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Abstract
The islet of Pyrgousa, 8 km west of Nisyros, has andesites overlain by proximal deposits of the Kos Plateau Tuff (KPT). These
andesites record the evolution of the Kos-Nisyros volcanic centre prior to the large KPT eruption at 161 ka. This precursory
activity had previously been recorded only in dacites and rhyolites in the Kefalos Peninsula, farther from the volcanic centre. This
study investigated the age, geochemistry, mineralogy, and petrogenesis of the andesite domes, probable flows, and associated
talus breccias on Pyrgousa. Analysed samples are basaltic andesite and andesite, with strong enrichment in Ba and Sr and low
values of Ti and Zr. An 40Ar/39Ar date of 1.9 ± 0.1 Ma on biotite is similar to dates from dacite and rhyolite stocks and domes in
the Kefalos Peninsula, and like those dates is the maximum age due to excess 40Ar. There is no evidence on Pyrgousa for a
stratovolcano precursor of the KPT eruption. The andesite domes geochemically resemble Pliocene domes in Methana and
Aegina that mark the onset of magmatism in the northwestern South Aegean Arc, with an important magma component derived
from subcontinental lithospheric mantle. These early andesites heated the upper crust, thus facilitating the growth of upper crustal
magma chambers, which were filled by felsic crystal mush derived by differentiation of hydrous intermediate magmas with a
more asthenospheric signature.
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Introduction

Large rhyolite eruptions, such as the 161 ka Kos Plateau Tuff
(KPT) eruption (Allen 2001; Bachmann et al. 2012), follow
the accumulation of felsic crystal mush over 103–105 years in

upper crustal (6–10 km deep) magma chambers. The rise of
intermediate magma through the deeper crust above a subduc-
tion zone drives the volcanological system. The Kos-Nisyros
volcanic centre provides an opportunity to examine the nature
and role of early andesites as precursors to major felsic erup-
tions. Pre-eruption andesites play a role in heating and weak-
ening the upper crust (Lipman 2007; Bachmann and Huber
2016), allowing the development of upper crustal magma
chambers. The temporal variability of post-eruption interme-
diate magmas is well known (Bachmann et al. 2012; Barker
et al. 2015; Klaver et al. 2017), but the evolution of pre-
eruption andesites is less clear. In the case of the KPTeruption,
the only records to date of pre-eruption andesites have been
from enclaves preserved in dacite domes (Pe-Piper and
Moulton 2008). In this study, we demonstrate the existence
of pre-KPT andesites, show their mineralogical similarity to
inclusions in early dacites, and contrast their bulk chemistry
with post-eruption andesites. We argue that early andesites of
the Kos-Nisyros system are similar to the oldest andesites in
other centres of the South Aegean Arc in having a large com-
ponent of magma derived from subcontinental lithospheric
mantle.
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The KPT eruption was the largest late Quaternary eruption
in the eastern Mediterranean (Allen 2001; Bachmann et al.
2012). The only records of volcanism prior to the KPT are
dacites and rhyolites on the Kefalos Peninsula of western
Kos (Pe-Piper and Moulton 2008; Bachmann et al. 2010b),
and more mafic rocks on Pyrgousa and the nearby islet of
Pachia (Fig. 1). Nisyros Volcano was constructed after the

KPT eruption (Hunzicker and Marini 2005). Based on com-
parison of the Kefalos Peninsula felsic rocks with post-KPT
rocks on Nisyros, Bachmann et al. (2012) argued that dacitic
eruptive products changed from hornblende-biotite magmas
with lower eruption temperatures before the KPT to drier,
more pyroxene-rich magmas with higher eruption tempera-
tures after the KPT, as a result of loss of volatiles during the
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KPTeruption. This eruption partly emptied a magma chamber
at 6–10 km depth (Bachmann et al. 2010b). All erupted rocks
had an intermediate (andesitic) parent magma that evolved
principally by crystal fractionation, following a wet, high
oxygen fugacity liquid line of descent that is common in
subduction zones (Bachmann et al. 2012).

