bk)′ except for the case bk =
dblock ′[p]; and HInv4(p).1.R.1(bk)′ follows from
HInv2.1(p)(dblock [p]).4′ in that case.

〈2〉2. Case: (phase[p] �= 0) ∧ (phase ′[p] �= 0)
〈3〉1. ∧ dblock ′[p].mbal ≥ dblock [p].mbal

∧ dblock ′[p].bal ≥ dblock [p].bal
Proof: Only the following four subactions of Next
change dblock [p]:

StartBallot(p) EndPhase1or2(p)
EndPhase0(p) Fail(p)

These four cases are checked as follows.
• A StartBallot(p) step increases dblock [p].mbal ,

and it does not change dblock [p].bal .
• An EndPhase1or2(p) step leaves dblock [p].mbal

unchanged and changes dblock [p].bal only by set-
ting it to dblock [p].mbal when phase[p] = 1, in
which caseHInv2.1(p)(dblock [p]).4 implies that its
value is not decreased.

• EndPhase0(p) and Fail(p) are ruled out by the
level 〈2〉 case assumption.

〈3〉2. HInv4(p).1.R.1′
Proof: If bk ∈ blocksOf (p), then
HInv4(p).1.R.1(bk)′ follows from 〈3〉1 and
HInv4(p).1.R.1 (which holds by assumption 1 and the
level 〈2〉 case assumption). If bk = dblock ′[p], then
HInv4(p).1.R.1(bk)′ follows from HInv2.1(p)(bk).4′.
We then obtain HInv4(p).1.R.1′ from Lemma BksOf .

〈3〉3. HInv4(p).1.R.2′
Proof: HNext implies that disk ′[p][d] equals disk [p][d]
or dblock [p], so HInv4(p).1.R.2′ follows from 〈3〉1 and
HInv4(p).1.R.2, which holds by assumption 1 and the
level 〈2〉 case assumption.

〈3〉4. Q.E.D.
Proof: By 〈3〉2 and 〈3〉3.

〈2〉3. Q.E.D.
Proof: By 〈2〉1 and 〈2〉2, since HInv4(p).1′ is trivially
true if phase ′[p] equals 0.

〈1〉2. HInv4(p).2′
〈2〉1. Case: (phase[p] �= 1) ∧ (phase ′[p] = 1)

〈3〉1. Case: phase[p] = 0
〈4〉1. EndPhase0(p)

Proof: By HNext and the levels 〈2〉 and 〈3〉 case as-
sumptions.

〈4〉2. ∀ bk ∈ blocksOf (p) :
∃D ∈ MajoritySet :

∀ d ∈ D : disk [d][p].mbal ≥ bk .bal

Disk Paxos 15

Proof: By HInv4(p).4.
〈4〉3. ∀ bk ∈ blocksOf (p) :

∀D ∈ MajoritySet :
∃ d ∈ D : disk [d][p].mbal ≥ bk .bal

Proof: By 〈4〉2, since any two majority sets have a
disk in common.

〈4〉4. ∀ bk ∈ blocksOf (p) :
∃ br ∈ allBlocksRead(p) :

br .mbal ≥ bk .bal
Proof: Step 〈4〉1 implies that blocksRead [p][d] is
nonempty for all disks d in some majority set
D , and HInv2.3(p).1.R.3 (which holds by assump-
tion 1 and the level 〈3〉 case assumption) implies
rb.block = disk [d][p] for every d ∈ D and rb ∈
blocksRead [p][d]. The result then follows from 〈4〉3,
since rb ∈ blocksRead [p][d] implies rb.block ∈
allBlocksRead(p).

〈4〉5. Q.E.D.
〈5〉1. ∀ br ∈ allBlocksRead(p) :

dblock ′[p].mbal > br .mbal
Proof: By 〈4〉1.

〈5〉2. ∀ bk ∈ blocksOf (p) : HInv4(p).2.R(bk)′
Proof: By 〈5〉1 and 〈4〉4.

〈5〉3. ∃ br ∈ allBlocksRead(p) :
dblock ′[p].bal = br .bal

Proof: By 〈4〉1.
〈5〉4. HInv4(p).2.R(dblock [p])′

Proof: By 〈5〉1, 〈5〉3, and HInv2.1(p).
〈5〉5. Q.E.D.

Proof: 〈5〉2, 〈5〉4, and Lemma BksOf imply
HInv4(p).2.R′.

〈3〉2. Case: phase[p] ∈ {2, 3}
〈4〉1. ∀ bk ∈ blocksOf (p) :

dblock [p].mbal ≥ bk .bal
Proof: HInv4(p).1 and the level 〈3〉 case assumption
(which imply HInv4(p).1.R.1).

〈4〉2. ∧ dblock ′[p].mbal > dblock [p].mbal
∧ dblock ′[p].bal = dblock [p].bal

Proof: By HNext and the level 〈2〉 and 〈3〉 case as-
sumptions, which imply StartBallot(p).

〈4〉3. Q.E.D.
Proof: By Lemma BksOf , it suffices to prove
HInv4(p).2.R(bk)′ for bk ∈ blocksOf (p) and bk =
dblock ′[p]. For bk ∈ blocksOf (p), it follows from 〈4〉1
and 〈4〉2. For bk = dblock ′[p], it follows from 〈4〉2 and
HInv2.1(p)(dblock [p]).4.

〈3〉3. Q.E.D.
Proof: The level 〈2〉 case assumption implies that 〈3〉1
and 〈3〉2 cover all possibilities.

