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Abstract
Volcano seismology has been fundamental to our current understanding of crustal magma migration and eruption. The 
increasing availability of portable seismic networks with the creative use of seismic sources and ambient noise has led to 
a better understanding of the volcanic structure of many volcanoes and is producing increasingly detailed images of the 
volcanic subsurface. The past decade (2010-2020) has seen advances in our understanding of seismic sources under and sur-
rounding volcanoes through precise locations, and through analysis of source mechanisms from seismic signals that are more 
varied and smaller in magnitude, reaching beyond traditional techniques. In tandem with continued research on fundamental 
physics-based understanding of volcano-seismic sources, new advances in computational analyses including machine learn-
ing methods will push our understanding of volcanic processes into the future. Incorporation of multidisciplinary geophysi-
cal observations (especially infrasound) has become commonplace, and our understanding of infrasound propagation and 
sources will feed back into our ability to monitor ongoing eruptions and surficial mass movements. Open-source codes will 
permit widespread evaluation and adoption of new methodologies for volcano-seismic analysis and inversion. Combined 
with quantitative and conceptual source models using improved structural constraints, these new methodologies will better 
characterize the range of volcano-seismic signal evolution scenarios and hold promise for creating better short-term forecasts. 
Finally, permanent instrumentation is available on an expanding range of volcanoes, and open data policies are increasingly 
making these data available to the scientific community in near real time.
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Introduction

Many volcanic processes, occurring both above and below 
the surface, generate seismic energy, and thus, the study of 
volcano seismology is a fundamental piece of volcano sci-
ence. Seismology is a relatively mature field, having vol-
canic roots in the mid-nineteenth century and early twen-
tieth century (Zobin 2017). This long history has led to a 
steadily improving understanding of the volcanic structure 
and processes that drive unrest and sometimes lead to erup-
tions (e.g., Minakami (1960), Omori (1911) Tokarev (1963); 
Eaton and Murata 1960).

A milestone multi-decadal comprehensive review by 
Chouet and Matoza (2013) provided a review of volcano 
seismology and attempted to forecast the future directions 
in the field. That publication, along with several others 
(e.g., Neuberg 2011; Nishimura and Iguchi 2011; Kawakatsu 
and Yamamoto 2015; McNutt and Roman 2015; Zobin 2017; 
Saccorotti and Lokmer 2021), provides a review of the “state 
of the art,” including an in-depth discussion of volcanic 
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event types and source models, tying in fluid mechanics 
along the way.

With respect to future directions, Chouet and Matoza 
(2013) summed up the future of volcano seismology as 
follows:

The key to a better understanding of volcanic processes 
lies in a sustained effort aimed at cross-fertilization 
between increasingly realistic numerical and experi-
mental models of the fluid dynamics and elastodynam-
ics, spatially and temporally dense field measurements 
of diverse geophysical signals at all frequencies, and 
chemical and physical evidence recorded in the erup-
tive products.

This forecast of sorts has been largely true, especially as 
it pertains to numerical models, where the so-called physics-
based models have become more commonplace (Anderson 
et al. 2019). There have also been considerable advances 
in obtaining increasingly detailed measurements of seismic 
signatures of unrest and eruption (observational seismology) 
with a plethora of different instrumentation and methodolo-
gies, as we will explore below.

In this paper, we aim to summarize succinctly the past 
10 years of progress and attempt to project future trends. 
The topic is worthy of an entire volume, so we have chosen 
to focus on methods and trends within volcano seismology 
that improve our ability to forecast volcanic eruptions. For 
more in-depth discussions of volcano seismology as a field, 
we refer the reader to the summary publications above.

Illuminating the magmatic plumbing system

Understanding the subsurface structure of a volcano, includ-
ing the magmatic and hydrothermal plumbing system, is cru-
cial to building a conceptual model of the volcano and offers 
a framework from which to interpret seismicity occurring in 
different parts of the volcano.

Seismology currently broadly offers three main ways to 
obtain constraints on the spatiotemporal structure volcanic 
subsurface fluid pathways: (1) tomographic imaging of elas-
tic parameters, (2) mapping seismicity distributions and 
characteristics, and (3) waveform inversions for moment-
tensor and single-force representation of sources, which can 
constrain geometries of key elements in the fluid pathway 
structure. The three topics above are complementary, and 
each offers insights at different scales and resolutions.