The uninhabited islet of Pyrgousa (Fig. 2), 1.5 × 1 km, is
located 8 km west of the late Quaternary volcanic centre of
Nisyros Island. In the literature, Pyrgousa (Greek
Πυργουσα) has been reported as Pergousa, Pergoussa,
Perigusa, Pyrgussa, and Pyrgoussa. We use Pyrgousa for con-
sistency with the Global Volcanism Program. On Pyrgousa,
andesites of unknown age and affinity (Di Paola 1974) are
overlain by proximal deposits of the KPT. These andesites
provide an opportunity to understand the petrogenetic devel-
opment of less differentiated magmas prior to the major cal-
dera collapse in the KPT eruption (Allen 2001; Bachmann

et al. 2012). They constrain the nature of the build-up to the
KPT eruption, including whether the KPT caldera destroyed
an older stratovolcano. This study investigated the age, geo-
chemistry, and petrogenesis of this pre-KPT volcanism and
made incidental observations on the KPT deposits and the
overlying marine isotope stage (MIS) 5e carbonate-rich raised
terrace.

Geological setting

Pliocene and earlier Pleistocene volcanism of the Nisyros-Kos
region is represented by shallow dacite stocks and rhyolite
domes on the Kefalos Peninsula of southwestern Kos (Fig.
1). Reported ages range from 2.6 to 0.5 Ma (Bellon and
Jarrige 1979; Pasteels et al. 1986; Matsuda et al. 1999), but
Bachmann et al. (2010a) showed that these dates are too old

Pyrgousa

83 m
36°

35.5’
N

36°
35.0’

N

27° 02.5’E27° 02.0’E

500 m

3a

5c

X-s
ect

ion

3b,d

3e

4a,c4b 5a

5b

5d
5e,f

3c

213-215

216

KPT outcrops along coast

overlain by terrace limestone

andesite
domes

andesite domes

andesite domes

terrace
limestone
in bay

serte
m(

noitavele
)level

aes
evoba

0

10

20

30

100 m
WEST

EAST

4a,b,c 5a,b 5c

5d,e,f

3b,
d,e
3b,
d,e

Nisyros tuff
Limestone

Andesite-dacite
Kos Plateau Tuff

Fig. 2 Map and schematic cross
section of Pyrgousa showing
location of samples and Figs. 3, 4,
5. Based on IGME (2003), with
modifications from Nomikou
et al. (2018) and our field
observations

Bull Volcanol (2019) 81: 32 Page 3 of 15 32



due to excess 40Ar. Dating of non-inherited zircons from the
Agios Mammas and Zini rhyolite domes gave ages of ~ 0.3
and ~ 0.5 Ma, respectively (Bachmann et al. 2010a), in con-
trast to Pliocene K-Ar and Ar-Ar ages for Agios Mammas
(Bellon and Jarrige 1979; Bachmann et al. 2010a). These
rocks are hornblende and biotite rich with low eruption tem-
peratures (~ 750–800 °C; Bachmann et al. 2012). They were
followed by build up of magma over a period of 200 ka
(Bachmann et al. 2007) culminating in the 0.16Ma KPTerup-
tion (Allen 2001), centred on the marine area between Yali
and Nisyros. This eruption ejected ~ 60 km3 of rhyolite mag-
ma and ~ 3 km3 of lithic debris (DRE) from the vent and
conduit (Allen 2001), including older andesitic lavas
transported as lithic clasts (Pe-Piper and Moulton 2008).

