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Abstract In several areas of research on ecological as-
semblages, it is useful to be able to analyse patterns of
spatial variation at various scales. Multivariate analyses
of dissimilarity or similarity in assemblages of species
are limited by problems of non-independence caused by
repeated use of the sample-units. Where rank-order
procedures are used, no comparative quantitative mea-
surements of dissimilarity at di�erent scales are pro-
duced. An alternative method is described that uses the
sample's average assemblage (or centroid). These esti-
mates are themselves averaged to give centroids for
larger spatial scales. Dissimilarities from the centroids at
each scale are then calculated using independent re-
plicates for each scale from those in each sample. The
dissimilarity measures can then be examined by analysis
of variance to detect spatial scales of di�erences for each
sample at every level of a hierarchy of scales. The
method is illustrated using data from mangrove forests
and rocky shores, involving up to 97 taxonomic groups
(species, other taxa). Di�erences among assemblages at
the scales of sites (tens of meters apart) or locations at
shores (hundreds of meters apart) were identi®ed.
Consequences of di�erent numbers of replicates are
discussed, with some potential problems (and their
solutions) in application.
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Introduction

There are pressing reasons for analysing patterns in the
composition or structure of assemblages. Numerous
intrinsic ecological issues require detailed quantitative

understanding of the scales at which there is consistent
and predictable variation in the abundances of diverse
assemblages. For example, identifying processes that
regulate structure and dynamics of interactions between
species requires recognition of the scales at which pro-
cesses operate (Allen and Starr 1982; Bell et al. 1995;
Bourget et al. 1994; Dayton and Tegner 1984; Menge
and Olson 1990) and therefore quantitative description
of spatial and temporal variation.

A second purely ecological issue is the recent upsurge
of interest in indirect e�ects (e.g. Menge 1995; Menge
et al. 1994; Wootton 1994). Understanding the web of
interactions among species in patchy, heterogeneous
habitats must include understanding of how the out-
comes vary from place to place and time to time. In
addition, there are many examples of considerable var-
iation in abundances of the individual species at a range
of spatial scales (e.g. Underwood and Chapman 1996 for
intertidal species). Given that these species are involved
in the numerous competitive, grazing or predatory in-
teractions which dictate the structure of assemblages,
corresponding variation in the structure of assemblages
can be predicted.

In addition to such ecological notions, there are more
practical considerations requiring detailed knowledge of
spatial scales of variation in the structure of assem-
blages. These relate to continuity and processes creating
biogeographical patterns and form the basis for identi-
fying the scales of ``managerial units'' and thereby for
conservation of species, management of marine reserves
and recognition of groupings of stocks in multi-species
®sheries.

There are, however, many problems in the measure-
ment of spatial or temporal variation in assemblages.
Often, the multivariate measures used are measures of
dissimilarity (or other distance measures) which in-
corporate the di�erences in abundances of all taxa be-
tween two replicate sample units (cores, quadrats,
whatever) in an assemblage. Some sort of ordination
then allows representation of the patterns of dissim-
ilarity or similarity among all the sample units. The
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general strategy is well-known and has been reviewed
many times (Clarke 1993; Field et al. 1982; Green 1980;
Pielou 1984).

There are two problems with these methods that re-
strict their usefulness for quantitative analysis of spatial
or temporal patterns in multi-species assemblages. First,
the sorts of sampling and experimental designs needed to
examine, describe or test hypotheses about assemblages
are usually complex (e.g. Underwood 1992, 1994 for
examples in environmental studies). The multivariate
procedures cannot deal with such complexity (Clarke
1993; Green 1979).

Second, the data collected in a sample of some
assemblage do not generate independent measurements
of dissimilarities, so that replicate units in the sample
cannot be used as independent replicates in any analysis
(see Clarke 1993). This feature of many types of multi-
variate measures explains why the designs must be
simple.

Where hypotheses and data only concern the com-
position of assemblages, i.e. the presence/absence of
species or other taxonomic groupings, Smith (1989) has
already produced a method of analysis. His method
produces an analogue of analysis of variance using sta-
tistics based on the probabilities of ®nding each taxon in
any pair of sample units. There are, however, numerous
studies that need to analyse the patterns of abundance
and not just presence/absence of taxa in assemblages.

