
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00445-022-01564-6

PERSPECTIVES

Developments in the study of volcanic and igneous plumbing systems: 
outstanding problems and new opportunities

Steffi Burchardt1,2   · Catherine J. Annen3 · Janine L. Kavanagh4 · Suraya Hilmi Hazim5

Received: 15 July 2021 / Accepted: 8 April 2022 
© The Author(s) 2022

Abstract
Prior to and during eruptions, magma is stored and transported within volcanic and igneous plumbing systems (VIPS) that 
comprise a network of magma reservoirs and sheet intrusions. The study of these VIPS requires the combination of knowl-
edge from the fields of igneous petrology, geochemistry, thermodynamic modelling, structural geology, volcano geodesy, 
and geophysics, which express the physical, chemical, and thermal complexity of the processes involved, and how these 
processes change spatially and temporally. In this contribution, we review the development of the discipline of plumbing 
system studies in the past two decades considering three angles: (1) the conceptual models of VIPS and paradigm changes, 
(2) methodological advances, and (3) the diversity of the scientific community involved in VIPS research. We also discuss 
future opportunities and challenges related to these three topics.
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Introduction

Volcanic unrest recorded at the Earth’s surface prior to and 
during eruptions is usually caused by sub-surface processes 
within the volcanic and igneous plumbing system (VIPS), 
such as magma transport within sheet intrusions and the estab-
lishment and evolution of magma reservoirs that feed those 

sheet intrusions (e.g. Biggs and Pritchard 2017; Sigmundsson 
et al. 2018; Sparks et al. 2019). Traditionally, VIPS have been 
studied in different sub-disciplines of the Earth sciences in 
parallel (Fig. 1; Burchardt 2018). Examples include as follows:

a.	 the study of the composition of igneous rocks and min-
erals to reconstruct the conditions in magma reservoirs 
(e.g. Sparks et al. 1977; Putirka 2008; Bindeman 2008),

b.	 mapping of dyke swarms to shed light on the syn-
emplacement stress conditions (e.g. Ernst et al. 1995; 
Hoek and Seitz 1995; Srivastava et al. 2019),

c.	 the use of seismicity beneath active volcanoes to map 
zones of magma storage (e.g. Scarpa and Gasparini 
1996; McNutt 2005; Lees 2007), and

d.	 location of seismicity related to magma transport (e.g. 
Ebinger et al. 2008; Bell and Kilburn 2012; White et al. 
2019).

Early research on plumbing systems was often restricted 
to single disciplines, such as the examples mentioned 
above. However, since the 1980s, volcanic eruptions, 
such as those at Mount St Helens, Pinatubo, and Mont-
serrat, have shown the importance of multidisciplinary 
work to better understand the role of shallow reservoirs 
and conduits controlling or influencing eruption style (e.g. 
Eichelberger and Hayes 1982; Cashman 1988; Voight et al. 
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2014). It is through this multidisciplinary approach that 
the strongest advancements in VIPS studies have contin-
ued to be made through the second decade of the twenty-
first century (Figure 1).

Understanding magma transport and storage in VIPS 
is fundamental in estimating volcanic risk, as processes 
within the VIPS largely control whether an eruption will 
occur, what type of eruption it will be, and for how long it 
will last. Other areas where VIPS are of major significance 
are as follows:

1.	 crustal growth at plate boundaries and in intraplate set-
tings (e.g. Christensen and Salisbury 1975; Brown 1994; 
Marinoni 2001),

2.	 the release of climate-active volatiles during the for-
mation of Large Igneous Provinces (LIPs; e.g. (Aarnes 
et al. 2010; Svensen et al. 2018; Ernst et al. 2021),

3.	 heat flow, hydrocarbon maturation, and structural con-
trol on hydrocarbon reservoirs in sedimentary basins 
(Polteau et al. 2008; Senger et al. 2017; Spacapan et al. 
2018),

4.	 the formation of economic deposits of ores and dia-
monds (e.g. Ganino et al. 2008; Sillitoe 2010; Elliott 
et al. 2018; Russell et al. 2019), and

5.	 the formation of geothermal resources (e.g. Sibbett 
1988; Boyce et al. 2003; Stimac et al. 2015).