The volcanic islands of Nisyros, Yali, and Strongili (andes-
ite-rhyolite; Fig. 1) have been constructed entirely since the
eruption of the KPTand bound the likely source caldera of the
KPT (Hunzicker and Marini 2005). To the southwest, the
caldera is bounded by tiny remnants of the pre-eruption an-
desites in the islets of Pachia and Pyrgousa.Modern geochem-
ical and isotopic analyses are available only from Nisyros and
Yali (Wyers and Barton 1989; Francalanci et al. 1995;

Buettner et al. 2005; Vanderkluysen et al. 2005). Both the
Kefalos and Nisyros silicic rocks evolved from magmas of
intermediate composition, with high Sr/Y (~ 40) and Nb <
20 ppm (Bachmann et al. 2012).

The first modernwork on Pyrgousa was byDi Paola (1974)
who reported “porphyritic andesite lava flows, covered with
Quaternary reef limestones and in the south, pumiceous tuff.”
The IGME (2003) 1:25,000 map and modifications by
Nomikou et al. (2018) show the distribution of the KPT all
along the west coast of the islet (Fig. 2). Blackwell et al.
(2016) make passing mention of a Late Pleistocene calc-
alkaline lava, the Kyra tephra from Nisyros, and the Yali
Upper Pumice all being present in northern Pyrgousa. None
of these units was found in our work on the southern part of
the islet.

The lithostratigraphy of the KPT on Pyrgousa has not been
previously reported. Allen (1998) described only lithic clasts
apparently derived from the KPT in beachrock. The KPT is
better known on the nearby islet of Pachia, where Allen
(1998) identified units A, C, and D of the KPT overlying
10 cm of unconsolidated mud, interpreted as showing deposi-
tion of the KPT over a swamp or dry land.
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Methods

We examined the cliffs on the northeast of Pyrgousa from
photographs taken from our boat and we also made an E–
W transect of the southern part of the islet (Fig. 2), exam-
ining in detail the fresh outcrops at the shoreline. Igneous
rock samples were analysed for both major and trace ele-
ments by Activation Laboratories Ltd. (Ancaster, Canada)
according to their codes 4Lithoresearch and 4B1, which
combine lithium metaborate/tetraborate fusion ICP analy-
ses with a trace element ICP-MS package. Rock textures
and minerals were studied by scanning electron micro-
scope (SEM) and mineral chemistry was determined by
energy dispersive spectroscopy (EDS). Analyses with poor
totals or > 2% contamination by non-stoichiometric ele-
ments were excluded: criteria are summarised in Table 2
of Pe-Piper et al. (2016). The EDS system uses a single
cobalt standard, and precision is better than 1% for ele-
ments above Ne in the periodic table. EDS analyses are
from a larger spot (~ 10 μm) than WDS and gives poor

accuracy for elements present at < 1%. For major elements,
accuracy compared to WDS analyses is better than 5%.

One composite biotite separate was dated by the 40Ar/39Ar
technique by Geochronex Analytical Services Ltd.
(Burlington, Canada). The biotite sample was wrapped in Al
foil and loaded in an alumina vial with LP-6 flux monitors. A
batch of samples and monitors were irradiated and flux mon-
itors were run. The Ar isotope composition was measured in a
Noblesse Noble Gas static mass spectrometer (NU
Instruments Ltd., Wrexham, UK). A 1300 °C blank of 40Ar
did not exceed n × 10−11 cc at standard temperature and
pressure.

Results

Field observations

Most of the eastern coastline of Pyrgousa exposes andesite
domes, probable lesser flows, and associated talus breccias
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and minor dykes (Fig. 3). Marginal dips on domes, in places
picked out by flow banding (Fig. 3d), are locally as steep as
70° (Fig. 3a). Some talus breccia is monomictic, some
polymictic (Fig. 3e), and some has an apparently felsic pyro-
clastic matrix (Fig. 3b). The andesite is variably porphyritic
and includes enclaves (Fig. 3c). There is no evidence for a
stratified build-up of flows and pyroclastic deposits.

