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Abstract Using both laboratory experiments and the-
oretical models, we examine the different flow regimes
that may develop when an ash flow encounters a ridge.
For very small ridges, all the flow may pass over the
ridge. For intermediate-size ridges, the flow may be
partially blocked, with a fraction of the flow reflected
upstream as a travelling bore. In this case, the remain-
der of the flow, which does pass over the ridge, is hy-
draulically controlled at the ridge crest. Finally, if the
ridge is sufficiently high, then the flow will be totally
blocked. New laboratory experiments show that the se-
dimentation patterns associated with these flow re-
gimes may be very different. Most importantly, flows
that involve partial blocking and the formation of up-
stream propagating bores display enhanced sedimenta-
tion upstream of the ridge, analogous to valley-ponded
and caldera-fill deposits. In contrast, under some cir-
cumstances, if the flow is able to scale a ridge, the de-
posit may be relatively unaffected by the presence of
the ridge. The minimum ridge height that leads to total
blocking of the flow increases with mass eruption rate
and has a complex variation with distance from the
source. In a one-dimensional channel, the minimum
ridge height that causes blocking increases with dis-
tance downstream. This is because the flow becomes
less dense through sedimentation of particles and en-
trainment of air and so requires less energy to scale a
ridge of a particular height. In axisymmetric flow, the
minimum ridge height initially decreases with distance
downstream as the flow spreads radially, but subse-
quently increases as the flow becomes less dense
through sedimentation and entrainment. A new quanti-
tative model of dilute ash flows propagating over ridges
indicates that flows with mass fluxes in excess of 108–

109 kg/s can partially scale barriers as high as 1000 m at
distances of tens of kilometres from the source, where-
as smaller flows are likely to be totally blocked by such
an obstacle. Our results shed new insight on the possi-
ble long-range transport mechanism of several large
flows including the Ata, Fisher and Aniakchak pyro-
clastic flows.

Introduction

The extreme mobility of large ash flows, exhibited in
their ability to surmount high topographic obstacles,
has presented one of the most confounding problems to
physical volcanology. Aramaki and Ui (1966) noted
that the Ata pyroclastic flow was able to overtop bar-
riers as high as 800 m at distances of 25 km from the
vent. They hypothesized that the flow consisted of a
high “fluidized layer” from which material gradually
settled over the landscape. Miller and Smith (1977)
found that the Fisher outflow sheet was deposited
across the Tugamak Range, more than 500 m high at a
distance of 15 km from the vent; and the Aniakchak
sheet surmounted 700 m high barriers at 20 km. The
Mount St. Helens flow although small, overcame trans-
verse ridges as high as 500 m at 10 km from the summit
crater (Hoblitt et al. 1981; Fisher 1990; Druitt 1992),
whereas the Taupo deposit is found on both sides of
ridges over 1000 m high tens of kilometres from Lake
Taupo, the vent site (Wilson and Walker 1985).

In drawing an analogy between large ash flows and
long-runout landslides, Miller and Smith (1977) envi-
sioned these mobile flows as compact, fluidized bodies,
dominated by their momentum attained from a collaps-
ing eruption column and travelling perhaps on a cush-
ion of trapped air. Walker and McBroome (1983) and
Wilson and Walker (1985) advocated this same model
in studies of the Mount St. Helens blast flow and the
Taupo ignimbrite. However, many detailed studies of
the Mount St. Helens deposit, including those of Ho-
blitt et al. (1981), Waitt (1981), Brantley and Waitt
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(1988), Fisher (1990) and Druitt (1992), advocate mod-
els of the flow as a highly expanded and turbulent grav-
ity-driven flow.

Several recent models have treated massive ash
flows as dilute and highly turbulent currents (Valentine
1987; Valentine and Wohletz 1989; Bursik and Woods
1996). Such models may be particularly relevant for
massive ash flows produced from collapsing fountains.
This is because collapsing fountains tend to be dilute as
a result of the decompression and entrainment of air
above the vent. Indeed, model calculations predict den-
sities of 10 kg/m3 in the collapsing fountain (Bursik and
Woods 1996), which suggests a particle volume fraction
of less than approximately 0.01. Although part of the
flow could become dense again, particularly near the
lower boundary, the flows are highly turbulent and en-
ergetic. Therefore, much of the volume of the flow may
remain dilute. This dilute part of the flow will then
propagate laterally until it has deposited a sufficient
mass of particles to become buoyant and form a coig-
nimbrite cloud. It is the dynamics of this dilute part of
the flow that we examine in this paper.

Bursik and Woods (1996) have demonstrated that
the dynamics of the dilute flow are largely controlled
by the mass eruption rate and the flow density. In turn,
the flow density depends upon the mass of air en-
trained into the fountain and the flow (Smith 1960) and
the rate of sedimentation of the ash particles from the
flow (Valentine 1987; Valentine et al. 1990; Dade and
Huppert 1996; Bursik and Woods 1996). Model calcula-
tions (Sparks et al. 1978; Bursik and Woods 1996) indi-
cate that for eruption rates the 108–1010 kg/s, massive
and dilute ash flows may propagate at speeds 10–200
m/s. Since such eruptions typically persist for as long as
several hours to a few days, the runout distance and as-
pect ratio of the associated deposits may be broadly ex-
plained in terms of the eruption duration, the mass
eruption rate and the particle sedimentation speed.

The present paper represents a continuation of the
study by Bursik and Woods (1996) by examining the
role of topography in their model of a dilute ash flow.

