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K-CM application for supervised pattern recognition at Mt. Etna:
an innovative tool to forecast flank eruptive activity
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Abstract
We investigated the relationship between the temporal monitoring series routinely recorded at Mt. Etna and the flank eruptions
that occurred between January 2001 and April 2005 by the K-contractive map (K-CM) method pattern classifier with supervised
learning. The reference dataset includes 28 variables and 1580 records collected over 52 months for a total of 301 eruptive days.
A two-step analysis was performed. In the first step analysis, we used the 28 parameters of each day to recognize anomalies
heralding a flank eruption. K-CM estimated a sensitivity higher than 95% and a specificity close to 100%. In the second step
analysis, we considered each record comprising the 28 variables for 6 days as an input (for a total of 180 inputs) and the outcomes
of the seventh day as an output to predict eruption or rest. In this case, K-CM showed sensitivity and specificity close to 98% and
100%, respectively. Results highlight the reliability of the K-CM method to build up a prediction algorithm able to alert the
volcano experts a day before the occurrence of a potential flank eruption. The robustness of the two analyses was investigated by
the behavior of the receiver operating characteristic curve. The relative area under the curve showed values close to 1, thus
providing a valid measure of the performance of the classifier. Finally, a complete overview of the performance levels of the
method used was explored analyzing the retrieved Molchan error diagram, in both cases, trajectories very close to the theoretical
minimum.

Keywords Mt.Etnavolcano .Flankeruption .Monitoringdatacomplexsystem .Neuralnetworks .Supervisedpatternrecognition

Introduction

Machine Learning (ML) is a subset of the vast world called
artificial intelligence, which is based on a natural computation
(NC) that opposes classical computation. While classical

computation entrusts the drafting of the rules of the studied
phenomenon to a group of experts, which evaluates howmuch
hypothesis are able to describe it (top down approach), NC lets
the rules emerge spontaneously from data. This approach is
made up of models that generate further models by adapting to
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the data examined (bottom-up approach; Ballard 1999; Arbib
1995; Buscema and Tastle 2013). Recent years have seen an
exponential increase in data availability in several fields. This
has led the need to determine specific models for each of the
field considered which take into account the complexity of the
information in recorded data (McKinsey Global Institute
2011). In particular, the power of these models has offered
the opportunity to analyze and make explicit Bmany to many^
relationships, i.e., to perform a multivariate analysis of com-
plex phenomena. In this context, artificial adaptive algo-
rithms, capable of handling large and complex set of data,
have proven to be the ideal tool. Among these algorithms,
deep learning has shown to be of considerable effectiveness
(Bengio 2009). Artificial neural networks (ANNs) are one of
the most significant tools in multivariate analysis thanks to
their ability to deal with the non-linear behavior of a complex
system (Buscema et al. 2014). In this paper, we explore the
potential and emerging use of the K-ContractiveMap (K-CM)
classification method (Buscema et al. 2014) in volcanic
processes.

A volcano can be considered as a complex system (Langer
et al. 2003; Brancato et al. 2016), whose structure and com-
ponents may change dynamically due to local and/or regional
geodynamical interactions, while retaining its cohesion in
space-time. Thus, through its changeable behavior, volcanoes
generate new data over time, covering from a long- to short-
temporal scale (e.g., Newhall and Hoblitt 2002; Martin et al.
2004; Brancato et al. 2011). We can thus define volcanoes as
natural adaptive systems, whichmeans that volcanic processes
will interact spatially and temporally to produce outputs
(Smits 2015). Due to its complexity, this type of system has
a highly non-linear behavior and understanding of its dynam-
ics may be achieved by inverting and cross-correlating record-
ed multiparametric time series (Brancato et al. 2016).

Processes of unrest occurring at volcanoes and preceding
eruptions maybe considered as precursors that could be used
for forecasting (Marzocchi et al. 2004; Martin et al. 2004;
Brancato et al. 2011, 2012; Selva et al. 2012; Tonini et al.
2016). Information on processes occurring in the volcanic
dynamics may be used to detect eventual changes in the vol-
cano’s state (Martin et al. 2004; Brancato et al. 2011, 2012;
Tonini et al. 2016), though sub-surface processes are observ-
ably these directly (Mader 2006).

Mt. Etna is located along the Ionian coast of eastern Sicily
(Fig. 1) and has undergone both effusive and frequent explo-
sive basaltic eruptions over the last 500 ky ago (Branca et al.
2008, 2011). This persistent and dynamic activity has focused
attention on the associated volcanic risk posing a challenge for
the Italian Civil Protection, stakeholders, and other decision
makers. Questions asked include BWhen and where will erup-
tions occur?^ and BHow long will eruptions last?^, and there
is a pressing need to reduce uncertainty in forecasting given
the densely inhabited area around the volcano, where a million

people live in vulnerable areas (e.g., Bonaccorso et al. 2004;
Crisci et al. 2010; Barreca et al. 2012). Though summit erup-
tions (e.g., short-lived lava fountains) are the most frequent
phenomena at Mt. Etna (e.g., Andronico and Corsaro 2011;
Bonaccorso and Calvari 2013), major crises have been usually
associated with lava flows on the volcano flanks, which may
persist for weeks to years (Barberi et al. 1992; Calvari and
Pinkerton 1998; Andronico and Lodato 2005; Aloisi et al.
2009; Harris et al. 2011).

Mt. Etna is one of the best-monitored volcanoes in the
world (Bonaccorso et al. 2004; Mattia et al. 2015), and the
vast quantity of multidisciplinary recorded available offers a
good opportunity to thoroughly investigate hidden informa-
tion potentially associated with the dynamics of a volcanic
system (e.g., Patanè et al. 2013; Spampinato et al. 2015;
Corsaro et al. 2017). The objective of this work is to pinpoint
days during which flank eruptions at Mt. Etna might occur by
looking at changes in the state of the volcano. Our aim is to
define two states: Bin a flank eruption^ (i.e., erupting) and
Bnot in a flank eruption^ (i.e., quiescent, namely rest). The
assumption is, if the volcano is not in a flank eruption today,
it is very likely it will not be tomorrow, and conversely, if a
flank eruption has started, it is very likely it will continue
tomorrow. Furthermore, we aim to determine if any changes
that occur before and during an eruption may be used to fore-
cast the onset and the end of a flank eruption, respectively.

The K-CM method is an application of the most general
Contractive Map (CM) technique (Buscema et al. 2018), be-
ing specifically designed to solve supervised pattern recogni-
tion (i.e., classification) problems by using the k-Nearest
Neighbor (kNN) criterion (Hastie et al. 2009). Classification
is defined as the process of assigning objects to a class. A
number of features are used to mark out these objects, and
the resulting set constitutes a vector, namely the pattern (also
known as record). According to the contractive map tech-
nique, because of its equations, K-CM determines a contrac-
tion of the input during the learning phase of the network. This
process, as better explained later in the text, determineswhat is
called learning that is the ability of the network to generalize
what seen in the known database, to unknown cases. K-CM
has already been successfully applied in classification tasks
(Buscema et al. 2014; Grossi et al. 2017). The philosophy
behind the K-CM classification method and technical details
is reported in Appendix 1.