The KPT unit on Pyrgousa comprises massive, structureless
tuff with dispersed pumice and lithic clasts generally < 5 cm in
size (Fig. 4a). Near the top of the unit, lithic (volcanic) clasts
are up to 1 m in size (Fig. 4b) and blocks both of mud and marl
are > 0.5 m (Fig. 4c). Elutriation fissures are present near the
top of the unit, together with structures that resemble dish

structures (cf. Lowe 1975) in turbidites (Fig. 4a). The basal
contact of the KPT was not found and the maximum exposed
thickness is about 7 m (Fig. 5a).

Limestones unconformably overlie the andesites and
KPT, forming a morphological terrace at 8–10 m above
sea level in the southeast of the islet (Fig. 5d), and from
6 m to close to modern sea level in the southwest (Fig. 5a).
The terrace locally includes bioclastic limestone (Fig. 5e)
with small bioherms (Fig. 5f). In the southwest, cobble
conglomerate with a limestone matrix (Fig. 5b), interpreted
as beachrock, unconformably overlies KPT. The upper-
most limestone is karstic (Fig. 5b) and onlaps the higher
andesite domes (Fig. 5c).
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Whole rock geochemistry

Four samples were analysed geochemically: three andesites and
one basaltic andesite (sample 214) (Fig. 6; Table 1). Comparison
is made with late Quaternary basaltic andesite and andesite from
Nisyros (Vanderkluysen et al. 2005), basaltic andesite from pum-
ice rafts immediately underlying the base of the KPT in southern
Kos (Piper et al. 2010), and andesitic lithic clasts from unit E of
the KPT (Pe-Piper and Moulton 2008).

Pyrgousa basaltic andesite has higher total alkalis (Fig. 6)
than late Quaternary basaltic andesite from Nisyros and the
base of the KPT and also differs in other elements (Fig. 7). Ni
is lower than Nisyros and the base of the KPT, whereas K2O is
higher. Zr is between Nisyros and base-of-KPT values. Na2O
is similar to Nisyros, but higher than in basaltic andesite at the
base of the KPT. The Pyrgousa andesites are noticeably rich in
Ba (750–900 ppm) and Sr (700–800 ppm; Sr/Y = 33–40,
Table 1) compared to Nisyros rocks, basaltic andesite from
the base of the KPT, and some of the andesite clasts in the
KPT. The Pyrgousa andesites resemble a dacite lithic clast in
the KPT, which has Ba ~ 1100 ppm and Sr ~ 900 ppm (Pe-
Piper and Moulton 2008), and the dacite stocks and rhyolite
domes of the Kefalos Peninsula, which have Sr/Y ~ 40
(Bachmann et al. 2012).

Mineralogy and petrology

Petrologically, the basaltic andesite and andesite show gener-
ally similar features. The rocks are porphyritic, with pheno-
crysts and microphenocrysts of feldspar, amphibole, biotite, ±
pyroxene. The groundmass is principally feldspar and glass,
with some pyroxene, biotite, quartz, titanomagnetite, and

amphibole. Mineral chemistry and classification are
summarised in Figs. 8 and 9.

Basaltic andesite has subhedral to anhedral plagioclase
phenocrysts, ranging in composition from bytownite to
andesine (Fig. 9a, d; Fig. 10). Feldspar phenocrysts contain
inclusions of F-apatite and magnesiohornblende (Fig. 10a).
Other phenocrysts include magnesiohornblende, tschermakite
and pargasite (Fig. 8a, b) altered to actinolite (Fig. 10c, f);
ilmenite, titanomagnetite, zoned orthopyroxene (En74 to
En63; Fig. 8d; Fig. 10e) and rare quartz (Fig. 10d). The horn-
blende phenocrysts contain feldspar and F-apatite inclusions
(Fig. 10f). In addition, only the basaltic andesite contains
sanidine and anorthoclase (Figs. 9a, 10e) and local interstitial
quartz (Fig. 10e). Microphenocrysts include anorthoclase
(Fig. 10e), titanomagnetite, orthopyroxene (Fig. 10e), and
pargasite (Fig. 10b). Euhedral biotite is very rare, but a large
biotite with a reaction rim and inclusions of ilmenite appears
to be a xenocryst (Fig. 10d). Glass is abundant in the ground-
mass and also occurs as inclusions in feldspar and amphibole
phenocrysts.