Field evidence demonstrates that ash flows are able
to surmount topographic barriers and deposit thick val-
ley-ponded ignimbrite and thin hilltop veneers (Wilson
and Walker 1985). Numerical studies concur that ridges
and caldera walls may have a dominant impact upon
the propagation of ash flows (Valentine et al. 1992;
Giordano and Dobran 1994). The numerical calcula-
tions have illustrated that dilute ash flows may be able
to surmount some topographic obstacles, whereas with
higher barriers, partial blocking of the flow occurs
(Valentine 1987). However, there is a wide and largely
unexplored range of flow regimes that may develop as
ash flows interact with topographic barriers. Further-
more, the impact of these different flow regimes upon
ash deposition patterns and the associated evolution of
the flow density is not well understood. Analogue ex-
perimental studies of finite, particle-laden aqueous cur-
rents (Woods and Bursik 1994) have illustrated that to-

pographic obstacles modify runout distances and sedi-
mentation patterns. Such experiments do not include
the effects of compressibility, which may occur in real
ash flows, but dynamical scaling of the flow and settling
speeds, show that they represent good analogues of the
transport and sedimentation of dense particles by a
ground current, and many effects are common to ash
flows (see below). These laboratory experiments have
also identified that topographic obstacles may cause the
head of the flow to break up into numerous units, with
a fraction of the head propating over a topographic ob-
stacle and another fraction being reflected by the obsta-
cle (cf. Lane-Serff et al. 1995).

In this paper we apply the techniques of hydraulics
to understand the fundamental controls exerted by to-
pographic barriers upon the maintained ash flows that
follow the head, and to identify their impact on ash
deposition. Our approach of combining analogue labo-
ratory experiments with supporting theoretical models
is complementary to previous numerical simulations
and builds upon the hydraulic models suggested by
Freundt and Schmincke (1985) and Levine and Kieffer
(1991).

Many massive ash flows tend to spread radially from
the vent. However, since the controls exerted by ridges
on linear and radially spreading flows are very similar,
for convenience in our experiments we have examined
the motion of one-dimensional channelled flows. We
then use the models derived from our experimental re-
sults to examine the motion of both radially spreading
and one-dimensional channelled ash flows. First we ex-
amine the different types of flow that may develop as
an analogue laboratory current passes over a ridge.
This provides the framework for understanding the
more complex dynamics of a sedimenting current in
which the density relative to the environment gradually
decreases with distance from the source. We then ana-
lyse the deposition of suspended particles from a steady
current propagating (a) along a near-horizontal slope
and (b) over topographic obstacles. Finally, we com-
bine models of ash deposition and of the topographic
control of ash flows to explore the effects of ridges
upon ash-flow propagation and the associated ash dep-
osition. We focus on the interaction of flows with ridges
aligned normal to the flow. However, the interaction of
the flow with ridges aligned obliquely to the flow may
be very different and more complex. This will form the
subject of future study.

The experimental system

We studied the motion of one-dimensional, particle-
laden saline currents advancing through a tank of fresh
water. The experimental perspex tank had dimensions
300!100!20 cm. We inserted a false bottom into the
tank in order to model different terrain (Fig. 1). During
each experiment, the tank was filled with water to pro-
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Fig. 1 The laboratory apparatus, including the different topo-
graphic controls inserted in the tank

duce a uniform environment, and currents of either
aqueous salt solution or particle-laden aqueous salt so-
lution were then discharged into this tank. The fluid
was supplied from a 20-l reservoir, entering the tank
through a feeder gate (Fig. 1). The particle-laden cur-
rents were produced by adding particles of known sizes
to the fluid in the feeder reservoir. This was vigorously
stirred during discharge to ensure that a uniform well-
mixed solution was produced. To focus upon the dy-
namics, we used saline source fluid of density 1.03 g/
cm3 such that the density of the currents relative to the
ambient water did not change significantly as particles
sedimented. Effects due to the currents becoming posi-
tively buoyant after a certain amount of sedimentation
are not considered here, although such effects can be
important in pyroclastic flows (Woods and Bursik 1994;
Bursik and Woods 1996). The evolution of the flow was
recorded by video during each experiment. After each
experiment, all of the sediment deposited on the floor
of the tank was collected, dried and weighed. The sedi-
ment was collected in samples of equal area, spanning
the width of the slope (20 cm), each extending 5 cm
downslope.

To model particle-laden ash flows, the experiments
were designed to have dynamical properties similar to
those of ash flows. In particular, the typical Reynolds
number of the experiments, uh/n, was equal to 103–104

for current depths of order 5–10 cm. Therefore, the
flow was highly turbulent, with eddy velocities compar-
able to mean flow speed. Also, the mean settling speed
of the particles of grit used in the experiments was ap-
proximately 0.1 cm/s, whereas the average along-cur-
rent flow speed was 1–10 cm/s. Thus, the current was
easily capable of suspending the particles in the flow.
This flow regime is directly analogous to that of a dilute
massive ash flow. In such flows the typical speed is 10–
100 m/s, the flow depth is 100–1000 m, and the flow
density is 1–10 kg/m3 giving Reynolds numbers of 107–
109 and implying a highly turbulent flow. Furthermore,
the typical settling speed of ash particles, 0.1–1 mm in
size, sedimenting from an ash flow is F0.1–1 m/s (Bur-
sik and Woods 1996). Therefore, as with our experi-

ments, the turbulence is able to suspend the particles in
the flow.

The rate of mixing of the current with the overlying
ambient fluid depends on the Richardson number of
the current. This represents a balance between the po-
tential energy required to mix and the kinetic energy
available for mixing (Ellison and Turner 1959; Turner
1979; Bursik and Woods 1996)

Rip
gD h

u2 . (1)

If the Richardson number of the flow takes very
small values (~0.1) then the entrainment becomes sig-
nificant. However, for larger values of Ri, the entrain-
ment is negligible. In the laboratory experiments, there
was a zone of flow establishment of length F10–20 cm
beyond the source, in which the mixing was very vigor-
ous (cf. Wilkinson and Wood 1971). However, down-
stream of this region, the flow Richardson number in-
creased to values of F1–10. As a result, the rate of mix-
ing of ambient fluid into the laboratory currents was
very small, and the volume flux of the laboratory cur-
rents remained nearly constant as they propagated
along slope.

Ash flows may propagate as either subcritical or su-
percritical flows (Bursik and Woods 1996). Subcritical
ash flows are relatively deep and slow, with Richardson
numbers typically in excess of unity so that any entrain-
ment of the overlying air is negligible. The laboratory
experiments therefore provide a good analogy with
subcritical ash flows. Many of the phenomena con-
nected with hydraulic control and blocking that we de-
scribe in this paper relate to subcritical flows. There-
fore, our experiments have direct analogies for the mo-
tion of ash flows. In contrast, supercritical ash flows,
which propagate at higher speed, have smaller Richard-
son numbers (0.1–1.0), and therefore they may entrain
significantly more air. Although the fractional increase
in mass of the current due to entrainment is still small,
some caution is required in applying results to supercri-
tical ash flows, because the present experiments can
only simulate the initial stages of their propagation,
when the effects of entrainment on the density are ne-
gligible.

