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Abstract
A new approach is presented for determining the source region of disconnected volcanic ash clouds using a combination of
orbital thermal infrared (TIR) image data, HYSPLIT-generated backward trajectories, and spatial geostatistics. Interpolated
surfaces derived from the TIR data are created to find the most likely ash cloud travel path and the potential source volcanoes
identified from that path. The ability to use backward trajectories to determine the ash cloud source region will become an
important triggering tool to target high spatial resolution orbital sensors, which normally rely on thermal anomalies for new
targeting. During cases where thermal anomalies are not present or masked by meteorological cloud, ash cloud detection and
predicted source location become more important. Image data from several well-documented past eruptions are presented to
validate and determine the overall accuracy of this technique. Because this is seen as a limited range source region validation tool,
the ash clouds examined were < 1000 km from their source vent. The approach and analysis are deemed successful if 80% of the
model results produce one or more trajectories that pass within 60 km of the source volcano. This methodology could be
improved further with the ability to determine the cloud location more accurately using higher image data frequency, and most
importantly, greater accuracy in determining the cloud height in the atmosphere.
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Introduction

Volcanic systems are complex and controlled by many differ-
ent processes. Monitoring these systems provides insight into
the potential for future eruptions and assessing their hazards.
Various precursory signals are used to interpret the movement
of magma beneath a volcano and forecast future activity
(Sparks et al. 2012). However, many volcanoes worldwide
are not permanently monitored from the ground, either due
to cost or accessibility, and therefore satellite sensors are

routinely employed to provide precursory information for
global volcanic activity (Wright et al. 2002). Despite the or-
bital data availability, volcanoes can produce eruption plumes
with little to no precursory thermal warning (Alfano et al.
2011). These plumes can reach heights that impact local to
regional populations and can affect commercial aircraft oper-
ation (Casadevall 1994). Furthermore, upon injection into the
upper atmosphere, these plumes are transported over large
areas and in multiple directions, dependent on wind shear
and speed (Prata 2009).

The damage caused to aircraft by volcanic ash is well docu-
mented (Guffanti and Tupper 2015) and includes abrading of
the cockpit windows and exterior, and more dangerously, the
full shutdown of engines if silica glass builds up to a point that
causes engine flameout (Casadevall 1994). Furthermore, many
commercial aircraft flight paths lie directly over active volcanic
regions. Those at the greatest risk are in remote areas, such as
the North Pacific (NOPAC) region, where more than 100 po-
tentially active volcanoes are present across Alaska, the
Aleutian Islands and the Kamchatka Peninsula (Webley 2011).
The large volume of air traffic and lack of alternate airports for
emergency landings increases this risk (Neal et al. 2009).
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Satellite remote sensing provides one of the most tempo-
rally and spatially practical tools for the detection and moni-
toring of volcanic eruptions (e.g., Dean et al. 2004; Ramsey
and Dehn 2004; Gudmundsson et al. 2012; Webley et al.
2013) and is becoming the routine method of ash cloud detec-
tion (Pergola et al. 2008). No particular sensor exists solely for
the purpose of volcanic emissions detection. However, owing
to the unique absorption spectrum of volcanic ash and sulfur
dioxide (SO2) in the thermal infrared (TIR; Thomas and
Watson 2010), high temporal resolution polar-orbiting satel-
lite sensors such as the Moderate Resolution Imaging
Spectroradiometer (MODIS), the Advanced Very High-
Resolution Radiometer (AVHRR), and the Atmospheric
Infrared Sounder (AIRS) can be used to detect and monitor
ash plumes during volcanic eruptions. Although these sensors
have relatively high temporal resolutions, they do not provide
omnipresent global coverage. Geostationary satellite sensors
such as the Imager onboard the Geostationary Operational
Environmental Satellite (GOES; Elrod et al. 2003), the Spin
Enhanced Visible and Infrared Imager (SEVIRI; Prata and
Kerkmann 2007), and the Advanced Himawari Imager
(AHI; Bessho et al. 2016) are also used to detect volcanic
emissions. They provide data of a specific region of the
Earth with even higher temporal resolution (typically
15 min) but at even lower spatial resolutions (> 2 km).
Given the quick onset and cessation of some eruptions,
coupled with rapid wind speeds, ash-rich plumes can quickly
reach several kilometers in the atmosphere (Tupper et al.
2009) and drift well away before any vent activity is detected
with orbital data. Therefore, it can be reasonably assumed that
short-lived ash-rich columns, such as those produced by vul-
canian activity, could quickly disconnect from their source
and travel several hundred kilometers before detection, if at
all. In addition, more remote volcanoes in the NOPAC region
are regularly obscured by meteorological cloud. Algorithms
such as MODVOLC and MIROVA, which use the detection
of thermal anomalies at volcanoes to track ongoing activity
will fail in these instances (Wright et al. 2004; Coppola et al.
2016). Thermal anomaly detection by these automated
algorithms as well as data from AVHRR are now also
routinely used for the rapid targeting and scheduling of
the Advanced Spaceborne Thermal Emission and
Reflection radiometer (ASTER; Abrams 2000) through
the Urgent Request Protocol (URP) system (Duda et al.
2009; Ramsey 2016). Detection of a thermal anomaly
by AVHRR, MODVOLC, or MIROVA triggers an auto-
matic ASTER targeting for that specific volcano.
Without this thermal detection, the only evidence of an
eruption might be the disconnected, drifting ash cloud.
Furthermore, a lack of any collaborating ground or sat-
ellite validation may make it difficult to determine the
eruptive source region, and hence, an assessment of fu-
ture activity becomes more difficult.