The present paper describes a procedure based on
Bray-Curtis (Bray and Curtis 1957) measures of dissim-
ilarity of abundances of taxa between pairs of replicate
units, but the procedure generates relatively independent
measures at every spatial (and temporal, although that is
not described here) scale and in each location sampled.
The method generates replicated univariate data (Bray-
Curtis measures) that can be analysed by any usual
procedure. This is illustrated here in analyses of assem-
blages of marine invertebrates and algae on rocky shores
and of macro-invertebrates in sediments in mangrove
habitats. Provided that the numbers of replicate sample
units in the calculations are reasonably large (``reason-
ably'' being de®ned in terms of empirical ®eld ecologists),
the Bray-Curtis measures used for each component of an
experimental design are realistically independent enough
to satisfy the requirements of analyses.

The analyses illustrated are examples of tests of hy-
potheses about spatial scales of variation in the structure
of assemblages. The biology of the organisms and their
ecology in these coastal habitats are not discussed here;
the data are to demonstrate the method and potential
uses in ecological studies.

Methods

Data and analysis

The solution to the problem is to take su�cient data, in any site or
at any given scale, to acquire replicated multivariate measures of

variation in composition of assemblages. Consider the speci®c ex-
ample of assemblages of infaunal invertebrates in sediments in
mangrove forests. Suppose that there are hypotheses to be tested at
various spatial scales (as there often are: Underwood and Chapman
1996; Underwood and Petraitis 1993) or other reasons to need to
compare variation in assemblages at the scales of locations (sepa-
rated by hundreds of meters), sites within locations (separated by
tens of meters) and within each site (at scales of meters). For what
follows, the actual scales are not important; the proposed analysis
can be used for any hierarchical arrangement.

Data on abundances of species (or other, broader taxonomic
groupings if that is appropriate for the assemblage being analysed:
Clarke 1993; Warwick 1988a,b), are collected in quadrats scattered
around each site.

To compare samples from two di�erent sites or locations, a
measure of dissimilarity can be calculated to summarize all the
di�erences between abundances of taxa between all pairs of sample
units. Bray-Curtis dissimilarity was chosen because it has ad-
vantages over other alternatives (Clarke 1993; Faith et al. 1987).
Percentage dissimilarity between sample units j and k is:

dj;k � 100�
Ps

i�1 Xij ÿ Xik
�� ���Ps

i�1 Xij

�
�
�Ps

i�1 Xik

�
where Xij, Xik are the abundances of taxon i in sample units j and k,
respectively and s is the total number of di�erent taxa found over
the two units. When units j and k are from the same sample, dj;k
measures variation in the assemblage within the sample; when j and
k are from di�erent samples, dissimilarity is between samples. If
there are several samples, the units from each sample have to be
used numerous times to calculate every possible measure between
every pair of samples. The data are not independent for compar-
isons among samples.

The solution proposed here is to take su�cient replicate units in
each sample to be able to use each one only once in any compar-
isons. To have su�cient replication to make separate comparisons
between every possible pair of samples is prohibitive (for the re-
latively simple designs illustrated here for rocky shores, there would
have to be an exorbitant number of quadrats in every sample).

Instead, several sample units (m units) are used from each
sample to estimate the average abundances of all taxa in that
sample. These average abundances per unit are then used as the
average assemblage or ``centroid'' for that sample. Dissimilarities
of other units from the centroid measure variation among units in
that sample. So, the Bray-Curtis measures are calculated as before,
using the abundance of each taxon (Xij) in unit j and the average
abundance �Xij of that taxon calculated from m di�erent units.

The abundance of taxon i in unit l in any sample is Xil�k�j��
indicating that unit l is nested in the sample from site k nested in
location j. Consider the case of samples from two locations, with
two sites in each location and 12 quadrats sampled per site: m� 12
quadrats could be used to calculate the centroid for each site �Xik�j�
for taxon i. The centroids from the two sites in each location are
averaged to give the centroid for that location �Xij for taxon i in
location j, using m� 6 units randomly taken from each of the two
sites. Finally, the centroids for each location can be averaged to
give the overall centroid �Xi for taxon i averaged over all quadrats,
sites and locations, using m� 3 quadrats from every site.

The 12 quadrats in each site can now be used to provide four
replicate quadrats to measure Bray-Curtis dissimilarities from the
site centroid (between Xil�k�j�� and �Xik�j�; l� 1,...4 quadrats, i� 1,...s
species), four di�erent replicate quadrats to measure dissimilarity
between quadrats and the centroid for their location (between
Xil[k(j)] and �Xij values) and the remaining four quadrats to measure
dissimilarity between quadrats and the overall centroid (between
Xil[k(j)] and �Xi values).

