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Abstract Gravity-driven, ground-hugging gas-pyroclast
mixtures produced during explosive volcanic eruptions define
a full spectrum of particle concentration, flow regime and
particle support mechanisms. To describe these phenomena,
the term “pyroclastic density current” (PDC) has become
increasingly popular in the last few tens of years. Here, I
question the general application of the term PDC to the whole
flow spectrum and, instead, I propose the simpler term
“pyroclastic current”.
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Gravity-driven, ground-hugging mixtures of pyroclasts and
gas, one of the most hazardous geological events, are pro-
duced during volcanic eruptions by a variety of mechanisms,
including column collapse, low fountaining, dome collapse,
hydromagmatic explosions, overpressured blasts (e.g. Walker
1983; Fisher and Schmincke 1984; Cas and Wright 1987;
Druitt 1998 and reference therein). To describe these phenom-
ena, the term Bpyroclastic density current^ (PDC) has become
increasingly popular among volcanologists in the last few tens
of years (e.g. Druitt 1998; Branney and Kokelaar 2002;
Burgisser and Bergantz 2002; Dellino et al. 2008; Sulpizio
et al. 2014; Bonadonna et al. 2016; Breard et al. 2016;
Dufek 2016). Here, I question the general application of this
term within the full spectrum of particle concentration, flow

regime and particle support mechanisms (i.e. including
Bpyroclastic flows^ and Bpyroclastic surges^ of the classical
nomenclature; e.g. Sparks 1976; Fisher 1979; Wilson and
Walker 1982; Fisher and Schmincke 1984; Cas and Wright
1987 and reference therein). Instead, I propose the simpler
term Bpyroclastic current^.

By definition, a density current is any current in either
liquid or gas that is kept in motion by the force of gravity
acting on differences in density between the current and its
surroundings. A density difference can exist between two
fluids because of a difference in temperature, salinity or con-
centration of suspended material. For example, a turbidity
current is a subaqueous density current that flows along the
bottom of a sea or lake because the sediments in suspension
make it denser than the surrounding waters. The difference in
density slows down the mixing of the current with the sur-
rounding waters, enabling it to maintain itself for relatively
long distances.

In light of well-established conceptual models and interpre-
tive criteria for deposits, to reconcile the complex physical
nature of multiphase gas-pyroclast flows, two end-member
types are recognised depending on particle concentration and
dominant flow regime, i.e. (1) dilute, turbulent suspensions, in
which particle concentration is no more than a few volume
percent (i.e. bulk flow density 1–100 kg/m3) (broadly corre-
sponding to pyroclastic surges) and (2) high-concentration
flows, in which particle content is in the order of tens of vol-
ume percent (i.e. bulk flow density 100–1000 kg/m3) (pyro-
clastic flows). Accordingly, fluid turbulence is the main parti-
cle support mechanism in the first case, while particle interac-
tions (friction, collisions, dispersive pressure), matrix strength
and/or buoyancy forces become dominant with increasing con-
centration; turbulence is mostly suppressed in the main body of
these flows, while it may act at flow boundaries (e.g. Sparks
1976; Sparks et al. 1978; Fisher 1979; Sheridan 1979; Wilson
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1985; Valentine 1987; Branney and Kokelaar 1992; Dade and
Huppert 1996; Druitt 1998; Anilkumar et al. 1993; Palladino
and Valentine 1995; Branney and Kokelaar 2002; Burgisser
and Bergantz 2002; Dufek 2016).

Individual flowsmay, however, show a transitional or com-
posite behaviour, with significant time-space changes of par-
ticle concentration, flow properties and dynamics (and conse-
quent particle support and deposition mechanisms) along the
flow path and/or the vertical flow profile. Different portions of
the current may even decouple and move independently (e.g.
concentrated underflows, co-ignimbrite ash clouds and ash
cloud surges; Denlinger 1987; Fisher et al. 1993; Druitt
1998; Breard et al. 2016). For example, high-density disper-
sions may exist as an independently moving bulk flow, as a
thin discrete layer beneath a thick dilute flow, as the basal part
of a continuous density distribution or as a transient deposi-
tional layer (Valentine 1987; Druitt 1998; Kneller and Buckee
2000; Palladino and Simei 2002; Doyle et al. 2010, 2011).

