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Abstract Medium-sized volcanoes, also known as Mexican
shields due to their andesitic composition and slightly higher
slope angles in comparison to Icelandic shields, occur across
the Trans-Mexican Volcanic Belt and represent nearly one
third of all volcanic edifices in the Michoacan-Guanajuato
Volcanic Field (MGVF). Many questions about their origin
and eruptive dynamics remain unanswered. Here, we focus
on El Metate, the youngest (~AD 1250) monogenetic shield
volcano of the MGVF and the most voluminous (~9.2 km®
dense rock equivalent) Holocene eruption in Mexico. Its erup-
tive history was reconstructed through detailed mapping, geo-
chemical analysis (major and trace elements, Sr-Nd-Pb isoto-
pic data), and rheological study of its thick andesitic flows.
Early and late flow units have distinct morphologies, chemical
and mineralogical compositions, and isotopic signatures
which show that these lavas were fed by two separate magma
batches that originated from a heterogeneous mantle source
and followed distinct differentiation paths during their ascent.
Thermobarometry calculations constraining the conditions of
crystallization indicate a temporary storage of the last erupted
magma batch at a depth of ~7—10 km. Lava rheology was
estimated using petrographic characteristics, geochemical da-
ta, and flow dimensions. The magma viscosity increased from
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10>-10® Pa s prior to eruption through 10°~10% Pa s during
ascent, to 10°~10'" Pa s during lava emplacement. Though
magma viscosity was quite high, the eruption was purely ef-
fusive. The explosive eruption of such a large magma volume
was probably avoided due to efficient open system degassing
(outgassing) of the magma as it ascended through the upper-
most crust and erupted at the surface.

Keywords Mexican shield - Andesite - Monogenetic -
Blocky flow - Lavarheology - Holocene

Introduction

Small- to medium-sized shield volcanoes are an important
component of many volcanic fields on Earth (e.g., Idaho,
USA, Greeley 1982; Hawaii, USA, Decker et al. 1987;
Michoacan, Mexico, Hasenaka 1994; Iceland, Rossi 1996;
the Cascades, USA, Hildreth 2007) and other planets (e.g.,
Moon, Guest and Murray 1976; Venus, Guest et al. 1992;
Mars, Baptista et al. 2008). The Trans-Mexican Volcanic
Belt (TMVB), one of the most complex and active continental
arcs worldwide, displays a large number of such medium-
sized volcanoes. In particular, they represent nearly one third
of the ~1500 edifices of the ~40,000-km> Michoacan-
Guanajuato Volcanic Field (MGVF, Fig. 1), which is not only
the largest monogenetic field in the TMVB (Hasenaka and
Carmichael 1985a) but also of the entire Earth (Valentine
and Connor 2015). Although the exact causes responsible
for the great number of monogenetic volcanoes in the
MGVF (which also happens to be the region where the
TMVB reaches its greatest width) are still poorly understood,
their high frequency of occurrence may be related to the
unique geometric configuration of the subduction zone
(Pardo and Suarez 1995; Goémez-Tuena et al. 2007; Johnson
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Fig. 1 Digital elevation model of
the Michoacan-Guanajuato
Volcanic Field (MGVE, outlined
in red) showing the location of E1
Metate shield volcano. Yellow
rectangle indicates the study area
shown in detail in Fig. 2. Small-
sized and medium-sized volcano
database modified after Hasenaka
(2009, personal communication).
Inset map at the lower right
corner shows the location of the
MGVF within the Trans-Mexican
Volcanic Belt (TMVB)
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et al. 2009; Blatter and Hammersley 2010; Kim et al. 2012)
that controls the location and size of magma generation areas
and the magnitude of crustal extension. We speculate that the
large number of monogenetic volcanoes over such a wide area
might be related to the near-horizontal position at a depth of
90-120 km of this segment of the subducting oceanic Cocos
plate underneath the continental North America Plate (Kim et
al. 2012). Such a low subduction angle at depth might be
inducing partial hydrous melting of the mantle wedge over a
wide area underneath a ~40-km-thick continental crust, in-
stead of favoring the more common case in which magmas
are generated and repeatedly rise along a much narrower zone
leading to the formation of a chain of stratovolcanoes.

The origin of the magmas, the eruption dynamics, and the
distribution of volcanic edifices (especially of scoria cones) in
the MGVF have been the focus of many previous studies (e.g.,
Williams 1950; Fries 1953; Hasenaka and Carmichael 1985a,
b, 1987; Connor 1987, 1990; Hasenaka et al. 1994; Ownby et
al. 2007, 2011; Gémez-Tuena et al. 2007; Johnson et al. 2009;
Guilbaud et al. 2009, 2011, 2012; Pola et al. 2014; Siebe et al.
2014), yet there are relatively few studies focusing on the
medium-sized volcanoes (Hasenaka and Carmichael 1986;
Roggensack 1992; Ban et al. 1992; Hasenaka et al. 1994;
Hasenaka 1994). The volumes of the MGVF shield volcanoes
vary between 0.5 and 10 km? and are considerably larger than
those of typical scoria cones (average of 0.021 km®) but small-
er than those of the two stratovolcanoes (Tancitaro and
Patamban) in this field (~50 km?®, Hasenaka 1994). These
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medium-sized volcanoes have generally slightly steeper
slopes (5-15°) than Icelandic shields (Hasenaka 1994;
Roggensack 1992; Whitford-Stark 1975) and distinctly more
evolved compositions (basaltic-andesitic to andesitic), which
led to their designation as Mexican shields (Hasenaka 1994).
Although outnumbered by smaller volcanoes (mostly scoria
cones), they nevertheless represent nearly 70 % of the total
volume erupted since 1 Ma (Hasenaka 1994) and hence
played a considerable role in the formation of the MGVF.
However, the source, storage, and transport as well as the
physical properties (density, viscosity, volatile content, etc.)
of the magma involved in these eruptions remain poorly
constrained.

In this paper, we provide new insights on magmatic pro-
cesses during the ~AD 1250 eruption of El Metate, which is
both the most recent monogenetic shield in Mexico and the
largest andesitic effusive eruption during the Holocene world-
wide (Chevrel et al. 2016). The only previous geochemical
study of El Metate lavas (Losantos et al. 2014) did not specify
sampling locations and reported only major element data.
Here, we first summarize the main results of a recent study
focused on the age, volume, chronology, and impact of the
eruption (Chevrel et al. 2016) and then present new data on
lava morphology. Next, we describe in detail the geochemistry
(major, trace elements, and Sr-Nd-Pb isotopic data) and pe-
trology of the distinct lava units and use this information to
constrain the magma source, storage conditions, and lava rhe-
ology and to propose an eruptive model.
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Age, volume, and chronology of lava flow
emplacement

El Metate volcano (N 19° 32" 19”; W 101° 59’ 34", 2910 m
asl, Fig. 1) erupted a volume of 9.2 km® (dense rock equiva-
lent) of andesitic lava (Chevrel et al. 2016). Detailed fieldwork
shows that the eruption was purely effusive since neither ash
nor spatter deposits from El Metate were found in its vicinity
(Chevrel et al. 2016). If El Metate had initiated with a
Strombolian phase (with ash deposits now mostly buried be-
low the thick lava flows), the old edifice that crops out
~1.5 km south of El Metate’s summit (Fig. 2) should be cov-
ered by several meters of fresh coarse ash. However, we only
found a 70-cm-thick strongly altered scoriaceous ash fallout
(dated at 13,480+ 50 years BP that predates significantly El
Metate’s eruption) under a well-developed clayey soil.