Our proposed approach for these scenarios is to employ
geostatistical modeling of generated backward trajectories.
Backward trajectory modeling is commonly applied to volca-
nic ash plumes to confirm satellite-based derivations of plume
height (Winker et al. 2012; Prata et al. 2015). However, this is
merely a validation tool to confirm the height of a plume from
a known source volcano. In studies of anthropogenic pollution
where sources of pollutants are unknown, pollutant concen-
trations are collected from receptor sites and a concentration-
weighted trajectory (CWT) is applied to identify the respon-
sible source (Stohl 1996; Han et al. 2007). To do this, multiple
backward trajectories are examined to determine a probabilis-
tic source location. Modeling packages such as Trajstat (Wang
et al. 2009) have developed graphical user interface (GUI)
tools to aid in this approach. These applications are designed,
however, to observe local versus regional sources of pollution
in cities, on the timescales of days to years, where the pollutant
is measured at a fixed receptor site over a period of time
(Cheng et al. 2013; Pietruczuk 2013). Given that an ash
cloud-producing volcanic eruption is a temporally short event,
and the ashmay only be detected by one sensor at anymoment
in time, these models would be inappropriate and so the meth-
od must be modified.

The objective of this study, therefore, is to present a method
to track disconnected volcanic clouds back to their source
region. We have defined the source region as being within
one ASTER scene (60 × 60 km), as the eventual aim is to
use this approach in the ASTER URP program to target the
source volcanoes identified. We perform this analysis using a
combination of TIR satellite data to first detect the drifting ash
and assess its mass, then backward trajectory modeling using
the Hybrid Single Particle Lagrangian Integrated Trajectory
model (HYSPLIT; Draxler and Hess 1998), coupled with a
geostatistical analysis within a Geographic Information
Systems (GIS) framework to assess the probable volcanic
source region and assess the overall accuracy.

Methods

In the process of searching for applicable ash cloud data, we
considered numerous factors including the vast amount of
archive data, the source volcanoes, and information on their
prior eruptions. Knowledge of the source coupled with any
other information on the eruption was considered important
for this testing to ascertain the accuracy of the model results.
Although many of these eruptions are well characterized in
terms of ash mass, cloud height, etc., we want to test our
modeling scenario as if the cloud had been first detected by
one satellite sensor such as MODIS. From this “initial detec-
tion,”we initiate the back-trajectorymodel. Therefore, a series
of known eruptions from different volcanoes were used to test
the methodological accuracy of the modeling approach
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(Fig. 1). We primarily focused on clouds that were < 1000 km
from the source vent with the expectation that this tool would
be primarily applicable to short-lived eruptions. However, we
also selected two ash clouds produced by Puyehue-Cordón
Caulle, Chile in 2011 that traveled > 1000 km from their
source vent. These test the model’s applicability in such an
extreme detection scenario.