Dynamics of currents flowing over topographic controls

To illustrate the fundamental controls that ridges can
have on the motion of ash flows, it is first useful to de-
velop a simple model of our laboratory system (cf.
Turner 1979). Later, we extend this model for applica-
tion to real ash flows, including the effects of sedimen-
tation of particles on the density of the flow relative to
the ambient air. In the experiments, a steady dense cur-
rent propagated along a near-horizontal boundary
through a deep layer of fluid of similar but smaller den-
sity (Fig. 2). The motion of this current may be de-
scribed using conservation of mass and momentum.
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Fig. 2 The model ash flow showing the different flow properties

Equations of motion

Mass conservation

As described above, due to the relatively large Rich-
ardson numbers of the experiments, and hence the lack
of significant entrainment, to good approximation the
volume flux per unit width, Q, is constant,

Qpuh (2)

Momentum conservation

On a nearly horizontal slope under a deep overlying
layer of fluid, the equation of motion for steady flow
has the form

u
du
dx

pP
dp
dx

P ( cD )g sinuPF, (3)

where p(x,y) is the pressure at height y above the
slope, and F is the frictional stress on the current. In the
laboratory system, the density of the particle-laden sa-
line currents, cD , was close to that of the ambient
water, ; thus, we can approximate the current density
with the value  except when calculating terms that are
directly dependent on this density difference (the Bous-
sinesq approximation; cf. Turner 1979). The local hy-
drostatic pressure at height y above the boundary ypd
is given by

p(y)ppac g(HPdPh)cg( cD )(hPy), (4)

where d(x) is the depth of the boundary above surface
yp0, the free surface is at ypH and h(x) is the depth
of the current at distance x along-slope. In the experi-
ments, the Reynolds number is of magnitude 105–106;
thus, the currents are turbulent. Therefore, the friction-
al stress F acting on the current may be expressed in
terms of the friction factor fF0.01P0.001 and the cur-

rent depth speed, FFfu2/h (Schlichting 1979). For the
laboratory currents FF10P2 and thus is negligible, in
direct analogy with calculations of the motion of ash
flows (Bursik and Woods 1996).

If we combine all these simplifications, then the
momentum, Eq. (3), may be reduced to the convenient
form, using the approximation dd(x)/dxpsinu

Bp
u2

2
cD ghcD gd, (5)

where the Bernoulli integral, B, which represents the
energy per unit mass of the flow, is a constant. Combin-
ing Eqs. (2) and (5) we deduce that as a steady flow
passes over a ridge, the velocity evolves according to
the relation (cf. Turner 1979)

Bp
u2

2
c

D gQ
u

cD gdpB0cD gd, (6)

where the quantity

B0p
u2

2
c

D gQ
u

(7)

varies with velocity u and takes its minimum value
when

upucp(D gQ/ )1/3. (8)

If u~uc, then the flow is called subcritical, whereas if
u1uc, the flow is supercritical.

Flow over a ridge

When the flow encounters a ridge, numerous flow re-
gimes may develop depending on the height of the
ridge and the flow speed. These different regimes fol-
low from Eq. (6) and were described mathematically by
Houghton and Kasahara (1968) in their study of the
flow of wind over mountains. Here, we summarise the
main results and phenomena in the context of our ex-
periments. However, for completeness, in the Appen-
dix we include a full physical derivation of the different
possible flow regimes.

If a subcritical flow encounters a small ridge, then it
can surmount the ridge by increasing its speed and low-
ering the value of the quantity B0 (Eq. (7)) to compen-
sate for the increase in potential energy, D gd, such
that B remains constant. If the ridge is sufficiently high
that, in order to pass over the ridge, B0 falls to the min-
imum value, B0(uc), then the flow is described as being
critical at the ridge crest; downstream of the crest, the
flow may become supercritical (Fig. 3a). This is the
highest ridge that the flow can pass over en masse.

If the ridge is higher than the critical height for
which the flow is controlled at the ridge crest, then a
fraction of the flow is unable to traverse the ridge. In-
stead, this part of the flow is reflected at the ridge and
propagates back upstream as a bore (Fig. 3b). The frac-
tion of the flow that can pass the ridge decreases as the
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Fig. 3 Photographs of experiments illustrating the a transition
from subcritical to supercritical flow over a ridge; b a sequence
illustrating the development of a backward propagating bore, the
subsequent deepening of the layer upstream of the ridge and the
ultimate flow of the whole current over the ridge. Downstream of
the ridge, the flow is supercritical and becomes progressively
stronger with time. Note that in a real ash flow the upstream
propagating bore may be less dense than the underlying current
as a result of sedimentation, and may in fact become buoyant and
lift off, thereby preventing sufficient deepening upstream that all
the current may pass over the ridge

ridge height increases, until eventually all of the flow is
blocked by the ridge. For ridges that are higher than
the critical value to block the whole flow, all the flow is
reflected at the ridge and no material propagates
beyond the ridge crest. Using the hydraulic theory, de-
scribed in detail in the Appendix, it is possible to calcu-
late the height of a ridge at which the flow first be-
comes partially blocked and the height at which the
flow first becomes fully blocked. We use these results in
Application to ash flows passing over ridges, where we
apply the model to real ash flows.

More complex terrain

The foregoing discussion has identified the important
controls a single ridge may have on an ash flow. How-
ever, in general, ash flows propagate over more com-
plex terrain, possibly including several ridges of differ-
ent heights. In Fig. 4a we present a sequence of photo-
graphs to illustrate how a laboratory current gradually
adjusts if it encounters two ridges, a relatively small up-
stream ridge and a larger downstream ridge. The head
of the flow, which propagates as a gravity current,
splashes up over the ridge, and a fraction continues
downstream (cf. Lane-Serff et al. 1995). However, the
motion of the steady current following the head be-
comes somewhat detached from the head as it passes
over the ridge; the flow dynamics become controlled by
the ridge rather than the head of the flow.