Hence, there are many reasons why VIPS research is both 
essential and relevant for research and society today.

VIPS studies are thus a dynamic and growing field that is, 
today, more integrated across the various sub-disciplines of 
volcanology. In the following assessment, we describe the 
developments that led to the integration of VIPS studies and 
the current state-of-the-art in VIPS research in terms of both 
conceptual understanding and methodological advances. We 
outline some general trends and explore how the methodo-
logical development is improving understanding of magma 
transport and storage, especially by exploiting opportunities 
and revealing new challenges. Moreover, we discuss how 
the scientific community involved in VIPS has evolved. We 
finally highlight open questions for future research and the 
need to include a diverse group of people if VIPS research 
is to continue to evolve in such a positive direction.

Paradigm shifts and state of the art in VIPS 
studies

Prior to the twenty-first century, several different conceptual 
models of igneous plumbing system were developed (Fig-
ure 2a), some of which have now been abandoned. Prior to 
2000, the most prominent concept was that the large amount 
of granitoid rocks exposed at the Earth’s surface originated 
from crystallisation of huge, fully molten, and long-lived 
magma chambers. How these magma chambers were 
emplaced in the crust had been a long-standing dilemma 
throughout the nineteenth and twentieth centuries (termed 
‘the space problem’; e.g. Bowen 1948; Read 1957; Hutton 
1996). However, methodological advances in the fields of 
geochronology and geochemistry in the early 2000s dem-
onstrated that granitoid plutons were in fact assembled by 
the amalgamation of multiple small magma batches over 
millions of years (Coleman et al. 2004; de Saint Blanquat 
et al. 2011). This insight agreed with seismic tomography 
studies of the crust beneath active volcanoes that found the 
presence of only a few percent of melt (Lees 2007). Diffu-
sion chronometry in crystals from volcanic products also 
revealed magma storage at rather ‘cold’, i.e. below magma 
liquidus temperature, conditions for most of the residence 
time of erupted crystals (Cooper and Kent 2014).

A new paradigm thus began to emerge that encom-
passed magma storage in a plumbing system mainly com-
posed of an uneruptible, crystal-dominated ‘mush’, where 
melt exists between crystals or in small pockets (Fig-
ure 2b). The concept is not completely new (Marsh 2004; 
Bachmann and Bergantz 2004), but has gained recent 
momentum as it elegantly explains the diversity of crys-
tal ages within erupted materials and facilitates the fast 
assembly of mostly molten, but ephemeral, magma reser-
voirs (Cashman et al. 2017). Thermodynamic modelling 

Fig. 1   Venn diagram showing the relationship between diverse 
research fields within Earth sciences and their overlap to contribute 
to the study of VIPS. The multidisciplinary approach at the centre of 
the diagram has led to the greatest scientific advance in understanding 
VIPS
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of the ‘mush plumbing system’ (e.g. Petford et al. 2000; 
Annen et al. 2006; Bachmann and Huber 2016; Jackson 
et al. 2018; Huber et al. 2019; Annen and Burgisser 2020) 
has also shown how the system evolves thermally through 

the addition of small magma batches, how the magma 
composition can evolve, and how shallow magma storage 
and magma degassing can contribute to the eruptive poten-
tial of volcanoes. However, thermodynamic modelling also 

Fig. 2   Schematic illustrations of a) the range of different traditional VIPS models in different disciplines (Burchardt 2018) and b) how aspects of 
these now are reconciled within the new ‘mush’ plumbing system paradigm
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shows that mush extent and longevity are limited by the 
amount of heat available in the crust (Glazner 2021).