Data from the MODIS sensor are used to detect the drifting
cloud. Whereas MODIS is one of many satellite sensors ca-
pable of detecting ash, the data are chosen because of the
extensive global coverage and the availability of an appropri-
ate retrieval model (provided by Helen Thomas and Fred
Prata, Nicarnica Aviation, Lysaker, Norway; Prata and Prata
2012). There are two identical MODIS sensors on board the
NASATerra and Aqua satellites, each with a spatial resolution
of 1 km in the TIR region (Justice et al. 1998). The data have a
relatively high temporal resolution and multiple TIR channels,
which allow the discrimination of ash from meteorological
clouds (Watson et al. 2004). The MODIS data archive
(https://ladsweb.nascom.nasa.gov/data/search.html) was
accessed to find appropriate data in proximity to the chosen
volcanoes following known eruptions. For each eruption,
several level 1B radiance data products were acquired.
These are processed to detect the presence of ash using
methods based upon the brightness temperature difference
(BTD) approach, the theory for which is outlined by Prata
(1989a, b). The main premise of this method is the differential
absorption of ash and water vapor between 11 and 12μm. The
transmission of ash is greater at 12 μm than at 11 μm, whereas
water vapor shows the opposite trend. Therefore, by
subtracting the 12-μm from the 11-μm channel, negative

values result for ash-bearing pixels. There is error associated
with this approach depending on the water vapor content of
the atmosphere, as well as the potential of ice to coat ash
particles (Simpson et al. 2000). These errors can generally
be minimized, however, to provide reliable data on ash plume
detection (Prata et al. 2001). Additional work over the past
25 years has produced methods for the retrieval of per pixel
ash mass loading and ash particle effective radius, using two
or three spectral bands (e.g., Wen and Rose 1994; Prata and
Grant 2001; Elrod et al. 2003; Pavolonis et al. 2006; Webley
et al. 2013). The MODIS ash retrieval model used here was
designed for use with SEVIRI data and follows the two-band
approach of Prata and Prata (2012). In this model, per pixel
effective particle radius, infrared optical depth and mass load-
ing are calculated using the approach of Prata and Grant
(2001). However, this model differs slightly to other two-
band methods, as surface and cloud temperatures are estimat-
ed by using the 12-μm channel brightness temperature. This
decreases the number of interpolations required. Once the per-
pixel mass loading is calculated, we import it into the GIS
framework to provide the input to the geostatistical methods
used later in our study.

For data where the plume is still connected to the vent, the
distal ash-rich pixels are spatially subset, thus simulating a
disconnected cloud for model testing (Fig. 2). Regions to-
wards the furthest distal edge of the cloud are subset further,
providing several testing scenarios from one eruption for our
approach. A cell grid is placed over each subset section and a
point located in the center of each cell. The average ash mass
loading of each cell is assigned to that point. These points
serve as the coordinates from which the HYSPLIT backward

Fig. 1 Location map of the volcanoes used in this study
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trajectory model is initiated. This sampling aggradation en-
sured that no bias is imparted in assigning trajectory start
coordinates.

HYSPLIT (Draxler and Hess 1998) is a Lagrangian dis-
persal model that independently calculates the advection and
diffusion components of a plume. Lagrangian models are
commonly favored where analyzing a single point source for
emissions as well as allowing the emission points to be de-
fined at any scale required (Draxler and Hess 1998). The on-
line version of HYSPLIT (https://www.ready.noaa.gov/
HYSPLIT.php) is used here, as it is freely available and
employs a simple user interface. This version produces data
in both shapefile and .kml formats, allowing easy integration
into a GIS visualization framework (Fig. 3). The model is
setup in “normal” mode, which is one trajectory at each
height created from each starting coordinate.