Seismic tomography (broadly defined) continues to be 
a fundamental tool for understanding volcanic structure 
(e.g., Iyer and Dawson (1993); Lees 2007; Koulakov and 
Shapiro 2021). Ambient noise tomography studies, often in 
conjunction with other methods, have imaged the S-wave 
structure under volcanoes (Lin et al. 2014; Kiser et al. 2016; 

Ulberg et al. 2020), where S-wave travel times are sparse 
in the seismic catalog (Nagaoka et al. 2012; Jaxybulatov 
et al. 2014; Flinders and Shen 2017; Heath et al. 2018; 
Green et al. 2020; Miller et al. 2020). Towards the end of 
the 2010-2019 decade Janiszewski et al. (2020) and Portner 
et al. (2020) have illuminated the mid and lower crust of 
volcanoes using receiver functions within sparse networks. 
Advances in time-dependent (4D) tomography (Koulakov 
et al. 2013; Vargas et al. 2017; Koulakov and Vargas 2018) 
have revealed temporal changes in the ratio between the 
p-wave velocity and s-wave velocity, which have been inter-
preted as relating to magma storage and transport structures. 
Full-waveform inversion tomography (FWI; Beachly et al. 
2012; Heath et al. 2018) has also improved the spatial reso-
lution where applicable. Currently, the best resolution lies 
between about 2 and 10 km depth, with the shallower depths 
limited by station spacing and frequency content and the 
deeper areas limited by the difficulty of maintaining a dense 
station coverage within a large aperture network and by lack 
of deep local earthquakes. We note that the majority of shal-
low pre- and co-eruptive seismicity occurs at depths < 5 km; 
thus, imaging the shallow structure remains an important 
target of future work.

Imaging of the magmatic plumbing system is improving 
through denser instrumentation and active seismology strate-
gies and techniques, borrowed in part from industry explo-
ration seismology (e.g., Sheriff and Geldart 1995; Keho 
and Kelamis 2012; Nishimura et al. 2021). Full-waveform 
inversion (FWI) applied to experiments carried out over 
mid-ocean ridges (e.g., Arnulf et al. 2012, 2014; Carbotte 
et al. 2021) has delineated mush zones, melt rich zones, and 
conduits. Transferring this resolution to rugged and remote 
subaerial volcanoes will be difficult not only because of the 
difference in impedance contrasts but also because remote 
seismometer placement is strenuous and artificial seismic 
sources are difficult to permit in wilderness, sacred areas, 
or fragile ecosystems. The proliferation of highly portable, 
low-cost seismometer/digitizer combinations, commonly 
called nodes, may mitigate some of this difficulty. Whereas 
experiments with fully buried sensors and power systems at 
the surface were considered state-of-the-art in the late 2000s 
(e.g., Aoki et al. 2009; Zandomeneghi et al. 2010, 2013; 
Beachly et al. 2012), experiments with many hundreds or 
thousands of instruments, including nodes, were occurring 
throughout the 2010s (Mount St. Helens (iMUSH): Kiser 
et al., 2016; Ulberg et al. 2020; Yellowstone: Garcia 2017; 
Wu et al. 2017; Ward and Lin 2017) (Fig. 1). One new type 
of instrument currently in its infancy and developed in the 
oil and gas industry is distributed acoustic sensing (DAS), 
which uses fiber-optic cables to sense strain rates at meter-
scale spatial sampling along the length of the fiber (Lind-
sey et al. 2017). Temporary fiber-optic cables have been 
installed on some volcanoes such as Iceland (Jousset et al., 
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2018), Mount Etna (Currenti et al. 2021), Azuma volcano 
(Nishimura et al. 2021), and Mount Meager (Klaasen et al. 
(2021)), but the real potential in the short term is in using 
existing fiber-optic cables (dark fiber) that run along roads 
around some volcanoes (e.g., Ajo-Franklin et al. 2019).

Natural earthquake sources and artificial blasts gener-
ate seismic waves with wavelengths that are significantly 
larger than most structures within a magma transport sys-
tem, resulting in a smeared or blurry tomographic image. 
Recently, active seismic sources common in exploration 
geophysics, such as vibroseis trucks, have been deployed 

in volcanic settings. Waves from these seismic sources, 
when recorded on a large number of instruments, can 
image the crust in much greater detail than traditional 
active source or passive experiments because the seismic 
energy that is transmitted is broadband and well charac-
terized. This strategy has been recently applied at Solfa-
tara volcano (Bruno et al. 2017), Yellowstone (Brandon 
Schmandt, pers. Comm.), and is proposed at the summit 
of Kilauea in 2023 (Roger Denlinger, pers. Comm.). Crea-
tive uses of active sources, natural earthquake sources, and 
ambient noise in combination with large numbers of nodes 
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Fig. 1  Comparison of deployments and instrument improvements 
through the last decade. A An 80-station network on Erebus volcano, 
Antarctica, carried out in 2008 (Zandomeneghi et  al. 2010). Red 
triangles are the broadband stations. In the inset is the typical setup 
for this experiment, where the power and digitization occur above 
ground (inside the orange box) and the instrument is buried under-
ground (Photo Credit: Tomo Erebus and IRIS PASSCAL field team). 
B A subset of stations (red triangles) deployed for the iMush experi-
ment at Mount St. Helens in 2014 (Hansen and Schmandt 2015). In 
this experiment, approximately 900 nodes were deployed. The inset 
on the bottom is a picture of a node, illustrating the small size and 