The ®rst of these measures only variation in assemblages from
quadrat to quadrat in any site. The second includes any variation
from site to site. The third set measures variation in the assemblage
from quadrat to quadrat in each site, from site to site in each
location and from location to location. In general, if there is no
variation in assemblages from site to site, the average dissimilarity
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of quadrats from their site centroid should be similar to that from
the centroid of their location. If there is also no variation among
locations in the abundances of organisms in the assemblage, the
average dissimilarity of quadrats from their site centroids, from the
centroid of their location and from the overall centroid should be
similar. In contrast, if there is no variability from site to site, but
assemblages di�er from location to location, the dissimilarities
between quadrats and their site centroid should be equal, on
average, to those between quadrats and the centroid of their lo-
cation. Both sets, will, however, be smaller than the average Bray-
Curtis dissimilarities between quadrats and the overall centroid
(because these include also the di�erences among locations).

These dissimilarity measures can therefore be used in an ana-
lysis of variance to test the null hypotheses of no di�erences among
sites and no di�erences among locations. This forms a ®xed factor
of scale with three levels; dissimilarities among quadrats (i.e. within
sites), among quadrats plus sites and among quadrats plus sites
plus locations. This factor is orthogonal to the hierarchical spatial
structure of locations, sites nested within locations and quadrats
nested within sites, allowing a three factor mixed model of scale
(®xed) orthogonal to locations (®xed or random depending on the
hypothesis), sites within locations (random) and a residual varia-
tion among quadrats in each site.

Before considering actual examples from real sets of data, the
nature of the analyses are considered, particularly with reference to
the nature of independence of the data in such analyses. This fur-
ther requires consideration of the number of replicate units used to
calculate centroids.

Then, analyses are presented for various sets of data from
rocky shores and mangrove forests to illustrate the procedure, its
interpretation and some practical issues in its use. One set of
data was collected from midshore assemblages of epi- and in-
fauna in a mangrove forest and two sets of data were collected
from midshore assemblages on rocky intertidal shores. The fauna
in the mangrove forest consisted primarily of gastropods, am-
phipods, isopods, copepods, polychaetes, nematodes, oli-
gochaetes, insect larvae and numerous minor taxa. Similar
assemblages were described by Chapman (1998). The assem-
blages on the rocky shores consisted primarily of encrusting and
foliose algae, barnacles, tube worms, limpets and other grazing
snails and predatory whelks. Similar assemblages were described
in detail in Underwood (1981).

Data set 1

The epifauna and infauna were sampled in each of two sites, ap-
proximately 16 m2 and 40 m apart, in each of two locations (100 m
apart) in a mangrove forest in Port Jackson (Sydney). Sixteen
0.1-m2 quadrats were sampled in each site. In each quadrat, the leaf
litter and sediment were collected down to approximately 20 mm
depth. This material was sieved through a 1-mm and 500-lm mesh
sieve. The two components were preserved in 7% formalin solution
and sorted under magni®cation. Generally, the coarse component
was completely examined, but, when there was a large amount, it
was subsampled (approximately 30% by wet weight). This gave
reliable estimates of numbers of each taxon in the entire sample
(Chapman 1998). Fauna were sorted from the ®ne material using
several randomly-chosen subsamples until approximately 30% by
volume of the sample was sorted. All invertebrates were counted,
identi®ed to di�erent levels of taxonomic resolution [species, mor-
phospecies, families and so on, as described in Chapman (1998) to
give 67 taxa]. The numbers of each taxon were adjusted relative to
the amount of material sorted to give estimates per quadrat.

Data set 2

Ten quadrats, 50 cm ´ 50 cm, were sampled in each of two sites,
approximately 5 m long and 22 m apart, on each of three shores
(hundreds of meters apart) in the Cape Banks Scienti®c Marine
Research Area (Botany Bay). The sites ran alongshore in midshore

assemblages. The percentage cover of all algae and sessile animals
were estimated from 100 points per quadrat. Species that did not
occur under any point were given a nominal percentage cover of
0.5%, i.e they were present but occupied <1% of the sampled
points. All large mobile animals (e.g. gastropods, whelks, star®sh)
were counted. Small numerous animals (e.g. the gastropods Lit-
torina unifasciata, Patelloida latistrigata) were counted in ®ve small
subquadrats per quadrat (4% of the area). These numbers were
summed, but not multiplied up to the area of the entire quadrat so
that the abundances of these extremely numerous animals did not
dominate patterns of the entire assemblages (Underwood and
Chapman 1998). Overall, there were 98 taxa in this set of data.