Current research addresses the properties of crystal 
mush, its generation, and how magma is remobilised 
within the mush before large eruptions (e.g. Spera and 
Bohrson 2018; Wieser et al. 2020; Humphreys et al. 2021). 
Moreover, the mush paradigm will need to reconcile evi-
dence which supports the existence of long-lived and 
largely molten magma bodies in the geological record (e.g. 
Barboni et al. 2016; Kruger and Latypov 2020; Rout et al. 
2021), to explain the formation of the thermal anomaly 
required for the generation and persistence of large vol-
umes of mush in the upper crust, and to acknowledge that 
the lack of high melt fraction reservoirs recovered by seis-
mic tomography may be due in part to a problem of spatial 
resolution (Paulatto et al. 2019).

Another major conceptual advance in the field of VIPS 
studies focuses on the transport of magma through sheet-
like (dyke and sill) and cylindrical (conduit) pathways. In 
the last two decades, the insight that magma transport is 
most efficient through magmatic sheet intrusions has been 
confirmed by field-based monitoring of seismicity related 
to propagating intrusions and remote observation of surface 
deformation patterns (e.g. Ebinger et al. 2008; Bell and Kil-
burn 2012; Sigmundsson et al. 2014). Even within the lower 
crust, magma transport is believed to be possible through 
dyking resulting from self-organisation and convergence of 
thin magma-filled veins (Cruden and Weinberg 2018).

A broad array of methods, such as field studies in areas 
with exposed, solidified sheet intrusions, high-resolution 3D 
seismic surveys of sedimentary basins, and active plumbing 
systems at mid-ocean ridges, and numerical and laboratory 
models have all highlighted:

1.	 the variety of sheet intrusion geometries, including sub-
vertical dykes, inclined cone-sheets, and concordant sills 
(e.g. Galland et al. 2018; Kavanagh 2018; Burchardt 
et al. 2018),

2.	 their internal complexity (e.g. Magee et  al. 2016; 
Schmiedel et al. 2021; Köpping et al. 2022),

3.	 the abundance of these sheets in the plumbing systems 
(Walker 1992; Walker and Eyre 1995; Tibaldi and Pas-
quarè 2008), and

4.	 their interaction with host rock structures and litholo-
gies (e.g. Krumbholz et al. 2014; Spacapan et al. 2017; 
Norcliffe et al. 2021).

Within this framework, ongoing research on sheet intru-
sions thus addresses the relationship between the dynamic 
emplacement and associated volcanic unrest signals, as well 
as the interplay between tectonics and the magma/host-
rock properties, and how understanding of the macro- and 
micro-scale temporal and spatial processes can be reconciled 

in such meso-scale structures (cf., Galland et  al. 2018; 
Kavanagh 2018; Burchardt et al. 2018).

Currently, knowledge on VIPS processes based on field 
studies (e.g. Holness and Humphreys 2003; Stephens et al. 
2017; Spera and Bohrson 2018; Mattsson et al. 2018; Martin 
et al. 2019) and modelling (e.g. Gudmundsson et al. 2016; 
Guldstrand et al. 2018; Drymoni et al. 2020) is integrated 
into the interpretation of volcanic unrest and eruptive activ-
ity. In the past, volcano deformation modelling has suc-
cessfully reproduced the signals recorded by monitoring 
networks (Neal et al. 2019). However, the modelled solu-
tions were generally non-unique and not always geologi-
cally plausible (Bertelsen et al. 2021). In the next decade, 
the integration of VIPS research on, e.g., the mechanisms 
of dyke propagation and deformation associated with the 
establishment of magma bodies into unrest modelling will 
contribute to more realistic interpretations of volcano moni-
toring data, which will lead to better risk management and 
hazard mitigation.

Methodological developments in VIPS 
studies

Since the 1950s, a major trend in all fields of the Earth sci-
ences has been the transition from a qualitative, descriptive 
science towards quantification and accuracy. This began 
when analogue and numerical models appropriate for mag-
matic and volcanic systems began to emerge (e.g. Morton 
et al. 1956; King et al. 1957; Kavanagh et al. 2018). Studies 
of industrial plumes were applied to model volcanic plumes 
(Morton et al. 1956), and hydraulic fractures in boreholes 
were developed as analogues for dyke and sill emplacement 
(King et al. 1957). Magma chamber processes were then 
explored in several pioneering analogue experiment stud-
ies in the 1980s and combined with insights from numeri-
cal models and igneous petrology (Kavanagh et al. 2018); 
his was a key moment of driving forwards the discipline 
(e.g. Huppert and Turner 1981; Huppert and Sparks 1981; 
Turner et al. 1983; Huppert et al. 1983). These models 
were very effective, and are still held as formative studies 
in VIPS because they involved multidisciplinary collabora-
tions between mathematicians, fluid dynamicists, engineers, 
volcanologists, petrologists, and geochemists. The current 
developments in analogue modelling in volcanology are dis-
cussed by Poppe et al. (2022, in press).

