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Abstract The purpose of the present study was (1) to
test the ability of six alternative methods to detect ran-
dom and non-random patterns of overall association in
artificial presence/absence data sets, and (2) to analyse
overall associations and effects of sampling heterogene-
ity in four empirical presence/absence data sets of
helminths of the common shrew Sorex araneus. In the
null model, the expected distribution was created by
means of a randomisation procedure. Application of
methods on artificial data sets indicated a generally low
probability of type I statistical error. All methods were
more likely to detect positive non-randomness than
negative non-randomness of comparable strength, which
may partly explain the predominance of positive overall
associations in empirical data sets. The analyses based
on artificial data sets indicated slight differences between
methods in their ability to detect non-randomness of
known strength (type II error). However, some of the
methods failed to detect strong overall association when
the artificial assemblages consisted of roughly equal
numbers of positive and negative pairwise interactions.
The structure of the artificial data sets always disap-
peared when the expected distribution was constrained
to account for ‘“‘sampling heterogeneity”, i.e. varying
prevalence of species among subsamples. The patterns of
overall association in real helminth communities were
variable, depending on the locality and association
method used, but not usually on the simulation con-
straint used. Of the four empirical data sets analysed,
one showed an unequivocal positive structure, in one
the structure depended on the method used, and two
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data sets from the same locality were unequivocally
unstructured (random). We discuss the applicability of
various association measures, and the possible causes of
positive overall associations in parasites.
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Introduction

Searching for the structure of communities is one of the
key problems in ecology. An important and frequently
studied aspect of community structure is the presence
of non-random overall (multispecies) patterns of co-
occurrence and covariance (Gotelli and Graves 1996).
Because the analyses of community structure are based
on observational data only, the processes responsible
for the observed patterns may not be revealed (but see
Lafferty et al. 1994). However, in the majority of mul-
tispecies assemblages, the recognition of pattern is
practically the only available approach for elucidating
the interspecific processes, and an observed non-random
structure forms an obvious basis for subsequent process-
oriented studies.

Despite the clear-cut problem, the diversity of meth-
ods and the lack of consensus concerning the appro-
priateness of alternative null models have been serious
obstacles for studies of community structure. The pro-
posed null models differ in several respects, e.g. the
metric used to measure overall association, and the
method of constructing the expected distribution, in-
cluding the various constraints (cf. Gotelli and Graves
1996 pp. 182-185).

Association measures are usually based on informa-
tion about the co-occurrence of specific pairs of species;
the log-linear method of Gilpin and Diamond (1982)
and the checkerboard score of Stone and Roberts (1990)
are examples of such methods. There are two basically
different ways of presenting the pattern of overall asso-
ciation: the various pairwise metrics may be condensed
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into a single index (e.g. Stone and Roberts 1990), usually
by averaging or summing, or presented as a frequency
distribution (e.g. Gilpin and Diamond 1982). The single
index or the frequency distribution of pairwise indices is
then compared with an expected distribution. The use of
a single index has been recommended on the grounds
that when using the distribution of pairwise indices, the
frequency classes are not independent of one another
(Gotelli and Graves 1996). However, the methods based
on a single index also have an obvious disadvantage:
because positive and negative pairwise interactions
cancel each other out, assemblages that include unex-
pectedly high proportions of both positive and negative
associations may not be detected as non-random by
these methods (Schluter 1984).

The null, or expected, distribution for a particular
association measure may be obtained by analytical or
randomisation methods. Although the analytical meth-
ods are easily applied even on highly diverse assemblages,
the validity of the null distribution used is sometimes
questionable. For example, the normal distribution is
clearly an inappropriate null expectation for Gilpin and
Diamond’s (1982) method, because it yields significant
results for random data (Wilson 1987), and biases the
pattern towards negative structure (Lafferty et al. 1994).
Furthermore, Lotz and Font (1994) have shown that the
sample size and the proportion of common and rare
species may affect the outcome of an association analysis.
These problems may be avoided by using randomised
matrices that match closely the observed matrix; such
matching is achieved by constraints imposed on the
random samples. The occurrence frequency of various
species, the number of species on various islands and
incidence effects (species occurrence frequency on dif-
ferent-sized islands) are the constraints used in real island
systems (Harvey et al. 1983). However, randomised
samples may be constrained to account for practically
any kind of confounding structure in the observed data,
including sampling heterogeneity (see below).