In the experiments, the current is partially reflected
by the upstream ridge, and the flow therefore deepens
upstream. This deepening continues until all the flow is
able to pass over the small ridge. Meanwhile, a large
fraction of the flow downstream is reflected by the sec-
ond ridge. This generates a second large bore which
propagates back upstream, causing the flow to deepen
in the region between the ridges. This second bore is so
deep that it continues to propagate back over the first
ridge toward the source. Eventually, the flow upstream
of the large ridge deepens sufficiently so that all the
flow may pass over this large ridge. The smaller ridge
upstream then has a much weaker influence on the
steady flow. In the contrasting situation in which there
is a large ridge upstream, and a smaller ridge down-
stream (Fig. 4b), each ridge controls the flow upstream.
Indeed, in Fig. 4b the subcritical flow that passes over
the second ridge has propagated all the way back to the
first ridge. This produces a hydraulic jump in the flow
as it changes from the supercritical plunging flow just
downstream of the first ridge to the subcritical flow up-
stream from the second ridge.

Later, we discuss the relevance of these experiments
to the propagation of ash flows. One additional effect
in ash flows that complicates the discussion is that the
reflected bore becomes progressively less dense as it
propagates back upstream and deposits particles. As a
result, mixing with the underlying, advancing current
may be suppressed, and the flow may eventually be-
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Fig. 4a, b The more complex bores and controls on ash-flow
propagation that occur when there is more than one ridge pres-
ent. a Sequence shows that, with the larger ridge downstream, the
flows are eventually controlled by this ridge everywhere. Howev-
er, there is a second transient bore that develops upstream of the
smaller ridge before the flow is dominated by the downstream
ridge. b With the larger ridge upstream, each segment of the flow
is controlled by nearest upstream ridge

come buoyant. This may reduce the effectiveness of the
deepening of the flow upstream of the ridge, thereby
limiting the fraction of the flow which can in practice
overtop the ridge.

Sedimentation from a steady current on a planar

surface

In order to understand how the different topographic
controls described previously affect ash deposition, we
first examine sedimentation on a uniform surface. This
provides a reference with which we can compare the
more complex sedimentation patterns as flows move
over topography. The present experiments also enable
us to test the model of ash flow sedimentation that we
applied to predict the properties of some of the largest
known ash flows (Bursik and Woods 1996).

Observations

Bursik and Woods (1996) argued that many of the
largest ignimbrite deposits in the geological record
were emplaced over times 104–105 s (neglecting pauses
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Fig. 5 Variation with along slope position of the mass of sedi-
ment on the base of the laboratory vessel, collected during a typ-
ical experiments. The experimental data are compared with the
exponential decay curve predicted by the theory (see Eq. 11)

between depositional episodes); thus, the majority of
the ash deposition occurred from a steady flow. We
conducted numerous experiments to examine the depo-
sition from such steady flows and test the basic aspects
of their model. In Fig. 5 we show the mass of sediment
as a function of the position along the slope, measured
in a typical laboratory experiments. To very good ap-
proximation, the mass of sediment decays exponential-
ly with distance along the slope. We now show that this
is in accord with theoretical predictions.

Theoretical model

As the current propagates along the slope, the mass of
particles per unit mass of current decreases by sedimen-
tation. If the mean settling speed of the particles is
much smaller than the speed of the flow, then the par-
ticles will mix well in turbulent suspension. In our ex-
periments, we used sieved silicon carbide grinding par-
ticles with a mean grain size of F100 mm and a mean
settling speed of F0.1 cm/s. In contrast, the mean
speed of the flow was typically 5 cm/s, so that in our
experiments, as with large ash flows (Valentine 1987;
Sparks et al. 1978), the particles were well mixed
throughout the flow. Hazen’s law of sedimentation
(1904) suggests that for such a flow, the mass flux of
particles, M, decreases at the rate

dM
dx

pP
vsM
Q

, (9)

where vs is the characteristic settling speed of the par-
ticles and Q is the volume flux per unit width. Equation
(9) suggests that if, as in our experiments, the volume
flux of the current remains nearly constant, then the
mass flux of particles in the current should decay ac-
cording to the relation

MpM011Pexp1Pvs x
Q 22 (10)

and the rate of deposition of sediment, S, per unit dis-
tance along slope should decay with distance according
to

S(x)p
M0vs

Q
exp1Pvsx

Q 2, (11)

where M0 is the initial mass flux of particles. In Fig. 5
we successfully compare the predicted sediment mass
(Eq. (11)) with the experimentally measured sediment
deposit. We deduce that, for flows in which there is ne-
gligible entrainment, the rate of sedimentation depends
simply upon the sedimentation speed and the volume
flux. The experimental result corroborates the ash flow
model used by Bursik and Woods (1996) to estimate
(to leading order) deposition patterns and maximum
runout lengths in several of the largest historical ignim-
brite eruptions. In that study the effects of a grain-size
distribution on the sedimentation and dynamic evolu-
tion of the flow is also discussed. The key result is that
the flow and deposit gradually become more fine
grained with distance from the source, although at any
point in the flow there is a wide range of grain sizes in
the deposit due to the turbulent suspension of the par-
ticles. We now examine how the sediment deposition
changes if topographic obstacles are present.