K-CM classification is one of the current methodologies in
multivariate analysis that can find a mathematical model to
recognize the membership of samples to their proper class.
Here, we present the results of an application of the K-CM
pattern classifier with supervised learning at Mt. Etna. A two-
step analysis was performed on data recorded between
January 2001 and April 2005 focusing on the relationships
between geophysical (seismic, ground deformation, gravimet-
ric), geochemical (SO2 and CO2 fluxes), and volcanological
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activity (mainly ash emission) records and the status (i.e.,
eruptive or not) of the volcano. It means that, in our modelling,
each record, i.e., each day characterized by geophysical, geo-
chemical, and volcanological parameters recorded in the same
day, must belong to one of the two classes: eruptive day or
non-eruptive day. The K-CM classifier is trained to predict
changes in volcanic activity (eruption or rest) forecasting be-
ing made 1 day in advance. Analysis was performed using the
same monitoring dataset used in Bayesian modelling for erup-
tion forecasting by Brancato et al. (2011), with the objective to
identify any discrepancies between the two methods and/or
new outcomes offered by the application of the K-CM ap-
proach. The use of a sophisticated neural network, such as
K-CM, allows the creation of a fully data-driven model with-
out the need to introduce any a priori theoretical knowledge
regarding the problem or a priori beliefs. It is also a completely
different strategy involving complex adaptive systems rather

than being based on the concept of event tree as in the
Bayesian Event Tree model previously used. Finally, we em-
phasize that the K-CM analysis is not focused on the likely
feedback of the pattern recognition to inform on the underly-
ing volcanic processes, meaning that scope of our study is not
to model howMt. Etna works but to deliver a forecasting tool.

Material and methods

Monitoring dataset

Intensive monitoring at Mt. Etna, both routinely and during
dedicated campaigns (for the latter, a linear interpolation was
used to estimate the missing data), has generated time series
data of seismicity (earthquakes), ground deformation, gas
emission, microgravity, and petrology as listed in Table 1.

Fig. 1 Sketch map of Mt. Etna
volcano. Green, yellow, blue, and
red triangles indicate the
geochemical, ground
deformation, gravity, and tilt
sensor locations, respectively (as
listed in Table 1). Yellow solid
lines indicate the ground defor-
mation profiles used in this study.
The contour lines at 500 m inter-
vals and the urbanized areas are
shown. Main towns are also la-
belled (modified from Brancato
et al. 2016)
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We are aware that interpolation is not appropriate for a pre-
diction tool, since it cannot be used to project into the future;
thus, we only used interpolation for short rest periods at Mt.
Etna. All 28 selected monitoring parameters (N variables;
Table 1) represent a multidisciplinary dataset intended to pro-
vide a detailed picture of the quiescent background state of Mt.
Etna. The reader has to focus that each of the 28 variables
represents an operational variable for overall pattern recognition
rather than providing individual independent field observations,
as clearly indicated by the clinometric parameters. CDV data,
recorded at CDV station (Fig. 1), perform both independently
(Clinometric measurement (CDV station) or Clinometric vari-
ation (> 0.033 μrad day−1; CDV station) or Clinometric varia-
tion (CDV station); CDV, tilt_var_0.033_CDV and var_CDV,
respectively; Table 1) and together with other tilt data (Variation
of the Clinometric mean (CDV=Casa Del Vescovo, MNR=
Monte Nero, MSC= Monte Scavo stations) or Clinometric

mean (CDV, MNR, MSC stations); tilt_var_3stat and
stat_mean, respectively; Table 1) to derive different variables
to describe different volcanic scenarios. The merging is useful
as the tilt network reflects the final intrusive phase by causing
changes at most stations with an amplitude related to source-
station distance (i.e., a high variation for a closer station and a
smaller one for a distal station; Ferro et al. 2011). In detail, these
phases are usually preceded by large variations (up to over
100 μrad; Gambino et al. 2014).

The time series spans January 2001–April 2005 (a total
of 1580 records), during which Mt. Etna underwent the
July–August 2001, the October 2002–January 2003, and
the September 2004–March 2005 flank eruptions, with a
total of 301 eruptive days. This reference period was cho-
sen as it includes most of the flank events, which have
occurred at Mt. Etna over the last few decades. A further
flank eruption that occurred between May 2008 and

Table 1 List and relative units of the 28 variables of the dataset collected at Mt. Etna

Variable Units Abbreviationa Si Ci Di

M. Silvestri-Bocche 1792 line μstrain day−1 SerPiz_MtStemp 0.07 1 1

Serra Pizzuta-M. Stempato line μstrain day−1 MtSil_Bocche1792 0.07 1 1

Deformation Pernicana Fault cm day−1 vel_def_Pern 0.07 1 1

Gravity (FM4 station) μgal day−1 grav_FM4 0.07 1 1

Clinometric variation (MSC station) μrad day−1 var_MSC 0.07 1 1

Variation of the Clinometric mean (CDV, MNR, MSC stations) μrad day−1 tilt_var_3stat 0.07 1 1

Clinometric variation (CDV station) μrad day−1 var_CDV 0.07 1 1

CO2 (P78 station) g m−2 day−1 CO2_P78 0.13 1 1

Areal dilatation μstrain day−1 ar_dil 0.14 1 1

Number of VT earthquakes (M = 2+; W sector) Event day−1 eqs_W_Sect 0.20 1 1

Number of VT earthquakes (D < 5 km) Event day−1 eqs_D < 5 km 0.20 1 1

Number of VT earthquakes (M = 1+) Event day−1 eqs_volc 0.20 1 1

Number of earthquakes (D ≥ 200 km; M = 5+; Tyrrhenian slab) Event day−1 eqs_slab_Tyrr 0.20 1 1

Number of VT earthquakes (M = 3+; Pernicana Fault) Event day−1 eqs_Pern 0.20 1 1

Number of VT earthquakes (D ≥ 20 km; M = 3+; NW sector) Event day−1 eqs_NW_Sect 0.20 1 1

Ash emission No units ash 0.20 3 2

Clinometric variation (MNR station) μrad day−1 var_MNR 0.25 1 1

SO2 emission t day−1 SO2 0.25 1 1

W flank dilatation Strain day−1 dil_W 0.73 4 6

Clinometric variation (> 0.033 μrad day−1; CDV station) No units tilt_var_0.033_CDV 0.73 4 6

Gravity (PL station) μgal day−1 grav_PL 0.73 4 6

Clinometric measurement (MNR station) μrad day−1 MNR 0.94 3 4

Clinometric mean (CDV, MNR, MSC stations) μrad day−1 stat_mean 0.94 4 7

CO2 (P39 station) g m−2 day−1 CO2_P39 1.00 4 7

Sideromelane No units sideromelane 1.04 3 5

Clinometric measurement (MSC station) μrad day−1 MSC 1.23 4 8

Number of seismic swarms (> 30 earthquakes day−1) No units eqs_swarm 2.78 2 5

Clinometric measurement (CDV station) μrad day−1 CDV 4.17 4 15

Columns 4–6 report the estimates of the Association Strength Si, theNode Centrality Ci, and theNode Degree Di, respectively. The list is sorted based on
the Si column
a Code given to the variable name for software purposes
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July 2009 was not considered since there was a switch to
continuous acquisition starting from late 2005. This led to
a complete change in the dataset.

We point out that the analysis in Brancato et al. (2016),
though used the same dataset, provided different results by
using different techniques (i.e., genetic algorithms).
Brancato et al. (2016) showed a pattern recognition rather
than a predictive outcome, testing whether certain ma-
chine learning techniques performed on a series of signals
(i.e., monitoring data) could estimate the typical distribu-
tion of eruptive activity onset. The authors implemented a
selection of the most predictive monitoring series, reduc-
ing the initial dataset (i.e., 28 variables) usually run for
Bayesian probability estimates to 11 variables (Brancato
et al. 2011).