In spite of recent theoretical advances, also supported by nu-
merical simulations (e.g. Doronzo et al. 2011; Dioguardi and
Dellino 2014) and laboratory experiments (e.g. Dellino et al.
2007; Andrews and Manga 2011; Rowley et al. 2014; Sulpizio
et al. 2014; Lube et al. 2015; Breard et al. 2016; Roche et al.
2016) and of alternative views (i.e. a new subdivision based on
forced convection-dominated and inertia-dominated end mem-
bers; Doronzo 2012), the term PDC spans indiscriminately cur-
rents ranging from highly dilute and turbulent blasts to dense
block-and-ash flows from gravitational dome collapse
(Charbonnier et al. 2013), often with a specification that echoes
the dual nature of these currents in terms of density: e.g. cf. dilute
PDCs (Palladino and Taddeucci 1998; Dellino et al. 2008;
Dioguardi and Dellino 2014) vs. dense or concentrated PDCs
(Dufek et al. 2009; Rowley et al. 2014; Sulpizio et al. 2016).

The dynamics of dilute, turbulent flows are described in the
volcanological literature by analogy with other suspension
currents (e.g. turbidity currents) (Valentine 1987; Sohn and
Chough 1989; Fisher 1990; Druitt 1992; Cole and Scarpati
1993; Palladino and Taddeucci 1998; Dellino and La Volpe
2000; Kneller and Buckee 2000; type 1 current of Palladino
and Simei 2002). As the flow power declines with distance
from source, the settling of particles according to their Rouse
number determines a vertical concentration profile (density-
stratified flow; Valentine 1987). Due to air entrainment, elu-
triation of fines and bedload deposition, the bulk flow density
decreases downcurrent, until the density contrast with the sur-
rounding atmosphere will drop to zero and the lateral flow
motion ceases (eventually giving birth to a buoyant Bphoenix^
cloud; Bursik andWoods 1996). Flow density and runout may
be enhanced by splash-driven particle entrainment from the
substrate (Fauria et al. 2016). Thus, the runout distance of a
dilute current is primarily controlled by the positive density
contrast with the surrounding medium (i.e. true density
current).

High-concentration flows have been described in volcanol-
ogy by three main types of physical models: (1) viscoplastic,
(2) sliding block and (3) rapid granular flow models (Druitt
1998). The first model type, which mostly includes plug flow
models (Sparks 1976; Wilson and Head 1981; Valentine and
Fisher 1986; Battaglia 1993) and laminar flow models
(coupled to a granular flow model; Palladino and Valentine
1995; type 3 currents, Palladino and Simei 2002), assumes
that the particle-gas mixture is a continuum fluid, character-
ized by viscosity and yield strength, in which flow turbulence
is damped by high particle concentration and coarse-clast sup-
port is controlled by the density contrast of large clasts with
the matrix. These viscoplastic models have close analogies
with models for cohesive debris flows (Postma 1986).
Among viscoplastic models, very fast examples, even though
dense, have been viewed as turbulent flows (McEwan and
Malin 1989; Levine and Kieffer 1991).

The sliding block and the rapid granular flowmodels treat
dense gas-pyroclast dispersions respectively as slow- or fast-
moving granular mass flows (cohesionless debris flows;
Postma 1986), in which the stress tensor is dominated respec-
tively by intergranular friction or by short-lived intergranular
collisions, and the role of the interstitial fluid (if present) is
negligible (Bagnold 1956; Savage 1984; Palladino and
Valentine 1995; Straub 1996; Iverson 1997; Iverson and
Vallance 2001; type 2 currents, Palladino and Simei 2002;
Dartevelle et al. 2004; Schwarzkopf et al. 2005; Lube et al.
2007; Rowley et al. 2014; Sulpizio et al. 2016).