Sedimentation over topographic obstacles

Small ridges

In a channel of fixed width, the rate of sedimentation
from a steady, non-entraining particle-laden current de-
cays exponentially from the source at a rate that de-
pends only on the volume flux and sedimentation
speed. If the flow is able to pass over a ridge en masse,
then the volume flux upstream and downstream will be
the same; thus, the sediment deposit should decay ex-
ponentially from the source as in the absence of the
ridge (Eq. (11)). We have tested this prediction with an
experiment in which a subcritical flow passed over a
small ridge, was just controlled at the ridge crest, and
became supercritical downstream (see Fig. 3a). Figure
6a illustrates that, to very good approximation, the se-
diment mass does indeed decay nearly exponentially
with alongslope distance; there is no significant signal
of the presence of the ridge. Although this result is sig-
nificant, the Richardson numbers of the experimental
currents remain small; thus, there is negligible entrain-
ment into the flow. In contrast, in a real ash flow, the
supercritical flow downstream may begin to entrain air,
because the Richardson number decreases (Woods and
Bursik 1994). Therefore, the rate of sedimentation may
begin to decrease somewhat more rapidly with distance
downstream (see below).
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Fig. 6a, b The variation of the sediment deposit as a function of
the distance alongslope in a current passing over a ridge. a The
flow is subcritical upstream and supercritical downstream of the
ridge (see Fig. 4a). The deposit shows very little signal of the
ridge presence in accord with the theory. b The flow was partially
reflected at the ridge and therefore the sediment upstream of the
constriction is enhanced. For comparison, the results from an ex-
periment on a flat slope are also shown

Partially blocked flow

If the flow has insufficient energy to pass over a ridge
en masse, then a bore propagates upstream, and the
volume flux supplied downstream of the ridge is small-
er than that upstream of the bore (Fig. 3b). As a result,
much more of the particulate load remains upstream of
the ridge, producing a very asymmetric deposit. Also,
since the volume flux is smaller downstream of the
ridge, the mass of deposit decays more rapidly with dis-
tance than it does upstream (Eq. (11); Fig. 6b).

The amount by which the distribution of a deposit is
affected by partial blocking depends on the duration of
the flow in comparison with the time required for the
upstream propagating bore to reach the source or pos-
sibly to become buoyant and lift off (see Flow over a

ridge). If the flow is able to deepen sufficiently up-
stream so that all the flow can eventually overtop the
ridge, then the deposit will be dominated by the steady
state in which the subcritical flow upstream feeds the
supercritical flow downstream. If the flow subsequently
becomes subcritical further downstream, then, noting
possible effects of entrainment (see below), the deposit
may not be greatly affected by the ridge (Fig. 6a). How-
ever, if the eruption time is relatively short, or the flow
is never able to fully overtop the ridge, then a much
more asymmetric deposit will result (Fig. 6b).

Sedimentation across changes in slope angle

In addition to flows over smooth ridges, we examined
the effect of a decrease in slope, such as occurs in flows
propagating down the flanks of a volcano onto a plain.
However, for small changes in slope (a few degrees) the
steady flow does not entrain large quantities of fluid at
the slope break; thus, the volume flux of the current
remains nearly constant across the slope break. As a
result, we found that, to good approximation, the mass
of sediment continues to decay exponentially with dis-
tance as in the case of a planar slope.

Application to ash flows passing over ridges

The model presented herein enables us to study the
motion of an ash flow passing over a ridge. We can ap-
ply the theory (see Dynamics of currents flowing over
topographic controls and the Appendix) to calculate
the minimum ridge height that can totally block a flow.
Our model of steady flow over a ridge enables us to
calculate this height. This minimum ridge height will
block the flow only if the flow is just critical (see Flow
over a ridge). A supercritical flow has greater total en-
ergy, and the ridge only partially blocks the flow, so
that a fraction can propagate over the ridge. To apply
this result, we first adapt the theory presented in Dy-
namics of currents flowing over topographic controls
and the Appendix for application to the motion of ash
flows. We analyse both one-dimensional and axisym-
metric flows, using the equations describing the steady
motion of an ash flow (Bursik and Woods 1996).

One-dimensional ash flow

Bursik and Woods (1996) showed that if a flow propa-
gates subcritically, then entrainment is negligible.
Therefore, in a one-dimensional channel, the volume
flux per unit width, Q, remains constant at its initial val-
ue

QpQ0. (12)

Also, by analogy with Eq. (3), the momentum equation
has the form (cf. Turner 1979)



46

hub
du
dx

pgh(aPb)
d(hcd)

dx
P

1
2

gh2 db

dx
P fbu2, (13)

where b is the current density, a the ambient density, d
is the height of a ridge and fbu2 is the frictional force
acting on the current. The second term on the right-
hand side represents the acceleration produced by the
decrease in buoyancy of the flow with sedimentation
(Bursik and Woods 1996). Unless the terrain is particu-
larly rough, the frictional force is small and to leading
order may be neglected. On rough terrain, the flow dy-
namics may be more complex, with local flow separa-
tion events developing and possibly changing the effi-
ciency of sedimentation; such effects will form the sub-
ject of future study.

As previously shown, we can define a volumetric
Bernoulli energy density

Bvp
u2

2
c

gbQ
u

cgbd, (14)

where the reduced gravity is now given by gbpg
bPa

b
.

Using Eqs. (12) and (13) it follows that, in an ash flow,
the Bernoulli energy density evolves with distance ac-
cording to the relation

dBv

dx
p

dgb
dx 3(2aPb)Q

2ua
cd4 . (15)

This equation identifies how the sedimentation of
ash, which reduces the relative density of the flow, gb,
leads to a decrease in the Bernoulli energy density.
Since the flow density evolves significantly only over
the whole runout distance of the flow, then the Ber-
noulli energy density also changes significantly only
over distances comparable to the length scale of the
whole flow. Therefore, in large ash flows, which travel
tens of kilometres from the vent, the change in Ber-
noulli energy density as the flow passes over a typical
ridge, 2–5 km long, is relatively small. Thus, to good ap-
proximation, we may use the local value of the Ber-
noulli function (Eq. (14)) to analyse the flow over a
ridge.