The dataset here is a revised form of that used to forecast
flank eruptions at Mt. Etna with a Bayesian Event Tree ap-
proach, after an expert elicitation (Brancato et al. 2011). The
current dataset includes only the temporal series (recorded
and/or collected values) of any monitored parameter
(Table 1), neglecting the inertia and anomalies information
needed for the former application (see Brancato et al. 2011).
Brancato et al. (2011) refer to inertia as the timescale during
which the parameter evolves, according to the belief of an
expert, towards a more anomalous value, which indicates a
change in volcanic state (e.g., from a magmatic unrest to an
eruption). For the sake of clarity, different timescales of days
to weeks/months/years were reported (Brancato et al. 2011).
The revision process exploits the capacity of the machine
learning approaches to objectively pinpoint hidden links be-
tween the monitoring data and the state of Mt. Etna (quiescent
or eruptive). The approach allowed also to avoid any model-
ling of the underlying volcanic processes and the associated
dependence on the subjective view of the modeller, primarily
in selecting the thresholds and inertias of the involved moni-
toring parameters. Specifically, the role of machine learning
techniques is based on detecting anomalies in the dataset with-
out any specific setting for the anomaly.

Seismic monitoring has convincingly demonstrated that
flank eruptions at Mt. Etna are often preceded by earthquake
unrest (e.g., Brancato and Gresta 2003; Patanè et al. 2003;
Feuillet et al. 2006), on timescales of a few days to weeks.
The different seismic parameters are spatially relevant. In oth-
er words, different locations imply different links to the vari-
ous volcanic stages (from unrest phase to eruption) of Mt.
Etna. Earthquakes occurring in the Tyrrhenian slab (Number
of earthquakes (D ≥ 200 km; M = 5+; Tyrrhenian slab);
eqs_slab_Tyrr; Table 1) and along the Pernicana Fault
(Number of VT earthquakes (M = 3+; Pernicana Fault);
eqs_Pern; Table 1, as well as deep seismicity in the NW sector
(Number of VTearthquakes (D ≥ 20 km;M = 3+; NW sector);
eqs_W_Sect; Table 1) of Mt. Etna, reveal early stages of deep
magma movements (unrest phase). Conversely, shallower

seismicity (depth less than 5 km; Number of VT earthquakes
(D < 5 km); eqs_D < 5 km; Table 1) depicts a strong magma
involvement (Brancato and Gresta 2003; Patanè et al. 2003).
Such seismicity is mainly clustered (Number of seismic
swarms (> 30 earthquakes day−1); eqs_swarm; Table 1), being
likely related to a fracturing field on the flanks of the edifice
(Brancato and Gresta 2003). In particular, eqs_swarm features
a variable with a time and frequency definition (30 events/
day) of earthquakes clustered anywhere on the Mt. Etna edi-
fice, usually indicating the location of the vent zone (flank
eruption occurrence).

Ground deformation sampling campaigns on monthly
timescales, which become daily whenmagma reaches the vent
zone, are highly useful indicators of existing volcanic activity
(Bonaccorso et al. 2004, 2006; Aloisi et al. 2006; Bonforte
et al. 2007). We differentiate the relative monitoring by con-
sidering GPS, electronic distance measurements (hereafter,
EDM), and tilt variables. The anomalies of the GPS variables
(W flank dilatation and Deformation Pernicana Fault; dil_W
and vel_def_Pern, respectively; Table 1) are usually associat-
ed with a ductile behavior induced by the plumbing system,
while anomalies of the EDM variables (M. Silvestri-Bocche
1792 baseline, Serra Pizzuta-M. Stempato baseline and areal
dilatation; SerPiz_MtStemp, MtSil_Bocche1792, and ar_dil;
Table 1) give first-order information about the inflation/
deflation state of Mt. Etna. Specifically, EDM monitors the
horizontal component of ground deformation. From the end of
the 1970s, three separate networks operated at Mt. Etna: on
the northeastern, western, and southern flanks. In particular,
the M. Silvestri-Bocche 1792 and Serra Pizzuta-M. Stempato
baselines (Table 1 and Fig. 1) provide insights into the spread-
ing of the SE and the middle part of Rift S, respectively, when
an extension (due to a magmatic intrusion?) occurs on the
well-known NNW-SSE structures. Conversely, tilt data, due
to the timescales of a few hours to days, are indicators of the
rapid evolution of the internal magma movements immediate-
ly preceding the onset of flank activity (Ferro et al. 2011;
Gambino et al. 2014). The different sites cover the sectors of
Mt. Etna (Fig. 1) that underwent most of the recent flank
activity. In particular, tilt_var_0.033_CDV (Table 1) variable
gives information about the early stage of an unrest phase,
whereas CDV and var_CDV (Table 1) variables (similar to
Clinometric measurement (MNR station) or Clinometric var-
iation (MNR station) and Clinometric measurement (MSC
station) or Clinometric variation (MNR station) (MNR,
var_MNR, MSC, and var_MSC, respectively; Table 1) are
linked to the final magma intrusion during the onset of flank
activity at Mt. Etna. On the other hand, tilt_var_3stat and
stat_mean (respectively; Table 1) may describe the stages
linked to the internal movement of the magma towards the
surface of the volcano.

Analysis of gas emissions, both observed remotely from
the volcanic plume as bulk contribution from all summit
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craters (SO2 emission, SO2; Table 1) and directly from the soil
(CO2 (P39 station) and CO2 (P78 station); CO2_P39 and
CO2_P78; Table 1 and Fig. 1), provides insights into the mag-
matic feeding system ofMt. Etna from the deep to the shallow
part of the volcano edifice, with timescales from weeks to
months (e.g., Badalamenti et al. 2004; Caltabiano et al.
2004; Salerno et al. 2018). An increase in bulk SO2 emission
has been shown to relate to the ascent of a new batch of gas-
rich magma from a shallow zone of 3–4 km beneath summit
craters (e.g., Sutton et al. 2001; Caltabiano et al. 2004; Salerno
et al. 2018). Conversely, anomalies in CO2 flux suggest em-
placement of undegassed magma at ~ 12 km (e.g., Notsu et al.
2006; Spilliaert et al. 2006; Giammanco et al. 2012). In our
study, temporal anomalies at P39 site (Fig. 1) indicate exsolu-
tion from depths of ca. 12 km, while anomalies in CO2 flux at
P78 site indicate shallower magmamovements from depths of
ca. 4 km (Giammanco et al. 2012).

Anomalies in microgravity measurements (Gravity (FM4
station) and Gravity (PL=Punta Lucia station) variables;
grav_FM4 and grav_PL, respectively; Table 1) have also been
observed a few months before the eruption onset (Carbone
et al. 2003; Carbone and Greco 2007). Both series are record-
ed at PL and FM4 stations (Fig. 1), which represent the sites
where the maximum variation was observed (Carbone et al.
2003). The PL sensor belongs to the N-S profile, which is

aimed at observing magma rising from any particular direc-
tion, while the FM4 sensor belongs to the E-W profile, de-
signed to observe the dynamics of the southern flank of the
Mt. Etna edifice.

Figure 2 shows the (normalized) monitoring time series
used for the current analysis, which evidence variations in
both magnitude and temporal scale in connection with the
observed eruptive activity at Mt. Etna. In particular, all the
selected series show significant variations before the July–
August 2001 and October 2002–January 2003 flank erup-
tions. No particular trend (either increasing or decreasing) is
observed, with the sole exception of CDV variable values
(gray solid line; Fig. 2) which shows a continuous decreasing
trend after the end of the July–August 2001 eruption. Finally,
none of the selected data show anomalous values before the
September 2004–March 2005 flank event but instead show
significant variations a few days before the end of the relative
eruptive activity (Fig. 2).

Other monitoring data commonly include petrologic obser-
vations (Ash emission and Sideromelane; ash and
sideromelane, respectively; Table 1) of the volcanic rocks.
Analysis of the physical and chemical properties of emitted
volcanic rocks can provide important constraints for model-
ling. In particular, the presence of sideromelane in volcanic
ash is indicative of a fresh magma injection, hence a possible

Fig. 2 Selected time evolution of the monitoring parameters employed in
the present study. For each series, data are normalized to the relative
maximum value (for graphical display). Also shown (top of the panel)
the eruptive activity at Mt. Etna (in terms of lava flow) which occurred

during the January 2001–April 2005 period. It is evident how the
September 2004–March 2005 flank episode was not heralded by any
anomalous monitoring recording
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precursor of imminent flank activity at Mt. Etna (Andronico
et al. 2009; Corsaro et al. 2017).