Data set 3

The third set of data were from rocky shores at Cape Banks.
Percentage covers and abundances of a subset of the above as-
semblage (26 species) were collected as part of a much larger
study. Four shores (separated by about 150 m) were chosen. On
each, four sites (separated by about 30 m) were sampled with 16
quadrats. For this set of data, sites were chosen, based on ap-
pearance and previous sampling, so that assemblages were likely
to di�er.

Results

The method: independence, precision
and potential for bias

To understand the potential importance in this method
of non-independence in the data, it is helpful to draw the
analogy with multivariate analysis of variance. Here, the
same sample units are used to calculate centroids and
then these are averaged at the larger spatial scales (i.e.
the higher levels in the hierarchy). These are, of course,
the same steps as used in equivalent univariate proce-
dures. Thus, in a nested analysis of variance, sample
units are averaged in each site and then averages of all
sites in a location are averaged to produce the mean for
the location. In the univariate analysis, independence of
the sums of squares calculated from these various
``centroids'' is induced by the usual orthogonal decom-
position of quadratic forms (Cochran's theorem, Sche�eÂ
1959). These results cannot carry over in general to the
procedure suggested here, but the analogy is su�ciently
close to serve as a useful guide. Consider calculation of a
centroid from a small number of m replicate units and
then picking a random sample of n units to determine
dissimilarities from the centroid. These dissimilarities
will be correlated. This is straightforward to demon-
strate in the univariate case of a set of data X1, X2,. . .
Xi ,. . .XN, of which m are used to generate a mean (�X ). A
set of n variables (X1,. . .Xn) is then chosen to calculate
squared distances from the mean �Yi � �Xi ÿ �X �2� noting
that �X is the mean of the m values (not the set of n). The
Yi values will be correlated because they will depend on
how di�erent the mean �X � of the X1,. . .Xi,. . .Xn is from
�X . The magnitude of correlation in the univariate case,
assuming the data are distributed normally, can be
shown (K.R. Clarke, personal communication) to be [1/
(m+1)2]. In the univariate case, this is negligible pro-
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vided m is large. For example, if m� 4 units are used to
calculate the mean (�X ), the correlation among values of
squared deviation from the mean (Yi values) is 0.04 and
unlikely to cause serious di�culties for the reliability of
the analyses.

What happens with multivariate data, particularly
using Bray-Curtis measures (which are non-Euclidean)
rather than squared distances is not clear, but should
have, at most, similar degrees of correlation when
samples are large. In fact, simulations of the sort de-
scribed below (but not presented here) suggest that the
potential correlations of the sort discussed here are, in
fact, very small with realistic sizes of samples.

This consideration leads to using the entire sample
(m�N) to calculate centroids, in order to generate the
smallest possible correlation among replicates used to
calculate dissimilarities. This would, however, lead to a
new potential problem. If centroids for each site are
calculated from m sample units and there are, say, two
sites in each location, the centroid for that location will
be averaged from 2m units.

Because the size of sample used to calculate centroids
is larger at the larger scales, the correlation among re-
plicates used to calculate dissimilarities will be di�erent
for the di�erent scales. Thus, in the univariate case
considered earlier, if n units are used to calculate
(squared) deviations from the mean of m replicates in a
site, their correlation will be of the order of [1/(m+1)2].
If a di�erent n units are used to calculate the deviations
of replicates in one site from the mean of the location,
their potential correlation will be smaller ± [1/(2m+1)2]
± because 2m units are used to calculate the mean of the
location and centroids calculated from di�erent numbers
of replicates have di�erent precision. The estimates of
centroids for larger scales are inevitably more precise
(being based on larger samples). Dissimilarities from
centroids will therefore, all other things being equal, be,
on average, larger where centroids are less precisely
known. This is illustrated for two sets of simulated data
in Fig. 1.

In the ®rst set, 15 ``species'' were simulated by
drawing, for each replicate, 15 random variates from a
normal distribution with mean 50 and standard devia-
tion 20. Then, for sizes of sample of 2±20 replicates, the
simulated data were used to calculate a centroid, re-
presenting increasing precision as m was taken from 2 to
20. Finally, for each simulated centroid, a further sample
of 100 replicates was generated to calculate Bray-Curtis
dissimilarities (i.e. n� 100). Results of three ``runs'' of
this procedure are illustrated in Fig. 1a. Notice that the
average dissimilarity declines from 18.6% when m� 2 to
16.4% when m� 20. A similar decline was evident in
each run of the simulation. This was as predicted above.

The second simulation illustrated was identical,
except that data were generated from highly skewed
distributions by taking the exponential of each variate
drawn from the normal distribution used before. Again,
there is a decrease with increasing precision used for
estimating the centroid. Note also, in each case

illustrated, there is little further decline once sizes of
samples (m) to estimate centroids reach about 6 or 8.