The rate of sedimentation of ash from the flow may
be described using the model presented in sedimenta-
tion from a steady current on a planar surface, but in-
cluding the effects of the multiple-grain-size distribu-
tion. Bursik and Woods (1996) have shown that this
leads to an expression for the density of a subcritical
ash flow as a function of the distance x from the
source

bp
P

RT31c
1Pn0

n0

exp1P 1
Q

x

#
0

v̄s dx24 , (16)

where P is the atmospheric pressure, T the flow tem-
perature, R is the gas constant of the flow, n0 is the ini-
tial gas mass fraction of the flow and v̄s is the mean set-
tling speed of the ash, which is a function of distance

Fig. 7 Calculation of the minimum height of a ridge that will to-
tally block a subcritical ash flow in a a one-dimensional channel,
and b a radially spreading current. Mass fluxes are indicated on
the curves

from the source. Using Eqs. (15) and (16) we can calcu-
late the value of gb and Bv at each point in the flow.
The analysis presented in Dynamics of currents flowing
over topographic controls and the Appendix (cf. Fig.
A2) may then be applied locally to examine the interac-
tion of the ash flow with ridges of different heights. In
particular, for a flow with volume flux Q per unit chan-
nel width, the minimum ridge height required to totally
block the flow has the value

d(x)F2.11 Q
gb(x)2

1/3

. (17)

This height increases with distance downstream as a re-
sult of the sedimentation of clasts and the associated
reduction in the density of the flow, which enables the
flow to scale progressively higher obstacles (Fig. 7a).
The grain-size distribution in the flow has an important
influence on the rate of sedimentation and hence the
rate at which the density of the flow decreases. Firstly,
although the flow becomes progressively finer grained
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as it propagates from the source, if it is partially
blocked by a ridge, then the reflected part of the flow
will lead to enhanced sedimentation of the fine-grained
material near source. Secondly, in a more fine-grained
flow, the sedimentation is slower; thus, a flow of given
mass flux is required to propagate much farther before
the density has fallen sufficiently to scale a ridge of giv-
en height. Thus, the presence of topographic obstacles
close to the source may actually lead to blocking and
enhanced sedimentation of a fine-grained flow near
source, whereas a coarser flow may be able to pass over
the ridge.

Also note that if the flow becomes supercritical at
some point, then the ensuing entrainment of air causes
the density of the flow to decrease toward that of the
ambient density more rapidly, and the volume flux in
the flow increases. Both of these effects lead to an in-
crease in d (Eq. (17)). We deduce that as supercritical
flows evolve, they are able to surmount progressively
higher ridges than are their subcritical counterparts.

The results presented herein provide a leading-order
guide to the blocking of the flow. However, once the
blocking has started, and the bore propagates back up-
stream, the density of the flow that arrives at the ridge
may evolve. Indeed, the flow may become density stra-
tified because of the smaller mass of ash in the bore
propagating upstream over the oncoming flow. More
detailed study is beyond the scope of the present work,
although we note that such stratification of the flow,
with a particle-laden underflow and a less dense bore,
was observed in the experiments (e.g. Fig. 4).

Radially spreading currents

In the absence of channelling, many ash flows spread
approximately radially from the vent. We now extend
our model to investigate the effects of ridges on such
axisymmetric flows. The Bernoulli energy density for a
radially spreading flow has the form

Bvrp
u2

2
c

gbQr

ru
cgbd, (18)

where Qr represents the total volume flux per radian,
Qrpuhr. Using the steady momentum equation for a
radial flow (e.g. Bursik and Woods 1996; Bonnecaze et
al. 1995), it follows that a subcritical flow evolves with
radius r according to the law

d
dr 3

u2

2
c

gbQr

ru
cgbd4p3(2aPb)Qr

2uar
cd4 dgb

dr
, (19)

where again we neglect the effects of friction and en-
trainment. Using a similar method as for the one-di-
mensional flows, the minimum ridge height that can to-
tally block a flow is given by

dmr(r)p2.11 Q2

gbr32
1/3

. (20)

The density of subcritical flows evolves mainly as a
result of sedimentation. Applying the same model as in
one-dimensional ash flows, but adapted for a radially
spreading flow (e.g. Bursik and Woods 1996), we can
therefore calculate the minimum ridge height for total
blocking (Eq. (20)). We find that initially this ridge
height decreases as a result of the increase in radius of
the flow (Eq. (20); Fig. 7b). However, farther from the
source, after the flow has deposited a substantial frac-
tion of its particles, its density approaches that of the
ambient air. Thus, the flow is able to surmount increas-
ingly high ridges without being fully blocked. Indeed,
for mass eruption rates of 108–109 kg/s, we predict that
the flow is able to overtop obstacles well over 1000 m
high. Again, the location of such obstacles ahead of the
source will determine the fraction of the flow that is
partially blocked by the ridge, and in turn this depends
on the grain-size distribution of the flow (see above).

Implications for deposits

The above results suggest that, in many cases, large ash
flows are only partially blocked by high ridges, over
1000 m in elevation, and that a fraction of the flow is
able to pass over such ridges, especially if located far
from the vent. This result is consistent with the field
observations described in the Introduction. The formu-
lae presented in this section illustrate that the minimum
ridge height for blocking increases with the mass flux of
the flow. For eruption rates in excess of 108–109 kg/s,
our calculations (Fig. 7) show that typically a fraction of
all ash flows will be able to propagate over ridges even
1000 m high. Only in eruptions with lower mass flux,
and flow conditions near the critical speed Up1 (see
Appendix), is the flow likely to be totally blocked by a
ridge. Given that in most cases part of an ash flow may
scale even very high ridges, we now consider how the
ridge might impact the sediment deposit.

In Sedimentation over topographic obstacles, we
showed that partial blocking of a flow may lead to a
much thicker deposit upstream of a high ridge. Such
partial blocking may explain the origin of valley-pond
and crater-fill deposits, which are often observed (Wil-
son and Walker 1985). Also, the reflected part of the
flow may carry fine-grained material back upstream,
leading to anomalous deposition of fine material near
the source, in contrast to an unobstructed flow that be-
comes progressively more fine grained with distance
from the source. In our experiments, we also found
that, if all the flow overtopped the ridge, then the flow
deposit has similar properties upstream and down-
stream of the ridge (Fig. 6). In a real ash flow the pro-
cess may be somewhat more complex. In particular, if
flow is controlled at the ridge crest, then downstream of
the ridge the flow may become supercritical. Depend-
ing on the conditions farther downstream, this flow
may continue as a supercritical flow or may adjust to
become subcritical (Figs. 4, 8). If the flow adjusts to be-
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Fig. 8 Diagram shows how the flow and deposit may vary as a
function of the presence of a ridge. Depending on the terrain
downstream from the ridge, the flow may propagate as a subcriti-
cal or supercritical flow after passing over the ridge, and these
two flow regimes will lead to different runout lengths and deposi-
tion patterns (cf. Woods and Bursik 1994)