Auto-CM algorithm application

Time series, and their relationship with the eruptive activity of
Mt. Etna, was explored performing a two-step analysis. The
first analysis is a classical problem of pattern recognition. For
any day (i.e., any record), we considered the 28 values of the
variables of the day before as input for the K-CM algorithm.
To evaluate the correct learning of a network, it is necessary to
verify its ability to predict cases never seen before. For this
reason, it is usual to divide the sample into two subsets, called
training set and testing set. For both subsamples, we know the
class of belonging of each record (in this case, eruptive or non-
eruptive) called target value. The learning is carried out on the
training set showing to the neural network both the record and
the relative class of belonging. Then, we try to predict the
target value of the testing set in a test called blind. The net-
work, on the basis of what has been learned about the training
set, will assign a class to each of the testing records. At this
point, it will be possible to verify the percentage of correct
forecasts and the percentage of errors. Both training and test-
ing sets include 1580 patterns each. Leave One Out (LOO)
testing protocol (see Appendix 1) was used to validate relative
outcomes. This type of analysis allowed to assess whether the
system is able to predict the state of the volcano the next day,
based on the data recorded the previous day, and provide
volcanologists with essential information and alerts. In the
second step analysis, we applied a moving window with a
length of 6 days to compute the probability of each target
(eruption or rest) for the seventh day. Thus, for each day, we
codified the 28 × 6 = 168 values of the variables and the rela-
tive 2 × 6 = 12 outcomes (both targets for each day) for a total
of 180 inputs. After that, we codified the outcome of the sev-
enth day as output. We then divided the sample of 1574 (=
1580–6) days into two subsamples (787 records each) follow-
ing a chronological scheme. This type of experimentation fo-
cuses upon the possibility to assess whether the system is able
to predict the state of the volcano on the seventh day, based on
the data recorded during the previous week. The information
in this case becomes even more valuable as the time for pos-
sible intervention is longer. For this step analysis, since each
record is linked to the previous one by a time relation, it is not
possible to perform a random training-testing set division, but
it is necessary to consider the time. For this reason, the neural
network was trained on the first 784 records and tested on the
last 784.

The training set spans the period from 7 January 2001 to 4
March 2003 and the testing set from 5March 2003 to 29 April
2005. The training set includes anomalies in the monitoring,
better interpreted as precursors and linked to the early stages
of the July–August 2001 and October 2002–January 2003

flank eruptions at Mt. Etna. The testing set covers a period
during which no anomalies are present in the relative moni-
toring dataset despite the September 2004–March 2005 flank
eruption occurrence. The dataset analyzed within the first ex-
periment had a total of 44,240 values (i.e., N = 28 variables
multiplied by 1580 records) to be processed. When submitted
to the auto-contractive map (Auto-CM) algorithm for the
learning session, the dataset was structured so that the vari-
ables were the hyperpoints and the records were the
hyperpoint coordinates. This is because we are more interest-
ed in understanding how the variables are related to each other
in terms of non-linear correlation rather than records.

After 24,625 epochs (i.e., a classic measure of ANNs learn-
ing phase: the number of times the ANN examines the whole
dataset), the K-CM, with a contraction parameter
C = √N = √28 = 5.292, is fully trained (RMSE = 0.1322). The
C value is the only parameter in the Auto-CM neural network
to be set before learning. It tunes the transmission of the input
into the hidden layer by compressing it with respect to a factor
that depends on C itself and on the values of the connections.
Therefore, the value of the parameter C controls the actual
extent of the contraction, thereby explaining its interpretation
as the contraction parameter (Buscema et al. 2018) from
which the name of the network derives. Experience shows that
the choice of C = √N is often the optimal one (Buscema et al.
2018).

Once the learning was finished, the W weight matrix was
determined. As explained in more detail in Appendix 1, the
matrix N ×N of the weights contains, for each entry, the value
sij of similarity between variable i and variable j. Similarity
denotes a measure of association between two values or how
much two variables tend to be present together (Fig. 3).
Similarity and distance are two closely related concepts be-
cause the more two variables are similar, the less distant they
will be if thought as hyperpoints of a metric hyperspace.
Conversely, the less similar they are, the more distant they
will be. It is therefore possible to calculate the Maximum
Regular Graph (MRG) graph (see Appendix 1) to better un-
derstand the hidden relations between the variables and to
perform fuzzy profiling of each record for prediction opera-
tions. As for the graph, all the entries (weights) are scaled with
respect to the theoretic maximum value (i.e., the contraction
parameter C) into the range [0, 1] and all the similarity values
are translated in terms of distances. This technical step is nec-
essary because the algorithms used are based on the minimi-
zation of distances instead of the maximization of similarities
even though they are conceptually the same feature. The clas-
sic method to obtain such a transformation is to consider the
complement to one of the similarity values (i.e., dij = 1− sij, so
that high sij values determine low dij values and vice versa).
The d value is therefore a distance index providing a value in
the range [0, 1] of how far two variables are from each other.
We point out that we are considering a distance index and not

Bull Volcanol (2019) 81: 40 Page 7 of 19 40



distance in the strict metric sense because some of the neces-
sary properties cannot be verified. Then, the highest values
among the variables of the weight matrix entries are consid-
ered in the MRG undirected graph construction. It should be
noted that in the construction of the Minimum Spanning Tree
(MST) (see Appendix 1), and therefore of theMRG, the aim is
to minimize distances. Minimizing distances implies maxi-
mizing similarities, so we can assume that nearby or very
connected nodes have much in common while distant
and not directly connected ones are less well related.
Figure 4 shows how non-linear correlation is estimated,
with values even higher than 0.90, mainly associated to
CDV variability. As a matter of fact, some of the values of
the connections have rather weak values, despite the
highest values being selected (Fig. 3; e.g., eqs_slab_Tyrr
− sideromelane = 0.04). Conversely, ground deformation
and geochemical variables show values generally close
to 0.70, with very few exceptions (Fig. 3).

To understand the meaning of the MRG graph, we have
used three known graph indices (Table 1 reports all the
relative values):

1. The Association Strength (Si): This index measures the
strength by which each node attracts its neighbors.

2. The Node Centrality (Ci) measures how close each node
is to the center of the graph. The higher the centrality of a
node, the more it is a fundamental variable of the dataset
represented by the graph.

3. The Node Degree (Di) measures how far each node is a
mediator (i.e., how many links for each node) among the
other nodes.

The Association Strength Si of each of the displayed nodes
is estimated by:

Si ¼ li
∑Ni

k lk
ð1Þ

where Si = 1 is the baseline (at ith node), li represents the
number of links of the ith node, Ni represents the number
of nodes to which the ith node is directly linked, and lk
stands for the number of links of the neighbors of the ith
node. Therefore, the index is proportional to the number
of its links and to the number of links of the nodes
directly connected to it. If Si < 1, a not very significant
node is present due to the weak relative force of attrac-
tion for close connections, while a stronger node will

Fig. 3 The semantic map of the 28 variables (for a relative legend, see
Table 1) of the dataset that synthesizes their strongest similarity relation-
ships providing important information about the relevance of the vari-
ables and how they relate to each other. It is possible to highlight a group

made up of all the variables of seismological type, connected with the
sideromelane node and weakly integrated with the rest of the variables.
Moreover, given its location and number of connections, the CDV node
seems to play a key role for the whole system
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have Si > 1. It is therefore clear that the CVD variable is
of considerable importance as characterized by SCVD =
4.17 (Table 1). Furthermore, also eqs_swarm, MSC,
and sideromelane variables also feature Si > 1 (Table 1).

