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Abstract Vesicles in pyroclasts provide a direct record
of conduit conditions during explosive volcanic eruptions.
Although their numbers and sizes are used routinely to
infer aspects of eruption dynamics, vesicle shape remains an
underutilized parameter. We have quantified vesicle shapes
in pyroclasts from fall deposits of seven explosive eruptions
of different styles, using the dimensionless shape factor �,
a measure of the degree of complexity of the bounding sur-
face of an object. For each of the seven eruptions, we have
also estimated the capillary number, Ca, from the magma
expansion velocity through coupled diffusive bubble growth
and conduit flow modeling. We find that � is smaller for
eruptions with Ca � 1 than for eruptions with Ca � 1.
Consistent with previous studies, we interpret these results
as an expression of the relative importance of structural
changes during magma decompression and bubble growth,
such as coalescence and shape relaxation of bubbles by
capillary stresses. Among the samples analyzed, Strombo-
lian and Hawaiian fire-fountain eruptions have Ca � 1, in
contrast to Vulcanian, Plinian, and ultraplinian eruptions.
Interestingly, the basaltic Plinian eruptions of Tarawera vol-
cano, New Zealand in 1886 and Mt. Etna, Italy in 122
BC, for which the cause of intense explosive activity has
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been controversial, are also characterized by Ca � 1 and
larger values of � than Strombolian and Hawaiian style
(fire fountain) eruptions. We interpret this to be the conse-
quence of syn-eruptive magma crystallization, resulting in
high magma viscosity and reduced rates of bubble growth.
Our model results indicate that during these basaltic Plinian
eruptions, buildup of bubble overpressure resulted in brittle
magma fragmentation.
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Introduction

Direct observation of the processes governing explosive
volcanic eruptions is difficult, if not impossible. Pyro-
clasts represent quenched fragments of magma and often
preserve abundant bubbles (in melt) in the form of vesi-
cles (in rock). These vesicles provide an indirect record
of magma ascent conditions. A significant body of work
has been aimed at using bubble number density and size
distributions to constrain rates of eruptive magma ascent
and the timing of gas exsolution (e.g., Mangan et al. 1993;
Cashman and Mangan 1994; Polacci et al. 2003;
Burgisser and Gardner 2005; Proussevitch et al. 2007).
Vesicle shape is another manifestation of magma ascent
conditions, in particular bubble growth, coalescence, and
shearing (e.g., Klug and Cashman 1996; Mangan and
Cashmann 1996; Polacci et al. 2003; Rust et al. 2003;
Okumura et al. 2008; Wright and Weinberg 2009), and can
therefore provide a valuable complement to conventional
studies of pyroclast textures.
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Table 1 Symbols used in this
paper and their units with
description

Symbol Unit Description

a m Conduit radius

A m2 Area of vesicle

c wt% Concentration of dissolved volatiles inside the melt

cR wt% Concentration of volatiles at the vapor–melt interface

Ca Capillary number

dPm/dt MPa s−1 Magma decompression rate

D m2 s−1 Diffusivity of H2O

fm Friction factor

f0 Constant to calculate friction factor

g m s−2 Gravitational acceleration

G m s−1 Crystal growth rate

H km Plume height

I m−3 s−1 Crystal nucleation rate

kv Volumetric shape factor

Nm m−3 Bubble number density per unit volume of melt

Pinitial Pa Initial saturation pressure

Pfrag Pa Ambient melt pressure outside bubble at fragmentation

Pg Pa Gas pressure inside the bubble

Pm Pa Ambient melt pressure outside the bubble

Pvent Pa Pressure at vent

Q kg s−1 Magma discharge rate

r m Radial coordinate

R m Bubble radius

Re Reynolds number

S m Half distance between two adjacent bubbles

t s Time

u m s−1 Magma ascent velocity

ustr m s−1 Ascent velocity of gas slug

ve m s−1 Expansion velocity

vr m s−1 Radial velocity at radius r

vR m s−1 Bubble growth rate

V m3 Total volume of magma erupted

z m Depth of conduit

zinitial m Initial depth of conduit

�P Pa Bubble overpressure

�Pf Pa Fragmentation threshold

η Pa s Viscosity of melt

ηe Pa s Effective viscosity

κ m2 Magma permeability

λl m Semi-long axis

λs m Semi-short axis

ρ kg m−3 Density of magma

ρg kg m−3 Density of gas phase inside bubble

ρm kg m−3 Density of melt

σ N m−1 Surface tension

τrelaxation s Shape relaxation time scale

τquenching s Viscous quench time scale of pyroclast

φ Volume fraction of vesicles

φx Volume fraction of crystals in the groundmass

� Regularity (as defined by Shea et al. 2010)
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Table 2 Eruption parameters and microtextural characteristics of pyroclasts from the eruptions studied

Eruption Kilauea Iki Stromboli Soufrière Hills Novarupta Taupo Tarawera Etna

Date (1959) (2002) (1997) (1912) (1.8 ka) (1886) (122 BC)