Fig. 9 Illustration of the adjustment of the flow as it passes over a
ridge, deepens upstream and eventually passes over the ridge

come subcritical, then, as in the experiments in sedi-
mentation over topographic obstacles, the deposit will
be largely independent of the ridge. However, if the
flow remains supercritical, then it will evolve toward
very low Richardson numbers and may entrain large
quantities of air (Fig. 8). As a result, the particles will
become more dilute, and the flow will deposit material
more slowly than the corresponding subcritical flow
(see aforementioned section). Also, the flow density
decreases toward that of the air much more rapidly, re-
ducing the runout length of the flow (cf. Bursik and
Woods 1996). Even though the flow might surmount
the crest (cf. Fig. A4), the flow deposit may not extend
as far beyond ridges as in other directions where there
are no topographic controls and the flow can remain
subcritical (Fig. 8).

Conclusion

We carried out a series of experiments to examine the
control of topography upon the propagation of ash
flows. We have shown that ash flows may readily sur-
mount small ridges, and that there may be little indica-
tion of the ridge recorded in the thickness variations of
the deposit. For larger ridges, only a fraction of the
flow can surmount the ridge, and the remainder of the
flow is reflected back from the ridge toward the source
in the form of a bore (Fig. 9). In this case the ash de-
posit may be asymmetrically distributed about the

ridge, with an unusually thick deposit upstream of the
ridge and a rapidly thinning deposit downstream. Cal-
culations suggest that large ash flows, with eruption
rates in excess of 108 kg/s, can be totally blocked by
ridges only higher than approximately 1000–1500 m.
Since many ridges are not this high, we expect that, in
general, ash flows will partially overtop ridges, as is ob-
served in many deposits (see Introduction). This result
is particularly true far downstream of the source, since
the flow becomes progressively less dense through sedi-
mentation and thus is able to surmount progressively
higher ridges. Indeed, eventually the flow becomes less
dense than the surrounding atmosphere and will lift off
to form a fines-enriched coignimbrite cloud. Therefore,
as they approach their distance of maximum runout,
ash flows can surmount high ridges, consistent with ob-
servations that the Ata, Fisher, Aniakchak and other
large flows were able to overtop extremely high obsta-
cles at great distances from the vent (see Introduc-
tion).

Our analysis has identified some of the fundamental
effects of ridges upon ash flows. Although the different
phenomena are somewhat simplified, they provide a
framework for further detailed study of ash-flow inter-
action with topography. There are many other complex
effects that may be induced by ridges, particularly those
caused by their lack of regularity and continuity. These
effects include flow diversion, as often occurs in smaller



49

Fig. A1 Variation of the Bernoulli energy integral as a function
of the velocity of a current ot fixed volume flux, illustrating the
subcritical and supercritical flows. Curves are shown for three
fixed values of the elevation of the floor, illustrating how the cur-
rent velocity evolves with floor elevation. In (i) as the depth of
the ridge increases, the flow evolves toward the critical flow but
remains either sub- or supercritical. In (ii) the flow becomes just
critical at the point of maximum elevation of the ridge, and then
may undergo a transition to the supercritical flow branch. In (iii)
the flow becomes critical before reaching the top of the ridge and
therefore is unable to pass over the ridge as a coherent current

flows (e.g. Druitt 1992) or when the flow encounters a
ridge at an oblique angle (e.g. Kneller et al. 1991). An-
other important issue concerns the evolution of the
leading head of an ash flow, which is different from the
main steady flow. Our experiments, and those of Lane-
Serff et al. (1995) and Woods and Bursik (1994), sug-
gest that a fraction of this head is able to surmount high
obstacles, and that the head becomes detached from
the main flow as it passes over such a ridge. These
problems will be the subject of future study.
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Appendix: Hydraulics of flows over ridges

In this Appendix, we use the Bernoulli integral B to
analyse the flow over a ridge and thereby establish con-
ditions under which the flow is partially and fully
blocked by the ridge. In Fig. A1, we have plotted the
variation of B0 (Eq. (7)) with the velocity u for a given
volume flux Q. The energy B0 has a minimum value
when the velocity

upucp(gbQ)1/3, (A1)

where the reduced gravity gb is defined as gbp
D g

.

This critical speed uc coincides with the speed of inter-
facial gravity waves propagating on the surface of the
current. For each value of B01Bc there are two possi-

ble values of the current speed. If the current speed
u~uc, then the flow is slow and deep (subcritical flow).
If the speed u1uc, then the current is fast and shallow
(supercritical flow).

For a given flux Q, both the subritical and supercri-
tical flows have greater energy per unit mass than the
corresponding critical flow. This additional energy may
be converted to potential energy to lift the flow over a
ridge. Therefore, as the flow propagates over the ridge,
the current evolves toward the critical flow. This is indi-
cated in Fig. A1, in which the Bernoulli energy density
is shown for flow at three different elevations on the
ridge. The lines with solid arrowheads illustrate how
the flow velocity evolves as the flow moves up the
ridge. The arrows with open heads indicate the subse-
quent evolution of the flow as it descends from the
ridge. Numerous flow regimes may develop depending
on the elevation of the ridge and the criticality of the
flow upstream of the ridge.

Small ridges – smooth flow

If the flow is sufficiently energetic or the ridge is suffi-
ciently small, then all the flow is able to pass over the
top of the ridge. As the flow advances ahead of the
ridge, it adjusts smoothly back to the flow regime up-
stream of the ridge (Fig. A1, case (i)).

If the energy is smaller or the ridge is higher, then
the flow may become just critical at the ridge crest (line
(ii), Fig. A1). This ridge height is the maximum that the
flow is able to surmount en masse and is given by the
condition that the flow just becomes critical at the top
of the ridge, so that

dp1 1
D g21BP

3
2

(gbQ)2/32 . (A2)

The analysis may be simplified by scaling the upstream
velocity by the critical velocity, Upu/uc, and the ridge
height d by the critical flow depth hcpQ/uc, to the form
Dpd/hc. Using these scalings, Eq. (A2) becomes

Dp
U2

2
c

1
U

P
3
2

. (A3)

We plotted Eq. (A3) in Fig. A1 (lower line). The
curve illustrates that as the flow becomes progressively
more sub- (U~1) or super- (U11) critical, and there-
fore more energetic, the maximum ridge height that the
whole flow can pass over increases. Note that for crit-
ical flow conditions, Up1, the flow as a whole cannot
pass over a ridge of any elevation, since for a given
steady volume flux, the critical flow corresponds to the
minimum possible energy.