Interpretation of the structure of the graph is issue in
understanding complex datasets. One of the ways it sim-
plifies visualization is investigating the relative H function
(Buscema et al. 2016). This function is a new index to
measure topological information (i.e., structural complexi-
ty, size measurements, and norms extractable from a graph
without any reference to its relative geometry). In other
words, the H function measures a graph’s complexity.
This function is calculated from a basic value related to
the MST graph. Then, one by one, all discarded links are
added and the function is recalculated. The H function
takes on a maximum value when the number of links added
determines the maximum complexity.

Figure 5 shows the value of the H function as a link is
added. The value H(0) corresponds to the original MST,
whereas H(k) corresponds to the MST to which k links of
those discarded during its construction have been added.
In our case, the H function reaches its peak when the 17th
of the connections skipped during the MST generation is
added back in. So, the MRG needs 17 extra connections to
be added to the MST and, consequently, the H function
value is almost 51.00% higher than its value at the orig-
inal MST (H(0) = 0.22 vs. MRG H(17) = 0.45). The MRG
depicts the most relevant associations among the variables
and includes the MST representation, being the former
characterized by links already reported in the MST and
by the skipped 17 values. In particular, notice how the
MRG separates the variables dataset into clear sub-trees
whose boundaries are marked by CDV and stat_mean,
respectively (Fig. 3).

Results

The ground deformation parameter CDV (Table 1) produces a
click (Buscema et al. 2016), a completely regular graph where
each node is directly linked to any other node, includingMSC,
tilt_var_0.033_CDV, stat_mean, dil_W (i.e., ground
deformation parameters; Table 1), CO2_P39 (i.e.,
geochemical parameter; Table 1), and grav_PL (i.e.,
gravimetric parameter; Table 1), among which the highest
number of relationships is featured (six, shown in Fig. 3), as
well the highest association values (higher than 0.95, on av-
erage). The minimum (0.89) and maximum (0.99) association
values of the complete regular graph are referred to as dil_W
versus CO2_P39 and stat_mean versus MSC and dil_W ver-
sus tilt_var_0.033_CDV variables, respectively (Fig. 3). The
variables connected through the complete graph show an
Association Strength Si > 0.73 (Table 1).

The CDV variable also marks a connection giving the as-
sociation value of 0.90 with ash and sideromelane variables,
both exclusively with a volcanic fingerprint (Fig. 3).
Furthermore, ash versus sideromelane provides the highest
correlation of 1.00 (Fig. 3), indicating that was produced by
volatile-rich fresh magma and occurrence of explosive erup-
tion (as demonstrated by the presence of ash). The
sideromelane variable does not show a significant strength
with any other variable (i.e., variables associated to different
volcanic features are connected among themselves, thus
displaying a kind of non-linear shared quality; Fig. 3).

Other links with weaker clustering strength (i.e., the
Association Strength Si) are marked throughout the MRG
(Fig. 3). This means that the variables belonging to the main
click of the graph represent the outline of the dataset, but the
link between ash and sideromelane remains the main structur-
al connection among data. As for the first step of pattern

Fig. 4 The H function of the
MRG graph. The x-axis denotes
the progressive arc number k that
is added to the MST, and the y-
axis represents the value of the
function H (k), calculated on this
new graph. The value maxk
H(k) =H(17) = 0.45 implies that
the MRG will have 17 more
connections than the MST. The
maximum of the function
corresponds to the graph of
maximum complexity, that is, the
one that best describes all the
features of the dataset
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recognition task, each record must be characterized by a class
(namely, a target), which the network must learn to recognize.
The target assigned to each of the 1580 records specifies the
state of the volcano on a certain day (i.e., a flank eruption at
Mt. Etna would or would not occur on each day). The results
obtained by the K-CM classifier application were validated
using a LOO testing protocol (Appendix 1). Table 2 summa-
rizes the relative calculations, mainly in terms of sensitivity
(how many times the algorithm has correctly classified the

erupting target) and specificity (how many times the algo-
rithm has correctly classified the quiescent target). Following
Brancato et al. (2016),

Sensitivity ¼ TP= TPþ FNð Þ ð2Þ
Specificity ¼ TN= TNþ FPð Þ ð3Þ

where TP, TN, FP, and FN stand for true positive, true nega-
tive, false positive, and false negative, respectively.

Fig. 5 Selection of the monitoring values collected during different
periods (see Table 1 for relative parameters). Each period spans 30 days
of Mt. Etna volcanic activity. In particular, each time series starts 20 days
before the onset of the July–August 2001 (blue line), October 2002–

January 2003 (red line), and September 2004–March 2005 (green line)
flank eruptions. In each panel, the x-axis represents time, with value x =
20 indicating the onset day of each eruption, while the y-axis indicates the
value recorded in the considered variables
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When considering erupting, a sensitivity of 97.67%
(294 days out of 301 eruptive days in the investigated period)
is estimated (Table 2). When considering the quiescent state, a
specificity of 99.30% (1270 days out of 1279 non-eruptive
days) is estimated (Table 2). The accuracy of classification is
equal to 98.49%, and only 16wrong classifications (seven and
nine, respectively; Table 2) are observed. This means that,
given the values recorded today, the network can predict with
an accuracy of 98.49% if tomorrow there will be an eruption
tomorrow or not. Having a high sensitivity value is essential in
cases where the two classes are not perfectly balanced. In fact,
this parameter takes account of the errors in relation to the
number of elements in that class.

For the second step of this analysis, we estimated probabil-
ities for each target (eruption or rest) for the seventh day, after
an application of a mobile window of 6 days. Table 3 reports
the results in terms of sensitivity and specificity for the last
787 days of the dataset (see above) and Table 4 compares the
relative targets with the classified days. We should emphasize
that this sample mostly focuses on the 183 eruptive days of the
September 2004–March 2005 flank eruption at Mt. Etna. The
results relating to the July–August 2001 and October 2002–
January 2003 eruptions have to be used as an added value that
completes the analysis in a more global perspective.

When looking at the probabilities of the next day, the most
obvious result is the classification of the September 2004–
March 2005 period, as highlighted in Table 4. Reported values
show how the sample of each day is classified according to
one of the two labels erupting or quiescent. The ANN clas-
sifies each day without knowing the real class to which it
belongs. Most of the 183 eruptive days are classified as
erupting, with the minimum of probability 14.00% occurring
after the end of the eruption (Table 4). The onset of the erup-
tion is classified as 10 September 2004 with a probability of
57.00%. Brancato et al. (2011) showed that the prediction of
the September 2004–March 2005 flank activity failed because
no anomalies were detected in any monitored parameters. The
pattern recognition classified the restricted period as erupting
with a relative sensitivity of 97.81% (179 out of 183 eruptive
days; Table 3) and as quiescent with a specificity of 99.50%
(601 records out 604 rest days). This high accuracy of classi-
fication (i.e., 98.66%) is reflected by only seven misclassifi-
cations (four and three, for erupting and quiescent,
respectively).