Style Fire fountain Strombolian Vulcanian Plinian Ultraplinian Plinian Plinian

Melt Basalt Basalt Rhyolite Rhyolite Rhyolite Basalt Basalt

a (m) 7.6 4 15 50 50 25 25

H (km) 0.314 0.12–0.3 3–15 24 55 28 24–26

Nm × 1013 (m−3) 0.54–1.6 0.17–0.34 159–668 2.8–210 1–536 0.15–0.25 0.3–9

Q (kg s−1) 4.5 × 105 2–1,700 1.3 × 107 5 × 107 108 − 1010 1.5 × 107 8.5 × 107

T (°C) 1,170 1,100 850 850 ∼ 850 1,100 1,100

V (km3) 0.15 – 0.15 10 35 2 0.4

VEI 2 ≤ 2 3 6 7 5 4

φ(%) 54–88 66–76 24–79 52–74 76–93 20–70 30–80

ρm(kg m−3) 2,800 2,750 2,600 2,400 2,400 2,700 2,700

Reference (1, 2, 3) (4, 5) (6, 7, 8) (9, 10) (11, 12, 13) (14) (15, 16, 17)

(1) Parfitt (2004), (2) Stovall et al. (2011), (3) Wallace (1998), (4) Lautze and Houghton (2007), (5) Pistolesi et al. (2011), (6) Burgisser et al.
(2010), (7) Giachetti et al. (2010), (8) Druitt et al. (2002), (9) Adams et al. (2006), (10) Hildreth and Fierstein (2012), (11) Houghton et al. (2010),
(12) Walker (1980), (13) Dunbar et al. (1989), (14) Sable et al. (2009), (15) Coltelli et al. (1998), (16) Sable et al. (2006), (17) Giordano (2003)

Here, we study vesicle shapes in pyroclasts from fall
deposits of seven explosive eruptions, comprising six dif-
ferent eruptive styles, including the enigmatic Plinian erup-
tions of basaltic magma, for which the cause for high
explosive intensity has been controversial (e.g., Walker et al.
1984; Coltelli et al. 1998; Houghton et al. 2004; Sable
et al. 2006, 2009; Costantini et al. 2009; Goepfert and
Gardner 2010). We are primarily interested in the relation-
ship between bubble growth, as a consequence of magma
decompression, and vesicle shape. We therefore restrict our
analysis to samples with vesicles that are not significantly
affected by shear deformation, that is samples where the
median elongation is small (≤ 0.35, e.g., Rust and Manga
2002a; Rust et al. 2003). We interpret vesicle shapes within
the context of recent work on the relationship between

the “structure” of expanding bubbly fluids, that is bubble
shapes, and capillary number (Koerner 2008). By estimat-
ing the capillary number, Ca, (see also Table 1 for notations)
through bubble growth modeling, we relate the overpres-
sure of bubbles, which is proportional to the energy needed
to initiate and sustain magma fragmentation (Mueller et al.
2008), to vesicle shapes in the analyzed pyroclasts.

Eruptions studied

In order to relate vesicle shapes and capillary number, we
analyzed pyroclasts from fall deposits of well-constrained
eruptions over a wide range of eruption styles and inten-
sities (Table 2), as well as compositions (Table 3). They

Table 3 Oxide concentrations
in weight percent. Oxide
concentrations of major
element compositions are
reported on a volatile-free basis

Kilauea Iki Stromboli Soufrière Hills Novarupta Taupo Tarawera Etna

SiO2 49.50 52.75 78.66 79.09 74.20 50.93 49.09

TiO2 2.41 1.69 0.39 0.24 0.30 0.83 1.58

Al2O3 12.20 15.71 11.20 11.70 13.70 17.27 18.54

FeO 12.20 10.13 1.93 0.71 2.60 10.48 10.32

MnO 0.17 0.17 0.10 0.01 0.10 0.17 0.19

MgO 9.35 3.47 0.30 0.10 0.30 6.21 4.76

CaO 11.50 7.47 1.48 0.81 1.60 11.41 9.48

Na2O 2.07 3.40 3.57 4.12 4.40 2.13 3.99

K2O 0.43 4.21 2.38 3.22 2.70 0.55 1.53

P2O5 0.26 1.01 0.00 0.00 0.00 0.01 0.51

H2O 0.70 3.00 3.40 2.80 4.00 3.00 2.00

Reference (1) (2, 3) (4) (5, 6) (7) (8, 9) (10, 11)

(1) Wallace (1998), (2) Lautze
(2005), (3) Burton et al. (2007),
(4) Burgisser et al. (2010), (5)
Hildreth and Fierstein (2012),
(6) Hammer et al. (2002), (7)
Dunbar and Kyle (1993), (8)
Gamble et al. (1990), (9) Sable
et al. (2009), (10) Coltelli et
al. (1998), (11) Del Carlo and
Pompilio (2004)
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Table 4 Summary of vesicle
shape analysis Eruption Sample Reference φ(%) No. ves. analyzed Median �

Kilauea Iki 6A1 Houghton unpublished data 75 1,245 0.994

Stromboli 19-11 Lautze and Houghton (2007) 73 94 0.994

Soufrière Hills R2 Giachetti et al. (2010) 56 1,223 0.944

Novarupta 94-1-8-9 Adams et al. (2006) 75 3,197 0.933

Taupo MF01102 Houghton et al. (2010) 79 496 0.926

Mt. Tarawera T43-07-67 Sable et al. (2009) 59 170 0.960

Mt. Etna 07 23 Sable et al. (2006) 67 1,564 0.929

are (1) the basaltic 1959 high-fountaining eruption at
Kilauea Iki, Hawai‘i (Stovall et al. 2011), (2) a basaltic
Strombolian eruption at Stromboli, Italy in 2002 (Lautze
and Houghton 2007), (3) a typical Vulcanian eruption at
Soufrière Hills, Montserrat in 1997 (Druitt et al. 2002), (4)
the dacitic–rhyolitic 1912 Plinian eruption of Novarupta,
Alaska (Adams et al. 2006), (5) the 1.8 ka ultraplinian erup-
tion in Taupo, New Zealand (Houghton et al. 2010), and
two basaltic Plinian eruptions (6) Mt. Etna, Italy in 122
BC (Sable et al. 2006) and (7) Mt. Tarawera, New Zealand
in 1886 (Sable et al. 2009). For each eruption, we analyze
vesicle shapes of a modal sample (Table 4) that is represen-
tative of the given deposit in terms of composition, vesicle
size distribution, vesicle number density, and qualitative
appearance of vesicle shapes.

Quantifying vesicle shapes

Shape parameter, �

Our focus in this study is to quantify the shapes of vesi-
cles, with an emphasis on distinguishing shapes produced
by the coalescence of two or more vesicles. To identify a
suitable metric, we compared the values of shape parame-
ters for various hypothetical vesicle shapes. As illustrated
in Fig. 1a, elongation, defined as (λl − λs)/(λl + λs) (e.g.,
Rust and Manga 2002a; Rust et al. 2003), and circularity,
the ratio of cross-sectional area and surface area (e.g., Russ
and Dehoff 2000), are significantly affected by bubbles that
are elongated due to shear deformation. Here, λl and λs are
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Fig. 1 a Comparison of different shape factors—circularity, elonga-
tion, and � (see text for formulations) for six hypothetical vesicle
shapes. From left to right, the vesicles represent a spherical vesicle, an
elongated (sheared) vesicle with an aspect ratio of approximately 3:1,
an elongated (sheared) vesicle with an aspect ratio of approximately
8:1, a vesicle formed by the coalescence of two bubbles, a vesicle
formed by the coalescence of three bubbles, and a complexly shaped
vesicle formed due to the coalescence of many bubbles. Among the

different shape factors, � is not affected by vesicle elongation and rep-
resents a robust metric for vesicles with complexly shaped margins,
that is convolutely shaped vesicles. b Illustrating (1 − �) for hypo-
thetical vesicle shapes. Blue curve is for vesicles that are identical to
the red ones, with somewhat more gradual changes in curvature of the
vesicle perimeter. As illustrated, the measure, (1 − �), increases with
increasing complexity of vesicle shapes
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the semi-long and semi-short axes of the best-fit ellipse,
respectively. In contrast, the shape parameter,

� = A

πλlλs
, (1)

defined as “regularity” by Shea et al. (2010), is not affected
by vesicle elongation but is sensitive to vesicles with com-
plex margins. Figure 1a illustrates that only vesicles with
complex margins have values of � < 1. We therefore use
� as a metric to differentiate vesicles that preserve shapes
due to unrelaxed coalescence events from more spheroidal
vesicles. Because � is a rather sensitive measure of vesicle
shape, small deviation from � = 1 can represent significant
complexity in vesicle shapes. It is therefore convenient to
show (1 − �) together with � (Fig. 1b).

For each of the considered eruptions, � was calculated
for vesicles with cross-sectional areas that are equivalent to
circular areas with diameters ranging from 10 to 100 μm.
This size range includes median vesicle size range observed
in pyroclasts for all of the eruptions studied. Vesicle shapes
are analyzed using a fixed magnification to ensure the same
pixel resolution throughout. Thus, vesicle shapes were ana-
lyzed on all the vesicles imaged at a scale of 1 μm/px (×100
magnification) in backscattered electron images from a
given thin section, previously used for the study of vesicle
size distributions (Tables 2 and 4; Adams et al. 2006; Sable
et al. 2006, 2009; Lautze and Houghton 2007; Giachetti et
al. 2010; Houghton et al. 2010; Stovall et al. 2011). In these
studies, the original, grayscale, SEM images were trans-
formed into binary images using Adobe� Photoshop and
Scion Image (Scion Corporation, USA) or ImageJ (Schnei-
der et al. 2012) software. In these binary images, vesicles
are black and solid phases are white. Manual editing of
the images was required to rebuild vesicle walls that were
thought to have broken during thin sample preparation and

to remove flaws, such as grinding compound. In addition,
thin bubble walls were often lost during image acquisition
or during the conversion from grayscale to binary and also
had to be redrawn. The original images had been positioned
to avoid areas with large crystals. In this study, we analyzed
these binary images. The reader is referred to the corre-
sponding papers for more details concerning the acquisition
and processing of the SEM images used herein.

Measured vesicle shapes

The cumulative frequency distribution of � and (1 − �)

for the seven eruptions studied is shown in Fig. 2a, b,
respectively. Although the minimum value of � measured
for all the eruptions is 0.27, we show from � = 0.5 as
values smaller than this have a very low frequency of occur-
rence. Figure 2a shows that vesicles in pyroclasts from
Strombolian and Hawaiian fire-fountain eruptions have dis-
tinctly higher values of � than vesicles in pyroclasts from
the other eruptions. This distinction is more pronounced in
Fig. 2b. Under “Results and discussion” we will provide an
interpretation of these results.