Andesites have plagioclase phenocrysts principally of
andesine, with some oligoclase and with labradorite cores
(Fig. 9b, d; Fig. 11d, f, g). Spongy cellular rims and mantles
(Fig. 11e) are better developed compared to the basaltic an-
desite. Pyroxenes are augite and enstatite-hypersthene (Fig.
8d). Clinopyroxene phenocrysts have dissolution voids and
are rimmed by ti tanomagneti te , labradori te , and
orthopyroxene (Fig. 11a), suggesting either magma mixing,
or that the clinopyroxene is a xenocryst. Amphiboles are
magnesiohornblende and edenite (Fig. 8a, b; Fig. 11c), prob-
ably implying lower pressure conditions than the basaltic an-
desite that contains pargasite (cf. Ridolfi et al. 2010). Biotite is
more abundant than in basaltic andesite, being mostly of
phlogopite composition, with higher ivAl than in the basaltic
andesite (Fig. 8c). Biotite phenocrysts show reverse zoning
and have voids and inclusions of titanomagnetite, F-apatite,
and andesine (Fig. 11b).

There is widespread evidence of magma mixing from
mineral textures in both basaltic andesite and andesite.
Plagioclase phenocrysts show cores with quite different
compositions from rims, separated by zone of spongy cel-
lular texture with abundant voids (Fig. 11d–f). Some
oligoclase-andesine crystals have narrow calcic spikes and
patches of labradorite or bytownite (Fig. 11d, g), which
may represent earlier clots of calcic plagioclase that have
been substantially corroded and assimilated. Some plagio-
clase phenocrysts show oscillatory zoning from andesine to
labradorite. Others show oligoclase cores followed by lab-
radorite rims (Fig. 11f). Clinopyroxene phenocrysts appear
to have reaction rims and may be xenocrysts (Fig. 11a).
Similar magma mixing textures in dacites are described in
more detail from the Kefalos Peninsula on Kos, 10 km to
the NNW (Pe-Piper and Moulton 2008).
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Table 1 Geochemical analysis of basaltic andesite and andesite, Pyrgousa