In addition, paleosols are absent between the different flow
units. The latter also display similarly well-preserved surface

Fig. 2 Digital elevation model of
El Metate shield volcano showing
emplacement sequence (/—/3) of
the different lava flows and
surrounding volcanoes. Sampling
locations of analyzed rocks are
indicated
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morphologies, indicating that the entire edifice was formed
during one single eruptive event. The eruption took place
~AD 1250, and since it is absent from colonial chronicles, it
must have ended well before the invasion of the Spaniards that
occurred only 275 years later in the 1520s. Because of the
large area covered by the lava flows (103 km?) and the con-
comitant disruption of the regional hydrological network, lo-
cal human populations might have been forced to migrate to
the neighboring lacustrine basins (Zacapu and Patzcuaro) in
the east contributing to the social processes that led to the rise
of the Tarascan empire that initiated around that time (Chevrel
et al. 2016).

The morphology of EI Metate is remarkably well preserved
and exposed (Fig. 3). The volcano is composed of a central
dome (1 km wide, 300 m high) from which several volumi-
nous lava flows that form distinct units radiate (Fig. 2). Lava
flows directed to the south reached longer distances (<15 km)
than flows emitted to the N, due to different topographical
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gradients and the presence of the older prominent Paracho
shield to the N. For this reason, the ~10-km wide and ~600-
m high shield is slightly asymmetric. Thirteen flow units were
identified from their stratigraphic relations (Fig. 2). Lava flow
units F1 to F4 are clearly below lava units F5 to F13, and
thus, these form the early and late lava groups, respectively.
The lateral contacts of early lava units are however not ex-
posed; thus, their relative time of emplacement is not
known. The proposed numeration from F1 to F4 is hence
tentative, except for F4b, which issued from unit F4 and
thus must be younger than F4. By contrast, the relative time
of emplacement of late lavas can be much better constrained
due to clear contacts between the flows (Fig. 2) and sharp
compositional differences between stratigraphically lower
F5 to F8 units and stratigraphically higher F9 to F13 units.
Nevertheless, the relative order between flow units F6 and
F7 is only partly known and their composition is similar
(see below); hence, their numeration is also tentative (these
uncertainties do not affect our final eruptive model, see
below).

Lava flow morphology

The early and late lavas are morphologically distinct. The fronts
of the early flows average <40 m thick and their surface texture
ranges from rubbly-‘a’a to blocky in contrast to late flows that
have thick (<150 m) fronts and blocky surfaces (terms used as
defined in Kilburn 2000). In comparison with early lavas whose
proximal surfaces are not exposed, most of the late flows can be
traced from source to front where some flows split into multiple

Fig. 3 Aerial view of El Metate
(2910 m asl) from the east with
the stratovolcano Tancitaro in the
background and the village of
Turicuaro in the foreground.
Different El Metate lava flow
units (F4, F4b, F7, F8, F11, and
F12) are indicated. Photo taken
February 7, 2010

El Metate

Hoya Urutzen
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lobes. These flows have well-defined open channels separated
from wide flat-topped margins (levées) by a clear shear zone
that is continuous from source to front (Fig. 4). The channels
are typically narrow near the source and broaden downslope, as
the topographic gradient decreases, forming fan-shaped or
straight flows depending, respectively, on whether they flowed
on a near flat or more inclined topography (Fig. 4). The lava
surfaces inside the channels display thick and widely spaced
cross-flow ridges (ogives).

The morphological features observable at El Metate are
typical for highly viscous silicic coulées, e.g., the Chao dacitic
flow (de Silva et al. 1994), the coulées at San Pietro Island
(Cioni and Funedda 2005), or the rhyolitic obsidian flow of
Cordon Caulle (Tuffen et al. 2013). Nevertheless, it is worth
mentioning that the size of the El Metate lava flows is excep-
tionally large. The longest (F6) is on average 15 km long,
<4 km wide, and ~70 m thick, corresponding to a volume of
2.2 km’®, and the thickest (F11) is on average 5 km long,
~2 km wide, and 150 m thick, corresponding to a volume of
1.8 km®. These flows are among the most voluminous single
lava lobes so far reported (Wadge and Lopes 1991). Flows of
similarly large sizes are usually more silicic [1-3 km® San
Pedro andesitic flow, Chile (Francis et al. 1974); 4.4 km’
Payun Matru trachytic flow, Argentina (Gonzalez Diaz
1972); 2.1 km?® Copales dacitic lava flow from Ceburoco,
Mexico (Sieron and Siebe 2008); 1-2 km? dacitic to rhyolitic
Big Glass Mountain, USA (Eichelberger 1975); 24 km® Chao
dacitic flow, Chile (Guest and Sanchez 1969)]. Thus, El
Metate produced some of the most voluminous andesitic
flows that have been reported, and their young age has made
it possible to study them in detail.

Tancitaro (3840 m)

La Cantera
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Fig. 4 Schematic representation a

of major lava flow features. a <
Oblique view from the NW of the
fan-shaped flows F8 and F11. b
Vertical view of the straight
channel flow F6

Vent 2910m
wall of early vent

vertical exaggeration x 3
0 1km

Sampling and analytical methods

Rock samples were collected from the interiors of surface
blocks, to avoid alteration. We first sampled the flow
fronts that were of easy access and then collected rock
samples during long hikes along the flow margins or
across their interiors where possible (Fig. 2). Twenty-
seven whole rock samples from El Metate were analyzed
for major and trace elements at Activation Laboratories
Inc., Ancaster, Canada (analytical methods, including
detection limits and analytical uncertainties, are reported
in Table 1). Thin sections from each lava unit were studied
under a polarizing microscope. Modal mineralogical anal-
yses were carried out with the aid of an automated stage.
Mineral compositions were determined using a JEOL
JXA-8900R electron microprobe at the Laboratorio
Universitario de Petrologia (LUP), Instituto de Geofisica,
UNAM, Mexico City. The measuring conditions were set
at an accelerating voltage of 20 kV and a beam current of
20 nA (with a diameter of 1 pm), and counting times were
40 s for all elements. Elements were calibrated from an
assortment of mineral standards taken from SPI supplies®
reference standards for X-ray analysis (SPI# 2757-AB).
Sr-Nd-Pb-isotope ratios were determined for six samples
representative of the distinct lava groups at the Laboratorio
Universitario de Geoquimica Isotdpica (LUGIS), Instituto
de Geofisica, UNAM. Sr-Nd isotope ratios were deter-
mined with a Thermo Scientific Triton Plus thermal-
ionization mass spectrometer (TIMS) equipped with nine
Faraday cups, and Pb isotopes were determined with a
Finnigan MAT 262 TIMS equipped with eight Faraday
cups. All the measurements were done in static mode.
Further details of the analytical procedures can be found
in Table 2 and in Schaaf et al. (2005).