〈2〉2. Case: (phase[p] = 1) ∧ (phase ′[p] = 1)
Proof: By HNext , this implies dblock ′[p] = dblock [p],
so Lemma BksOf implies that HInv4(p).2′ follows from
HInv4(p).2.

〈2〉3. Q.E.D.
Proof: Since HInv4(p).2′ is trivially true if phase ′[p] �=
1, the cases of 〈2〉1 and 〈2〉2 are exhaustive.

〈1〉3. HInv4(p).3′
〈2〉1. Case: (phase[p] �= 2) ∧ (phase ′[p] = 2)

〈3〉1. EndPhase1or2(p) ∧ (phase[p] = 1)
Proof: By HNext and the level 〈2〉 case assumption.

〈3〉2. ∃D ∈ MajoritySet :
∀ d ∈ D : disk [d][p].mbal = dblock [p].mbal

Proof: By HInv2.2(p).1, since 〈3〉1 implies that
disksWritten[p] contains a majority set of disks.

〈3〉3. Q.E.D.
Proof: 〈3〉1 implies dblock ′[p].bal = dblock [p].mbal
and disk ′ = disk , which by 〈3〉2 implies HInv4(p).3′

〈2〉2. Case: (phase[p] ∈ {2, 3}) ∧ (phase ′[p] ∈ {2, 3})
〈3〉1. dblock ′[p].bal = dblock [p].bal

Proof: By HNext and the level 〈2〉 case assumption.
〈3〉2. ∀ d ∈ Disk :

Phase1or2Write(p, d) ⇒
(disk ′[d][p].mbal = dblock [p].bal)

Proof: By the level 〈2〉 case assumption and
HInv2.3(p).3.

〈3〉3. Q.E.D.
Proof: HInv4(p).3′ follows from HInv4(p).3, 〈3〉1,
and 〈3〉2, since HNext ∧ ¬Phase1or2Write(p, d) im-
plies disk ′[d][p] = disk [d][p], for any disk d .

〈2〉3. Q.E.D.
Proof: HInv4(p).3′ follows from 〈2〉1 and 〈2〉2 because
it is trivially true if phase ′[p] /∈ {2, 3}, and HNext ∧
(phase ′[p] = 3) implies phase[p] ∈ {2, 3},

〈1〉4. HInv4(p).4′
〈2〉1. Case: EndPhase1or2(p) ∧ (phase[p] = 1)

〈3〉1. ∃D ∈ MajoritySet :
∀ d ∈ D : disk ′[d][p].mbal = dblock ′[p].bal

Proof: By 〈1〉3 and the level 〈2〉 case assumption, which
implies phase ′[p] = 2.

〈3〉2. disk ′ = disk
Proof: By the level 〈2〉 case assumption.

〈3〉3. Q.E.D.
Proof: If bk ∈ blocksOf (p), then HInv4(p).4(bk)′ fol-
lows from 〈3〉2 and HInv4(p).4(bk). If bk = dblock ′[p],
then HInv4(p).4(bk)′ follows from 〈3〉1. By Lemma
BksOf , this proves HInv4(p).4′.

〈2〉2. Case: Fail(p)
Proof: If bk ∈ blocksOf (p), then HInv4(p).4(bk)′ fol-
lows easily from HInv4(p).4(bk), since Fail(p) implies
disk ′ = disk . If bk = dblock ′[p], then HInv4(p).4(bk)′
holds because Fail(p) implies dblock ′[p].bal = 0. By
Lemma BksOf , this proves HInv4(p).4′.

〈2〉3. Case: ∃ d ∈ Disk : Phase1or2Write(p, d)
〈3〉1. Assume: 1. ∧ d ∈ Disk

∧ Phase1or2Write(p, d)
2. ∧ bk ∈ blocksOf (p)

∧ D ∈ MajoritySet
3. ∀ dd ∈ D :

disk [dd][p].mbal ≥ bk .bal
Prove: ∀ dd ∈ D :

disk ′[dd][p].mbal ≥ bk .bal
〈4〉1. disk ′[d][p].mbal ≥ bk .bal

Proof: Assumption 1 of 〈3〉1 implies disk ′[d][p] =
dblock [p] and phase[p] �= 0, so this follows from
HInv4(p).1.R.1.

〈4〉2. Q.E.D.
Proof: The conclusion of 〈3〉1 follows from its as-
sumption 3 and 〈4〉1, since assumption 1 of 〈3〉1 im-
plies that disk ′[dd] = disk [dd] if dd �= d .

〈3〉2. Q.E.D.

16 E. Gafni, L. Lamport

Proof: HInv4(p).4′ follows from HInv4(p).4, 〈3〉1,
and the level 〈2〉 case assumption, which implies
blocksOf (p)′ ⊆ blocksOf (p).

〈2〉4. Q.E.D.
Proof: The only way to change HInv4(p).4 from
true to false is to add a new element to {bk .bal :
bk ∈ blocksOf (p)} or to change disk [d][p], for some
disk d . The cases covered by 〈2〉1, 〈2〉2, 〈2〉3 include
all the subactions of HNext that can do this. (That
EndPhase0 does not add any element to {bk .bal : bk ∈
blocksOf (p)} follows from Inv2.3(p).1.R.3, which im-
plies allBlocksRead(p) ⊆ blocksOf (p).)

〈1〉5. Q.E.D.
Proof: By steps 〈1〉1–〈1〉4.