Capillary number, Ca

The capillary number represents the balance of viscous
and capillary stresses. The latter tends to restore deformed
bubbles toward spherical shape, whereas the former is the
consequence of fluid motions that deform bubbles (Stone
1994). The capillary number can be expressed as the product
of dynamic viscosity and flow velocity, divided by surface
tension. This requires a judicious choice of flow velocity
and is typically associated with an externally imposed shear
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Fig. 2 Cumulative frequency distributions of a � and b (1−�) for the
seven eruptions studied. � is calculated for vesicles with an equivalent
diameter between 10 and 100 μm for the samples listed in Table 4. The
values of � are shown for � ≥ 0.5 as the frequency of occurrence of

smaller values of � is close to 0. Measured minimum value of � is
0.27 for all the eruptions. Vesicles in Hawaiian and Strombolian pyro-
clasts have distinctly higher values of � than all other eruptions. This
distinction is more pronounced in b
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flow (Taylor 1932, 1934; Rallison 1984; Stone 1994; Rust
and Manga 2002a, b; Rust et al. 2003). An alternate pos-
sibility is the “expansion velocity,” ve, of a bubbly fluid
(Koerner 2008), defined as the velocity at which the sur-
face of a bubbly fluid or foam is expanding upon bubble
growth (Namiki and Manga 2006; Koerner 2008). For an
unconfined fluid with bubbles of average size R, at a volume
fraction φ, the expansion velocity is

ve = φ2/3 dR

dt
= φ2/3vR, (2)

where t denotes time. The balance between viscous and
capillary stresses, expressed in terms of ve, thus gives

Ca = ηve

σ
, (3)

where η is the viscosity of the fluid phase and σ is surface
tension.

Koerner (2008) provides an analysis of the evolving
structure of expanding bubbly fluids in relation to capillary
number. Material rearrangement, which is necessary during
expansion of a highly vesicular bubbly fluid, results in bub-
ble coalescence. At the same time, capillary stresses cause
coalesced bubbles to relax toward a “regular” shape (e.g.,
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Ca >> 1Ca << 1
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Fig. 3 Schematic diagram illustrating the dependence of � on cap-
illary number, Ca. During magma ascent, bubbles grow and coalesce
with each other. Coalesced bubbles relax due to capillary forces while
bubble growth continues. If bubble shape relaxation rate exceeds bub-
ble growth rate (Ca � 1), coalesced bubbles relax back to spherical
shape (� ≈ 1). On the other hand, for Ca� 1, bubble shape relaxation
becomes slower and remnants of coalescence events become more
persistent, leading to a more complex geometry (� < 1)

Gardner 2007). For Ca � 1, the capillary velocity exceeds
the expansion velocity (σ/η � ve) and bubble shapes min-
imize changes in curvature of the interface between bubble
and surrounding liquid (Fig. 3). For Ca � 1, the speed
at which bubbles relax toward a regular shape is reduced
and remnants of coalescence events become more persistent
(Koerner 2008). By estimating capillary number from mod-
eling of magma expansion for the different eruptions, and
by comparing it to vesicle shapes in pyroclasts from these
eruptions with vesicularity φ >≈ 0.6, we show that vesicle
shapes in pyroclasts bear a relationship to Ca. Because of the
dependence of capillary number on the average rate of bub-
ble growth, vR , vesicle shapes may provide a quantitative
record of magma ascent conditions for some time τ prior to
magma quenching, approximately equal to the viscous time
scale, η/�P , where �P = Pg − Pm is the pressure dif-
ference between gas pressure inside the bubble, Pg, and the
ambient pressure, Pm.

Bubble overpressure

During magma ascent, the decline of confining pressure
permits dissolved volatiles to form bubbles of supercritical
fluid, due to a decrease in pressure-dependent volatile sol-
ubility. If bubble growth is limited by viscosity, Pm may
decrease at a faster rate than Pg. Consequently, bubbles can
become pressurized with respect to the surrounding melt
(e.g., Sparks 1978; Gonnermann and Manga 2007). Rapid
expansion and/or fragmentation of these pressurized bub-
bles drives Hawaiian, Vulcanian, sub-Plinian, Plinian, and
ultraplinian explosions (e.g., McBirney 1970; Alidibirov
1994; Dingwell 1996; Zhang 1999; Spieler et al. 2004;
Koyaguchi 2005). In contrast, during Strombolian explo-
sions much larger bubbles rise independently through rela-
tively low viscosity magma (Vergniolle and Mangan 2000;
Parfitt 2004), carrying upward with them magma with
smaller bubbles. The large bubbles, also referred to as gas
slugs, may be pressurized as they reach the surface (e.g.,
Ripepe 2001; Pistolesi et al. 2011) and their rupture is
thought to constitute Strombolian explosions (Walker 1973;
Blackburn et al. 1976; Vergniolle and Mangan 2000).

A relationship between vesicle shape and bubble over-
pressure, �P , may exist through the relationship of cap-
illary number and bubble shape and the dependence of
capillary number on vR . This dependence may be deter-
mined from the momentum balance for an idealized spher-
ical bubble (e.g., Scriven 1959; Arefmanesh and Advani
1991; Proussevitch et al. 1993)

�P = Pg − Pm = 2σ

R
+ 4ηe

R
vR, (4)
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where ηe is the effective viscosity, accounting for the radi-
ally variable H2O-dependent viscosity (Lensky et al. 2001).
Expressing Eq. 4 in terms of capillary number gives

�P = 2σ

R
(1 + 2 φ−2/3Ca). (5)

Because �P is proportional to the potential energy capable
of initiating and sustaining magma fragmentation (Mueller
et al. 2008), we hypothesize that vesicle shapes in pyro-
clasts produced during magma fragmentation in explosive
volcanic eruptions may provide an indirect manifestation of
eruption intensity through the relationship between vesicle
shape, capillary number, and �P .