Pre-existing topography
- Flow direction

\Shear zone
Ogive

“=I Stationary margin
Steep flow front

Results
Mineralogy and petrography

Volume percent of the different phases present in the samples
(crystals, groundmass, vesicles) and average mineral and glass
compositions are reported in Tables 3 and 4, respectively. All
lavas contain plagioclase as phenocrysts (0.7-16.9 vol%) and
microphenocrysts (12.5-30.8 vol%) and augite and hyper-
sthene often as phenocrysts (<3 vol%) and as
microphenocrysts (0.2-13.5 vol%) embedded in a light-
brown groundmass consisting of microlites of the same min-
eral phases plus oxides and minor interstitial glass (Table 3).
In addition, the early lavas F1 and F4b contain 2.4-6.6 vol%
olivine phenocrysts, in contrast to all late lava units (F5 to F13
and dome) that contain 1.2—6.3 vol% hornblende phenocrysts
and lack olivine. The other early lavas (F2, F3, and F4) do not
contain olivine or hornblende. Vesicles represent <9 vol% of
the lavas, except in rocks from the summit dome area and
from late-stage proximal lavas (F11 to F13) that contain 11
to 29 vol% vesicles.

Olivine phenocrysts are up to 1 mm long, euhedral to
subhedral, and show resorption textures with reaction rims
of pyroxene (Fig. 5a, b). Pyroxene phenocrysts are
<0.5 mm, they occasionally show disequilibrium textures,
and the microphenocrysts are often found as clusters.
Hypersthene microphenocrysts are elongated and have oxide
inclusions. Plagioclase phenocrysts are tabular, <0.5 mm long,
and frequently oscillatory-zoned and commonly contain in-
clusions of glass, apatite, pyroxene, and rarely opaques, which
were not observed inside the acicular microphenocrysts and
microlites. Hornblendes are <1 cm long and show variable
morphology. Some are pristine and others present disequilib-
rium textures. Some of the crystals have a rim made of a
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microgranular assemblage of pyroxene + plagioclase + ox-
ide + glass and/or opacite (Fig. 5c, d), whereas others are fully
replaced by these materials, forming mineral ghosts (Fig. 5d).
Enclaves consisting of coarser tabular plagioclase +
destabilized pyroxene+melt are rarely found.

Major and trace element contents

Based on the classification of LeBas et al. (1986), E1 Metate’s
lavas are calc-alkaline basaltic andesites to andesites (57 to
62 wt% SiO,, Table 1). Our results are in general agreement
with previously published data (Fig. 6, Hasenaka et al. 1994;
Losantos et al. 2014).

In spite of their similar SiO, and Na,O+K,O contents
(Fig. 6), early and late lavas display distinct trends in major
element plots (Fig. 7). Late lavas have distinctly higher AL,O3,
Ca0, Na,O, and Sr and lower Fe,O31, MgO, TiO,, and Niata
given SiO, weight percent content than early lavas, although
the most evolved units of both groups have similar composi-
tions. In early lavas (F1 to F4), Fe,Ozp, MgO, TiO,, and Ni
sharply decrease while CaO slightly decreases, Al,O3 displays
a scattered pattern, and K,O increases constantly with increas-
ing SiO,. In contrast, late lavas (F5 to F13) show a tendency to
decrease in Al,Os, a sharp decrease in CaO, weak decreases in
Fe,O5rand MgO, constant Ni, and variable K,O with increas-
ing SiO,.

The trends observed in late lavas indicate a general pro-
gressive increase in the degree of differentiation of the flows

Fig. 5 Photomicrographs under
crossed polars of El Metate lavas:
a olivine (O/) phenocryst with
reaction rim of microcrystalline
pyroxene (sample no. 14286, F1).
b Cluster of olivine and augite
(Cpx) phenocrysts (sample no.
1205, F4b). ¢ Brown hornblende
with thick microcrystalline
reaction rim (gabbroic-type;
sample no. 14268, F5). d
Homblende (Hbl) with opacite-
rim (black-type) and hornblende
ghost embedded in a seriate
groundmass consisting mostly of
plagioclase (Plag) and some
orthopyroxene microlites and
glass (sample no. 14287, F6)

@ Springer

with the emplacement sequence from F5 to the formation of
the final summit dome. Also, sampling along the longest lava
units (F5, F6) reveals some systematic variations in major
elements with distance from the vent (<2 wt% SiO,). As noted
above, the emplacement sequence could not be constrained
for early lavas, except that unit F4b was emplaced by a late
breakout from unit F4. Unit F4b is less evolved than F4, the
opposite of what would be expected if differentiation in-
creased over time.

Interestingly, Sr contents in the most mafic (<59 wt% SiO,)
late lavas (F5, F6, F7, F8) are abnormally high (>1300 ppm),
decrease in more evolved subsequently erupted units (F9, F10,
F11), and are lowest in the most silicic and last erupted lavas
(F12 and F13 with ~800 ppm) which are similar in this respect
to early lavas (F2—F4; Fig. 7).

Early and late lavas have also distinct trace and rare earth
element (REE) patterns (Fig. 8). Although both groups span
similar ranges in light REE and are depleted in heavy REE, the
late lavas show a stronger depletion (Fig. 8a). Also, late lavas
show a marked decrease in REE with increasing SiO,, where-
as early lavas show constant to slightly increasing REE with
Si0, (La shown as an example in Fig. 7). The elevated Sr and
lower Y contents of late lavas yield higher St/Y ratios (60—
140) than early lavas (<50). Both lava groups show trace
element patterns typical for arc lavas but early lavas are less
depleted in Ta and Nb and slightly more enriched in large ion
lithophile elements (LIL) than late lavas (Fig. 8b). None of the
samples shows a Eu anomaly.
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Fig. 6 Total alkalies (Na,O+K,0) vs. SiO, diagram after LeBas et al.
(1986) for all analyzed volcanic rocks. Data from Losantos et al. (2014;
the two different symbols represent two distinct groups representing
different crystallization trends) and Hasenaka et al. (1994) for El Metate
lavas are also plotted

Isotopic composition

The first Sr-Nd-Pb isotope dataset of six samples representa-
tive of the chemical diversity of El Metate lavas (three samples
from each lava group) is reported in Table 2. The variations
measured are significant and nearly cover the entire range of
MGVF products (Fig. 9). Early lavas are isotopically quite
homogeneous (¥’St/*°Sr 0.704007-0.703767, "*Nd/'**Nd
0.512789-0.512819, *°°Pb/***Pb 18.63836-18.68909,
207pp/2%Ph 15.5831-15.5912), while the late lavas cover a
wider range (*’Sr/*°Sr 0.703127-0.703727, "*Nd/"**Nd
0.512797-0.512942, *°°Pb/***Pb 18.54352-18.62874,
207pb/2%°Pb 15.5547-15.5766). The small isotopic variations
of the early lavas do not correlate with SiO,. In contrast, var-
iations in late lavas correlate with the inferred eruption se-
quence and SiO, contents. Late lavas become more radiogenic
and more SiO, rich over time, and the last, most silicic erup-
tive unit (F12) is isotopically similar to the early lavas
(Fig. 9a). All the data follow a linear trend in plots of
87Sr/%6Sr ratios vs. eNd (Fig. 9¢) and °°Pb/?°*Pb vs.
207pb/***Pb (Fig. 9d). The earliest unit of the late lavas (F5)
is only slightly less radiogenic than the subducting oceanic
crust (MORB-COCOS), whereas the last erupted lava (F12)
and the early lavas (F1, F4, F4b) both plot toward values
reported for the granodioritic upper crustal basement.