A.4.4 Lemma I2e

Simple logic shows that, to prove Lemma I 2e , it suffices to
prove:

Assume: 1. HInv1 ∧ HInv2 ∧ HInv2′ ∧
HInv3 ∧ HInv4 ∧ HInv5 ∧ HNext

2. constant p ∈ Proc
3. phase ′[p] = 2
4. ¬HInv5(p).R.a ′

Prove: HInv5(p).R.b′

〈1〉1. Case: (phase[p] �= 2)
〈2〉1. EndPhase1or2(p) ∧ (phase[p] = 1)

Proof: By HNext , assumption 3, and the level 〈1〉 case
assumption.

〈2〉2. choose bk ∈ allBlocks s.t.
(bk .bal ≥ dblock ′[p].bal) ∧ (bk �= dblock ′[p])

〈3〉1. choose bk ∈ allBlocks ′ s.t.
(bk .bal ≥ dblock ′[p].bal) ∧ (bk �= dblock ′[p])

Proof: Assumption 4 and the definition of maxBalInp
imply the existence of bk .

〈3〉2. choose q ∈ Proc : bk ∈ blocksOf (q)′
Proof: 〈3〉1 asserts bk ∈ allBlocks , so the existence of
q follows from the definition of allBlocks .

〈3〉3. bk ∈ blocksOf (q)
Proof: We consider the two cases q = p and q �= p.
In both cases, the result follows from 〈3〉2 and Lemma
BksOf . If q = p, it follows because bk �= dblock ′[p]
(by 〈3〉1). If q �= p, it follows because 〈2〉1 im-
plies dblock ′[q] = dblock [q], so the lemma implies
blocksOf (q)′ ⊆ blocksOf (q).

〈3〉4. Q.E.D.
Proof: By 〈3〉1, 〈3〉3, and the definition of allBlocks .

〈2〉3. choose q ∈ Proc \ {p} s.t. bk ∈ blocksOf (q)
Proof: By 〈2〉2 and the definition of allBlocks , there is
some processor q such that bk ∈ blocksOf (q). Steps 〈2〉1
and 〈2〉2 imply bk .bal ≥ dblock [p].mbal , sophase[p] = 1
(by 〈2〉1) and HInv4(p).2 imply q �= p.

〈2〉4. ∃D ∈ MajoritySet :
∀ d ∈ D : disk [d][q].mbal ≥ dblock ′[p].bal

Proof: By 〈2〉3, HInv4(q).4, and 〈2〉2.
〈2〉5. ∃D ∈ MajoritySet :

∀ d ∈ D : disk [d][q].mbal > dblock ′[p].bal
Proof: By 〈2〉3 (which implies p �= q) and 〈2〉4, since
〈2〉1 (which by HInv2.3(p).2 implies dblock ′[p].bal >

0), HInv2.1, and the assumption that different processors
have distinct ballot numbers imply that disk [d][q].mbal �=
dblock ′[p].bal .

〈2〉6. Q.E.D.
Proof: 〈2〉1 implies ¬hasRead(p, d , q)′, for all disks d .
Hence, 〈2〉5 implies HInv5(p).R.b′.

〈1〉2. Case: (phase[p] = 2) ∧ HInv5(p).R.a
〈2〉1. choose q ∈ Proc \ {p} s.t.

∧ EndPhase1or2(q) ∧ (phase[q] = 1)
∧ dblock ′[q].bal > dblock [p].bal
∧ dblock ′[q].inp �= dblock [p].inp

〈3〉1. dblock ′[p] = dblock [p]
Proof: By phase[p] = 2 (the level 〈1〉 case assumption),
phase ′[p] = 2 (assumption 3), and HNext .

〈3〉2. choose q ∈ Proc s.t.
∧ dblock ′[q].bal ≥ dblock [p].bal
∧ dblock ′[q].inp �= dblock [p].inp
∧ dblock ′[q].bal /∈

{bk .bal : bk ∈ blocksOf (q)}
Proof: By 〈3〉1, HInv5.R.a (from the level 〈1〉 case as-
sumption) and ¬HInv5.R.a ′ (assumption 3), there exist
a processor q and a bk in allBlocks(q)′ \ allBlocks(q)
such that bk .bal ≥ dblock [p].bal , bk .inp �=
dblock [p].inp, and bk .bal /∈ {bb.bal : bb ∈
blocksOf (q)}. LemmaBlksOf implies bk = dblock ′[q].

〈3〉3. dblock [p].bal > 0
Proof: By HInv2.3(p).2.R.1, and HInv2.3(p).3, since
phase[p] = 2 by the level 〈1〉 case assumption.

〈3〉4. dblock ′[q].bal > 0
Proof: By conjunct 1 of 〈3〉2 and 〈3〉3.

〈3〉5. ¬EndPhase0(q)
Proof: By conjunct 3 of 〈3〉2, since HInv2.3(q).1.R.3
implies:

∀ d ∈ Disk : blocksRead [q][d] ⊆ blocksOf (q)
〈3〉6. EndPhase1or2(q) ∧ (phase[q] = 1)

Proof: Conjunct 3 of 〈3〉2 implies dblock ′[q].bal �=
dblock [q].bal . By HNext , this implies either
EndPhase1or2(q) ∧ (phase[q] = 1), Fail(q), or
EndPhase0(q). The second possibility is ruled out by
〈3〉4 and the third is ruled out by 〈3〉5.