If the flow becomes critical at the top of the ridge,
then, ahead of the ridge, the flow typically adjusts to
become supercritical downstream (Fig. A1; cf. Hough-
ton and Kasahara 1968). Flows that are critical at the
ridge crest typically become supercritical downstream,
because supercritical flows travel faster than gravity
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Fig. A3 Illustration of the maximum height at which all the flow
can pass over a ridge (lower line) and of the minimum height at
which all of the flow is blocked by ridge (upper line) as a function
of the velocity of the flow. The height has been divided by the
depth of the critical flow, and the velocity divided by the speed of
the critical flow

Fig. A2 Diagram defining the properties of the upstream propa-
gating bore and the controlled flow over the ridge

waves and therefore any downstream perturbations are
swept downstream and cannot affect the flow at the
ridge. In contrast, if a flow that is controlled at the
ridge crest were to become subcritical downstream,
then any downstream perturbation could propagate
back to the ridge crest and ultimately cause a transition
to supercritical flow downstream.

Intermediate-size ridges – partially blocked flow

If the flow has insufficient energy to surmount a ridge
crest en masse, then a fraction of the flow will be re-
flected from the ridge as a bore (Figs. A2, A3). Figure
3b illustrates a flow that is partially blocked by a ridge,
which therefore produces a backward-travelling bore.
The fraction of the flow that can pass over the ridge
may be estimated in a fashion analogous to the block-
ing of wind over mountain ridges (e.g. Houghton and
Kasahara 1936; Yih and Guha 1955; Baines 1984) by
combining (a) the conservation of mass and momentum
in the upstream bore, and (b) the condition that the
flow is critical at the ridge crest (cf. Houghton and Kas-
ahara 1968). If the depth upstream of the bore is less
than approximately twice that downstream of the bore,

there is very little mixing of the overlying fluid into the
bore (e.g. Wood and Simpson 1984), and we may ne-
glect such entrainment. For convenience, let us define
the initial flow to be of depth h and speed u, the bore to
be of depth b and speed v, and the flow downstream of
the bore to be of speed w and depth hcb (Fig. A2)

Flow downstream of the bore

The flux passing over the ridge has magnitude

Qrpw(hcb). (A4)

This flow is critical at the ridge crest, and therefore at
the crest it has speed

wpwcp(gbQr)1/3. (A5)

Equating the value of the Bernoulli integral upstream
of the ridge but downstream of the bore (Fig. A2) with
that at the ridge crest (cf. Eq. (A2)) leads to the rela-
tionship between w, hcb and the height of the ridge
d:

gbdp
w2

2
c

gbQr

w
P

3
2

(gbQr)2/3. (A6)

Motion of the bore

In steady state, the bore moves upstream with a con-
stant speed v. The conservation of mass across the bore
therefore has the form

uhpvbcw(hcb). (A7)

The equations of motion in the frame of the steady
bore are the same as in the laboratory frame. Working
in the frame of the bore, the equation for the conserva-
tion of momentum, Eq. (3), may be conveniently inte-
grated over a control volume including the bore, and
leads to the relationship

2(ucv)2hcgbh2p2(vcw)2(hcb)cgb(hcb)2. (A8)

We may combine these equations to relate the value
of w, b and v to the flow speed and depth far upstream,
u and h, as well as to the height of the ridge d. The
equations may be simplified by scaling v and w with re-
spect to u, b with respect to h, u with respect to the
critical velocity, uc, and the depths h and d with respect
to hc (Eq. (A1)). Denoting these dimensionless veloci-
ties by Upu/uc, Wpw/u and Vpv/u and the dimen-
sionless depths of the bore and ridge by Dbpb/h,
Dpd/hc, the system of equations reduces to three non-
linear relations. The conservation of momentum across
the bore becomes

2U3(1PW)2(1cDb)pDb
2(2cDb) (A9)

The condition that the flow is critical at the ridge crest
becomes (cf. Eq. (A2))

W2U22c
1cDb

U
p

3
2

[(1cDb)W]2/3cD (A10)
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Finally, the conservation of mass has the form

Wp
1PVDb

1cDb

. (A11)

Two important results follow from these equations.
Firstly, we can recover the limit that all the flow passes
over the ridge Eq. (A2) so that Vp0, Wp1, Dbp0, and
(cf. Eq. (A3))

U2

2
c

1
U

p
3
2

cD. (A12)

Secondly, we can deduce the limit that all of the flow is
blocked by the ridge.

High ridges – complete blocking of the flow

When the ridge is just high enough to totally block the
flow, no flow passes over the ridge, Wp0, and all the
flow is reflected from the ridge, VDbp1. The minimum
ridge height that causes total blocking may be found by
equating the top surface of the bore with the height of
the ridge crest, DbpUDP1. This critical ridge height
for total blocking is then related to the upstream flow
according to

2U4Dp(U2D2P1)(UDP1). (A13)

Figure A3 shows the minimum ridge height required
to totally block the flow as a function of the upstream
flow speed. It is seen that the ridge height required to
totally block the flow varies with U and D and has a
minimum at Dp2.1, Up1.1.

The totally or partially blocked flow regimes may be
transient. If the flow continues for a sufficient time so
that the bore can propagate back upstream to the
source, then subsequently the fluid layer upstream of
the ridge will continue to deepen until eventually all
the flux is able to pass over the ridge, with the flow
again being just eritical at the ridge crest (see Fig. 9).
Only at this point does the flow issuing downstream of
the ridge have the same flux as that issuing from the
source. During this deepening, there will be a signifi-
cant amount of sedimentation (see Sedimentation over
topographic obstacles), which may lead to the develop-
ment of large valley-ponded deposits.
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