These results are in line with those obtained after the first
step (Tables 3 and 4). It is noteworthy that during the training
phase of the Auto-CM algorithm, the monitoring dataset re-
ferring to the analyzed period can be regarded as anomalous,

Table 2 K-CM pattern recognition results, following the LOO validation protocol

Eruptive
days (day)

Quiescent
days (day)

Total days
(row; day)

Error (day)a Sensitivityb Specificityc A. meand W. meane

Eruptive days 294 7 301 7 97.67% 98.49% 98.99%

Quiescent days 9 1270 1279 9 99.30%

Total days (column; day) 303 1277 1580 16

aAverage number of wrong classification
b Classified eruptive days
c Classified quiescent days
dArithmetic mean (i.e. accuracy of the classification)
eWeighted mean

Table 3 K-CM pattern recognition results of the last 787 records of the dataset, after the application of a mobile window of 6 days (see text for more
details)

Eruptive
days (day)

Quiescent
days (day)

Total days
(row; day)

Error (day)a Sensitivityb Specificityc A. meand W. meane

Eruptive days 179 4 183 4 97.81% 98.66% 99.11%

Quiescent days 3 601 604 3 99.50%

Total days (column; day) 182 605 787 7

aAverage number of wrong classification
b Classified eruptive days
c Classified quiescent days
dArithmetic mean (i.e., accuracy of the classification)
eWeighted mean
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with comparable values in line with the preceding flank erup-
tion occurrences (namely, July–August 2001 and October
2002–January 2003). The onset day of the September 2004–
March 2005 flank eruption (namely, 6 September 2004) and

the following 3 days were classified as quiescent (Table 4).
Only on 10 September 2004 did the K-CM algorithm classify
it as erupting (Table 4). At the end of April (the eruption ended
on 8 March 2005), misclassifications occur, classifying the

Table 4 Selected comparison of eruptive activity occurring at Mt. Etna in the January 2001–April 2005 period among real eruption and real rest
targeted (second and third, seventh and eighth columns) and classified (probability; fourth and fifth, nineth and tenth columns) days

Date Classes K-CM Output Date Classes K-CM output

target_1 target_2 target_1 target_2 target_1 target_2 target_1 target_2

1 January 2001 0 1 0 1 24 November 2004 1 0 1 0

... ... ... ... ... 25 November 2004 1 0 1 0

12 July 2001 0 1 0 1 ... ... ... ... ...

13 July 2001 0 1 0 1 21 January 2005 1 0 1 0

14 July 2001 0 1 0 1 22 January 2005 1 0 0.86 0.14

15 July 2001 0 1 0 1 23 January 2005 1 0 1 0

16 July 2001 0 1 1 0 ... ... ... ... ...

17 July 2001 1 0 0 1 29 January 2005 1 0 0.86 0.14

18 July 2001 1 0 1 0 30 January 2005 1 0 0.86 0.14

19 July 2001 1 0 1 0 31 January 2005 1 0 1 0

8 August 2001 1 0 1 0 6 February 2005 1 0 1 0

9 August 2001 1 0 0 1 7 February 2005 1 0 0.86 0.14

10 August 2001 0 1 1 0 8 February 2005 1 0 1 0

11 August 2001 0 1 0 1 ... ... ... ... ...

... ... ... ... ... 7 March 2005 1 0 1 0

25 October 2002 0 1 0 1 8 March 2005 0 1 0.86 0.14

26 October 2002 0 1 0 1 9 March 2005 0 1 0.86 0.14

27 October 2002 1 0 0 1 10 March 2005 0 1 0.57 0.43

28 October 2002 1 0 1 0 11 March 2005 0 1 0 1

29 October 2002 1 0 0 1 12 March 2005 0 1 0 1

30 October 2002 1 0 1 0 ... ... ... ... ...

31 October 2002 1 0 1 0 14 April 2005 0 1 0 1

... ... ... ... ... 15 April 2005 0 1 0.29 0.71

26 January 2003 1 0 0 1 16 April 2005 0 1 0.43 0.57

27 January 2003 1 0 1 0 17 April 2005 0 1 0.43 0.57

28 January 2003 1 0 0 1 18 April 2005 0 1 0.29 0.71

29 January 2003 0 1 0 1 19 April 2005 0 1 0.14 0.86

30 January 2003 0 1 0 1 20 April 2005 0 1 0 1

... ... ... ... ... 21 April 2005 0 1 0 1

4 September 2004 0 1 0 1 ... ... ... ... ...

5 September 2004 0 1 0 1 ... ... ... ... ...

6 September 2004 1 0 0 1 ... ... ... ... ...

7 September 2004 1 0 0 1 ... ... ... ... ...

8 September 2004 1 0 0 1 ... ... ... ... ...

9 September 2004 1 0 0 1 ... ... ... ... ...

10 September 2004 1 0 0.57 0.43 ... ... ... ... ...

11 September 2004 1 0 1 0 ... ... ... ... ...

12 September 2004 1 0 1 0 ... ... ... ... ...

22 November 2004 1 0 1 0 ... ... ... ... ...

23 November 2004 1 0 0.86 0.14 ... ... ... ... ...

The onset and the end of the flank activities (see text for details) during the investigated time period are marked in bold and italics, respectively
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state of the volcano as erupting (Table 4). Flank activity at Mt.
Etna has been observed to be usually preceded with changes
in the volcano feeder system (Bonaccorso et al. 2004;
Brancato et al. 2011). Figure 5 compares three periods, each
of 30 days (i.e., monitoring values), relative to the flank ac-
tivity here analyzed.

It is clear how monitoring parameters reflect the mag-
ma ascent a few days before the flank eruptions of the
2001–2003 period and, conversely, how no monitoring
anomalies (i.e., precursors) were recorded before the
2004–2005 volcanic activity. In the first case, in fact,
there are many sudden changes in the values recorded
before the eruption, while in the second case, the ob-
served variables maintained a constant value before, dur-
ing, and after the eruption, making the event more dif-
ficult to predict.

It is noteworthy that K-CM classifies most of the
2004–2005 flank eruption as erupting (i.e., undergoing
eruption) (Table 4), even though the classified onset is
5 days after the real onset (with a probability of 57.00%;
Table 4) and the classified end 3 days after the real end
(Table 4). This is the only relevant error in the K-CM
prediction out of the 1580-day period. In this specific
case, the network, trained on 6 days to predict the sev-
enth, needed more time to provide the correct output.
Since the sample used in training had only two eruptive
flank episodes, the number of cases in which a change of
state at Mt. Etna is present is rather small. It therefore
seems reasonable to believe that with a larger monitoring
dataset, the network could refine its ability to more ef-
fectively predict when the state changes. Furthermore,
misclassifications occur at the end of April 2005,
(Table 4). These are better interpreted as false positives
(i.e., aborted eruptions), due to anomalous seismicity (S.
Alparone, personal communication, 2010) and gas emis-
sions (Brancato et al. 2011). These relate to the closing
phases of a flank eruption at Mt. Etna. Relative confu-
sion is generated because of a diffuse absence of anom-
alous values in the monitoring dataset. In some cases,
this means the classified days have more uncertainty,
the worst case (for decision makers) being when the
ANN anticipates the end.

As further support for our study, we analyzed the behavior
of the Receiver Operating Characteristic (ROC) curve
(Hanley and McNeil 1982; Fig. 6) and Molchan diagram
(Zhuang 2010; Schmid et al. 2012; de Arcangelis et al.
2016; Fig. 7). By considering that mistakes are likely in clas-
sifying cases, there will be some target patterns correctly clas-
sified as targets (i.e., TP) and some misclassified as non-
targets (i.e., FN). Similarly, there will be non-target patterns
correctly classified as non-targets (i.e., TN) and some
misclassified as targets (i.e., FP).

The solid red line in Fig. 6 corresponds to the ROC
curve, relative to the trade-off between the probability of
correctly classifying the erupting class (true positive rate,
also known as sensitivity) and the false positive rate
(1 – specificity) concerning, respectively, the first and
second trials carried out. The Area Under the Curve
(AUC), if compared with the area that lies under the gray
dashed line (i.e., 0.5; no discrimination exists, which
indicates a worthless test where the proportions of TP
and FP are equal), provides a valid measure of diagnostic
performance of the used classifier. In both cases, the area
under the ROC plot, computed by means of the trapezoid
rule (Tallarida and Murray 1987), has an extremely high
value. In the best case, corresponding to the second test
(Fig. 6b), it is equal to 0.9945, meaning that 99.45% of
the classified erupting days are correctly rated for a giv-
en probability of false alarm. Following the Swets clas-
sification (Swets 1988), this value confirms that the di-
agnostic used is highly accurate.