Thermobarometry and hygrometry

Crystallization pressure (P), temperature (7), and water con-
tent (H,O) were estimated for the different lava units. We
applied the olivine-liquid thermometer (based on Beattie
1993) and the two-pyroxene thermobarometer (based on
Brey and Kohler 1990) using the equations of Putirka
(2008), the hornblende thermobarometer and hygrometer
from Ridolfi et al. (2010), and the plagioclase-liquid hygrom-
eter from Waters and Lange (2015). Details of the methods
and tests for equilibrium are given in Online resource 1, and
the results are presented in Table 5 and Fig. 10. Assuming a
maximum pressure of crystallization of 8 kbar (~24 km;
Hasenaka and Carmichael 1987), dry conditions (olivine com-
position is weakly affected by H,0), and equilibrium between
mineral core and bulk rock, olivine phenocrysts in the most
mafic early lava (F1) are constrained to have formed at 1176
+35 °C, whereas olivines in more evolved early lava (F4b)
crystallized at 1135+ 35 °C. The lowest temperature of olivine
growth was estimated at 1065 °C for the most mafic early lava
(F1) and 1081 °C for the more evolved early lava (F4b), as-
suming dry conditions, a pressure of 5 kbar (corresponding to
the highest pressure estimated for pyroxene crystallization,
Fig. 10), and using the compositions of olivine rims and a
residual melt calculated by subtracting the mineral core com-
position from the bulk rock. Two-pyroxene microphenocrysts
in the most mafic early lava (F1) formed at 107635 °C and
between 2.5 and 4.4+2.8 kbar, whereas pyroxenes forming
rims around olivine yield slightly higher T (~1100 °C) and
low P (1 atm). Pyroxenes in more evolved early lavas (F4 and
F4b) formed at lower 7 (in average 988+35 °C) and over a
larger P range (2.3-5.5+2.8 kbar). In comparison, two-
pyroxene phenocrysts and microphenocrysts in the late lavas
formed over an even wider P-T range that extends to lower P
and 7' (04 +2.8 kbar; 938-987+35 °C). [Note that the Putirka
(2008) model is also valid for hydrous melts (K. Putirka, per-
sonal communication)]. The crystallization conditions of horn-
blende in late lavas are constrained at 2.7-3.1+0.4 kbar and
922-972+22 °C. Results from the hornblende hygrometer
yield a water content of 5.5-6.1+1 wt% H,0. Two-pyroxene
microlites at hornblende rims formed at a P-T range of 0-3
+2.8 kbar and 910-1040+38 °C. Water contents were also
estimated with the plagioclase-liquid hygrometer using the pla-
gioclase phenocryst compositions. For early lavas, we used on
the one hand the previously calculated crystallization 7 of ol-
ivine cores at 8 kbar and bulk rock composition and, on the
other hand, the previously calculated crystallization 7 of oliv-
ine rims at 5 kbars and a recalculated residual melt composition
(see above and Table 5). Both condition sets yield 1.9 to 3.5
+0.35 wt% H,0. In the case of the late lavas, this method
yields 4.5 to 5.5+0.35 wt% H,O at the P and T conditions
obtained from the hornblende thermobarometer and consider-
ing equilibrium of the minerals with the bulk rock.

@ Springer
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Fig. 7 Harker diagrams showing selected major (in wt%) and trace (in
ppm) elements plotted against silica. Data from Losantos et al. (2014; the
two different symbols represent their two crystallization trends) and
Hasenaka et al. (1994) for El Metate lavas are also plotted. Arrows rep-
resent modeling of fractional crystallization for both lava groups

In summary, mineral-melt equilibria indicate that the
magmas feeding the two lava groups followed a distinct crys-
tallization history during ascent. The magma feeding the early
lavas crystallized olivine at high 7'and plagioclase at moderate
water contents (<3.5 wt% H,0), followed by minor pyroxene
crystallization. In contrast, the late lavas were fed by a magma
that crystallized hornblende, pyroxene, and plagioclase at
lower T (900-1000 °C) and higher H,O (<6 wt%). In both
cases (early and late lavas), mineral crystallization depths are
poorly constrained (0—15 km) except for hornblendes in the
late lavas, which formed at depths of ~7—10 km.
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(proportions in wt%): model 1: 3.3 olivine, 5.5 plagioclase, 0.3
clinopyroxene, 1.6 Ti-Fe oxide, 0.18 apatite; model 2: 2.7 olivine, 8.8
plagioclase, 0.9 clinopyroxene, 0.7 Ti-Fe oxide; model 3: 8 hornblende, 8
plagioclase, 4 cpx, 0.2 apatite; model 4: 6 hornblende, 10 plagioclase, 1.1
Ti-Fe oxide, 0.35 apatite

Magma and lava rheology

The viscosity of the magma and lava can be estimated on the
basis of petrological and geochemical parameters
(petrological approach, see details in Online resource 2).
This approach considers that the interstitial melt has a
Newtonian rheology that depends on 7, melt composition,
and H,O content, while the content and shape of crystals
and bubbles account for the deviation of the mixture from this
behavior. Here, the melt viscosity is calculated using the mod-
el of Giordano et al. (2008). The effect of crystals is taken into
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account considering two populations of crystals and applying
the equation of Krieger and Dougherty (1959); Eq. 2, Online
resource 2) with the fitting parameters of Mueller et al. (2010).
The effect of vesicles is complex (Manga et al. 1998) and
briefly discussed below.

Using this approach, the pre-eruptive viscosity of the mag-
ma that fed the lava flows was estimated from a recalculated
melt composition (calculated by subtracting the composition
of the phenocrysts from the whole rock, Online resource 3),
the H,O content obtained from hygrometry, the crystallization
T of phenocrysts obtained from geothermometry, and the
amount of phenocrysts in the lavas. The calculated viscosities
(Table 6; Online resource 4) vary from 3 x 10* Pa s for the
most mafic early lavas (F1, 1176 °C, 1.9 wt% H,0, 19 vol%
crystals) to 7 x 10° Pa s for the most evolved early lavas (F4,
989 °C, 1.9 wt% H,0, 9 vol% crystals) and from 7 x 10° to
10° Pa s for the late lavas (922-972 °C, 4.5-5.5 wt% H,0, 6—
19 vol% crystals).

The viscosity of the lavas upon eruption was calculated
using the same approach, assuming a low dissolved water
content (0.1 wt% H,0), the crystallization T of
microphenocrysts, and the amount of microphenocrysts + phe-
nocrysts in the lava. The results vary between 3 x 10° and
2x107 Pa s for the early lavas (987-1076 °C, 40-50 vol%
crystals) and between 4 x 107 and 10® Pa s for the late lavas
(922-972 °C, 31-48 vol% crystals; Table 6, Online resource
4). These are minimum values since the amount of microlites
has not been taken into account. The lower viscosity value of
the early lavas compared to the late lavas is in agreement with
the observed thinner flow front of the early lavas in contrast to
the thicker blocky front of the late lavas. Assuming dry inter-
stitial melt increases the values by 0.2 to 0.4 log units depend-
ing on the SiO, content. Proximal lavas contain up to 30 vol%
bubbles, which can increase or decrease the viscosity by 0.6 to
0.7 log units depending on the capillary number of the bubbles
(Fig. 5 in Rust and Manga 2002).