Because individual hosts are well-defined, fairly ho-
mogeneous and easily replicated spatial units, parasite
assemblages are ideally suited for analysis of interspe-
cific association and other aspects of community struc-
ture. However, parasite populations are often highly
variable both spatially and temporally (e.g. Haukisalmi
et al. 1988; Montgomery and Montgomery 1989). If
the aim of an association analysis is to determine the
existence of direct interactions between parasites, such
as interspecific competition or mutualistic interactions,
various sampling heterogeneities have to be controlled
for. Spatial, temporal and other host-related factors
(e.g. sex, reproductive status) usually exert a strong
influence on infection levels of parasites (Montgomery
and Montgomery 1989; Haukisalmi et al. 1995), and
any direct interaction may be masked or biased by
these confounding effects.

This study covers two main problems. First, we apply
six association methods on artificial assemblages to de-
termine their ability to detect non-randomness of known

strength and structure, and to test whether the apparent
non-randomness due to the heterogeneity of subsamples
can be controlled by a modified randomisation ap-
proach. We concentrate on methods previously used for
parasites; however, all of these methods are very general
and may be applied equally well on any patchily dis-
tributed assemblage. Second, we describe the patterns of
spatial and temporal occurrence and overall interspecific
association in helminths of the common shrew Sorex
araneus. The common shrew is a ubiquitous and
abundant insectivorous mammal which has a fairly rich
helminth fauna dominated by cestodes and nematodes
(Haukisalmi 1989; Haukisalmi and Henttonen 1994).

Materials and methods

Association measures

Method 1: species density distribution

The frequency distribution of the number of species per host
(Fig. 1a,b), called here the species density distribution (Janovy et al.
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Fig. 1 Examples of overall associations for two artificial, non-
random matrices by three association methods: species density
distribution (a, b), log-linear method (¢, d) and covariance distribution
(e, f). In the matrix “0-15", all 15 species show parallel subsample
variation, creating a positive overall association. In the matrix “7-8”,
there are two sets of species with parallel subsample variation within
sets, but reversed variation between sets; this results in roughly equal
numbers of positive and negative pairwise interactions (cf. Table 1).
The expected distributions were simulated with and without the
“subsample constraint™ (s.c.). The expected values indicated by closed
symbols differ significantly from the observed values



1995), has often been used to establish the structure of parasite
communities (e.g. Goater et al. 1987; Dobson 1990; Pence 1990;
Forbes et al. 1994). The observed distribution has conventionally
been tested against the Poisson distribution which, however, is an
improper null expectation (Lotz and Font 1991; Janovy et al. 1995).
More appropriate null distributions are obtained by alternative
analytical methods (Janovy et al. 1995; Poulin 1996) or by ran-
domisation (Lotz and Font 1991). The species density distribution
differs from the other methods used here by utilising data on species
numbers per host, instead of data on specific pairs of species.

Method 2: log-linear method

In Gilpin and Diamond’s (1982) log-linear method (Fig. 1c,d), the
probability of species i occurring on island j (P;) is estimated as
P;=R,C;/T, where R; and C; are the marginal totals of the species-
island matrix, and T=2>R;=2>.C;. The expected number of islands
shared by species i and k (Ej) is then obtained as Ey =>P; > Py,
The next step is to calculate the standard deviates (d;) for the
differences between the observed (O;) and expected co-occurrence

frequencies for all species pairs: dy=(0u—Ey)/SD;y., where
SDiyx = \/Z P, Bi;(1 — P;Py;). Finally, the frequency distribution of
standard deviates is compared with a normal distribution with a
mean of 0 and standard deviation of 1; significant deviation from
the normal distribution indicates non-random community struc-
ture.

Because of the inappropriateness of the original null model
(Wilson 1987), we use a null distribution created by a randomisa-
tion procedure, instead of applying the standard normal distribu-
tion. P;s exceeding unity, a characteristic problem of this method,
were handled by truncating them at 1. Lafferty et al. (1994) have
used the log-linear method, applying the standard normal distri-
bution, to analyse the structure of trematode assemblages in snails.

Method 3: checkerboard score

The checkerboard score of Stone and Roberts (1990) is the mean
number of “checkerboard units”” formed by all pairs of species in
an assemblage. A basic checkerboard unit consists of two species
showing an exclusive distribution on a pair of islands. In practice,
the number of checkerboard units formed by species i/ and k is
calculated as Cy. = (r;—0)(ri—0j1), where Oy is the number of co-
occurrences and r; and r, are the numbers of occurrences (row
sums) for the two species. The checkerboard score is then obtained
as C=XXCy/N, where N is the total number of species pairs. This
method has not been previously applied on parasite assemblages.