The Molchan diagram features the error. It is drawn by
considering values depending on the quantities TP, TN,
FP, and FN, previously defined. The graph represents the

Fig. 6 ROC curve (red solid line) for the first experiment (a) and second
experiment (b), respectively. The dashed line means an AUC equals to
0.5 (i.e., TP and FP proportions are equal). Note that even for high
specificity values, i.e., around zero on the x-axes, the sensitivity is very
high. The value of the AUC is in fact close to 1
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pairs (τ, ν) obtained by varying a threshold value λ. The
quantities τ and ν are defined as follows:

ν ¼ FN= TPþ FNð Þ ð4Þ
τ ¼ TPþ FPð Þ= TPþ TNþ FPþ FNð Þ ð5Þ
where ν considers the amount of missed event and τ corre-
sponds to the alarm time fraction (time covered by the alarms
over the duration of the whole considered period). In our ex-
perimentation, the threshold value λwas varied over the range
[0, 1] with steps of 0.1 (Fig. 7). In the Molchan diagram, the
better the forecast, the closer you get to the theoretical point
(0.0). In our case, in both experiments, we obtained aMolchan
curve that shows excellent network reliability. When the
threshold changes, the points all fall into an area very close
to the theoretical minimum. It should be noted that the output
values of the K-CM network in the first experiment (N = 28)
are binary (i.e., 0 or 1), while, in the case of the second exper-
iment, the output values are continuous (i.e., they vary in the
range [0, 1]). For this reason, both the ROC curve and the
Molchan diagram relevant to the first test do not show partic-
ular variations when the threshold changes, maintaining

constant and very good performances (Figs. 6 and 7). In the
Molchan diagram, in particular, all the points are
superimposed on a single pair of values τ ; υð Þ, with the ex-
ception of the borderline cases (0, 1) and (1, 0).

Discussion

Analyses of pattern classification (both supervised and
unsupervised) have previously been performed at Mt.
Etna by Langer et al. (2009) and Corsaro et al. (2013).
In particular, the artificial neural networks were applied
to volcanic tremor data recorded between July and
August 2001 (Supporting Vector Machine (SVM) and
Multi-Layer perceptron (MLP); Langer et al. 2009) and
to geochemical data collected from 1995 to 2005 (Self-
Organizing Map (SOM) and fuzzy clustering; Corsaro
et al. 2013). The analyzed periods cover both summit
eruptive activity (lava fountains) and flank eruptions.
Even though both datasets represent a much reduced
sample of that used here, the authors conclude that clas-
sification methodology is a suitable tool for understand-
ing the non-linear relationships between volcanic data
and the internal dynamics of a volcano. In particular,
Langer et al. (2009), by applying the LOO testing
scheme as used in this study, yielded high performances
of 94.80% and 81.90% (for SVM and MLP, respective-
ly), though with a slightly lower score relative to our
value of 97.67% (Table 2). In addition, Corsaro et al.
(2013) proposed that classifications performed by SOM
and fuzzy clustering are extremely useful for an accurate
interpretation of magma composition, its origin, and be-
havior during future eruptions at Mt. Etna, thus allowing
a direct comparison between old and new erupted
products.

This study applies and presents the theory behind an
emerging supervised method for volcanological pattern recog-
nition, named the K-CM, as applied to detecting the change
from Bin a flank eruption^ (i.e., erupting) to the Bnot in a flank
eruption^ state (i.e., quiescent) at Mt. Etna. A two-step anal-
ysis was performed. First, the applied methodology exploits
the variable connection weights provided by the Auto-CM
neural network strategy to obtain the z-transforms (see
Appendix 1) on which the kNN classifier is applied for class
membership evaluation. The Auto-CM system reshapes the
distances between variables or records in any dataset, consid-
ering their global vectorial similarities, and consequently
drawing out the specific warped space (i.e., a non-Euclidean
space) in which such variables or records lie, thereby provid-
ing a proper theoretical representation of their actual variabil-
ity. We have shown how a known filter like the MST can be
used to cluster a distance matrix, generated by means of Auto-
CM from a dataset. In particular, how theMSTcan be regarded

Fig. 7 Molchan diagrams for the first (a) and the second experiment (b),
respectively. The dashed line means a random guess (i.e., the curve of
model equivalence; de Arcangelis et al. 2016). The red solid line shows
the confidence level
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as the minimal representation that takes into account the basic
level of information below which the structure of the indepen-
dence among variables loses coherence. We have used the H
index, a function that evaluates the topological complexity of
any kind of undirected graph, its mathematical consistency,
and the potential for its applications (Fig. 4 and Table 1).
Finally, by using the H function, we have represented our
results on the MRG semantic graph. From an MST, generated
from anymetric, theMRG reshapes the links between nodes in
order to maximize the fundamental and the most regular struc-
tures implicated in any dataset.

After analyzing the MRG graph, very robust relation-
ships were found among variables (Fig. 3). In detail, the
role of the CDV parameter (which monitors ground de-
formation) is predominant, around which a click is creat-
ed featuring the highest number of connections with dif-
ferent parameters of the volcanic framework (Fig. 3).
Further, an immediate link with ash and sideromelane
variables generates one of the highest non-linear correla-
tions (i.e., 0.90; Fig. 3).

Indeed, the most outstanding novelty concerns the
September 2004–March 2005 flank eruption (Table 4).
Brancato et al. (2011) failed to predict this activity because
of the total absence of anomalies (due to fuzzy parameters) in
the monitoring dataset. In contrast, the approach used in this
study performs a high accuracy evaluation, with only a very
few exceptions (only seven wrong classifications out of a total
of 787 days; Table 3).

Brancato et al. (2011) performed a Bayesian Event Tree
(BET) approach on the same time-interval analyzed here. A
larger dataset, including also the volcanic tremor parameter
(not used here because unavailable for the entire period),
allowed the probabilistic volcanic hazard to be quantified, in
terms of occurrence of flank eruptions. The results showed the
major role of monitoring in forecasting short-time flank activ-
ity at Mt. Etna. It is worth noting that probability estimates of
an impending flank eruption were affected by anomalous
values in CO2 emission at P39 site. Indeed, the presence of
relative anomalies generated a sequence of long-lasting false
alarms. Thus, Brancato et al. (2011) suggested that CO2 emis-
sion at P39 site was incorrectly elicited by experts.
Conversely, the K-CM approach points to the fundamental
role of the parameter in the dataset, based on the Association
Strength Si value of 1 and the highest Ci value of 4 (Table 1),
thus avoiding the relative confusion about the predicting aim
of the parameter after the BET approach. In other words, even
though the expert elicitation set the CO2 emission at P39 site
as one of the potential parameter to be used for predicting
flank eruptions at Mt. Etna, the BET approach rose to the
question about its reliability. The present approach highlights
that a parameter, as discarded by previous approaches, might
be a significant loss in terms of hidden links as better associ-
ated to the internal volcanic processes.