The bulk apparent viscosity of the flows is however likely
to be several orders of magnitude larger than the viscosity of
the molten lava given by petrological estimates in particular
because of the formation of a resistant crust (e.g., Griffiths and
Fink 1993; Kerr et al. 2006; Castruccio et al. 2013). Several
rheological models have been developed to extract the appar-
ent viscosity of the flows from their dimensions (e.g., Nichols
1939; Hulme 1974; Griffiths and Fink 1993; Pinkerton and
Wilson 1994). We have applied some of these models (see
Online resource 2) to the latest flows (F6, F7, F8, and F11)
because these are fully exposed, which allows measuring their
dimensions entirely. The average flow width and thickness
required in the equations were derived from 7 to 9 profiles
drawn across each of these flow units (Fig. 11) and the total
flow length represents an average of 10 vent-front measure-
ments. The underlying slope was approximated from the slope
of the flow surface over the entire length of the flow because
the pre-eruption topography is buried under adjacent flows.
This represents a minimum value, as lavas tend to fill depres-
sions and lower slope gradients. The thermal diffusivity used
for the calculations is 4.21 x 107 m? sfl, as in Kilburn and
Lopes (1991). Note that error propagation for these models
(calculated following Chevrel et al. 2013, Appendix A.2, and
Lefler 2011) yields up to 40 % error due to the large standard
deviation obtained from flow heights (up to 10 %). Physical
constants, dimensions, and rheological parameters calculated
by this approach are given in Table 7 and presented below.

The simplest rheological model used is the one originally
defined by Nichols (1939) who adapted the equation of
Jeffreys (1925) to describe channelized lava flowing down
an inclined slope. The derived equation assumes Newtonian
rheology and requires knowledge of the flow mean velocity
(Eq. 6 in Online resource 2). This was derived from the flow
dimensions, following the G, approach developed by
Pinkerton and Sparks (1976), Hulme and Fielder (1977), and

@ Springer
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Pinkerton and Wilson (1994) and assuming cooling-
dependent flow advance (results from these calculations are
presented below). Applying the Jeffreys’ equation yielded ap-
parent viscosities of 6 x 10° Pa s for F7, ~10'° Pa s for F6 and
F8, and slightly higher for F11 (10" Pa s).

Hulme (1974) developed equations describing the uncon-
fined flow of ideal Bingham liquids on an inclined plane.
These predict the formation of lateral levées and a simple
relation between yield strength and flow dimensions. Based
on this theory, Wilson and Head (1983) derived an equation
that relates the apparent viscosity of the flow within the chan-
nel to the effusion rate and yield strength (Eq. 9 in Online
resource 2). For unit F6, the occurrence of a well-developed
channel allowed us to apply this equation, giving an apparent
viscosity of 6 x 10® Pas.

Considering a Bingham model, bulk yield strength of the
flows can be estimated from their thickness (Eq. 7 in Online
resource 2). This yielded values of ~10° Pa for all lava units,
except for F8, which had lower yield strength (8.4 x 10* Pa). For
unit F6, Hulme’s equation gave a similar value (1.9 x 10° Pa).

The effusion rates estimated from the G, approach men-
tioned above are 20 and 60 m>/s for units F7 and Fe6,
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respectively, corresponding to a lava front advance of ~30 m/
day. For F8 and F11, the effusion rate was estimated at 9—
12 m’/s, equivalent to a lava front advance of a few meters
per day. These values were then used to derive emplacement
times, considering the individual lava flow volumes that range
between 0.5 and 2.2 km® (Table 7). This yields emplacement
times of between ~500 days for F6 and F8, ~330 days for F7,
and ~2300 days for F11 (¢g, on Table 7). Note that this model
assumes a constant effusion rate and therefore underestimates
the emplacement duration of the lava flow.

Finally, we applied the model of Kilburn and Lopes (1991)
who consider the flow as a Newtonian fluid whose expansion
is controlled by the resistance of a cooling crust, hence ap-
proximating a Bingham rheology. The equation they derive
allows calculation of the emplacement duration of a flow-field
based only on its final dimensions and the underlying slope
(Eq. 11 in Online resource 2). Applying this equation yields
slightly higher values for F6 (600 days) and F11 (~2600 days)
but a lower value for F7 (265 days) and a much higher value
for F8 (~1300 days). An average of the emplacement times
gives 1.5, 0.8, 2.5, and 6.7 years for F6, F7, F§, and F11,
respectively (Table 7).
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Fig. 10 Pressure-temperature
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Discussion
Magma source and evolution

Our data allows us to distinguish at least two different magma
batches at El Metate that produced the early and late lava
groups, respectively. SiO, contents in both groups vary over
a similarly wide range; nevertheless, they have distinct mor-
phologies, mineralogy, major element trends as a function of
SiO,, trace element concentrations, and isotope compositions.
Their mineral assemblages also formed under different condi-
tions, revealing separate evolutionary histories. We consider
below some of the processes that may have caused the chem-
ical variations.

Fractional crystallization modeling

Fractional crystallization may have caused the compositional
trends observed within each group (Fig. 7). To test this, we
first modeled major element trends using a mass balance ap-
proach, employing a least-square fit model (Herrmann and
Berry 2002) and a specially designed spreadsheet.
Parameters used as input were the least evolved whole rock
compositions of each trend observed, average compositions
for phenocryst phases measured in these same samples, Fe-Ti
oxide compositions measured in late lavas, and a representa-
tive composition for apatite from the literature (details in
Online resource 5). Results are plotted along with the data in
Fig. 7. The observed variations in the two groups of lava can

Table 6 Magma and lava viscosities estimated from petrological data and groundmass composition
Sample no. Flow unit Pre-eruptive condition Syn-eruptive condition

0.1 wt% H,0

T(°C) wt% H,O Melt viscosity (Pas) Relative viscosity Bulk viscosity (Pas) 7'(°C) Melt viscosity (Pas) Relative viscosity Bulk viscosity (Pa s)

14285 Fl 1176 1.9 1E+02 2.8 3E+02 1076  8E+03 309 3E+06
14282 F4 989 1.9 SE+03 1.5 7TE+03 989 9E + 05 22 2E+07
1205 F4b 1135 3.6 9E+01 2.5 2E+02 987 1E+06 13 2E+07
14268 Fs 946 52 SE+02 32 2E+03 946 6E +06 19 1E+08
14298 Fo 972 4.7 4E+02 25 1E+03 972 2E+06 55 1E+08
14309 F7 967 45 SE+02 1.4 TE+02 967 SE+05 76 4E+07
1210 F11 922 5.5 TE+02 1.6 1E+03 922 6E+ 06 8 4E+07
14308 F12 953 4.8 6E +02 1.5 9E +02 953 3E+06 30 SE+07
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Fig. 11 Topographic profiles
(perpendicular to flow direction)
across well-exposed El Metate
lava flows (F6, F7, F8, and F11)
from which width, thickness, and
channel width in the case of F6
were estimated
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be modeled for most of the elements by fractionation of a
combination of the mineral phases present in the samples,
namely olivine, plagioclase, clinopyroxene, apatite, and Fe-
Ti oxides for early lavas and plagioclase, hornblende,
clinopyroxene, apatite, and Fe-Ti for late lavas (Fig. 7). The
models however fail to reproduce the variations of Na,O
(Fig. 7). Some discrepancies in TiO, for early lavas may be
due to higher Ti/Fe ratios in these lavas compared to late lavas.