This version of HYSPLITonly allows a maximum of three
input starting heights for each trajectory. A more accurate
constraint of the volcanic plume height produces fewer possi-
bilities, which in turn should narrow the potential source

regions. This smaller dataset would also be more manageable
in a “real-world” scenario, thus improving the targeting accu-
racy of ASTER. The ash cloud height is first estimated by
comparing the 11-μm brightness temperature (BT) of pixels
containing ash with radiosonde-measured (available at https://
weather.uwyo.edu/upperair/sounding) air temperature
(Sawada 2002). This serves as the first assumed height level
for the model. However, errors associated with this approach
are possible and include: (1) under- or over-cooling of the
volcanic cloud upon injection into the atmosphere; (2) higher
cloud temperatures recorded as it becomes transparent
allowing upwelling radiance from the ground to be detected
(Oppenheimer 1998; Webley and Mastin 2009); (3) inaccura-
cies arising from the distance between the cloud and radio-
sonde locations (Guffanti et al. 2005); and (4) a difference in
time between image and radiosonde data acquisition. Because
we are looking at more distal, diffuse plumes, it is assumed
that radiosonde data will likely underestimate the plume
height, and so a second height level is set above the BT-
derived height (termed here BT+), halfway between that

Fig. 2 Approach for creating a simulated ash cloud disconnected from
the source vent using a MODIS retrieval from a Mt. Etna (Italy) ash
plume (image date: 28 October 2002 0145 UTC). The ash retrieval model
is performed first (a) and then a smaller region of this plume is visually

identified and separated (b, c). From this, the grid is overlain and coordi-
nate points are created and used to initiate the HYSPLIT backward tra-
jectory model
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height and the regional tropopause height. The final height
used is the local tropopause derived from both radiosonde
and AIRS data. AIRS-derived tropopause height data were
obtained using the Giovanni online data system, developed
and maintained by the NASA GES DISC (Acker and
Leptoukh 2007). Both data sources are used to constrain this
height level accurately. In many of these scenarios, the radio-
sonde station was a considerable distance from the ash cloud
subset region, whereas AIRS data are obtained near-
coincidently with data from the Aqua MODIS sensor. This
maximum height is used because previous testing of levels
higher than the tropopause demonstrated a significant
decorrelation of the plume’s travel direction (Williams et al.
2013). Simulations in other studies have also shown that distal
ash transport is dominated by atmospheric processes occur-
ring near or at the regional tropopause (Fero et al. 2009).
These chosen elevations therefore ensure that the three possi-
ble plume heights span the lower, middle, and upper
troposphere.

The HYSPLIT-generated trajectories are imported back in-
to the GIS framework, and an Empirical Bayesian Kriging
(EBK) approach is applied to interpolate the surface (Fig. 4),
used to predict the highest mass loading regions at different
times. These regions are considered the most reliable indicator
of the overall ash cloud movement. Peripheral regions of the
cloud may experience atmospheric turbulence and directional
changes, which are beyond the resolution of the HYSPLIT
model. The EBK probabilistic method is chosen because of
the lower errors associated with its predicted values, which are
the result of inclusion of the semivariogram uncertainty, some-
thing not done by other Kriging methods (Krivoruchko 2012).

Also, the model constructs the data semivariogram differently.
Kriging uses a weighted least squares approach, whereas EBK
estimates the semivariogram parameters using restricted max-
imum likelihood (REML). Trends within the data are located,
and once a trend direction for the highest ash mass regions is
found, the polygons are isolated to create the final backward
trajectory pathway. Lastly, volcanoes within 60 km of this
pathway are selected as potential sources.