Conclusion

This study highlights the performance of the modified K-
CM classifier, applied for the first time to a volcanic
context, using Mt. Etna as case study. We presented a
new method to interpret the results of data represented
on the MRG graph and to forecast flank eruptive activity.
Improvements are mainly due to a many-to-many vari-
able relationship. Given the complex nature of the phe-
nomenon, in fact, we cannot be satisfied with the simple
relationship between two or three variables, but we must
investigate how a multiplicity of variables (many),
interacting with others (to many), determines the phe-
nomenon. Only by this approach, it will be possible to
obtain a reliable predictive model. A lone parameter may
not be anomalous (based on the mean variance), but the
entire dataset of parameters, when defining the same
non-linear function, can contribute incrementally to re-
veal deep global effects (the so-called meta-stable vari-
ables, whose behavior is strongly affected by the values
of the other variables). Indeed, by comparing results by
the K-CM from those obtained by the Bayesian approach
(Brancato et al. 2011), the predominance of the algo-
rithms of automatic learning becomes clear. This is due
to the ability of the machine learning techniques to iden-
tify objectively the subtle links between the monitoring
data and the state of Mt. Etna (quiescent or eruptive),
thus avoiding the subjectivity of external operators, pri-
marily in selecting thresholds and inertias for the moni-
toring parameters involved.

K-CM opens the possibility for bottom-up algorithms to
provide a symbolic explanation of their paths and behavior.
The symbolic level of the K-CM system is not, however, a
set of naïve Bif…then^ rules traditionally applied to all
training data. Understanding this symbolic level is relative-
ly simple: the increase of a non-linear functional, from
interpolation of the training set, results in the exponential
growth of explicit rules suitable for deriving a description.
A more interesting symbolic level is that which allows the
explanation of the Bfuzzy mental map^ through which the
learning algorithm is represented based on training data
and, simultaneously, the subjective similarities on which
the same algorithm can operate in new cases. In other
words, a bottom-up algorithm can work in a symbolic
way when it is able to self-generate a mental representation
(weighted graph) of what it has learned (from the training
set) and dynamically place it in a chart of new experiences
(the test set), by inducing it to reorganize the initial map.

In other comparative studies (Buscema et al. 2014), K-CM
showed the best valid classification performance for most of
the considered datasets and, on average, out-performed the
other classification methods. In practice, K-CM can improve
the classification results especially in those cases where non-
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linear relationships among variables are relevant. We are
aware that this new approach, although very promising, leaves
many questions unanswered and needs further scrutiny to in-
vestigate its properties and potential shortcomings. In forth-
coming research, we plan to develop it from both the theoret-
ical and the empirical angles, by better exploring and charac-
terizing the structural features of the Auto-CM and the math-
ematical properties of the H function and the MRG. On the
empirical side, we plan to apply this methodology to state-of-
the art problems that are relevant in the literature of specific
disciplines. It is, of course, of particular interest to evaluate
how our approach performs against traditional methods in the
analysis of networks, be they of a physical or social nature.

All the connections among variables (in particular, the click
generated by CDV; Fig. 3) indicate that monitoring is funda-
mental for quantifying short-term volcanic hazard. In the same
way, it is important to bear in mind that the pattern recognition
approach improves the sensitivity, specificity, and accuracy
estimated in previous applications of the ANN methodology
(Brancato et al. 2016), thus confirming the high non-linear
behavior of an open conduit volcanic complex system, such
as Mt. Etna.

In light of this, this study represents one of the few attempts
in processing long-time records of monitoring data collected
at an active volcano by artificial neural network methodology.
Results may offer a tool when decisionmakers face challenges
in volcanic emergencies in terms of planning and/or mitiga-
tion of potential effects in areas prone to volcanic risk, mostly
due to a robust near real-time estimate. Furthermore, results
achieved here show how a supervised K-CM approach per-
forms a reliable data mining when applied to a high-quality

monitoring dataset. This might be a limiting factor in a poorly
monitored volcano.
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Appendix 1

K-CM method overview

K-CM is a supervised version of Auto-CM neural networks
(Buscema et al. 2014, 2018). K-CM has a training phase in a
completely unsupervised way and then a blind testing valida-
tion, using the kNN algorithm (Hastie et al. 2009) to estimate
to which ofN classes each tested record belongs. Furthermore,
by using the parameters derived from the Auto-CM learning,
it is possible to obtain a graph that reflects the non-linear
correlation values assumed by the neural network. The whole
process is summarized in Fig. 8.

Fig. 8 Flow chart of all the analyses carried out with K-CM
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The entire dataset is initially used as input for an unsuper-
vised neural network (i.e., Auto-CM), which synthesizes the
non-linear correlation relationships between the variables in
the W connection matrix of its weights, as identified in the
data. This matrix represents the Auto-CM knowledge about
the whole dataset and can be used in two different ways: to
rewrite the dataset through the function called z-transform or
as a matrix of the weights to be linked to the graph whose
nodes are the variables. The z-transformation allows the fuzzy
profile of each record to be determined, taking into account
the information about the relationships between the variables
which emerged during the learning phase. The rewritten
dataset is therefore more informative than the previous one.
The kNN classifier is used on the new dataset to perform the
pattern recognition task. The dataset is randomly subdivided
into two subsets A and B. The subset A is trained and the
subset B is blind tested, but the algorithm also works in re-
verse, with the subset B trained and the subset A subsequently
blind tested. The average of these two tests represents the
accuracy of the algorithm.

The semantic map: data graphical visualization

The K-CM classifier is able to support its classification task
projecting each tested record as a node of a weighted graph,
where the more similar records are closer to each other. In other
words, the resulting graph is a map of similarities among the
predicted records and this map is very useful in understanding
which records represent a general prototype of the whole
dataset and which ones are outliers. On the other hand, Auto-
CM is an ANN architecture that forces the non-linear correla-
tion among variables into an embedding space where the rela-
tive associations are accurately reflected as closeness. Because
of the Auto-CM architecture, the weight matrix has a dimension
(N × N), where N is the number of variables. It is then possible
to consider the graph G (n, E), where n is the set composed of
all the N variables (nodes of the graph) and E is the set contain-
ing all the arcs (i.e., the couple (i, j) if the variables i and j are
linked in the graph). All nodes are connected to each other and
the weight of the connection between nodes i and j depends on
the value of the wij weight of the W matrix (wij values express
similarities; therefore, it is necessary to make a transformation
to translate them into terms of distance).

Since it is not easy to read a graph where all nodes are
connected, filters are used to display only the most relevant
connections, in particular the MST and the MRG. These two
graphs work as an effective filter on the dataset correlation,
drastically reducing the number of connections shown, and
both of them have already shown promising applications in
many fields (Buscema et al. 2014, 2016, 2018). WhileMST is
a known algorithm for its application to real problems (an
undirected graph without circuits or loops; see Mantegna
1999), MRG is a new one (see Buscema et al. 2014). The

MST connects all the N variables to each other, selecting the
highest N − 1 connections that avoid the creation of cycles.
MRG adds toMST those circuits representing the most impor-
tant fingerprints of the whole analyzed dataset until the max-
imum of a complexity function is reached (theH function, see
below for details). In particular, the MRG reshapes the links
between nodes in order to maximize the fundamental and
most regular structures, thus highlighting the features of a
dataset (Buscema et al. 2018).

Working with classification methods, it is common to deal
with the overfitting phenomenon. This arises when the num-
ber of degrees of freedom of the classification technique (i.e.,
its complexity) is large enough to not be constrained in a
stable way by the available data. To this end, cross-
validation schemes represent a basic tool for the diagnosis of
this overfitting. In a validation protocol, part of the patterns
with a priori known class membership is set aside and not used
during the training phase. These patterns represent the test set,
which is used after the training to evaluate the performance of
the classifier. If the degrees of freedom are well balanced with
respect to the size of the dataset, then the classifier perfor-
mance for patterns used during training and test phases will
be comparable.

The K-CM classification method, used here, is modified
according to a new validation protocol, namely the LOO
estimator. This represents a particular case of the K-fold
cross-validation estimator, when the number of patterns in-
to which the original dataset is subdivided equals the num-
ber of cases of the same dataset. The model is then trained
with all the patterns of the dataset but one (i.e., that is, the
one on which the error is estimated), and the procedure runs
for all the patterns. The average of the estimated errors for
the entire pattern will provide the average error of the
model.
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