Oxide Sample Detection limit

CS214 CS215 CS213 CS216
Basaltic andesite Andesite Andesite Andesite

Major elements, weight %, recalculated volatile free

SiO2 56.27 60.17 61.44 61.74 0.01

TiO2 0.84 0.78 0.77 0.63 0.001

Al2O3 18.77 17.98 17.96 17.32 0.01

Fe2O3T 7.01 5.64 5.53 5.32 0.01

MnO 0.11 0.10 0.09 0.10 0.001

MgO 3.60 2.88 1.95 2.53 0.01

CaO 7.65 5.90 5.56 5.52 0.01

Na2O 3.50 3.98 4.01 4.03 0.01

K2O 1.92 2.29 2.41 2.45 0.01

P2O5 0.22 0.20 0.20 0.24 0.01

LOI 1.03 1.17 1.42 1.55 0.01

Total 100.1 100.7 98.34 99.68 0.01

Trace elements, ppm

S 0.014 0.011 0.006 0.017 0.001

V 189 128 142 124 5

Co 18 15 13 12 1

Ni 12 7 7 10 1

Cu 53 30 37 20 1

Zn 53 46 44 59 1

Sc 20 16 15 11 1

Ga 18 18 18 18 1

Rb 48 57 59 61 1

Ba 763 758 781 878 3

Cs 1.4 2.3 1.1 2.9 0.1

Sr 809 729 693 754 2

Y 20.7 19.7 20.8 19 0.5

Zr 139 147 156 157 1

Nb 9.9 12.5 12.9 12.4 0.2

Hf 3.2 3.4 3.7 3.6 0.1

Ta 0.59 0.88 0.89 0.86 0.01

W 1.3 1.4 1.2 1.2 0.5

Tl 0.06 0.08 0.09 0.23 0.05

Pb 8 8 9 11 3

Th 4.45 8.7 8.97 9.13 0.05

U 1.51 2.54 2.74 2.81 0.01

La 27.3 34.6 36.2 37.9 0.05

Ce 52.6 64 62.7 70.4 0.05

Pr 5.67 6.62 6.81 7.37 0.01

Nd 21.3 24.2 24.5 26.4 0.05

Sm 3.97 4.31 4.24 4.41 0.01

Eu 1.15 1.17 1.2 1.19 0.005

Gd 3.53 3.63 3.6 3.41 0.01

Tb 0.56 0.55 0.56 0.51 0.01

Dy 3.34 3.15 3.17 3.06 0.01

Ho 0.68 0.65 0.65 0.61 0.01
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The chemistry of the major minerals is compared with the
Kefalos Peninsula dacites and rhyolites and lithic clasts from
the KPT (Pe-Piper and Moulton 2008). Clinopyroxene is augite
and is more ferroan than most clinopyroxene from lithic clasts in
the KPT, where compositions are more calcic and include com-
mon diopside (Fig. 8d). Amphibole compositions are similar to
those in the Vigla dacite and its andesite enclaves, except for the
low-Si amphiboles, which are pargasite on Pyrgousa and the
more ferroan magnesiohastingsite at Vigla.

Geochronology

40Ar/39Ar dating of a biotite separate from sampleCS216 yielded
a total gas age of 2.1 ± 0.1 Ma (Supplementary Table 1), and an
inverse isochron age of 1.7 ± 2.8Mawith a good plateau at 1.9 ±

0.1 Ma (Fig. 12). The initial 40Ar/36Ar intercept is 307 ± 32,
rather higher than the atmospheric ratio of 295.5.

Discussion

Age and volcanological character of the pre-KPT
andesites

Our 40Ar/39Ar dating results are similar to those of Bachmann
et al. (2010a) in having an elevated 40Ar/36Ar intercept with a
large error and a somewhat disturbed age spectrum. It is therefore
likely that the biotite has excess 40Ar of mantle origin, as argued
by Bachmann et al. (2010a). In this case, the 1.9 ± 0.1 Ma age
should be taken as a maximum possible age.
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Table 1 (continued)

Oxide Sample Detection limit

CS214 CS215 CS213 CS216
Basaltic andesite Andesite Andesite Andesite

Er 2.07 1.96 1.93 1.84 0.01

Tm 0.303 0.295 0.294 0.279 0.005

Yb 2.04 1.91 1.93 1.83 0.01

Lu 0.304 0.293 0.299 0.287 0.002

Sr/Y 39.1 37.0 33.3 39.7
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Nevertheless, our field observation that the andesites occur
principally as domes (Fig. 3a) is important, as there is no
evidence for a stratovolcano of interbedded lavas and pyro-
clastic rocks prior to the KPT eruption. The volcanological
evolution of the Nisyros-Kos volcanic system in the
Quaternary resembles the Pliocene–Quaternary history of the
Methana volcanic system in the northwestern part of the South
Aegean Arc (Pe-Piper and Piper 2013). There, small domes of
andesite-dacite were widespread in the late Pliocene and were
followed by a 1–3-Ma period of erosion prior to the develop-
ment of a central explosive volcanic centre (unit C of Pe-Piper
and Piper 2013) and then younger Quaternary stratovol-
canoes. How much erosion may have taken place on
Pyrgousa prior to the KPT eruption is unclear.