To further test these results, modeling of selected trace
element abundances was undertaken using the mineral assem-
blages determined by major element modeling, the Rayleigh
fractionation equation, and a range of partition coefficients
taken from recent literature (Tiepolo et al. 2007; Sisson
1994; Laubier et al. 2014; Prowatke and Klemme 2006;
Tepley et al. 2010). For early lavas, the calculations reproduce
fairly well the slight increase of REE elements with increasing
SiO, that is observed. However, the sharp decrease in Ni with
increasing SiO, could not be reproduced because of the low
fractionating amounts of olivine (~3 wt%). This trend would
require 15 wt% olivine fractionation, which is inconsistent

with major element trends, and may suggest mixing with a
source having lower Ni contents. For late lavas, the calcula-
tions fail to reproduce the sharp decrease of most REE (e.g.,
La, Gd) with respect to SiO, because these elements are in-
compatible in all the mineral phases fractionating, except for
apatite, which fractionates in too small proportions
(<0.4 wt%) to cause a significant effect. Furthermore, the
sharp decrease in Sr with increasing SiO, would require frac-
tionation of 70 wt% of plagioclase instead of the 6 wt%
modeled using major element trends. In conclusion, although
fractional crystallization can explain most of the observed
variations in the compositions of early lavas, it fails to repro-
duce trace element variations in late lavas.

The evolution of late lavas with time may instead reflect
progressive mixing with the most evolved member of the ear-
ly lavas (F4). This could explain the convergence of both
groups in isotopic, most major element, and some trace ele-
ment (Sr, Ni) graphs (Figs. 7 and 9), but cannot account for the
progressive depletion of late lavas in REE with increasing
SiO, given that the early lavas have high REE contents.

@ Springer
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Table 7 Geometric flow
parameters, viscosities, yield
strengths, and emplacement
durations of El Metate lava flows
calculated from the
morphological approach

Physical constant
Denstity p [kg/m’]
Gravitational acceleration g [m/s’]
Gritz number G, [-]
Thermal diffusivity x [m%s]
Flow unit

Average dimension of the flows
Length [m]
Flow width [m]
Channel width [m]
Thickness [m]
Slope (°)
Volume (area * thickness) [m’]

Aspect ratio (4/H)*

Rheological parameters from the G, approach

Apparent viscosity from Jeffreys’ equation [Pa s]

% error

Apparent viscosity from Hulme’s model [Pa s]

% error
Yield strength [Pa]

% error

Yield strength from Hulme’s model [Pa]

% etror
Effusion rate [m*/s)
% error
Velocity [m/day]
% error
tg, [days]
% error
Kilburn and Lopes (1991) approach
tk1. [days]
% error
Average
Average duration [years]
Average effusion rate [m’/s]

Average mass effusion rate [kg/s]

2600+ 100

9.81

300

4.21E-07

F6 F7 F8 Fl11
14,915 8452 3176 5184
2386 1010 2094 2136
951 - - -

76 55 68 151

4.1 4.6 2.7 1.8
22E+09 5.7E+08 5.4E+08 1.8E+09
98 65 46 26
1E+10 6E+09 2E+10 2E+11
32% 35% 39 % 40 %
6E +08

27 %

1.4E+05 1.IE+05 8.2E + 04 1.2E+05
9 % 11 % 11 % 13 %
1.9E+05

18 %

60 20 12 9

11 % 17 % 16 % 14 %
30 27 6 2

15 % 19 % 14 % 18 %
489 336 503 2271
15 % 19 % 19 % 17 %
600 265 1318 2656
25 % 24 % 28 % 28 %
1.5 0.8 2.5 6.7

47 22 7 9
1.2E+05 5.7E+04 1.8E+04 22E+04

 According to Walker (1973), where 4 is the diameter of the corresponding circle of the flow area and H is the

thickness of the flow

Alternatively, late lavas may have mixed with another, more
radiogenic source depleted in trace elements that did not erupt
from El Metate. The chemical data of Ownby et al. (2011) for
volcanic rocks in the nearby Tancitaro area does not, however,
include any composition with such low HREE values.

Source heterogeneities and crustal assimilation
The different isotopic compositions of early lavas (F1-F2-

F4b) and late lavas (F5-F11-F12) indicate that they originated
from a source affected by continental crust assimilation or

@ Springer

from a heterogeneous mantle. More isotopic systems should
be used to distinguish between these two hypotheses.

If crustal assimilation would be an important factor, its
degree would need to be significant in order to explain the
isotopic differences (Fig. 9c, d). Mineralogic evidence of
strong contamination is essentially absent since only few
Qz-xenocrysts were observed. These must have been picked
up shortly before eruption.

Instead, the differences in isotopic and trace element com-
positions observed between the two lava groups and within
the late lavas might have been caused by mantle heterogene-
ities. These could be derived from variable degrees of
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enrichment in fluid-mobile elements (LIL: light REE, Rb, Cs,
etc.) of the fluids expelled from slab-derived sediments and
differences in the extent of depletion in immobile elements
(heavy REE, high-field strength elements like Nb, Ta, Ti) by
previous melting events as already postulated (e.g., Johnson et
al. 2009 and references therein) for other volcanic rocks in the
TMVB. The lower concentration of both mobile and immo-
bile elements and the less radiogenic signature of the late lavas
in comparison with the early lavas suggest that the former
issued from a more depleted mantle source that was affected
by lesser degrees of fluid enrichment. The cause of the abnor-
mal Sr-rich composition of the most mafic late lavas (F5—F9)
is not clear, but the near-MORB isotopic signature of these
lavas excludes contamination by an old radiogenic Sr-rich
crust. The high Sr/Y ratios of the late lavas may thus reflect
a mantle source contaminated by Sr-rich fluid (or melt).
Finally, the poorly fractionated HREE (of both lava groups)
suggest that hornblende was a residue in the source, which has
been interpreted by Ownby et al. (2011) to suggest an origin
by partial melting of hornblende-rich gabbro-norite in the low-
er crust. However, Ortega-Gutiérrez et al. (2008) suggest that
the lower crust in this area might consist of high-grade hy-
drous metamorphic rocks. Both cases seem discordant with
the MORB-like isotopic composition of the late lavas, but
more detailed geochemical studies are needed to better define
the nature of the source.

Eruptive model
The more straightforward and simple model would consist

of a first magma batch ascending continuously through
the crust and erupting the early lava group followed by

a second magma batch that then forms the late lavas.
However, we prefer a model in which the magma that
formed the late lavas stagnated in the crust before ascent
and eruption of the early lava.