Bubble growth modeling

To estimate capillary numbers, we calculate the expan-
sion velocity, φ2/3vR , using a model for diffusive bubble
growth. We assume that the pyroclasts represent parcels of
magma that were carried to the surface from an initial depth
equal to the H2O saturation depth for the given eruption.
We model a single representative bubble of initial radius
of R = 10−6 m and final radius R ≈ 25 μm, consis-
tent within the 10 to 100 μm range in vesicle diameters
considered for vesicle shape analysis. Although somewhat
larger than the size of a critical bubble nucleus, this choice
of initial bubble radius does not significantly affect the
model results.

The bubble growth model is based on established for-
mulations (e.g., Amon and Denson 1984; Arefmanesh and
Advani 1991; Proussevitch et al. 1993) and H2O is the sole
volatile phase considered, with a solubility based on Dixon
(1997) and Liu et al. (2005) for basaltic and silicic eruptions,
respectively. The model couples Eq. 4 with an equation for
mass balance,

d

dt
(ρgR

3) = 3r2ρmD

(
δc

δr

)
r=R

, (6)

and an equation for the diffusion of H2O,

δc

δt
+ vr

δc

δr
= 1

r2

δc

δr

(
D r2 δc

δr

)
. (7)

Here, r is the radial coordinate, vr is the radial velocity at
radius r, and ρg is the density of the exsolved H2O, which
depends on Pg and is calculated using a modified Redlich–
Kwong equation of state (Kerrick and Jacobs 1981). c is
the mass fraction of dissolved H2O and D is its diffusivity,
which depends on c and temperature. D is based on Eq. 18
of Zhang et al. (2007) for the basaltic eruptions and on
Zhang and Behrens (2000) for the silicic eruptions. cR is the
H2O concentration at the melt–vapor interface and depends
on the solubility at Pg. The effective viscosity, ηe, is based
on the formulation of Lensky et al. (2001), using the melt

viscosity, η, which depends on melt composition, tempera-
ture, and dissolved H2O (Hui and Zhang 2007). For basaltic
Plinian eruptions, ηe includes the effect of microlites on
viscosity. For simplicity, we assume a constant value of
σ = 0.05 N m−1. The variability in σ is probably less than
a factor of 2 (e.g., Gardner and Ketcham 2011 and refer-
ences therein) and does not affect model results significantly
(Gonnermann and Houghton 2012).

The bubble growth calculation is coupled to a model for
magma ascent within the conduit, from which we obtain the
decompression rate, dPm/dt . We assume a uniform distri-
bution of bubbles and that all bubbles are carried to the sur-
face within the ascending magma. Consequently, the ascent
and growth of bubbles are modeled in a Lagrangian frame
of reference (e.g., Proussevitch and Sahagian 2005), with
conduit flow formulated in an explicit manner and bubble
growth semi-implicitly, similar to Proussevitch et al. (1993).

Magma ascent modeling

Modeling the Plinian, ultraplinian, and Hawaiian eruptions

For Plinian, ultraplinian, and Hawaiian eruptions, dPm/dt

is calculated using a conduit flow model that assumes one-
dimensional flow of melt with suspended bubbles that are
carried passively with the ascending magma. We model this
bubbly flow up to the point where magma fragmentation
is predicted by the empirical formulation of Mueller et al.
(2008), assuming a characteristic magma permeability of
k ∼ 10−12 m2. The resultant fragmentation threshold is
defined by

�P = �Pf = 2.4

φ
MPa. (8)

We do not model the flow of magma above the frag-
mentation depth but instead use the analytical method of
Koyaguchi (2005) to estimate exit pressure at the vent, Pvent

(Table 5).
For the Hawaiian eruption, there are no feasible solu-

tions that would predict brittle magma fragmentation. This
is consistent with the view of hydrodynamical fragmenta-
tion during these eruptions (e.g., Namiki and Manga 2008;
Houghton and Gonnermann 2008). Accordingly, we model
bubbly flow up to the surface (Parfitt 2004), assuming an
exit pressure of 105 Pa at the vent.

We assume isothermal flow with a constant discharge
rate, Q, in a conduit of constant radius a. The rate of
change in Pm is calculated in the conventional manner
for one-dimensional flow in a cylindrical vertical conduit



691, Page 8 of 14 Bull Volcanol (2013) 75:691

Table 5 Parameters for the
model calculations Parameters Kilauea Stromboli Soufrière Hills Novarupta Taupo Tarawera Etna