Petrogenesis of the Pyrgousa basaltic andesite
and andesite

The widespread evidence of complex irregular zoning in pheno-
crysts is similar to that described from the Kefalos Peninsula by

Pe-Piper and Moulton (2008), resulting from mixing within a
magma chamber and changing conditions during rise of magma
to the surface (Ridolfi et al. 2010). Similar textures are known
from other small volume magmas produced from subcontinental
lithospheric mantle (SCLM), such as in the Upper Miocene of
Samos (Pe-Piper and Piper 2007). The most pronounced evi-
dence for mixing is in the basaltic andesite (CS214), where the
abundance of bytownite-labradorite indicates a more mafic or
more hydrous parent magma (Lange et al. 2009). Both pheno-
crystic and interstitial quartz (Fig. 10d, e) are present, together
with apparently xenocrystic biotite (Fig. 10d). Both minerals are
more characteristic of the probably coeval dacites and rhyolites
of theKefalos Peninsula. If this basaltic andesite involvedmixing
of a dacitic component, then the host magma of the bytownite-
bearing component must have been quite mafic. This is contrary
to the suggestion of Bachmann et al. (2012) that parent magmas
were all of intermediate composition.

The andesite of Pyrgousa is similar to the putative parent
intermediate magma postulated by Bachmann et al. (2012) for
the pre-KPT dacites and rhyolites of the Kefalos Peninsula.
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The andesites are geochemically distinct from younger basal-
tic andesite and andesite at the base of the KPT (Piper et al.
2010) and in the late Quaternary Nisyros stratovolcano
(Vanderkluysen et al. 2005). They also differ in the chemistry
of clinopyroxene (Fig. 8d). The Pyrgousa rocks are less
enriched in HFSE such as Ti and Zr, but strongly enriched
in Ba and Sr and to a lesser extent K, and show a high Sr/Y
ratio of ~ 39. Similar trends are observed in the dacites and
their andesitic enclaves at Vigla in the Kefalos Peninsula on
Kos, 10 km to the NNW (Pe-Piper and Moulton 2008;
Bachmann et al. 2012). The more ferroan low-Si amphiboles
in the Vigla dacite compared to those from Pyrgousa (Fig. 8b)
probably reflects changes in oxygen fugacity between andes-
itic and dacitic magmas.

The high Ba, Sr, and K contents of the Pyrgousa andes-
ite and basaltic andesite resemble late Miocene plutonic
and volcanic rocks from Samos, Bodrum, and Kos. These

late Miocene rocks have been interpreted as derived from
small degrees of partial melting from potassium-enriched
SCLM. For example, in Samos, the SCLM was an enriched
hydrous peridotite within the stability field of phlogopite,
amphibole, and garnet with 5–10% partial melting and no
significant dilution by asthenospheric melts (Pe-Piper and
Piper 2007). Such high Sr-Ba rocks are widespread in the
eastern Aegean, but absent in the west (Pe-Piper and Piper
2002). In the Kos-Nisyros region, the Nd and Sr isotopic
signature is largely derived from subducted Nile River sed-
iment (Pe-Piper and Moulton 2008; Klaver et al. 2015).
The KPT and younger rocks of Nisyros lack enrichment
in Sr and Ba and are isotopically characteristic of higher
degrees of partial melting of depleted MORB mantle
(DMM; Klaver et al. 2015). There is a similar pattern in
the volcanic rocks of Methana (Fig. 1 inset), at the western
end of the South Aegean Arc, where studies of Pb and Nd
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isotopes (Elburg et al. 2014; Smet 2014) show that the
Pliocene domes have little or no DMM contribution and
cannot be completely accounted for by Cenozoic sediment
subduction (Klaver et al. 2015). By analogy with Kos-
Nisyros, the early domes on Methana resulted from partial
melting of SCLM prior to significant supply from astheno-
spheric mantle.