〈3〉7. (q �= p) ∧ (dblock ′[q].bal �= dblock [p].bal)
Proof: 〈3〉6 and phase[p] = 2 (by the level 〈1〉 case as-
sumption) imply p �= q . We then obtain dblock ′[q].bal �=
dblock [p].bal from HInv2.1, 〈3〉3, and the assumption
that different processors have distinct ballot numbers.

〈3〉8. Q.E.D.
Proof: By 〈3〉2, 〈3〉6, and 〈3〉7.

〈2〉2. choose D ∈ MajoritySet s.t.
∀ d ∈ D : ∧ disk [d][q].mbal > dblock [p].bal

∧ hasRead(q , d , p)
Proof: By HInv2.2(q , d).1 and conjunct 1 of 〈2〉1,
there is a majority set D such that hasRead(q , d , p) and
disk [d][q].mbal = dblock ′[q].bal , for all d ∈ D . The re-
sult then follows from conjunct 2 of 〈2〉1.

〈2〉3. ∀ d ∈ D : [block �→ dblock [p], proc �→ p] /∈
blocksRead [q][d]

Proof: By HInv5(p).R.a (the level 〈1〉 case assumption),
conjunct 1 of 〈2〉1, and the definitions of maxBalInp and
EndPhase1or2, if dblock [p] were in allBlocksRead(q),

Disk Paxos 17

then dblock ′[q].inp would equal dblock [p].inp, contra-
dicting conjunct 3 of 〈2〉1.

〈2〉4. ∀ d ∈ D : ¬∃ br ∈ blocksRead [p][d] :
br .block .mbal ≥ dblock [p].bal

Proof: By HInv2.3(p).2.R.3 and HInv2.3(p).3, since
the level 〈1〉 case assumption asserts phase[p] = 2.

〈2〉5. ∀ d ∈ D : ¬hasRead(p, d , q)
Proof: We assume d ∈ D and hasRead(p, d , q), and we
obtain a contradiction.
〈3〉1. [block �→ dblock [q], proc �→ q] ∈

blocksRead [p][d]
Proof: We have phase[p] = 2 (by the level 〈1〉 case
assumption), phase[q] = 1 (by conjunct 1 of 〈2〉1)
and hasRead(q , d , p) (by 〈2〉2), so this follows from
hasRead(p, d , q) by HInv3(p, q , d) and 〈2〉3.

〈3〉2. dblock [q].mbal > dblock [p].bal
Proof: Conjunct 1 of 〈2〉1 implies dblock ′[q].bal =
dblock [q].mbal , so this follows from conjunct 2 of 〈2〉1.

〈3〉3. Q.E.D.
Proof: 〈3〉1 and 〈3〉2 contradict 〈2〉4.

〈2〉6. Q.E.D.
Proof: 〈2〉2 and 〈2〉5 imply HInv5(p).R.b. Con-
junct 1 of 〈2〉1 implies that disk , dblock [p].bal and
hasRead(p, d , q) are unchanged, for all d ∈ Disk , so
HInv5(p).R.b implies HInv5(p).R.b′.

〈1〉3. Case: (phase[p] = 2) ∧ HInv5(p).R.b
〈2〉1. choose D ∈ MajoritySet , q ∈ Proc s.t.

(q �= p) ∧ HInv5(p).R.b(D , q)
Proof: The level 〈1〉 case assumption implies the existence
of D and q satisfying HInv5(p).R.b(D , q). Since any two
majority sets have a disk in common, HInv4(p).3 then
implies q �= p.

〈2〉2. Case: ∃ d ∈ D : Phase1or2Write(q , d)
〈3〉1. dblock [q].mbal > dblock [p].bal .

Proof: Since D is a majority set (by 〈2〉1),
HInv4(q).1.R.2 implies dblock [q].mbal ≥
disk [d][p].mbal for some d ∈ D , so the result fol-
lows from HInv5(p).R.b(D , q) (which holds by 〈2〉1).

〈3〉2. Q.E.D.
Proof: The level 〈2〉 case assumption implies that
dblock [p] and hasRead(p, d , q) are left unchanged,
for all d , and that disk is unchanged except that
disk ′[d][q] = dblock [q] for some disk d . It follows from
this and 〈3〉1 that HInv5(p).R.b(D , q) (which holds by
〈2〉1) implies HInv5(p).R.b(D , q)′.

〈2〉3. Case: ∃ d ∈ D : Phase1or2Read(p, d , q)
Proof: By HInv5(p).R.b(D , q) (from 〈2〉1), we have
disk [d][q].mbal > dblock [p].bal , for all d ∈ D . Since
phase[p] = 2 (by the level 〈1〉 case assumption),
HInv2.3(p).3 implies dblock [p].bal = dblock [p].mbal ,
so disk [d][q].mbal > dblock [p].mbal for all d ∈ D . Thus,
the case assumption implies phase ′[p] = 1 (because the
ballot must abort), contradicting assumption 3.

〈2〉4. Q.E.D.
Proof: Since phase ′[p] = phase[p] = 2 (by assumption
3 and the level 〈1〉 case assumption), HNext implies that
dblock [p] is unchanged and that, for any d ∈ D :

∧ (disk ′[d][q] �= disk [d][q]) ⇒
Phase1or2Write(q , d)

∧ hasRead(p, d , q)′ ∧ ¬hasRead(p, d , q) ⇒
Phase1or2Read(p, d , q)

Hence, 〈2〉2 and 〈2〉3 cover the only cases in which
HInv5(p).R.b(D , q) can be made false. In all other
cases, HInv5(p).R.b′ follows from HInv5(p).R.b(D , q)
(which holds by 〈2〉1).