All data processing and modeling are done using a modest
Dell OptiPlex 3060 with an Intel(R) Core(TM) processor at
2.80 GHz. Ash retrieval takes 1–5 min depending on the size
of the ash cloud. Ash coordinates are assigned with average
mass loadings calculated per grid cell in < 1 min. HYSPLIT
data are acquired online, although repeat input of different co-
ordinates and repeat model processing restricts speed. This pro-
cess is dependent on the number of starting locations chosen,
but each set of trajectories can be obtained in < 1 min. Several
additional scripts are then run to convert the model output to an
ArcGIS useable format. Following this, the EBK model is ap-
plied to each of the three height levels and the final trajectories
produced. Currently, one set of coordinates can be obtained
from an image and fully processed in 15–25 min depending
on the number of starting locations. However, with greater au-
tomation, a more powerful processor and access to the licensed
version of HYSPLIT this time would be greatly reduced.

Results

The model was applied to 40 different scenarios each <
1000 km from the source volcano, with the results categorized

Fig. 3 Trajectories from the ash
coordinates shown for three
plume altitudes. Obvious trends
in direction of travel are seen;
however, the BT altitude
produced the best fit. The points
at each time stamp in the model
are used as the input for the EBK
geostatistical model

Bull Volcanol (2019) 81: 53 Page 5 of 13 53



into two different distance ranges (near- and mid-) from the
volcano (Tables 1 and 2). The ranges were chosen somewhat
arbitrarily but based upon the swath widths of current orbital
sensors. For example, the near-range scenarios were defined
as those where the cloud is within 185 km of the vent (the
Landsat swath width). The mid-range was defined as being
between 185 and 2330 km (the MODIS swath width). Results
of the extreme back-trajectory test (i.e., > 2330 km distance
traveled) from Puyehue-Cordón Caulle are also presented.

Near-range model

The near-range model trajectories proved the most accurate,
with only one example not tracked back to within the 60-km
threshold (Fig. 5). Of these results, the BT+ height was the
most accurate, with 10 of 11 backward trajectories tracing the
cloud back to within an average distance of 14 km of the
known source. The tropopause height was the least accurate
for the near-range scenarios, with only one of eight results
traced accurately back to within 60 km. The BT-derived height
had the greatest range of results, with an average calculated
source distance of 67 km. This is directly related to the incon-
sistencies of the volcanic ash cloud height derived from the
BT.

Mid-range model

The mid-range results showed not only a lower level of accu-
racy, as might be expected (22 of 29 had at least one backward
trajectory within 60 km of the known target), but also had the
largest number of model scenarios (Fig. 6). The most accurate
height was again the BT+, with an average distance of 134 km
from the back trajectory to the known source volcano. The
overall accuracy of each height decreased significantly com-
pared with the near-range trajectory models, with all heights
averaging over 100 km to the source volcano. However, this
average is skewed by the most extreme results. In 75.9% of
cases, at least one trajectory was traced to within the 60-km
threshold. Results from the Kliuchevskoi simulation were par-
ticularly interesting, as the tropopause height was the most
accurate, producing an average distance from the source

Fig. 4 Surface created by the
EBK model. Each trajectory is
assigned the mass loading value
of its starting coordinate. Points
are then generated along this line
so the EBK model can be used.
This creates an interpolated map
of the mass loading. Because
higher values are considered more
reliable, it is these polygons that
form our final trajectories for each
height level, provided that a
strong trend is visible in the data

Table 1 Results of the modeling approach using the near-range scenar-
io (< 185 km from source)

Minimum
distance from
cloud to
source
volcano (km)

Modeled
trajectory
distance to
source volcano
(km) using BT
height

Modeled
trajectory
distance to source
volcano (km)
using BT+ height

Modeled
trajectory
distance to source
volcano (km)
using tropopause
height

97 73 0 49

98 89 11 99

122 0 3 100

131 150 38 147

131 114 0 138

133 24 12 85

142 14 0 105

163 39 27 154

163 120 6 108

166 0 0 132

168 110 61 81
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volcano of 39 km. This is the only instance where this height
produced the most accurate results and shows the possible
limitations of relying on height assignments solely from the
11-μm brightness temperature.