Nevertheless, if m is ®xed, there is a potential bias
towards overestimation of the dissimilarity measures for
the smallest relative to the largest spatial scale (i.e.
quadrats relative to locations or shores) because the
latter are estimated with larger samples. In the Methods
section, di�erent numbers of quadrats were used to
calculate centroids at each level so that all centroids were
calculated using the same number of quadrats, or, where
this was not possible, the most similar number of
quadrats was used for every level.

Data from a mangrove forest

Data from two randomly chosen sites in each of two
randomly chosen locations were used to test the
hypothesis that there would be greater dissimilarity
between locations than between sites. It was further
hypothesised that locations and sites would both show
greater variations in dissimilarity than occur within sites
in each location. All 12 replicate quadrats (m) were used
to calculate the centroids in each site. Six were chosen at
random in each site to calculate the centroids in each
location. Three replicate quadrats were chosen at ran-
dom in each site to calculate the overall centroid. Thus,
m� 12 for each site, location and for the overall

Fig. 1 Imprecision in estimation of centroids can lead to over-
estimation of Bray-Curtis measures of percentage dissimilarity. Data
are from simulations. Square, asterisk, open circle mean %
dissimilarity in three runs of the simulation, ®lled circle mean
(�average SE) of the three runs, n� 100 in each simulation. The
size of sample to calculate centroids (m) ranged from 2 to 20.
a normally distributed data; b log-normally distributed data
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centroid. Three independent quadrats (n) were then used
to calculate dissimilarities from each of the centroids for
each site, location and the overall centroid and analysed
in Table 1.

There was a highly signi®cant di�erence among the
scales, with dissimilarities among locations being greater
(P < 0.05, SNK test) than that among sites and among
quadrats (which were on average of similar magnitude,
Table 1). There was about 27% dissimilarity among
quadrats within each site and about 36% (but not sig-
ni®cantly greater) variation in assemblages among sites.
In contrast, dissimilarity averaged 52% among loca-
tions, an extra 25% compared with variation among
quadrats. The procedure gives estimates of variability in
assemblages at each scale and identi®ed signi®cantly
greater variation among locations. So, these invertebrate
assemblages were quite variable in structure at a scale of
a few meters (quadrat to quadrat) and at a scale of
hundreds of meters (location to location).

Note also that there was signi®cant variation from site
to site (Table 1), but no interactions between the factors
scale and location nor between scale and sites. Such
di�erences among sites indicate that di�erences in
variability in the assemblages from quadrat to quadrat
are greater in some sites than others (i.e. variances are
di�erent from site to site). This means that the sites in any
location di�ered in their average dissimilarity from the
various centroids, but the di�erences from the scale of
quadrats to that among sites and the di�erences from the
scale of sites to that among locations were similar in all
sites (or there would have been signi®cant interactions
with scale). The average dissimilarities (averaged over the
three scales) are shown for each site in Table 1. These
demonstrated di�erences between sites of about 6%, on
average (i.e. 42±43%; 28%±39% in the two locations).
Thus, in each location, the two sites di�ered in how
variable from quadrat to quadrat the assemblages were.

Data from rocky shores: three shores, two sites

In the ®rst set of data from rocky shores, three shores,
hundreds of meters apart, were sampled. On each shore,
two sites were randomly chosen tens of meters apart. Of
the ten quadrats from each site, m� 10 (i.e. all of them)
were used to calculate the centroid for that site. Then six
quadrats were randomly chosen from each site to cal-
culate the centroid of that shore (thus, m� 12 for each
shore). Two quadrats were randomly chosen from each
site to calculate the overall centroid (m� 12, two from
each of two sites on each of three shores). With only ten
quadrats from two sites and three shores, it was not
possible for m to be identical for all scales. The numbers
of units used minimized the di�erence from scale to
scale: n� 3 di�erent quadrats were used to calculate
dissimilarities from the centroids at each scale, thus
keeping the data balanced for analyses. As with the data
from mangrove forests, there were no signi®cant inter-
actions between scale and sites or shores. Dissimilarities
among quadrats in each site averaged 33% and there
was no greater variation among sites (38%). Average
dissimilarity at the scale of shores was, however, sig-
ni®cantly larger (SNK test at P < 0.05) at 48%
(Table 2).

In this analysis, there were di�erences among shores,
indicating the greater variance among quadrats on
shore 2 (48%) than on shores 1 and 3 (see Table 2). As
before, the di�erences from one scale to another were
similar for every site and shore (hence, no interactions
in Table 2).