compact nature of the seismic instrument (Photo Credit: Amanda 
Thomas). Both maps in A and B are plotted at the same scale. C 
Improvements in seismic and infrasound instrumentation on Alas-
kan volcanoes. Maps consider instrumentation up to 2010 (C.), 2022 
(D.), and infrasound instrumentation in 2022 (E.). Red triangles refer 
to analog short period seismic instruments, triangles refer to digital 
broadband seismic instruments, and black triangles refer to infra-
sound sensors. GNSS sites are not shown. All maps in C, D, and E 
are plotted at the same scale. Maps were created with pyGMT (Uieda 
et al. 2021) and GMT (Wessel et al. 2019). Erebus digital elevation 
model from the REMA dataset (Howat et al. 2019)
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or fiber optic cables will continue to sharpen our image of 
the subvolcanic structure for decades to come.

Tracking magma dynamics

As magma, magmatic gases, and subsurface fluids move 
through the crust, they may change local stresses or build 
up pressure that is released in the form of earthquakes and/
or tremor. In the past decade, one well-demonstrated new 
technique is the use of network-wide matched filtering, using 
larger earthquakes to detect smaller earthquakes. Matched 
filtering combined with high-precision earthquake location 
studies of swarms at several volcanoes (e.g., Shelly and 
Hill 2011; Matoza et al. 2014; Shelly et al. 2015; Hotovec-
Ellis et al. 2018; Wech et al. 2020) has shown that the small 
earthquakes connect the dots between the larger earthquakes, 
showing us details of magma and fluid migration that aren’t 
obvious using the standard seismic catalog alone.

Especially during times of unrest or eruption, much of 
the seismic energy release may be in the form of tremor, 
long-period or very-long period earthquakes; those types of 
events often attributed to fluid and gas movement through 
the crust. Yet, there remains ambiguity in the source pro-
cesses responsible for such events, which is especially prob-
lematic in the midst of an unrest sequence when assessing 
the volcanic hazard is critical. The past decade has seen 
advances in our ability to detect and locate some of these 
nontraditional sources (e.g., Dawson et al. 2010; O’Brien 
et al. 2011; Haney 2014; Soubestre et al. 2018), and when 
interpreted within the context of a well-determined concep-
tual model, these advances have improved our understanding 
of magma dynamics.

Understanding the source mechanisms of earthquakes 
within a period of unrest can give critical insights into impor-
tant components of the magmatic plumbing system (such 
as a geometrical conduit discontinuity). Source mechanism 
solutions have become increasingly available, especially for 
larger earthquakes and/or very long periods (e.g., Chouet 
and Dawson 2011; Ágústsdóttir et al. 2019; Roman et al. 
2021; Alvizuri et al. 2021). Polarity-derived source mecha-
nisms can be resolved at smaller magnitudes by using the 
sign of the cross-correlation coefficient of similar events or 
by stacking (Shelly et al. 2016; Wech et al. 2020), and in 
areas with improved constraints on structure and velocity 
(see above), full-waveform inversion has become possible 
on increasingly smaller events by detecting and stacking 
similar events (Matoza et al. 2015; Lyons et al. 2016). On 
the other hand, extending waveform inversion to higher fre-
quencies in the LP band (0.5 to 5 Hz) will rely on the ability 
to create Green’s functions that accurately take into account 
topography and small-scale velocity heterogeneities, espe-
cially in the shallowest hundreds of meters (Gabrielli et al. 

2020). Characterizing the near-surface velocity structure 
should become more feasible with the future use of nodes 
in dense deployments above volcano-seismic sources. Future 
development in this area will continue to focus on obtaining 
broadband seismic source mechanisms for a larger number 
and variety of events and for higher source frequencies with 
improved velocity models. Moving beyond a point-source 
representation of the seismic source, extended (finite source) 
inversions (Ji et al. 2002) may become increasingly feasible 
in volcano seismology (Nakano et al. 2007; Chouet et al. 
2008).