Extreme tests

Two extreme tests were performed with mixed results as ex-
pected. The first example (Fig. 7) produced excellent results,
as each of the trajectories were traced back to within 60 km,
despite originating 6752 km from the source. However, a sec-
ond example at a much greater distance (18,435 km from the
source) produced large errors. Both the BT and BT+ height

levels could not be analyzed as the trajectories did not produce
a coherent trend, and therefore the EBK model was unable to
create a useful interpolated map. The tropopause height level
did produce a final trajectory that tracked back to a minimum
distance of 1552 km from the source. Despite the improve-
ment using the tropopause height for these very large erup-
tions, producing accurate trajectories from these large dis-
tances is clearly a challenge and not the primary goal of this
study.

Discussion

Overall, the model produces reasonable success using the de-
scribed approach to track volcanic ash clouds back to their
probable source vent. However, as with any modeling ap-
proach, a detailed discussion of the results is warranted.

Height assignment

Determining the height of a volcanic plume or cloud is critical
to understand its propagation from the source, the magnitude
of the eruption, and the down-wind hazard impacts to popu-
lations on the ground and in the air (Mastin et al. 2009). Plume
top height can be determined using an 11-μm TIR band-
derived temperature (in this work, MODIS channel 31) as-
suming the cloud is in thermal equilibrium with the surround-
ing atmosphere (cf. Holasek and Rose 1991). Therefore, if the
atmospheric vertical temperature profile is known, the cloud
height can be extracted directly from the temperature data.
The atmospheric temperature profile is normally determined
using radiosonde data, which is ineffective in certain situa-
tions. For example, because the more distal portions of the
plume become optically thin, emitted radiance from the
ground may also be present in the cloud data. This leads to
derived temperatures that underestimate the actual cloud
height in the lowest 1000 km of the atmosphere. Although
our BT-derived back-trajectory modeling results were rela-
tively accurate (18 clouds tracked to within 60 km of the
edifice), this height assignment resulted in a wide distribution
of results. This height was, however, expected to perform well
for the near-range scenarios, as the plume would presumably
be denser closer to the vent, and in theory lead to a more
accurate height assessment. The average for this height level
for all scenarios was 89 km.

To improve the results, the “BT+” height was used as a
proxy for heights midway between the derived BT and tropo-
pause heights. Because the error in BT height will depend on a
variety of factors (e.g., ash cloud over/under cooling, amount
of ground radiance upwelling, distance of radiosonde mea-
surement to the location of the cloud; Oppenheimer 1998)
the assumed BT+ height is defined here as the height roughly
midway between the BT-derived height and the regional

Table 2 Results of the modeling approach using the mid-range scenario
(185–2330 km)

Minimum
distance from
cloud to
source
volcano (km)

Modeled
trajectory
distance to
source volcano
(km) using BT
height

Modeled
trajectory
distance to source
volcano (km)
using BT+ height

Modeled
trajectory
distance to source
volcano (km)
using tropopause
height

195 0 6 40

205 64 11 143

214 164 203 61

215 164 192 0

227 137 0 173

237 68 77 234

238 2 49 109

240 204 128 4

247 0 84 54

258 15 49 0

281 32 69 181

296 0 5 197

337 107 29 202

378 10 126 3

381 0 17 81

413 187 65 75

434 88 80 306

480 0 0 0

483 175 39 40

509 84 0 288

510 369 320 13

521 5 11 22

546 0 236 145

557 144 75 338

627 223 10 265

663 25 241 135

669 127 153 179

700 59 0 26

737 382 390 80
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tropopause. In the cases studied here, this height would fre-
quently be ~ 3000 km above the BT-derived height. This
height proved to be the most accurate for the back-trajectory
model, with an overall average error of 71 km between the
model and the actual source. One can therefore assume that
most of the clouds examined in this study were drifting at or
near this BT+ height.

The tropopause height was the easiest to determine using
data fromNASA’s Giovanni system and radiosonde data. This
height resulted in lower model accuracy, with an average dis-
tance to the target vent of 115 km. The exceptions to this came
from the Kliuchevskoi eruption, where the tropopause height
level produced the greatest accuracy (average of 39 km), as

well as the extreme distance cases. In these instances, the
eruptions were likely large enough to have reached this layer
of the atmosphere.