Model parameters

log(Nm) (m−3) 12–14 12–13 12–16 12–14 12–14 13–14 13–14

a (m) 5–20 2–10 15 25–75 25–75 25–50 25–50

Pinitial (MPa) 4 87 20–80 53 100 87 41

dPm/dt (MPa s−1) – – 1–10 – – – –

Vent pressure calculation

Pinitial (MPa) 4 87 80 53 100 87 41

zinitial (km) 0.16 3.3 3 2 3.8 3.3 1.6

Pfrag (MPa) – – – 4 1.8 28 8.4

�P (MPa) – – 2.9 3.7 3 7 4.7

Fragmentation depth (km) – – – 1.2 1.5 1.7 0.5

Pvent (MPa) – – – 0.95 0.53 6.2 3.7

(e.g., Wilson 1980; Dobran 1992; Mastin 2002; Proussevitch
and Sahagian 2005)

dPm

dt
= −ρgu − fm

ρu3

4a
. (9)

Here, g is the acceleration due to gravity and u = dz/dt =
Q/(πa2ρ) is the magma ascent velocity, with z denot-
ing the vertical coordinate. ρ = ρm(1 − φ) is magma
density, ρm is the melt density, which is assumed to be
constant, and φ = R3/S3 is the volume fraction of vesi-
cles, where S is the half distance between two bubbles.
fm = 64/Re + f0 is the friction factor for pipe flow,
with f0 = 0.02 and Reynolds number, Re = ρua/η

(e.g., Wilson 1980). We find that values of f0 correspond-
ing to wall roughnesses of approximately 0.1-1 % of the
conduit diameter do not significantly affect the results, espe-
cially given uncertainties in a and Q. For a given Q, a
and initial H2O (Tables 2, 3, and 5), we solve Eqs. 4, 6, 7,
and 9 to estimate Ca for these eruptions.

Modeling the Strombolian eruption

For the Strombolian sample, we assume that the sample rep-
resents a parcel of magma that was passively carried to the
surface by an ascending gas slug or agglomeration of large
gas bubbles, consistent with the conceptual model of Lautze
and Houghton (2005, 2007). The resultant value of dPm/dt

is based on the rate of change in magma-static pressure
for ascent velocities of Strombolian gas slugs (Seyfried and
Freundt 2000)

ustr = 0.345
√

2ag. (10)

Neglecting frictional pressure losses, we use

dPm

dt
= −ρgustr, (11)

with a conduit radius of 4 m, a likely lower bound (Pistolesi
et al. 2011). We explored conduit radii between 2 and 10 m
(Parfitt 2004; Pistolesi et al. 2011) and found that it does not
change the overall model results. Given ustr, we solve the
coupled Eqs. 4, 6, 7, and 11 to estimate Ca.

Modeling the Vulcanian eruption

Soufrière Hills volcano experienced 88 Vulcanian explo-
sions in 1997, each of which discharged approximately
3×105 m3 of magma (dry rock equivalent), about one-third
forming fallout and two-third forming pyroclastic flows
(Druitt et al. 2002). Each explosion started by the rupture
of a plug of dense and degassed magma (Druitt et al. 2002;
Spieler et al. 2004; Burgisser et al. 2010; Burgisser et al.
2011). Triggered decompression caused the fragmentation
and eruption of the conduit contents down to a maximum
depth of about 2.5–3.5 km (Burgisser et al. 2011) within a
time increment of about 10–100 s (Druitt et al. 2002; Melnik
and Sparks 2002). Based on matrix-glass water contents of
a representative suite of pyroclasts, and taking into account
the pre-, syn-, and post-explosive vesiculation processes of a
typical 1997 Vulcanian explosion of Soufrière Hills volcano
(Giachetti et al. 2010), Burgisser et al. (2010) determined
that the pre-explosive pressure of the deepest magma ejected
during an explosion is approximately 80 MPa, leading to
an average decompression rate of about 1–10 MPa s−1,
consistent with estimates by Giachetti et al. (2010). Given
dPm/dt , as well as initial H2O content, we solve Eqs. 4, 6,
and 7 to estimate Ca.

Modeling the basaltic Plinian eruptions

Pyroclasts from both basaltic Plinian eruptions (Etna, 122
BC and Tarawera, 1886) contain approximately 60–90 %
plagioclase microlites within the groundmass that sur-
rounds the vesicles (Sable et al. 2006, 2009). We account
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for the effect of microlites on magma viscosity using the
formulation of Costa et al. (2009), parameterized to fit the
viscosities of silicate melts containing plagioclase crystals
of similar shape, size, and volume fractions as in the Etna
and Tarawera samples (Picard et al. 2011). As shown in
Fig. 4a, the relative viscosity, ηr, which is the viscosity of the
crystal-bearing melt divided by the crystal-free melt viscos-
ity, increases rapidly with the volume fraction of plagioclase
microlites, φx , for values of φx > 0.3 (Picard et al. 2011).

It is uncertain at precisely what depth and over what
time interval the microlites formed during either erup-
tions. Although Sable et al. (2006, 2009) inferred that
the microlites found in both Etna and Tarawera samples
formed syn-eruptively, as a consequence of undercooling

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

a

Time since onset of crystallization (s)

C
ry

st
al

 v
ol

um
e 

fr
ac

tio
n,

 Φ
x

0 10 20 30 40 50 60 70 80 90 100
10

0

10
2

10
4

10
6

10
8

b

Time since onset of crystallization (s)

R
el

at
iv

e 
vi

sc
os

ity
, 

r

Model

0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

10
6

10
8

Crystal volume fraction, Φx

R
el

at
iv

e 
vi

sc
os

ity
, η

r

Experiments 
(Picard et al., 2011)

cη

Fig. 4 a Relative viscosity, ηr, as a function of crystal volume fraction,
φx . The values of ηr are calculated using equations ηr = (1+φδ)/(1−
F)Bφ∗ and F = (1− ξ)erf((

√
πφ(1+φγ ))/(2(1− ξ))) of Costa et al.