High-density particulate flows thus share the key charac-
teristics of polydisperse granular avalanches (Gray and Ancey
2011) and/or viscoplastic rheologies typical of cohesive debris
flows. The physics of granular mass flows and rheological
analysis (e.g. plastic vs. Coulomb rheologies; Kelfoun 2011)
indicates that the emplacement of high-density flows may
occur by en-masse freezing, rapid stacking of flow laminae
and/or progressive sedimentation (e.g. Sparks 1976; Palladino
and Valentine 1995; Girolami et al. 2010). The simple Mohr-
Coulomb model, commonly applied to rock avalanches (e.g.
Hsü 1989), considers the motion of a sliding rigid block for
slope angles greater than the internal angle of friction of the
granular material. At any point downslope, the total energy is
given by the sum of potential energy + kinetic energy + fric-
tional loss. Due to its own momentum, such a flow can climb
all relief below the energy line (i.e. the straight line connecting
the point of flow origin to the most distal flow reach). Flow
mobility is expressed by the ratio of the total vertical drop vs.
the total horizontal distance travelled (H/L, Heim coefficient).
In this regard, pyroclastic flows share the negative depen-
dence of H/L with volume that is observed for cold, dry rock
avalanches (Hayashi and Self 1992).

To summarize, ground-hugging gas-pyroclast currents
(thus without referring to air-suspended column jets and
plumes) are fluid-particle mixtures that move by virtue of
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the force of gravity and exhibit a positive density difference
with the ambient fluid. With the exception of overpressured
blasts, which are essentially driven by pressure (rather than
density) differences, the other currents can be viewed as part
of a continuum from fluid gravity flows to sediment gravity
flows (Hsü 1989). In very dilute gas-particle dispersions (i.e.
true suspension currents), the motion of the fluid (i.e. the fluid
medium of volcanic gases, ingested air and ground water plus
suspended particles) is driven by the density contrast with the
ambient fluid, and particle interactions are negligible.
Conversely, in highly concentrated gas-particle mixtures, it
is the gravity acting on the pyroclasts which makes the inter-
stitial fluid move, and particle interactions dominate the trans-
port system.

In the first case, where a thick, dilute suspension current
supplies and drives a thin, dense bedload (also cf. Todd
1989), the density contrast is a crucial parameter that actu-
ally controls flow motion over the landscape. The term
Bdensity current^, when referring specifically to relatively
dilute examples of the flow spectrum (e.g. Palladino and
Taddeucci 1998; Dellino et al. 2008), may be useful to stress
that the gas-pyroclast mixture is kept in motion so long as it
remains denser than the surrounding atmosphere. In the sec-
ond case, where a dense basal avalanche feeds an upper
dilute ash cloud, the bulk flow density of the driving ava-
lanche is always well beyond (2–3 orders of magnitude) that
of ambient air even when the flow eventually stops.
Sustained, very long runout (>170 km from source) exam-
ples are reported that show evidence of regional transport as
dense granular dispersions (Roche et al. 2016). Because it is
not the waning excess density that controls the magnitude of
final flow runout, the term Bdensity current^ seems at least
redundant for a high-density mass of pyroclasts and
entrapped gas that travels across the landscape in a way
similar to a dry rock avalanche or a mass of billiard balls.

Thus, the term BPDC^ suggests a dynamic characteriza-
tion of the flow (i.e. density- vs. pressure-driven; dilute,
turbulent suspension controlled by density contrast vs.
granular flow regime), which can be somehow qualitative
and ambiguous, also considering space-time changes within
individual flow events. A flow of electrons is defined
Belectrical current^; likewise, I propose to call a flow of
pyroclasts simply a Bpyroclastic current^ (PC), irrespective
of envisaged/inferred/assessed flow properties (including
density) and regimes. Since its early appearance (e.g.
Fisher 1995; Palladino and Valentine 1995), the term
BPC^ has been used in a broad sense in relatively few cases
(e.g. Palladino and Simei 2002; Taddeucci and Palladino
2002; Doyle et al. 2010 in the article title, yet PDC in the
text). Also, BPC^ is more apt than BPDC^ for further qual-
ification (e.g. low-density, high-density or density-stratified
PC). When necessary, to avoid possible ambiguity, it can be
specified to Bground-hugging PC^ vs. Bair-suspended (or

unconfined) PC^ (i.e. eruptive jets and plumes). Finally,
the term BPC^ (instead of BPDC^) might be still valid in
the future, as the integration of new theoretical studies,
computer simulations, analogue experiments and field stud-
ies of deposits, will refine what appears a well-established
theoretical framework, even though nature will surprise us
by showing new as yet unimagined processes.
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