Having an accurate height assessment would also lower the
time needed to analyze a lower volume of data. However, this
study has also shown that in some cases, two height levels
track the cloud to within 60 km. This does bring into question
how accurate the height assessment needs to be, and the
resulting potential error. To determine this, trajectories were
modeled for an ash cloud produced by Shiveluch, Russia
(Fig. 8). The BT-derived height put the plume in the lower
troposphere. Backward trajectories were generated every
1000 m between the BT-derived height and the tropopause.

Fig. 5 Two examples of the near-
range scenarios. a An ash cloud
from Sangeang Api volcano was
captured on 31 May 2014 0235
UTC. The BT and BT+ height
levels produced successful back-
ward trajectories. b An ash cloud
from Shiveluch obtained 6
October 2012 0145 UTC was
tracked back to within 60 km by
the same two height levels
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These were then assessed to determine if they met the thresh-
old criteria from the source volcano. The results show that all
modeled trajectories between 2397 and 7397 m would still be
within the 60-km threshold. This was repeated for an eruption
at Anatahan volcano. In this instance, the 60-km threshold was
met using a narrower range of heights (2219 to 4219 m).
However, this does demonstrate that the model would still be
acceptable if the BT height is determined well enough. Other
methods of ash discrimination in the TIR may improve the ash
cloud height determination. For example, Pavolonis et al.

(2013) outline a three-band method using wavelengths cen-
tered at 11, 12, and 13.3 μm on the SEVIRI instrument, to
derive ash cloud heights. The height retrievals presented in that
study were found to be in good agreement to those obtained by
Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP)
data. More recent work by Zhu et al. (2017) expands upon this
three-band method also using the SEVIRI sensor. Further
study is required, however, to compare the height results from
these methods to those calculated here and how they would
impact the back-trajectory model results.

Fig. 6 Two examples of mid-
range scenarios. An ash cloud
produced by Mt. Etna was
captured by MODIS on 28
October 2002 2145 UTC and
tracked back to within the 60-km
threshold by two height levels (a).
However, a cloud from Anatahan
volcano, captured by MODIS on
5 April 2005 0130 UTC did not
produce a successful backward
trajectory (b)
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Overall, a correct height assignment is important to suc-
cessfully locate the source volcano, which would then affect
the ability to trigger other orbital data acquisition, such as
higher spatial resolution ASTER TIR data (Ramsey 2016).
The two-band temperature method has provided generally
good results, assuming that a middle troposphere height is also
known.

Model uncertainty and geostatistical methods

The HYSPLIT model has proven to be a useful and relatively
quick tool, which is essential for rapid response to hazards, but
there are limitations that affect the results. Model resolution is
a main limiting factor and is the reason why a source region is
identified, rather than attempting to track back to a specific

Fig. 8 Model results for the
Shiveluch ash cloud detected on
23 November 2014 0225 UTC,
where trajectories are generated
every 1000 m between the BT-
derived height and the tropopause

Fig. 7 Extreme distance example
from the Puyehue-Cordón Caulle
eruption. The MODIS image was
obtained on 8 June 2011 0920
UTC, with the ash plume drifting
east below the coast of South
Africa

53 Page 10 of 13 Bull Volcanol (2019) 81: 53



volcanic source. After 2006, the input wind field data for the
HYSPLIT model is provided by the Global Data Assimilation
System (GDAS). These data have a resolution of 0.5 or 1
degree depending on when the satellite data were collected.
Therefore, any atmospheric turbulence or changing wind vec-
tors that occur below this resolution are not resolved by the
model. This directly affects the lateral ash cloud distribution
and its vertical profile, neither of which are measurable and
therefore result in errors to the modeled trajectories. If the ash
plume is closer to the edifice, these effects are not as pro-
nounced. For distal and more diffuse plumes, however, the
effects of small-scale turbulence will likely have pronounced
effects on the modeled ash transport trajectory. This is dem-
onstrated in the results presented here, as an increase in dis-
tance between the ash cloud and its source coincides with a
decrease in modeled accuracy.