Four shores, four sites

All 16 quadrats were used to calculate the centroids for
each site (m� 16); four were then chosen at random to

a Analysis of variance

Source of variation df MS F-ratio P

Among scales = Sc 2 2558.55 28.53 <0.05
Between locations = L 1 959.75 2.93 >0.20
Between sites (locations) = S(L) 2 327.82 3.88 <0.03
Sc ´ L 2 89.69 1.46 >0.30
Sc ´ S(L) 4 61.54 0.73 >0.50
Residual 36 84.51 ±
Total 47 ±

b Mean values for 3 scales

Scale Quadrats Quadrats+Sites Quadrats+Sites+Locations

Mean (SE); n = 16 27.0 (1.8) 35.6 (3.0) 51.9 (3.1)

c Mean values for locations and sites

Location 1 2

Site 1 2 1 2
Mean (SE); n = 12 42.2 (3.7) 43.0 (5.0) 38.9 (3.9) 28.4 (3.3)

Table 1 Analysis of Bray-Curtis percentage dissimilarities between
two randomly chosen sites (tens of meters apart) and in each of two
randomly chosen locations (100 m apart) in a mangrove forest;
n� 4 quadrats for calculating dissimilarities for each scale in each

site; m� 12 quadrats were used to estimate the centroids in each
site, location and overall. Data untransformed (Cochran's
C� 0.29, P > 0.05)
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calculate the centroid for each shore (m� 16; four from
each of the four sites). Finally, two quadrats were
chosen at random from every site to calculate the
overall centroid (m� 32). It was not possible to have
m� 16 if there was to be replication of quadrats used
from each site. However, m was su�ciently large for
any di�erences from m� 16 to m� 32 to be trivial. A
total of n� 5 di�erent quadrats was used to calculate
dissimilarities from the site, shore and overall cen-
troids.

In this case, there was signi®cant interaction between
the spatial scales and sites within each shore (Table 3),
indicating that di�erences from one scale to another
varied according to site and, possibly, shore. There is
therefore no point in attempting to examine overall

di�erences between scales ± they vary from place to
place and can only be interpreted from place to place
(Fig. 2). In general, however, there was greater dissim-
ilarity among sites than among quadrats and among
shores than among sites. Over all sites and shores, mean
dissimilarity was 31% (SE� 1.6, n� 80), 50%
(SE� 2.0), 62% (SE� 1.5) for quadrats, sites and
shores, respectively. Dissimilarity was generally greater
among shores than among sites than among quadrats
[Fig. 2; Anderson (1959) test, v2� 66.75, 4 df;
P < 0.001, Table 3]. Some sites were obviously more
variable than others (dissimilarity among quadrats var-
ied from 15% to 47%; Fig. 2) and some sites were more
similar to each other than were others, but, overall,
shores di�ered and sites di�ered.

a Analysis of variance

Source of variation df MS F-ratio P

Among scales = Sc 2 1032.21 22.20 <0.01
Among shores = Sh 2 1150.83 25.11 <0.01
Between sites (shores) = S(Sh) 3 45.83 0.45 >0.70
Sc ´ Sh 4 46.49 0.29 >0.85
Sc ´ S(Sh) 6 159.58 1.58 >0.15
Residual 36 100.93 ±
Total 53 ±

b Mean values for 3 scales

Scale Quadrats Quadrats+Sites Quadrats+Sites+shores

Mean (SE); n� 18 33.1 (3.2) 37.7 (2.9) 47.9 (2.2)

c Mean values for shores

Shore 1 2 3

Mean (SE); n� 18 31.6 (3.0) 47.6 (2.6) 39.4 (2.6)

Table 2 Analysis of Bray-Curtis percentage dissimilarities between
two randomly chosen sites (22 m apart) on each of three randomly
chosen rocky shores (hundreds of meters apart); n� 3 quadrats for

calculating dissimilarities for each scale in each site; m� 10, 12, 12
quadrats were used to estimate the centroids in each site, shore and
overall. Data untransformed (Cochran's C� 0.20, P > 0.05)

a Analysis of variance

Source of variation df MS F-ratio P

Among scales = Sc 2 19848.0 12.85 <0.01
Among shores = Sh 3 1610.4 3.50 >0.05
Between sites (Shores) = S(Sh) 12 459.6 3.50 <0.0001
Sc ´ Sh 6 1544.7 4.16 <0.005
Sc ´ S(Sh) 24 371.2 2.82 <0.0001
Residual 192 131.6 ±
Total 239 ±

b Mean values for 3 scales

Scale Quadrats Quadrats+Sites Quadrats+Sites+Locations
Mean (SE); n� 80 30.74 (1.55) 50.09 (1.95) 61.95 (1.52)

c Analysis of rank orders of scales; the three scales (shores, sites, quadrats) were each sampled 16 times (4 shores´4 sites). For each set, the
mean dissimilarities for the 3 scales were put in decreasing rank order (Anderson 1959) for analysis. v2� 66.75, 4 df, P < 0.005