Insights into near‑surface processes

Shallow volcanic processes such as fissuring, explosions, 
and surface flows can pose immediate hazards to nearby 
populations and infrastructure while also creating infra-
sonic waves in the atmosphere (Matoza et al. 2019; Watson 
et al. (n.d.)). Combining seismic and infrasound observa-
tions has been fruitful for understanding near-surface pro-
cesses (Matoza et al. 2009; Lyons et al. 2016; Allstadt et al. 
2018; McKee et al. 2018; Neal et al. 2019; Fee et al. 2021), 
and atmospheric propagation conditions commonly permit 
remote detection (> 250 km) of large explosive eruptions 
(Matoza et al. 2011, 2017; De Angelis et al. 2012). There 
has been significant exploration of the effects of the atmos-
phere and topography on recorded infrasound waveforms 
in the last 10 years, which has demonstrated the need to 
consider topography especially at local (< 15 km) to regional 
(15–250 km) distances (Kim et al. 2015) and illustrated the 
utility and present limitations of operational atmospheric 
models for understanding infrasound recording in the far 
field (Schwaiger et al. 2019). Taken together, these advances 
have allowed study into more sophisticated explosive erup-
tion source models (Matoza et al. 2013; Haney et al. 2018). 
A better understanding of the explosion source type and 
impacts on recorded waveforms holds the promise in the 
future of making infrasound a useful tool for estimating the 
mass discharge rate of an explosion, a critical component in 
ash modeling and hazard assessment (e.g. Lamb et al. 2015; 
Fee et al. 2017; Perttu et al. 2020).

Many types of surface flows (avalanches, rockfall, debris 
flows) are recorded both seismically and infrasonically and 
represent a type of volcanic hazard that is independent of 
unrest. Recent observations of debris flows with infrasound 
(e.g., Kogelnig et al. 2014; Johnson and Palma 2015; Mar-
chetti et al. 2019) illustrate the utility of infrasound to record 
debris flows and, along with seismic instrumentation, can 
form the basis for lahar and debris flow warning systems. 
While debris flow detection is feasible in an operational 
setting, calculating volumes and other flow characteristics 
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represents significant challenges moving forward (Allstadt 
et al. 2018).

Advances in computing

The rise in availability of cloud and cluster computing 
resources, as well as continued improvements in personal 
computing, has enabled the scale of modeling complexity 
and processing of large volcanic datasets to expand; how-
ever, large volumes of data generated by new technologies, 
such as nodes and DAS, currently present problems for data 
archiving, processing, and sharing. Emerging techniques in 
data processing can now produce additional time series (e.g., 
seismic velocity change from ambient noise interferometry 
(Brenguier et al. 2008)) to supplement traditional seismic 
monitoring. Further, Green’s functions and synthetic seis-
mograms are being extended to higher frequencies, improv-
ing FWI tomography and full moment tensor inversions of 
seismic and infrasound data. Following broader trends in 
the software community, many codes for techniques dis-
cussed in this paper are open source and freely available. 
This represents a huge step forward in volcano seismology 
for two reasons: (1) techniques can be more easily applied 
and evaluated on additional eruption data, and (2) open-
source codes have a better chance of being operationalized 
in an observatory environment, potentially improving real-
time eruption forecasts. The inclusion of code specifically 
designed to reproduce published results (e.g. Jupyter Note-
books) is also an exciting recent trend.

During unrest, high earthquake rates can easily over-
whelm analysts and offer an opportunity for automated 
techniques, including machine learning, to locate and clas-
sify earthquake signals. In the 2010s, there was a revolu-
tion in machine learning that has enabled the development 
of new methods and applications with the use of industry 
standard open-source libraries (e.g., Scikit-learn, Pedregosa 
et al. 2011; TensorFlow, Abadi et al. 2015; PyTorch, Paszke 
et al. 2019). While machine learning approaches have been 
used previously in volcano seismology for event classifica-
tion (e.g,. Falsaperla et al. 1996; Benítez et al. 2007; Hibert 
et al. 2017) and detection (Dawson et al. 2010), differences 
in station density, local path effects, and event definitions 
between volcanic centers have previously limited the wide-
spread application of machine learning despite the increas-
ing availability of computational resources (see Carniel 
and Raquel Guzmán 2021, for an in-depth review). Recent 
analyses of synthetic datasets have been used with success to 
create new generic detectors and locators that hold the prom-
ise to perform well in high-event rate environments where 
standard pickers break down (e.g,. Zhu and Beroza (2019); 
Ross et al. 2019; Walter et al. 2021). Another approach sim-
plifies the creation of a training dataset by using the existing 

seismic catalog in Hawaii for a convolutional neural network 
to detect and locate earthquakes (Shen and Shen 2021). Both 
approaches have open-source codes available, making their 
application to other systems simpler (Walter et al. 2021; 
Shen and Shen 2021). Automated earthquake classifica-
tion using machine learning has seen advances in multi-
station approaches (Maggi et al. 2017) and multi-volcano 
approaches (Bueno et al. 2020; Cortés et al. 2021).