The development of multidisciplinary quantitative stud-
ies is aided today by rapidly increasing computational 
power and increasing precision of analytical techniques. 
Access to commercial software, often developed for indus-
trial purposes, such as the petroleum industry, engineering, 
or material science, allows VIPS research to benefit from 
the improvements in these, often better-funded, fields. At 
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the same time, open access to numerical codes designed by 
researchers allows everyone to apply codes developed for 
specific Earth science problems. In addition, broad access 
to satellite images has opened up new opportunities rang-
ing from fieldwork planning and detailed remote sensing to 
near real-time deformation monitoring at active volcanic 
systems (Burchardt and Galland 2016). Even in the field, 
the use of low-cost unmanned aerial vehicles (drones) 
allows access to previously inaccessible localities, as well 
as the quantitative study of structural features on virtual 
outcrops created through photogrammetry. This advance 
allows for studying aspects of plumbing systems, such as 
the growth of (crypto)domes, the quantification of magma-
induced deformation, and the detailed study of intrusion 
geometries (e.g. Belousov et al. 2005; Thiele et al. 2021; 
Rhodes et al. 2021).

Although these and other methodological developments 
have provided data and models of previously unachievable 
precision, new challenges have emerged in how to handle, 
store, and share these data (cf. Science Europe, 2021). 
Another challenge is connected to the ease of access to 
tools such as numerical modelling software and bench-top 
analogue experiments. It is now perhaps easy to create a 
seemingly correct model output even if one lacks under-
standing of the physics behind the modelling process and 
how appropriate the model output is to the natural phenom-
ena. This dilemma stresses the need for ground truthing of 
modelling output by means of empirical and experimental 
studies. In addition, it leads us to look at how the research 
community involved in VIPS studies has developed in the 
last two decades.

Past, present, and future of the VIPS 
research community

At the beginning of the twenty-first century, VIPS were still 
studied as part of separate and different disciplines within 
the Earth Sciences, most not necessarily linked to volcan-
ology at all (Burchardt 2018). For instance, igneous intru-
sions were studied by both structural geologists and igneous 
petrologists, and the results were published in separate spe-
cialised journals for structural geology and igneous petrol-
ogy without linking to each other. On the other hand, books 
were published in volcanology that barely mentioned the 
plumbing systems which feed the eruptive products.

However, a transition towards a more integrated and mul-
tidisciplinary approach to studying VIPS has become more 
common in the last decade (e.g. Voight and Sparks 2010; 
Sigmundsson et al. 2010, 2014; Pritchard et al. 2018; Neal 
et al. 2019). In our opinion, this transition has been fuelled 
by three factors:

1.	 volcanic eruptions that have inspired the formation of 
multi-disciplinary consortia, such as the eruption of 
Eyjafjallajökull in 2010 that spurred a number of large-
scale projects, such as FutureVolc, and the 2021 erup-
tion of La Palma, Canary Islands.

2.	 scientific conference sessions, symposia, and work-
shops with a clear, multidisciplinary scope, such as at 
the EGU, AGU, and IAVCEI general assemblies, and

3.	 the formation of the IAVCEI Commission on Volcanic 
and Igneous Plumbing Systems (https://​vipsc​ommis​sion.​
org/).