Scale
No. of times ranked Shores Sites Quadrats
1 (greatest) 13 3 0
2 3 13 0
3 0 0 16

Table 3 Analysis of Bray-Curtis percentage dissimilarities between
four randomly chosen sites (30 m apart) on each of four randomly
chosen rocky shores (150 m apart); n� 5 quadrats for calculating

dissimilarities for each scale in each site; m� 16, 16, 32 quadrats for
estimating the centroids in each site, shore and overall. Data un-
transformed (Cochran's C� 0.12, P > 0.05).
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Practical issues about the size of sample

It was earlier pointed out that computer simulations
and theory demonstrated greater precision in estimation
of centroids would result in bias. To examine the e�ect
of this in practice, the data for one shore (at random,
shore 2) were used. In turn, the average centroid for
this shore was calculated using one randomly chosen
quadrat from each site (m� 4), then 2 randomly chosen
quadrats (m� 8), 3,. . . all 16 quadrats (m� 64). For
each centroid, n� 5 randomly chosen quadrats were
used to calculate dissimilarities from the centroids.
These are shown in Fig. 3. Despite the potential pro-
blems of bias (see earlier), there was no actual trend in
dissimilarities with the number of units (m) used to
calculate centroids. This result may strengthen the view
that the amount of correlation among dissimilarities is
small.

Both issues (potential di�erences in correlations for
estimates at di�erent scales and possible biases due to
di�erent precision at di�erent scales) can be solved by
using the same total number of replicate units to esti-

mate the centroids at each scale. Thus, more replicates
from each sample are used to estimate the centroids in
each site than to estimate the centroids for each location
or shore than for the overall centroid. This is the pro-
cedure used here, as identi®ed in each of the analyses of
real data. To keep m (the number of units used to cal-
culate centroids) as large as possible, the entire sample is
used to calculate centroids at the smallest scale (i.e. that
of each site).

Discussion

The method described has two features that make it
potentially useful in various ecological contexts. First, it
requires considerably less sampling e�ort (smaller sizes
of samples) than would be the case for equivalent ana-
lyses comparing dissimilarities within and among sam-
ples using ranked procedures (Clarke 1993). Second,
data can be used in any design required by the study,
provided that appropriate centroids can be calculated to
match the model. In the examples illustrated here, the
centroids were for three nested (or hierarchical) spatial
scales. The framework we used was that of analysis of
variance because of its ¯exibility and general suitability
for ecological experimentation (Underwood 1997).

There is, however, the consideration of potential bias
because of increased precision in estimation of centroids
with the increasing sizes of samples used for larger scales
(or that would be used for larger aggregations in other
models for analysis). The degree to which such biases
matter depends entirely on the problem being in-
vestigated. If the issue is precise estimation of the var-
iation in multivariate data, large samples must be used
to estimate centroids.

Fig. 2 Mean (SE; n� 5 independent replicate quadrats for each
spatial scale) Bray-Curtis percentage dissimilarities for samples from
four randomly chosen rocky shores, each sampled in four randomly
chosen sites. Centroids for each site were calculated from m� 4
quadrats. For each site, data are: open bars variation among quadrats,
®lled bars variation among quadrats and sites, shaded bars variation
among quadrats and sites and shores

Fig. 3 Mean values of dissimilarities for data from a rocky shore
(data set 3). For each of four sites on shore 2, n� 5 randomly chosen
replicate quadrats were used to calculate dissimilarities from the
centroid for the whole shore; the centroid was calculated, in turn,
using 1 (m� 4), 2 (m� 8),. . .16 (m� 64) random quadrats from each
site. There is no trend with m. Open squares, asterisks, open circles,
closed circles are the means of the four sites on the shore
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Situations also exist where random sub-sets of a
relatively small sample will not provide a useful or
reliable estimate of the average dissimilarity from the
centroid for that whole sample. Consider a patchy
rocky intertidal habitat where some parts are domi-
nated by algae with their associated fauna and other
patches are dominated by barnacles, with a di�erent
assemblage of ¯ora and fauna. If a sample of the area
has, say, six quadrats in each of the two assemblages,
dissimilarity from the centroid of the whole sample
will, correctly, be large. If, however, n� 3 of the
quadrats are chosen for estimating the dissimilarity
and, by chance, all happen to be from one of the
assemblages (e.g. all happen to be quadrats from
barnacle-dominated patches), the dissimilarities will
very poorly represent (and will overestimate) that for
the whole sample.