〈1〉4. Q.E.D.
Proof: Since HInv5(p) holds by assumption 1, the cases in
steps 〈1〉1, 〈1〉2, and 〈1〉3 are exhaustive.

A.4.5 Lemma I2f

The proof of Lemma I 2f uses:

lemma VC
∀ v ∈ Inputs :

HInv1 ∧ HInv4 ∧ HNext ∧ valueChosen(v) ⇒
valueChosen(v)′

We prove Lemma VC by proving:

Assume: 1. constant
b ∈ union {Ballot(p) : p ∈ Proc}

2. constants
v ∈ Inputs, p ∈ Proc, D ∈ MajoritySet

3. maxBalInp(b, v)
4. valueChosen(v)(b).2(p,D)

Prove: maxBalInp(b, v)′ ∧ valueChosen(v)(b).2(p,D)′

〈1〉1. maxBalInp(b, v)′
〈2〉1. Case: ∃ q ∈ Proc :

EndPhase1or2(q) ∧ (phase[q] = 1)
〈3〉1. choose q ∈ Proc s.t.

EndPhase1or2(q) ∧ (phase[q] = 1)
Proof: q exists by the level 〈2〉 case assumption.

〈3〉2. allBlocks ′ ⊆ allBlocks ∪ {dblock ′[q]}.
Proof: Lemma BlksOf , 〈3〉1, and the definition of
EndPhase1or2.

〈3〉3. Case: (p �= q) ∧ (dblock [q].mbal ≥ b)
〈4〉1. choose d ∈ D s.t. hasRead(q , d , p)

Proof: The existence of d follows from 〈3〉1 and p �= q
(from the level 〈3〉 case assumption), which imply that
hasRead(q , d , p) holds for all d in some majority set,
since any two majority sets have a disk in common.

〈4〉2. ∃ br ∈ blocksRead [q][d] : br .block .bal ≥ b
Proof: This is the conclusion of
valueChosen(v)(b).2(p,D)(d).2, which holds by
assumption 4 since 〈4〉1 implies d ∈ D . Its hypotheses
are proved as follows:

• phase[q] = 1 holds by 〈3〉1.
• dblock [q].mbal ≥ b holds by the level 〈3〉 case as-

sumption.
• hasRead(q , d , p) holds by 〈4〉1.
〈4〉3. dblock ′[q].inp = v

Proof: By 〈4〉2, maxBalInp(b, v) (assumption 3),
〈3〉1, and the definition of EndPhase1or2.

〈4〉4. Q.E.D.
Proof: maxBalInp(b, v)′ holds by 〈4〉3, 〈3〉2, and
maxBalInp(b, v) (assumption 3).

〈3〉4. Case: (p = q) ∧ (dblock [q].mbal ≥ b)
〈4〉1. ∀ d ∈ D : disk [d][p].bal ≥ b

Proof: By assumption 4.
〈4〉2. ∃ d ∈ D : disk [d][p] = dblock [p]

18 E. Gafni, L. Lamport

Proof: The level 〈2〉 case assumption and p =
q (from the level 〈3〉 case assumption) imply that
disksWritten[p] contains a majority set, and hence
an element d of D . The result then follows from
HInv2.2(p, d).1.

〈4〉3. dblock ′[p].inp = v
Proof: 〈4〉1 and 〈4〉2 imply dblock [p].bal ≥ b, so
maxBalInp(b, v) (assumption 3), 〈3〉1, q = p (from
the level 〈3〉 case assumption), and the definition of
EndPhase1or2 imply dblock ′[p].inp = v .

〈4〉4. Q.E.D.
Proof: Assumption 3, 〈3〉2, 〈4〉3, and p = q (the level
〈3〉 case assumption) imply maxBalInp(b, v)′.

〈3〉5. Case: dblock [q].mbal < b
Proof: By 〈3〉1, this implies dblock ′[q].bal < b,
so maxBalInp(b, v) (assumption 3) and 〈3〉2 imply
maxBalInp(b, v)′.

〈3〉6. Q.E.D.
Proof: By 〈3〉3, 〈3〉4, and 〈3〉5.

〈2〉2. Case: ∃ q ∈ Proc : Fail(q)
Proof: By maxBalInp(b, v) (assumption 3), since b > 0
(by assumption 1) and the definition of Fail(q) imply:

{bk ∈ allBlocks ′ : bk .bal ≥ b} ⊆
{bk ∈ allBlocks : bk .bal ≥ b}

〈2〉3. Q.E.D.
Proof: By 〈2〉1 and 〈2〉2 , since HNext implies that
the only kind of step that can add a new element
to {〈bk .bal , bk .inp 〉 : bk ∈ allBlocks} is an
EndPhase1or2(q) ∧ (phase[q] = 1) step or a Fail(q)
step, for some processor q .

〈1〉2. valueChosen(v)(b).2(p,D)′
〈2〉1. Assume: constant d ∈ D

Prove: disk ′[d][p].bal ≥ b
〈3〉1. Case: Phase1or2Write(p, d)

〈4〉1. ∃ dd ∈ D : dblock [p].bal ≥ disk [dd][p].bal
Proof: By HInv4(p).1.R.2(D), since D ∈
MajoritySet by assumption 2, and phase[p] �= 0
by the level 〈3〉 case assumption.