Character of the KPT deposit

The KPT deposit on Pyrgousa resembles unit Dm reported
by Allen (1998) on Pachia islet, where the KPT overlies

unconsolidated mud, apparently similar to the lithic clasts
of mud on Pyrgousa (Fig. 4c). This underlying mud is
consistent with the interpreted absence of a stratovolcano
prior to the KPT eruption. Distally on Kos, the KPT is
commonly underlain by vegetated paleosols (Allen et al.
1999).

Origin and significance of the terrace limestones

Terrace limestone with marine fossils unconformably
overlies the KPT and represents a marine highstand after
the likely subaerial eruption of the KPT (cf. observations
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of Allen 1998 in Pachia and Kos). The only highstand
comparable with the late Holocene was the MIS 5e or
Tyrrhenian highstand. Molluscs from a terrace in northern
Pyrgousa gave ages ranging from 114 ± 53 to 31 ± 11 ka
by electron spin resonance dating (Blackwell et al. 2016).
The older ages are consistent within error with the maxi-
mum highstand in MIS 5e, the youngest ages correspond
to MIS 3. In the southern part of the islet, there has been
only minor post-Tyrrhenian tilting, with subsidence in the

west and minor uplift in east. This suggests that the
younger ages found by Blackwell et al. (2016) are per-
haps questionable, as eustatic sea level fluctuated
around − 50 m during most of MIS 3. The terrace lime-
stone has played an important role in protecting the
KPT deposits from erosion during the 100-ka-long,
last-glacial lowstand. The KPT has been eroded away
from the higher elevations of the islet above the limit
of the limestone.

12 34

5
6

7 8
9

An63An25

An41

An57
An27

An53

FeOt9
FeOt12

1

2

3

4
5

6

7

A

B

An53

FeOt12
FeOt12

300µm

1

2

3

4

5

6

7

An35

An47

FeOt14

FeOt13

300µm

FeOt 7

FeOt13

cs216 site 9 cs216 site 5

600µmcs213 site 6

1

2
3

4

5

6
An50

FeOt14
FeOt12

200µmcs213 site 8

123
4

5

6

7
8

9

10

11

An35

An85

An39

An79

An39
An64

An36
An37

300µm200µm

1

2
3

45

6

7

200µm

An28
An35

An55

An57

An26

cs213 site 7 cs213 site 7 cs216 site 2

XPL

And

And

Lab

And

Lab

Byt

Cpx

Hbl

Bt

TMt
FAp

SCZ

(a)

(c) (d)

(e) (f) (g)

(b)

Fig. 11 Andesite mineral textures. Abbreviations as in Fig. 10. a
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Conclusions

Pyrgousa is underlain by complex domes, associated breccias,
minor dykes, and probable flows of andesite that predate the
Kos Plateau Tuff. Proximal facies of the KPT eruption on
Pyrgousa (unit Dm of Allen et al. 1999) and the Tyrrhenian
limestone terrace in the west of the islet are documented for
the first time. Biotite from one sample of andesite gave a
40Ar/39Ar date of 1.9 ± 0.1 Ma, probably a maximum age
because of excess 40Ar. The andesites, and minor basaltic
andesites, are enriched in Ba and Sr and resemble potassic
rocks found elsewhere in the SE Aegean. They are interpreted
to have formed by 5–10% partial melting of enriched SCLM
in the stability field of phlogopite, amphibole, and garnet.
They contrast with literature reports of magmas produced at
the time of the KPT eruption at 0.16 Ma, and subsequently in
the late Quaternary stratovolcano of Nisyros, derived princi-
pally from depleted asthenospheric mantle with trace elements
derived from subducted Nile sediment.

An analogous transition from small magma volumes from
SCLM forming andesite-dacite domes, followed by a volumi-
nous explosive eruption and growth of small stratovolcanoes
from magma derived from asthenospheric mantle, is seen on
Methana in the northwestern South Aegean Arc. Such early
andesite magmas play an important role in heating the upper
crust, allowing growth and filling of upper crustal magma
chambers as the supply of asthenospheric magma increased.
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