(2009) with fitting parameters δ = 8, γ = 6, B = 2.5, and φ∗ =
0.29. b Modeled crystal volume fraction, φx (Eq. 12), as a function of
time for I G3 = 10−8 s−4 and kv = 4π/3. c Corresponding relative
viscosity, ηr, as a function of time. The measured values of ηr for silicic
melt with plagioclase microcrystals (Picard et al. 2011) are shown as
open circles at model times corresponding to the values of φx in b

during H2O exsolution (Hammer 2008), post-eruptive over-
printing can obscure syn-eruptive crystallization (Szramek
et al. 2006, 2010; Szramek 2010). Furthermore, some
microlite crystallization may have occurred during a
short time interval prior to eruption (Szramek 2010). We
therefore explored a wide range of crystallization rates in
our modeling of both eruptions, using the Avrami equa-
tion (e.g., Cashman 1993; Marsh 1998; Pupier 2008, and
references therein)

φx = 1 − exp(−kvIG3t4). (12)

Here, I is the crystal nucleation rate, G is the crystal growth
rate, t is the time from the onset of crystallization, and kv

is a shape factor, for simplicity assumed to be kv = 4π/3
(Marsh 1998). We explored a wide range of values, with
10−9 s−4 ≤ (I G3) ≤ 10−3 s−4. If crystallization was too
early, model simulations predicted magma fragmentation at
values of φ that are significantly smaller than those found in
the basaltic Plinian clasts. If crystallization was too late, no
magma fragmentation was predicted. However, for a range
of crystallization rates (7.5 ≤ (I G3) ≤ 8.5 s−4), model
results predict magma fragmentation, together with values
of φ and R that are consistent with those measured in the
basaltic Plinian samples. These values of (I G3) are also
well within the range of results from plagioclase crystalliza-
tion experiments (Burkhard 2005; Hammer 2008; Brugger
and Hammer 2010). The resultant change in φx and ηr, with
respect to time after the onset of crystallization, is shown in
Fig. 4b, c for a representative case.

Results and discussion

Figure 2 indicates that vesicles in pyroclasts from Strom-
bolian and Hawaiian eruptions have distinctly larger val-
ues of � than the other eruptions. Vesicle shapes formed
during ascent within the conduit may be modified after
fragmentation by bubble growth (e.g., Thomas and Sparks
1992; Kaminsky and Jaupart 1997) and shape relaxation
due to capillary forces (e.g., Klug and Cashman 1996).
However, for silicic and for microlite-rich basaltic mag-
mas, post-fragmentation bubble growth should be of lim-
ited extent, due to permeable outgassing (e.g., Rust and
Cashmann 2011; Gonnermann and Houghton 2012). More-
over, the characteristic time scale for shape relaxation,
τrelaxation, would need to be much shorter than the
characteristic quenching time, τquenching. To evaluate the
effect of post-fragmentation shape relaxation, we estimate
τquenching ∼ 100 s for centimeter-size pyroclasts fol-
lowing the approach of Thomas and Sparks (1992). For
Vulcanian, Plinian, ultraplinian, and basaltic Plinian erup-
tions, τrelaxation = ηR/σ ∼ 103 to 105 s � τquenching

(assuming that the viscosity in the case of the basaltic
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Plinian magmas accounts for the effect of microlites). Con-
sequently, post-fragmentation shape relaxation should be
negligible. For the less viscous Hawaiian and Strombolian
basalt magmas, τrelaxation ∼ 10−2 to 10−3 s � τquenching

and bubbles are likely to undergo post-fragmentation shape
relaxation. Therefore, the measured values of � for the
Hawaiian and Strombolian samples cannot irrevocably be
attributed to bubble shapes during magma ascent within the
conduit.

Although vesicular volcanic rocks that have undergone
vesicle collapse due to open-system degassing can also
exhibit complex vesicle shapes (e.g., Adams et al. 2006;
Wright et al. 2009), none of the samples analyzed herein
have undergone noticeable vesicle collapse nor vesicle
elongation due to shear. Volcanic rocks that have undergone
vesicle collapse, such as volcanic dome samples, may qual-
itatively exhibit a range of vesicle shapes, including large
elongation and complexly shaped vesicle margins (e.g.,
Wright and Weinberg 2009). Textures of such samples, if
they have small values of �, should in principle also be
indicative of large capillary numbers, either associated with
processes that are not a consequence of decompression-
driven bubble growth (e.g., due to large strain rates associ-
ated with bubble collapse at high viscosities) or perhaps
as a consequence of preserving some textural remnants of
bubble growth (e.g., small strain rates at high viscosity).
Consequently, the relationship between �, capillary num-
ber, �P , and fragmentation suggested herein only holds
for pyroclastic samples associated with explosive eruptions
that have not undergone bubble collapse. For these cases,
we therefore suggest that � can be related to Ca, through
modeling of the expansion velocity, ve (Koerner 2008).