〈4〉2. dblock [p].bal ≥ b
Proof: By 〈4〉1 and assumption 4, which implies
disk [dd][p].bal ≥ b for all dd ∈ D .

〈4〉3. Q.E.D.
Proof: By the level 〈3〉 case assumption, disk ′[d][p] =
dblock [p], so 〈4〉2 implies disk ′[d][p].bal ≥ b.

〈3〉2. Case: disk ′[d][p] = disk [d][p]
Proof: In this case, assumption 4 and d ∈ D (by the
level 〈2〉 assumption) imply disk ′[d][p].bal ≥ b.

〈3〉3. Q.E.D.
Proof: By 〈3〉1 and 〈3〉2, since:

HNext ∧ (disk ′[d][p] �= disk [d][p]) ⇒
Phase1or2Write(p, d)

〈2〉2. Assume: 1. constants q ∈ Proc, d ∈ D
2. phase ′[q] = 1
3. dblock ′[q].mbal ≥ b
4. hasRead(q , d , p)′

Prove: ∃ br ∈ blocksRead ′[q][d] :
br .block .bal ≥ b

〈3〉1. phase[q] = 1
Proof: By the level 〈2〉 assumptions 2 and 4, since:

HNext ∧ (phase ′[q] �= phase[q]) ⇒
InitalizePhase(q)

and InitalizePhase(q) implies ¬hasRead(q , d , p)′.
〈3〉2. dblock ′[q].mbal = dblock [q].mbal

Proof: By the level 〈2〉 assumption 4, since:
HNext ∧ (dblock ′[q] �= dblock [q]) ⇒

InitalizePhase(q)
and InitalizePhase(q) implies ¬hasRead(q , d , p)′.

〈3〉3. Case: Phase1or2Read(q , d , p)
Proof: Assumption 4 and d ∈ D (by the level
〈2〉 assumption 1) imply disk [d][p].bal ≥ b. By
Phase1or2Read(q , d , p) and the level 〈2〉 assumption 4
(which implies that the action does not abort the ballot),
this implies:

[block �→ disk [d][p], proc �→ p] ∈
blocksRead ′[q][d]

proving the level 〈2〉 goal.
〈3〉4. Case: ¬Phase1or2Read(q , d , p)

〈4〉1. hasRead(q , d , p)
Proof: By the level 〈3〉 case assumption and the level
〈2〉 assumption 4, since:

HNext ∧ ¬hasRead(q , d , p) ∧
hasRead(q , d , p)′ ⇒ Phase1or2Read(q , d , p)

〈4〉2. ∃ br ∈ blocksRead [q][d] : br .block .bal ≥ b
Proof: By assumption 4, since d ∈ D by the
level 〈2〉 assumption 1, phase[q] = 1 by 〈3〉1,
dblock [q].mbal ≥ b by 〈3〉2 and the level 〈2〉 assump-
tion 3, and hasRead(q , d , p) by 〈4〉1.

〈4〉3. Q.E.D.
Proof: By 〈4〉2 and the level 〈2〉 assumption 4, since:

HNext ∧ hasRead(q , d , p)′ ⇒
(blocksRead [q][d] ⊆ blocksRead [q][d]′)

〈3〉5. Q.E.D.
Proof: By 〈3〉3 and 〈3〉4.

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2 imply
valueChosen(v)(b).2(p,D)′.

〈1〉3. Q.E.D.
Proof: By 〈1〉1 and 〈1〉2.

We now prove Lemma I 2f by proving:

Assume: HInv1 ∧ HInv2 ∧ HInv2′ ∧
HInv3 ∧ HInv5 ∧ HInv6 ∧ HNext

Prove: HInv6′

〈1〉1. Assume: chosen ′ �= NotAnInput
Prove: valueChosen(chosen)′

〈2〉1. Case: chosen = NotAnInput
〈3〉1. choose p ∈ Proc s.t.

EndPhase1or2(p) ∧ (phase[p] = 2)
Proof: HInv2.5 and the level 〈2〉 case assumption im-
ply output [p] = NotAnInput for all processors p.
From HNext .2 and the levels 〈1〉 and 〈2〉 assumptions,
we deduce that output ′[p] �= NotAnOutput for some
p ∈ Proc. By HNext , this implies EndPhase1or2(p)∧
(phase[p] = 2).

〈3〉2. maxBalInp(dblock [p].bal , dblock [p].inp)
Proof: 〈3〉1 implies

∃D ∈ MajoritySet :
∀ d ∈ D , q ∈ Proc : hasRead(p, d , q)

Since any two majority sets have a disk in common, this
implies ¬HInv5(p).R.b. Hence,HInv5 and 〈3〉1 (which
implies phase[p] = 2) imply HInv5(p).R.a .

Disk Paxos 19

〈3〉3. maxBalInp(dblock [p].bal , chosen)′
Proof: 〈3〉1, HNext .2, and the level 〈2〉 case assumption
imply

∧ chosen ′ = dblock [p].inp
∧ dblock ′[p].bal = dblock [p].bal

which implies maxBalInp(dblock ′[p].bal , chosen ′) by
〈3〉2. Lemma BksOf and 〈3〉1 imply that no new element
is added to

{〈bk .bal , bk .inp 〉 : bk ∈ allBlocks}
so maxBalInp(b, v)′ = maxBalInp(b, v)
for any constants b and v . If b and v
are constants, then b = dblock ′[p].bal and
v = chosen ′ imply maxBalInp(b, v)′ =
maxBalInp(dblock [p].bal , chosen)′.