The next decade (2020-2029) of volcano seismology will 
inescapably include machine learning, applied to a variety 
of problems using open-source codes on more readily avail-
able high-performance computing (HPC) resources. Still, 
at present, machine learning remains a sophisticated type of 
pattern matching and thus is not sufficient by itself without 
also incorporating an understanding of fundamental underly-
ing physical processes that give rise to seismicity.

New datasets

Over the past decade, advances in low-power electronics, 
compact broadband instruments and recording systems, and 
direct burial instruments have accelerated the installation 
of a wide range of instrumentation at a broader suite of vol-
canoes, such as broadband seismometers, infrasound, and 
real-time GNSS (Fig. 1). Within the USA and a few other 
localities, real-time data are available publicly within a few 
seconds of being acquired. The utility of high-quality, real-
time data availability was most recently illustrated during 
the 2018 Kīlauea eruption, where publications have been 
varied and numerous. The proliferation of diverse and high-
quality instrumentation has the potential to provide more 
high-quality datasets for more unrest and eruption sequences 
on a range of different volcanoes. While this represents an 
opportunity for scientists to apply their favorite algorithms, 
it is important to coordinate with the individuals or groups 
with which the data originated. Communication will be 
important to enable collaboration and prevent duplicate 
efforts between groups with common interests and efforts. 
The next 10 years will inevitably see more instrumentation 
density on a broader range of volcanoes and installation of 
new equipment. This instrumentation will ideally act as a 
backbone for large collaborative community experiments at 
volcanoes of interest. Challenges also remain in the timeli-
ness of instrument deployments during periods of unrest, 
especially at undermonitored volcanoes.

Summary

Improving volcanic forecasts is a goal that underpins much 
of volcano seismology. Advances in our understanding 
of the structure of the magmatic plumbing system and 
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improved constraints on the processes within that sys-
tem can feed into the development of a conceptual model 
that is useful for forecasting, which will have the most 
impact on the short-term forecasts of activity on well-
instrumented volcanoes. Machine learning techniques will 
help in improving short-term forecasts; however, to extend 
the forecast window beyond our current capabilities, the 
magmatic system constraints from volcano seismology 
need to be incorporated with constraints from other dis-
ciplines into physics-based models (Chouet and Matoza 
2013; Manga et al. 2017) (Fig. 2). Contributions from 
laboratory experiments and field observations will also 
elucidate plausible source mechanisms (e.g.,, Kendrick 
et al. 2014; Arciniega-Ceballos et al. 2015; Capponi et al. 
2017; Spina et al. 2018). While there are common char-
acteristics at many volcanoes, each is unique with its own 

unrest and eruptive characteristics. Physics-based models 
will be needed to capture these differences and attempt to 
understand what is going on during the inter-eruptive time 
periods between the end of the last eruption and the start 
of precursory unrest.

The next 10 years of volcano seismology promise to take 
advantage of several broader trends in hardware technology, 
open-source software development, and high-performance 
computing resources to push our understanding of volca-
noes forward. There currently exists a gap between those 
techniques published in the literature and those operational-
ized in an observatory environment. HPC and open-source 
software concepts will help to close the gap between the 
research and operational worlds, eventually improving our 
ability to provide accurate and timely forecasts of volcanic 
activity.

Improvements in each of 
the parameters above 
factor into an improved 

forecast, either by 
improving short-term 

accuracy or extending 
the forecast window 
backward in time.

Better Forecasts!
Where sufficient 

constraints are available, 
a conceptual model may 
lead to a physics-based 
model to answer a single 

question or suite of 
questions about the 

volcano and its behavior. 

Physics-based Models

% evacuated

Conceptual models capture 
disparate observations into a 
conceptual framework that is 
useful for interpreting unrest 

and assessing volcanic hazard.

Improved
Conceptual Models

Observations based on 
field analysis of volcanic 
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laboratory experiments 
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realistic seismic source 
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passive seismic 
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Volcanic Structure

Fig. 2  Flowchart showing how the different constraints of volcano 
seismicity integrate into a better forecast of volcanic activity. Vol-
canic structure image from Heath et al. (2015). Source process figure 

from Wech et al. (2020). Physics-based models image modified from 
Anderson et al. (2019). Photographs are courtesy of the USGS
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