The effects of the back-trajectory model uncertainty will
also affect the subsequent geostatistical methods. If an obvi-
ous trend is present in the data, a more accurate final trajectory
is created and confidence in the predicted location improves.
Where model results produce trajectories with no obvious
trend, the area covered by the highest mass polygons becomes
larger and therefore more potential source volcanoes are in-
cluded in the final result. This is especially notable for volca-
nic arcs with closely spaced (and recently active) volcanoes.
Because the goal of this approach is to first identify a geo-
graphic region and then hopefully further narrow that to a
source volcano for further satellite sensor-based analysis, the
broad-scale results appear promising but are limited to the data
availability and model assumptions. The ability to confidently
determine a source region is important, however, as it will aid
in subsequent targeting by high-spatial resolution sensors to
image new eruptions at improved spatial and/or spectral reso-
lutions, and thus monitor future activity.

Further testing and operational capability

The focus of this work is to use known volcanic eruptions as
tests for a series of backward trajectory model results com-
bined with a new geospatial analysis approach to identify an
eruption source. The a priori knowledge of each eruption,
however, influenced the back-trajectory model run time. In
an actual situation where a drifting ash cloud is detected, there
may not be knowledge of how long the cloud has been pres-
ent. Therefore, the next stage in testing of this approach is to
prepare a series of blind tests, where the data are subset ahead
of time and the model run with no knowledge of the eruption
location. This would simulate the best practices for this
modeling approach if it were to be used in a future eruption
scenario.

The goal here is to postulate how such a model could be
integrated into an operational setting. The approach was de-
signed to imitate how an actual fugitive ash cloud would be

detected, tracked and assessed. The workflow for the real time
version of this model would follow the same routine. First, the
cloud would be detected by a higher temporal resolution sen-
sor such as MODIS, with the ash-bearing pixels and the ash
mass loading identified and the coordinate grid created.
Depending on the ash retrieval model used, ash cloud height
would either be derived from the 11 μmBTor using the three-
band derived effective height. These heights would seed the
HYSPLIT backward trajectory model and the results then
imported into the GIS framework. The GIS-generated
geostatistical results would be used to identify the potential
source volcanoes. The most likely volcanic source would be
identified as a target for the scheduling of new data acquisition
by the ASTER URP system. These higher spatial and spectral
resolution data could then be examined in detail for subtler
thermal and compositional changes as well as compared to
prior data to assess the potential for future activity (cf. Reath
et al. 2016).

Conclusions

Amodeling approach combining a two-band BTD determina-
tion in TIR satellite data for ash detection, a new geostatistical
treatment of the BTD results, and the HYSPLIT model for
back-trajectory tracing has been developed and presented.
The results are used to statistically predict the backward tra-
jectory of a drifting ash cloud to its most likely source for the
purposes of triggering other orbital data acquisitions in cases
where no thermal anomaly is detected. This model is tested
and shown to be accurate to within 60 km of the known source
volcano in 80% of cases, if properly constrained with accurate
input parameters such as cloud height, which is the single
largest source of possible error.

Being able to constrain the specific geographic region and
perhaps even the exact volcanic source of an unidentified
eruption is important allowing quick satellite response of other
orbital and ground-based assets as well as to direct emergency
response to the affected area. Typically, these sensor web ap-
proaches using multi sensor observations of a volcanic or fire
crisis are triggered by thermal anomalies (e.g., Duda et al.
2009; Coppola et al. 2016; Reath et al. 2016). These detec-
tions make for easy targeting of the higher-resolution sensors.
However, in cases where an eruption occurs with little to no
thermal increase or where that thermal anomaly is obscured,
detection of the drifting ash is our next most important indi-
cator of an eruption. Targeting the source of that ash for im-
proved data acquisition from other sensors is the goal.
Knowing the source volcano and acquiring those data also
provides the ability for further analysis and monitoring over
time to infer and predict future activity (Reath et al. 2016). As
we continue to develop more accurate methods to both quan-
tify volcanic ash emissions and improve estimates of the
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height of volcanic ash clouds, the approach outlined here will
increase the number of cases (i.e., > 80%) that yield source
locations within 60 km of reality.
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