Figure 5 shows a representative model result for each
eruption as a graph of bubble radius, R, overpressure, �P ,
and capillary number as a function of dimensionless pres-
sure, defined as P̂ = (Pm − Pfrag)/(Pinitial − Pfrag). Note
that in the case of Stromboli and Kilauea Iki, the fragmen-
tation threshold is not reached and Pfrag is assumed as the
vent pressure of 105 Pa. We chose dimensionless P̂ as the
ordinate, as opposed to dimensional Pm or depth, because
P̂ facilitates an easier comparison between the individual
eruptions. We refer the reader to Table 5 for the differ-
ent values of Pinitial, Pfrag, zinitial, and fragmentation depth.
Although we find from a parametric analysis that the details
of the plotted curves will change somewhat within the
range of realistic parameter values (Table 2), neither their
characteristic shape nor the predicted values of capillary
number and �P will be significantly affected.

As magma ascends toward the surface, Pm decreases and
water diffuses into growing bubbles. Because the viscosity
of silicic magmas depends strongly on the concentration of
dissolved H2O, the increasing viscosity will retard bubble
growth and allow the buildup of bubble overpressure, �P .
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Fig. 5 Plots of dimensionless pressure as a function of a bubble
radius, R, b overpressure, �P , and c capillary number, Ca. Dimension-
less pressure, P̂ is defined as (Pm − Pfrag)/(Pinitial − Pfrag) (Table 5)
for Vulcanian, Plinian, basaltic Plinian, and ultraplinian eruptions,
whereas P̂ = Pm/Pinitial in the case of Stromboli and Kilauea Iki
eruptions. Modeled final bubble radii are 20–40 μm, consistent with
vesicle shape quantification. Values of modeled final capillary num-
ber obtained for Hawaiian and Strombolian eruptions are smaller than
those obtained for Vulcanian, Plinian, and ultraplinian eruptions

At the same time, the capillary number will increase to val-
ues � 1. Although the viscosity of basaltic melt is much
less affected by H2O exsolution, the resultant undercooling
may induce significant crystallization, as suggested for Etna
and Tarawera basaltic Plinian eruptions (Sable et al. 2006,



Bull Volcanol (2013) 75:691 Page 11 of 14, 691

2009). The microlites found in Etna and Tarawera samples
must have produced a significant increase in viscosity (see
Fig. 4a; Picard et al. 2011); however, the timing of micro-
lite formation is somewhat uncertain (Szramek et al. 2006,
2010; Goepfert and Gardner 2010; Szramek 2010).

Here, we show through combined bubble growth and
conduit flow modeling that the basaltic Plinian eruptions
of Etna and Tarawera can be explained by syn-eruptive
crystallization, buildup of overpressure, and brittle frag-
mentation. Both, pre- and syn-eruptive crystallization are
consistent with vesicle shapes (� < 1 and Ca � 1). How-
ever, conduit flow modeling indicates that the viscosity of
the microlite-rich magma would require magma fragmenta-
tion within a short distance of the pre-eruptive reservoir, as
the large magma viscosity would otherwise inhibit magma
ascent to the surface. Regardless, the model results demon-
strate that the increase in viscosity due to microlites will
result in Ca � 1 for these eruptions, consistent with � < 1.
Therefore, our results support the hypothesis that basaltic

Plinian eruptions were, like their silicic counterparts, asso-
ciated with overpressure and brittle magma fragmentation
as a consequence of high viscosity (Sable et al. 2006, 2009;
Houghton and Gonnermann 2008).

The relationships of � and predicted capillary number
for the different eruptions are shown in Fig. 6. All the
silicic eruptions, which presumably were associated with
brittle fragmentation, have larger values of (1−�) (i.e.,
smaller values of �) than the Strombolian and Hawaiian
style eruptions, as well as Ca � 1. This is also the case for
the basaltic Plinian eruptions. In contrast, for the Hawaiian
and Strombolian eruptions, our model results indicate that
Ca � 1, with insufficient overpressure for brittle fragmen-
tation, thus consistent with the work of Namiki and Manga
(2008). Although our model results imply that bubble
shapes for the Hawaiian and Strombolian eruptions should
have had values of � ≈ 1 during magma ascent within the
conduit, this cannot be established unequivocally because
of post-fragmentation shape relaxation.
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tinction exists between Hawaiian and Strombolian eruptions (smaller
(1 − �) and Ca � 1), and the other eruptions (larger (1 − �) and
Ca � 1). This distinct dichotomy in � and Ca is mirrored in inferred
fragmentation style, with brittle fragmentation of magma occurring in
Vulcanian, Plinian, basaltic Plinian, and ultraplinian eruptions
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Conclusions

Vesicle shapes in pyroclasts from fall deposits of a wide
range of explosive volcanic eruptions were quantified using
the shape parameter �. When compared to estimates of
capillary number, based on the expansion velocity obtained
from bubble growth modeling, we find a clear distinction of
Hawaiian and Strombolian eruptions (� ≈ 1, Ca � 1) ver-
sus eruptions of higher intensity (� < 1, Ca � 1), such
as Vulcanian, Plinian, and ultraplinian. Importantly, basaltic
Plinian eruptions are distinctly different in � and in cap-
illary number from Strombolian and Hawaiian eruptions.
This suggests that the presence of abundant plagioclase
microlites resulted in a sufficient increase in viscosity to
result in overpressure for brittle fragmentation during the
basaltic Plinian eruptions, akin to their silicic counterparts,
which do not contain large abundances of microlites.
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