〈3〉4. choose D ∈ MajoritySet s.t.
∀ d ∈ D :

∧ disk [d][p] = dblock [p]
∧ ∀ q ∈ Proc \ {p} : hasRead(p, d , q)

Proof: D exists by 〈3〉1 and HInv2.2(p, d).1.
〈3〉5. Assume: constants q ∈ Proc, d ∈ D s.t.

∧ phase[q] = 1
∧ dblock [q].mbal ≥ dblock [p].bal
∧ hasRead(q , d , p)

Prove: [block �→ dblock [p], proc �→ p] ∈
blocksRead [q][d]

Proof: 〈3〉1 and HInv2.3(p).3 imply dblock [p].bal =
dblock [p].mbal ; HInv2.3(p).2.R.3 and the assumption
dblock [q].mbal ≥ dblock [p].bal then imply

[block �→ dblock [q], proc �→ q] /∈
blocksRead [p][d]

The result now follows from the conclusion of
HInv3(p, q , d), whose hypotheses are proved as fol-
lows: phase[p] = 2 follows from 〈3〉1); phase[q] = 1
is an assumption; hasRead(p, d , q) follows from 〈3〉4
(since phase[p] �= phase[q] implies p �= q); and
hasRead(q , d , p) is an assumption.

〈3〉6. ∀ q ∈ Proc, d ∈ D :
∧ phase ′[q] = 1
∧ dblock ′[q].mbal ≥ dblock [p].bal
∧ hasRead(q , d , p)′

⇒ (∃ br ∈ blocksRead ′[q][d] :
br .block .bal = dblock [p].bal)

Proof: 〈3〉1 and the assumption phase ′[q] = 1 im-
ply q �= p, so 〈3〉1 implies phase[q], dblock [q],
hasRead(q , d , p), and blocksRead [q][d] are unchanged,
for all disks d . The result now follows from 〈3〉5.

〈3〉7. Q.E.D.
Proof: We deduce valueChosen(chosen)′ as follows:

• valueChosen(chosen)′(dblock [p].bal).1 follows
from 〈3〉3 because 〈3〉1 implies dblock [p].bal ′ =
dblock [p].bal .

• valueChosen(chosen)′(dblock [p].bal).2(p,D).1
follows from 〈3〉4, since 〈3〉1 implies disk ′ = disk .

• valueChosen(chosen)′(dblock [p].bal).2(p,D).2
follows from 〈3〉6.

〈2〉2. Case: chosen �= NotAnInput
〈3〉1. chosen ′ = chosen

Proof: By HNext .2 and the level 〈2〉 case assumption.
〈3〉2. Q.E.D.

Proof: We deduce valueChosen(chosen) from the
level 〈2〉 case assumption and HInv6.1. By Lemma
VC and 〈3〉1, this implies the level 〈1〉 goal,
valueChosen(chosen)′.

〈2〉3. Q.E.D.
Proof: Immediate from 〈2〉1 and 〈2〉2.

〈1〉2. Assume: constant p ∈ Proc s.t.
output ′[p] �= NotAnInput

Prove: output ′[p] = chosen ′
〈2〉1. Case: chosen = NotAnInput

〈3〉1. ∀ q ∈ Proc : output [q] = NotAnInput
Proof: By HInv2.5 and the level 〈2〉 case assumption.

〈3〉2. Q.E.D.
Proof: 〈3〉1, the level 〈2〉 case assumption, and
HNext .2 imply that if output ′[p] �= NotAnInput , then
chosen ′ = output ′[p].

〈2〉2. Case: chosen �= NotAnInput
〈3〉1. valueChosen(chosen)

Proof: By the level 〈2〉 case assumption and HInv6.1.
〈3〉2. valueChosen(chosen)′

Proof: By 〈1〉1, since the level 〈2〉 case assumption and
HNext .2 imply chosen ′ �= NotAnInput .

〈3〉3. chosen ′ = chosen
Proof: By 〈3〉1, 〈3〉2, and Lemma VC, since
valueChosen(v) and valueChosen(w) imply v = w .

〈3〉4. Case: output [p] = NotAnInput
〈4〉1. EndPhase1or2(p) ∧ (phase[p] = 2)

Proof: By the level 〈1〉 assumption, the level 〈3〉 case
assumption, and HNext .

〈4〉2. ∃D ∈ MajoritySet :
∀ q ∈ Proc \ {p} : hasRead(p, d , q)

Proof: By 〈4〉1.
〈4〉3. ¬HInv5(p).R.b

Proof: Since any two majority sets have a disk in com-
mon, 〈4〉2 implies ¬HInv5(p).R.b(D , q) for any ma-
jority set D and any q �= p. We then have only to
prove ¬HInv5(p).R.b(D , p) for any majority set D .
Step 〈4〉1 implies that disksWritten[p] contains a disk
d in D , and HInv2.2(p, d).1.R.2 and HInv2.3(p).3
then imply disk [d][p].mbal = dblock [p].bal , proving
¬HInv5(p).R.b(D , p).

〈4〉4. maxBalInp(dblock [p].bal , dblock [p].inp)
Proof: HInv5(p) and phase[p] = 2 (from 〈4〉1) imply
HInv5(p).R, so 〈4〉3 implies HInv5(p).R.a .

〈4〉5. choose bk ∈ allBlocks,
b ∈ union {Ballot(p) : p ∈ Proc}

s.t. maxBalInp(b, chosen) ∧ (bk .bal ≥ b)
Proof: The existence of bk and b follows from 〈3〉1
and the definition of valueChosen .