The magma batch that formed the late lavas
(hornblende-bearing) required some residence time in the
upper crust (~7-10 km depth) to allow for phenocryst
growth. This would imply cooling and a concomitant vis-
cosity increase, hindering further ascent and eruption.
This could be overcome if a second, less viscous
olivine-bearing batch passes by, suffering only minor
cooling (limited stagnation upon ascent, see Fig. 10),
and opens the path, erupting first. Accordingly, we pro-
pose a model that includes three main stages (Fig. 12):

Stage A. Some time prior to the eruption, a first voluminous
batch with a heterogeneous, near-MORB isotopic
signature, MgO-poor but Sr and H,O-rich low-
viscosity magma (10°-10> Pa s) was emplaced in
the upper crust at depths of ~7-10 km where it
underwent mainly plagioclase and hornblende
crystallization and fractionation.

Stage B. This was followed by the ascent of a second
smaller magma batch that was isotopically
more radiogenic, less differentiated (MgO
richer) and hotter (>1100 °C). This batch likely
bypassed the first batch before erupting at the
surface and forming the early lava group (F1-
F4b). The lack of chemical and textural evi-
dence for mixing between the two magmas sug-
gests little interaction between them. Although
the exact sequence of flow emplacement is not

Cc
First magma batch successively
erupts producing the late lavas

ate blocky lavas (F5-F13)
dome T=022-972 °C, 0.1 wt% H20
31-48 vol% crystals, =10" Pa.s

/;as loss through open system
slow and continuous ascent
(10* -10° Kgfs)

hbl breakdown

a b
First magma batch gets stalled Second magma batch ascends,
in the crust bypasses the first batch and
produces the early lavas
e
/ \ K( f \ \ / \ ')( A continuous ascent
porous and rodiel rtondsadel
fractured gasloss
upper crust

RIURR .
hbl stability T=922-972 °C, 4-6 Wi% H,0,
field 6-19 vol% crystals
hbi+pl 7.10:-10' Pa.s
crystallization

magma asce ntT
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crystallization

A
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crystallization
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subduction-modified isotopically ‘
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[ ] L ]

B First magma batch - late lavas to erupt : MgO-poor, Sr and H,O-rich, hbl-bearing magma.

I Second magma batch - early lavas to erupt : MgO-rich, hotter, Sr-poor, hbl-free magma.

Fig. 12 Schematic model depicting magma ascent from the mantle, temporary storage in the upper crust, and eruptive sequence of early (b/ue) and late

(red) lavas
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known for early lavas, it seems more likely that
the most mafic, olivine-bearing, hottest
(~1076 °C), and less viscous lava (F1) was
the first to erupt. The subsequent more evolved,
olivine-free magma crystallized pyroxene at
shallow levels (~10 km) and produced the more
silicic early lavas (F2-F4) at lower tempera-
tures (~990 °C). A small lava volume of inter-
mediate composition, likely trapped in the com-
plex plumbing network or resulting from anoth-
er magma input, erupted subsequently out of F4
forming the small lava lobe F4b. All these early
lavas have relatively low emplacement viscosi-
ties (10°~107 Pa s) and form thin (<40 m)
rubbly-‘a’a to blocky flows.

Once the initial source exhausted and the vent
opened, the first magma batch (from stage A, as
described above) that stalled at depth followed on
the heels in the same dike system to reach the
surface producing the hornblende-bearing late lava
group (F5—F13). This larger batch shows progres-
sive enrichment in SiO,, decreasing Sr contents,
and increasingly radiogenic isotope compositions
with time, possibly due to mixing with an un-
known third component. This magma erupted en-
tirely effusively at ~922-972 °C and lavas rapidly
developed high viscosities (from 107 to 10'" Pa s)
during emplacement to form thick (60—150 m)
blocky lava flows. The flows that were emitted to
the south (F6-F7) nevertheless reached long dis-
tances from the vent (<15 km) probably due to the
combination of low heat loss during emplacement
(efficient thermal insulation by the formation of a
carapace) and a great volume emitted on a pro-
nounced gradient.

Stage C.

Eruptive dynamics

If erupted explosively, the large magma volume involved
in the El Metate eruption would have produced a major
Plinian eruption (volcanic explosivity index >5) with a
tremendous impact on surrounding populations (Chevrel
et al. 2016). It is worth noting that all eruptions of large
volumes of andesitic magma in the Holocene have been
explosive (Table 3 in Chevrel et al. 2016), and hence, in
this respect, El Metate’s eruption is intriguing. For hazard
assessment purposes, it is of fundamental importance to
understand why magmas with similar compositions and
physical properties can display contrasting eruption
styles: Why did EI Metate erupt effusively and not explo-
sively? Magma viscosity is not the only parameter deter-
mining how volatiles degas from the magma (explosive

@ Springer

vs. effusive style). Degassing processes also depend on
whether closed vs. open system conditions become
established in upper crustal levels prior to eruption (e.g.,
Cashman 2004). The effusive style of El Metate implies
efficient open system degassing, through an open conduit
and permeable walls, of a magma that ascended at rates
that were sufficient to sustain the effusive activity
throughout the eruption allowing continuous passive gas
escape. In this context, the mass eruption rate was esti-
mated for El Metate (assuming continuous and sustained
activity) by multiplying the effusion rate (obtained by the
morphological approach) for late lavas (5-50 m*/s) by the
density of typical andesitic lava with 0-30 % of vesicles
(1820-2600 kg/m?). This yielded a mass eruption rate in
the range of 10°~10° kg/s, a value that falls at the limit
between the explosive and effusive eruption styles for a
wide range of observed historic cases (Cashman 2004).
This value is similar to the mass eruption rate reported
for the initial violent Strombolian activity of Paricutin
volcano (Pioli et al. 2008) but only slightly higher than
the long-term effusion rates observed at lava lakes and
domes (Pyle 2000).

The texture of hornblende crystals is strongly dependent on
decompression rates because this affects the time available for
the crystals to react to decreasing melt water contents
(Rutherford and Hill 1993; Rutherford and Gardner 2000;
Rutherford and Devine 2003). The rates calculated above cor-
respond to the limit at which the minerals start to break down
in the experiments of Rutherford and Hill (1993). This may
explain why, in El Metate lavas, some crystals are still intact
while others have partly to fully suffered breakdown and re-
crystallization. Alternatively, there may have been heteroge-
neities in the decompression rate experienced by the ascend-
ing magma due, for example, to velocity gradients across the
conduit. Opacite rims around the crystals likely grew by oxi-
dation and dehydrogenation during lava emplacement (Garcia
and Jacobson 1979).

It is worth noting that El Metate’s early lava type (MgO-
rich andesite with abundant olivine) is frequent in the MGVF
(e.g., Jorullo, Paricutin, etc., Hasenaka and Carmichael 1987),
while the El Metate late lava type (hornblende-bearing MgO-
poor andesite) occurs more rarely and commonly forms small-
er edifices. Specific conditions must have existed at E1 Metate
to allow for such a large volume of an initially hydrous, low-7,
crystal-rich magma to reach the surface and erupt in a solely
effusive manner. Intense passive degassing of the magma
must have occurred prior to or during ascent to prevent explo-
sive eruption. We envision a scenario in which the second
magma batch that produced the early lavas (which were the
hotter, more fluid, and also more frequent in the MGVF)
opened the conduit allowing gas escape from the
hornblende-bearing first magma batch (at that time still resid-
ing at depth) and therefore facilitating its final ascent by
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reducing the pressure gradient. Brenna et al. (2010) proposed
a similar scenario, according to which a low volume magma
acted as a trigger or path-opener for the eruption of a shallower
derived, larger volume magma and that the two magmas used
the same single-dike plumbing system.