Method 4: summed covariance

An association method frequently used for presence/absence data is
the variance ratio, i.e. the ratio of the variance of the total number
of species to the sum of variances of the occurrence frequency of
individual species. However, this method is also applicable for
abundance data (Schluter 1984). The null hypothesis of the
Schluter test is that the sum of pairwise covariances equals zero.
Thus, an alternative way of calculating the association measure is
to sum all pairwise covariances; this procedure, called the summed
covariance, is applied here. Previous studies applying Schluter’s test
on parasite assemblages include Lotz and Font (1991, 1994),
Dobson and Pacala (1992), Haukisalmi and Henttonen (1993) and
Forbes et al. (1994).

Method 5: proportion of positive covariances

Lotz and Font (1991, 1994) have used the proportion of positive
covariances of all pairwise covariances as an index of community
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structure in helminth assemblages; the direction and significance of
the observed index were assessed by randomisation.

Method 6: covariance distribution

Although the methods 3-5 have the attractive property of de-
scribing the overall co-occurrence pattern as a single index, it is
possible that they fail to detect non-randomness in assemblages
which include both positive and negative significant covariances
(Schluter 1984). Therefore, we also present an alternative method,
the frequency distribution of pairwise covariances (Fig. le,f).

Null model

For the reasons outlined in the Introduction, we create the expected
distributions for all association measures by means of a randomi-
sation procedure. In each analysis, the particular association
measure is calculated from the observed data matrix and from 1000
randomised matrices in which the number of species (rows) and
hosts (columns) equal those in the observed data. The association
measures calculated from randomised matrices form the expected
distribution which is used to determine the direction and statistical
significance of the association. If the observed association measure
is among the 25 most extreme values at either end of the simulated
distribution (i.e. a two-tailed test with 5% significance level), the
association is significantly non-random.

When the association is described as a frequency distribution of
several (pairwise) measures (methods 1, 2 and 6), the observed
frequencies and mean simulated frequencies of various frequency
classes are compared with a standard goodness-of-fit test (log-
likelihood). In addition, the significance of differences between the
observed and expected frequencies is determined separately for
each frequency class. The former test is used as the primary crite-
rion for determining whether the particular sample is structured or
unstructured.

Our randomisation approach constrains the total number of
occurrences of each species (row sums), but not the total number of
species per host (column sums). Under these constraints, 0s and 1s
are randomly shuffled among hosts. We do not constrain the col-
umn sums because some of the tests we use measure the variability
of the number of species among hosts, and the column sum con-
straint would imply zero variability. Also, the variation in preva-
lence among parasite species (row sums) is typically much more
pronounced than variation in the number of parasite species per
host (column sums).

To control for the effects of sampling heterogeneity on inter-
specific associations, we use an additional constraint, i.e. the
occurrence frequency of parasites in the subsamples (“‘subsample
constraint”). This procedure is related to the method of pooled
within-site variation used by Wilson and Roxburgh (1994) to study
assembly rules in plant communities. When this constraint is im-
posed, shuffling is performed separately within each subsample
according to the species’ observed prevalence in that subsample.
The association measures are then calculated for the whole simu-
lated sample, and the significance is determined as described above.

Artificial data sets

Power analysis

The ability of the association measures to detect positive and
negative non-randomness is analysed by the procedure of Gotelli
et al. (1997). We first created two artificial presence/absence
matrices, one with a maximum positive overall association and
another with a maximum negative association among species. Both
matrices had 12 species and 200 hosts, and the occurrence fre-
quencies of species were fixed between 1 and 34. In the positive
matrix, species had a completely nested (overlapping) occurrence
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pattern, whereas in the negative matrix, the occurrence of species
was completely non-overlapping (no co-occurrences). Completely
non-overlapping occurrence is achieved only when all species are
relatively scarce; therefore the species occurrence frequencies in
artificial matrices do not correspond to those in empirical data sets.
The structure of these two matrices was gradually broken down
by randomly redistributing an increasing proportion (at 10% in-
tervals) of all species occurrences; the situation where all occur-
rences are redistributed corresponds to a completely randomised
matrix. All six association metrics were then applied to the resulting
11 matrices with a decreasing negative structure and 11 matrices
with a decreasing positive structure. The power of the various as-
sociation measures was determined by their ability to detect the
known structure in these two series of artificial matrices (Fig. 2).