〈4〉6. dblock [p].inp = chosen
Proof: If dblock [p].bal ≥ b, then this follows from
〈4〉5 and the definition of maxBalInp(b, chosen).
If dblock [p].bal < b, then 〈4〉4 implies bk .inp =
dblock [p].inp, while 〈4〉5 implies bk .inp = chosen .

〈4〉7. Q.E.D.
Proof: 〈3〉3, 〈4〉1 (which implies output ′[p] =
dblock [p].inp), and 〈4〉6 imply output ′[p] = chosen ′.

〈3〉5. Case: output [p] �= NotAnInput

20 E. Gafni, L. Lamport

Proof: In this case, HInv2.3(p).4, the level 〈1〉 assump-
tion, and HNext imply output ′[p] = output [p]; and
HInv6.2 and 〈3〉3 imply output ′[p] = chosen ′.

〈3〉6. Q.E.D.
Proof: By 〈3〉4 and 〈3〉5

〈2〉3. Q.E.D.
Proof: By 〈2〉1 and 〈2〉2

〈1〉3. Q.E.D.
Proof: HInv6′ follows immediately from 〈1〉1 and 〈1〉2.

A.4.6 Theorem R2b

We now prove Theorem R2b by proving:

Assume: HInv ∧ HInv ′ ∧ HNext
Prove: ∨ ∃ p ∈ Proc : IFail(p) ∨ IChoose(p)

∨ unchanged ivars
〈1〉1. Case: ∃ p ∈ Proc : Fail(p)

Proof: We assume p ∈ Proc and Fail(p) and prove
IFail(p), which implies the goal. We obtain IFail(p).1
from Fail(p).4. From Fail(p).1 we infer the existence of
ip ∈ Inputs satisfying IFail(p).2(ip).1; it also satisfies
IFail(p).2(ip).2 by HNext .3 and HInv2.5. We deduce
IFail(p).3 from Fail(p).4, HNext .2 and HInv2.5.

〈1〉2. Case: ∃ p ∈ Proc :
(phase[p] = 2) ∧ EndPhase1or2

〈2〉1. choose p ∈ Proc s.t.
(phase[p] = 2) ∧ EndPhase1or2

Proof: p exists by the level 〈1〉 case assumption.
〈2〉2. dblock [p].inp ∈ allInput

Proof: By 〈2〉1 (which asserts phase[p] = 2),
HInv2.3(p).2.R.1 and HInv2.3(p).3.R, we deduce
dblock [p].bal �= 0. By conjuncts 3 and 5 of
HInv2.1(p)(dblock [p]), this implies dblock [p].inp ∈
allInput .

〈2〉3. Case: chosen = NotAnInput
〈3〉1. ∀ q ∈ Proc : output [q] = NotAnInput

Proof: By the level 〈2〉 case assumption and HInv2.5.
〈3〉2. ∀ q ∈ Proc \ {p} : output ′[q] = NotAnInput

Proof: 〈3〉1 and 〈2〉1.
〈3〉3. chosen ′ = output ′[p]

Proof: By 〈3〉2, 〈2〉1 (which implies output ′[p] �=
NotAnInput), the level 〈2〉 case assumption, and
HNext .2.

〈3〉4. Q.E.D.
〈4〉1. IChoose(p).1

Proof: By 〈3〉1.
〈4〉2. IChoose(p).2

Proof: 〈2〉1 and 〈3〉3 imply
∧ chosen ′ = dblock [p].inp
∧ output ′ =

[output except ![p] = dblock [p].inp]
IChoose(p).2 then follows from 〈2〉2 and the level 〈2〉
case assumption.

〈4〉3. IChoose(p).3
Proof: By 〈2〉1 (which implies input ′ = input),
HInv2.5, and HNext .3.

〈4〉4. Q.E.D.
Proof: 〈4〉1, 〈4〉2, and 〈4〉3 imply IChoose(p), which
implies our goal.

〈2〉4. Case: chosen �= NotAnInput
〈3〉1. chosen ′ = chosen

Proof: By HNext .2 and the level 〈2〉 case assumption.
〈3〉2. output ′[p] = chosen

Proof: HInv6.2′ and 〈3〉1 imply output ′[p] equals
either chosen or NotAnInput . Step 〈2〉1 implies
output ′[p] = dblock [p].inp, which by 〈2〉2 and
HInv1.9 implies output ′[p] �= NotAnInput .

〈3〉3. Q.E.D.
Proof: 〈2〉1 and HInv2.3(p).4 imply IChoose(p).1;
〈2〉1, 〈3〉1, 〈3〉2 and the level 〈2〉 case assumption imply
IChoose(p).2; and 〈2〉1, HNext .3, and HInv2.5 imply
IChoose(p).3. This proves IChoose(p), which implies
the goal.

〈2〉5. Q.E.D.
Proof: By 〈2〉3 and 〈2〉4.

〈1〉3. Q.E.D.
Proof: By 〈1〉1 and 〈1〉2, since

HInv2.5 ∧ HNext ∧ (ivars ′ �= ivars) ⇒
(input ′ �= input) ∨ (output ′ �= output)

and
HNext ∧ ((input ′ �= input) ∨ (output ′ �= output)) ⇒

∃ p ∈ Proc :
Fail(p) ∨ ((phase[p] = 2) ∧ EndPhase1or2)