The above scenario leads to the question of why the
hornblende-bearing first magma batch did not reach the sur-
face first but instead became temporarily stalled at depth. On
the basis of petrological experiments, Carmichael (2002) dem-
onstrated that a decompressing andesitic hydrous (but relative-
ly cold) magma, such as El Metate’s first batch, that reaches
hornblende stability at low pressures will crystallize readily,
yielding to viscosity increase, and thus more likely become
stalled during ascent, than a hotter and less hydrous magma
(such as El Metate’s second magma batch). The eruption of El
Metate’s late lavas thus exemplifies the specific conditions
under which hornblende-bearing crystal-rich magmas can
erupt. The above implies that, given the evidence for a hy-
drous mantle below the MGVF (Johnson et al. 2009), large
volumes of this magma type may be stalled in the crust un-
derneath the MGVF.

Lava emplacement and duration of the eruption

Active andesitic flows of the size of those emitted by El
Metate have never been witnessed, which makes it difficult
to make interpretations about their emplacement style. The
viscosities derived from petrological parameters are first-
order approximations because they do not take into account
heterogeneities in crystal and bubble distribution, crystal-
crystal interactions, strain-rate effects (Caricchi et al. 2007;
Costa et al. 2009; Lavallée et al. 2007), or viscous heating
(Cordonnier et al. 2012). Morphologically derived parameters
are also subject to much uncertainty given that most of them
assume simple, nonrealistic theology (Newtonian). More
complex formulations (e.g., Castruccio et al. 2010, 2014) re-
quire consideration of a large set of additional petrographic
and morphometric parameters (fraction of the crystals formed
after flow emplacement, parameterization of the yield strength
and shear rate dependency as a function of crystal content,
flow thickness during the eruption, etc.) that cannot be in-
ferred for flows whose emplacement was not directly ob-
served, and would require more complex modeling which is
beyond the scope of this paper.

Nevertheless, the viscosities and effusion rates calculated
here are quite comparable to those reported for smaller active
blocky lava flows (e.g., Lonquimay, Chile; Naranjo et al.
1992; Santiaguito, Guatemala; Harris et al. 2004) but slightly
higher than expected for andesitic flows (e.g., Kilburn 2000;
Harris and Rowland 2015). The inferred yield strength values
(~10° Pa) are also similar to values obtained for intermediate
to silicic lava flows and domes (Harris and Rowland 2015).

The effusion rates estimated here might be too high be-
cause their calculation considers a constant magma output
rate, although the latter was observed to decrease over time
in the few active flows that have been observed directly. For
example, the effusion rates during the eruption of the andesitic
lava flow from Lonquimay, Chile, started at 80 m*/s and de-
creased rapidly to <10 m>/s within the first 50 days, for a total
duration of 330 days (Naranjo et al. 1992). Furthermore, well-
isolated flows could continue advancing despite a decrease or
cessation of the lava supply. An example for this is the rhyo-
litic lava flow from Cordon Caulle, Chile, which continued to
advance as far as 3.6 km from the vent, although the lava
supply had ceased 6—8 months earlier (Tuffen et al. 2013).
Still today, it is not possible to anticipate with certainty how
long the Cordon Caulle flow will remain active. In addition,
the time that elapsed between the extrusion of each of El
Metate’s lava flows is unknown. However, given the young
age (~AD 1250) of this volcano and in the absence of any
reference to its activity in the early colonial chronicles, it is
safe to assume that El Metate’s lavas must have been essen-
tially cold by the time of the arrival (AD 1520s) of the
Spaniards in Michoacan. Accordingly, the maximum em-
placement duration of the entire volcano must have been less
than 275 years (Chevrel et al. 2016). On the other hand, as-
suming a continuous and successive (one after the other) erup-
tion of all lava flows (representing ~10.8 km®, non-DRE;
Chevrel et al. 2016) at a rate of ~10 m?/s, the formation of
El Metate should have taken at least ~35 years.

Conclusions

Stratigraphic relations and lava flow morphological parame-
ters together with viscosity estimates all indicate that the entire
eruption of El Metate was purely effusive and continuous. At
the end, 103 km? of terrain was covered by lava flows forming
a monogenetic shield with a total volume of 9.2 km®. Hence,
El Metate was formed by the largest andesitic effusive erup-
tion worldwide and the most voluminous eruption in Mexico
during Holocene times, and it certainly had a significant im-
pact on the environment and human populations (Chevrel et
al. 2016).

Our detailed study of El Metate volcano, the youngest an-
desite shield of the MGVF, shows that its lava flows originat-
ed from two separate magma batches that had different min-
eralogical and chemical compositions, as well as distinct Sr-
Nd-Pb isotope signatures. The source for both batches was a
subduction-modified heterogeneous mantle. Mineral
thermobarometry reveals that after initial ascent through the
crust, the first batch became temporarily stalled at a depth of
~7-10 km, allowing for crystallization and fractionation.
Then, the second batch ascended and evolved independently,
bypassed the first batch without major mingling or mixing,
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and erupted effusively to form the early lava flows (F1-F4).
The first batch followed immediately after, along the same
conduit and produced the late lava flows (F5-F13).

The continuous ascent rates must have been slow enough
to allow extensive open system degassing (outgassing) of
magma as it was rising to the surface, thereby preventing
explosive eruption. Instead, effusive outpouring of a large
volume of andesitic magma formed more than a dozen lava
flows. Fed by a relatively high and sustained mass eruption
rate (10*-10° kg/s), some of the most voluminous (~2 km?)
lava flows reached distances of up to ~15 km from the vent,
aided by the pre-existing slope and low heat loss during em-
placement. The morphologies and compositions of early Mg-
rich lavas indicate lower viscosities (10°~107 Pa s), while the
late hornblende-rich lavas (107 to 10" Pa s) formed thicker
viscous flows. Estimates of flow emplacement duration
yielded ~2 years for the longest and ~7 years for the thickest
flow, respectively. Successive emplacement of all flows prob-
ably took ~35 years.

Finally, El Metate is one of ~400 medium-sized volcanoes
in the MGVF. Whether many of them followed a similar erup-
tion pattern is unclear, however no other Mexican shield dis-
plays such a well-exposed morphology. Other previously
studied Mexican shields such as Cerro Paracho or El Estribo
are clearly composite and polygenetic (Pola et al. 2014; Siebe
et al. 2014; Chevrel et al. 2016). Although El Metate repre-
sents an exceptional volume of lava, many other examples of
similarly thick blocky andesite lava flows exist in the MGVF.
Many of them are isolated and have a much smaller volume
but may represent other examples for the effusive eruption of a
similar magma type. Further studies of such voluminous
blocky flows are needed to both better understand their mech-
anism of emplacement, as well as their role in the tectonic
evolution and eruption dynamics of the MGVF.
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