Such problems can always exist in any ecological
study of heterogeneous habitats where there is in-
su�cient evidence to enable prior strati®cation, or
only small samples are possible. It might therefore be
sensible to examine the average dissimilarity of all
sample units from the centroid calculated using all the
units to provide a check on the validity of sub-sam-
pling.

A further point that must be remembered is that the
data are about di�erences (or similarities if their com-
plements are used) among sample units ± not about
actual diversity or composition of samples themselves.
Thus, relevant hypotheses and their interpretations are
in terms of how alike, from sample to sample, are the
average dissimilarities among replicates. This is appro-
priate for many ecological research problems. It is,
however, more akin to univariate analyses of variances
among replicates, rather than analyses of mean values.
This is not a problem in that there are many examples of
needs for such methods in cases of univariate data (Bell
et al. 1993; Brown et al. 1995; Cli� and Ord 1973; Le-
gendre and Fortin 1989; Schneider 1994; Underwood
and Chapman 1996). For the sorts of research pro-
grammes that need analyses of spatial or temporal var-
iation, the method used here seems entirely appropriate.

Two ®nal issues need further attention. First, there is
often interest in, or a need for, analyses of relationships
between structure of multispecies assemblages and
physical or chemical variables that may in¯uence
structure (e.g. Clarke 1993; Clarke and Ainsworth 1993;
Green 1979, 1984; Pielou 1984). The measures described
here can be used in a variety of factorial and/or hier-
archical designs. It remains to be seen how these can be
exploited for exploring correlations and for analyses of
covariance with relevant physical and chemical vari-
ables.

Finally, all of the currently topical issues about
taxonomic resolution and appropriate transformation
of data in multivariate analyses are relevant to the
methods described here. It is common to calculate
measures of dissimilarity based on data that have al-
ready been subjected to transformations (e.g. Clarke

1993; Clarke and Green 1988; Pielou 1984). Such
transformations serve a number of functions, but are
largely used to make measures less in¯uenced by nu-
merically dominant taxa (so transformation to log or
double square root reduces in¯uences of very abun-
dant species) or to make rare species equivalent to
abundant ones (by transforming all data to presence/
absence). Such transformation is done to the data
before calculation of centroids and measures of dis-
similarity. Note that this is not the same as issues
about transformation of data where this is considered
appropriate to conform to the assumptions of analysis
of variance of the dissimilarity values. That transfor-
mation would be on the ®nal Bray-Curtis measures of
dissimilarity, if transformation would solve some
problem of heterogeneity of variances. Whether that
was considered appropriate or not depends on the
variances of the replicated measures of dissimilarity
and not on whether dissimilarity was calculated for
untransformed or transformed or presence-absence
data. It is worth noting, in passing, that Bray-Curtis
measures in real samples often tend to be approxi-
mately normally distributed (authors, unpublished
work). It is reasonable to analyse these data un-
transformed.

The actual structure of data in samples is also ma-
nipulated by the choices of taxonomic resolutions used
to identify groups of organisms. Much of the im-
portant information in the analyses of assemblages can
be retained when relatively coarse taxonomic resolu-
tions are applied (Warwick 1988a,b; Warwick and
Clarke 1995). Using families or orders (Chapman 1998;
Ferraro and Cole 1990; Gray et al. 1990; Herman and
Heip 1988; Olsgard and Gray 1995; Somer®eld and
Clarke 1995) drastically reduces the e�ort, time and,
above all, costs of sampling in many habitats. For
some parts of the world and some habitats, taxonomy
of species is uncertain, so arbitrarily larger groupings
are inevitable. As with transformation of the data, is-
sues of taxonomic resolution must await further in-
vestigation.

The method described has some advantages over
other methods available in terms of the complexity of
designs of studies and sampling that can be used and in
terms of relative robustness of (and, for many ecologists,
familiarity with) the analytical procedure used. It re-
mains to be seen whether its later uses will identify other
advantages, problems unforseen here and, hopefully,
new developments based on it. In the interim, it is
available as part of the armoury of techniques for ex-
amining complex assemblages.
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