Magmatic activity in general, and volcanic activity in par-
ticular, involves complex physical and chemical processes. 
These unfold over time and length scales that span many 
orders of magnitude from seconds to millions of years and 
from nm to hundreds of km. Grasping even part of this com-
plexity thus demands the combination of multiple methods 
capable of addressing this huge range in temporal and spatial 
scale. The different strengths of each approach partly over-
come their weaknesses such that the whole is greater than 
the sum of its parts (Burchardt and Galland 2016; Edmonds 
et al. 2019). This can best be achieved in multidisciplinary 
consortia where experts from different fields work together 
with a common goal.

An immediate challenge for such consortia, as well as in 
multidisciplinary conference sessions and workshops, is the 
establishment of a common language. The history of Earth 
sciences has in the past been characterised by increasing 
specialisation, which fostered the development of special-
ised terminology and scientific jargon in different fields. An 
example is the diverse use of the term ‘magma chamber’ 
(cf. Lees 2007; Glazner et al. 2016; Burchardt 2018): while 
for instance petrologists may picture shapeless reservoirs 
hosting the chemically evolving melt, crystals, and volatiles 
they call magma, the structural geologists traditionally envi-
sion intrusions of characteristic shapes reflecting specific 
emplacement mechanisms of the passively emplaced fluid 
they call magma. Geophysicists on the other hand detect 
magma chambers as sub-surface anomalies of seismic wave 
speeds corresponding to hot rocks with some percentage 
of melt. Shaping an effective multidisciplinary research 
community that studies the complexities of VIPS thus 
needs to also focus on sharing knowledge through effective 
communication.

Scientific jargon is exclusive, and so is a lack of diversity 
among scientists regarding both disciplines and personal 
attributes. An inclusive and diverse scientific community 
will combine the strengths of different methods, build on 
knowledge of the past, and include new ideas to improve the 
understanding of magma transport and storage (Figure 3). 
This is why the IAVCEI Commission on VIPS, founded in 
2016, is actively working to provide a platform with a global 
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reach for multidisciplinary dialogue, collaboration, and out-
reach, including an ambitious plan for improving equality, 
diversity, and inclusivity (see www.​VIPSc​ommis​sion.​org; 
Kavanagh et al. 2022, this volume).

As in other branches of Earth Science, there is a tendency 
to extend the conclusions drawn from one case study into 
general models and ignore the diversity and complexity of 
the processes involved. Collaborative efforts and multidis-
ciplinarity are the best ways to avoid this pitfall. The next 
decade of research on VIPS thus needs:

1.	 researchers that are experts in using their methods, but 
who are able to communicate beyond their own field,

2.	 generalists with an overview of different methods, 
thereby allowing identification of new connections or 
opportunities,

3.	 working environments that allow full, open, and respect-
ful collaboration between Earth scientists and experts 
from other fields,

4.	 constructive communication between researchers work-
ing in the field, in laboratories, as well as modellers, and 
observatory personnel, and

5.	 above all, our discipline needs to support and nurture a 
diverse group of students with a solid education in the 
Earth sciences and a broad outlook so that they dare to 
question the state-of-the-art assumptions of our field and 
create new knowledge.

Outlook

The study of magma transport and storage in VIPS has, 
in the last two decades, emerged as its own sub-discipline 
within volcanology, from a history of evolution that was dis-
persed across separate fields. Our vision is of a science that 
embraces the diversity and complexity of volcanic and igne-
ous systems, while focusing on defining the general laws that 
underpin the functioning of VIPS. One of the big challenges 
that researchers will have to address in the upcoming decade 
is the link between VIPS dynamics and eruption dynam-
ics in order to improve our ability to forecast eruptions and 
to use VIPS knowledge to reduce the hazards and negative 
societal impacts of volcanism. We hope that the next decade 
thus will see an even closer integration of different methods 

Fig. 3   Our vision of a diverse 
and inclusive research com-
munity studying VIPS using 
many different methods: a 
expert field geologists, b 
expert analogue (experimental) 
modellers, c expert petrologists 
and geochemists, and d expert 
numerical modellers.
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with the aim of better understanding the processes of magma 
transport and storage in the Earth’s crust. This integration 
will happen in a more inclusive and diverse scientific com-
munity that will unravel some of the remaining big questions 
on VIPS and come up with many new questions to address.
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