Proportion of positive and negative pairwise interactions

Another set of artificial presence/absence matrices was created to
examine (1) how the proportion of negative and positive pairwise
interactions affect the outcome of overall association analyses, and
(2) whether the confounding spatial or temporal variability in
helminth occurrence can be controlled by applying the “subsample
constraint”. We created eight matrices with 15 species and 100
hosts. In each matrix, the host “population” was split into four
subpopulations (I-IV), e.g. seasonal samples, each having 25 in-
dividuals. The infection probability of each species either increased
(0.15, 0.30, 0.60, 0.85) or decreased (0.85, 0.60, 0.35, 0.15)
systematically from subsample I to IV. Species were then allowed to
“infect” hosts randomly, i.e. independently of other species,
according to their infection probability in each subsample. The
overall prevalence of all species approximated 50%.

In the first matrix (“0-15"; Table 1), the infection probability of
all 15 species increases from subsample I to IV, i.e. all species show
parallel ‘“‘seasonal” variation. This matrix is therefore positively
structured when pooled across subsamples, but unstructured
(random) within subsamples. The seven remaining matrices consist
of two sets of species showing parallel ““seasonal” variation within
sets, but reversed variation between sets. In other words, all species
in the first set have an increasing infection probability and all
species in the second set have a decreasing infection probability in
the four subsamples. The numbers of species in the two sets varied
from 1 versus 14 to 7 versus 8.

This procedure is intended to create assemblages with variable
numbers of strong positive and negative pairwise interactions.
When pooled across subsamples, these eight matrices are extremely
non-random, because all species are involved in pairwise interac-
tions, and because most of the pairwise interactions are (highly)
significant. Therefore, all these data sets should be detected as non-

Table 1 Significance (P-values) of overall associations by alter-
native association measures for artificial, structured data sets (15
species and 100 hosts in each) with variable proportions of sig-
nificant positive and negative pairwise interactions. In the matrix
“0-15", all 15 species show parallel subsample variation, resulting
in positive pairwise interaction among all species in the pooled
sample. In other matrices, species are divided into two sets which
show parallel interspecific variation within sets, but reversed var-

random by an appropriate method. On the other hand, when
controlled for the ‘““seasonal” variation, all matrices should appear
as random.

Field data

The material consists of 465 common shrews (S. araneus), origi-
nating from three localities, Pallasjdrvi (n =278) in western Finnish
Lapland (68°03" N, 24°09” E), Kainuu region (n=>51) in eastern
mid-Finland (ca 64° N, 27°30" E), and the Heindvesi-Enonkoski
region (n=136) in south-eastern Finland (ca 62° N, 29° E). Shrews
were caught with live-traps or pitfalls. All shrews were immature
young-of-the-year (237 males and 228 females).

The Pallasjdrvi material, which was collected specifically for a
study of spatial and temporal patterns in shrew helminths, repre-
sents 2 years (1992 and 1994), 3 months (July, August and Sep-
tember), and seven study grids. The habitat of all study grids was
similar: old forests characterised by a thick moss layer and domi-
nance of spruce (Picea abies) and blueberry (Vaccinium myrtillus).
With one exception (4.5 ha), the size of the grids was 1.8 ha, and
the average distance between adjacent grids was about 400 m. The
sample size (number of shrews) for each month per year varied
from 41 to 51.

The Kainuu and Heinévesi-Enonkoski shrews were both col-
lected from four widely separated forest sites (average distance
between sites was ca 40 km in Kainuu and 34 km in Heindvesi-
Enonkoski) during a week in September (Kainuu in 1987 and
Heindvesi-Enonkoski in 1995). The sample size varied between 3—
29 in Kainuu and 2444 in Heinédvesi-Enonkoski. Compared to the
Pallasjdrvi material, these samples do not allow a proper analysis of
sample heterogeneity on helminth occurrence. However, these data
were included because their helminth assemblage and diversity
differed from those at Pallasjirvi. Comparison between these three
localities may elucidate the role of helminth diversity and species
composition on patterns of interspecific association.

The significance of spatial and temporal variability for the oc-
currence frequency of the eight common helminth species (Pal-
lasjdrvi data set) was assessed by log-linear models, i.e. generalised
linear models for contingency tables using Poisson error distribu-
tion and log link function. The idea of generalised linear modelling
is to find the minimal adequate model, i.e. the simplest model that
fits satisfactorily (P > 0.05) the observed data (Crawley 1993). In
the log-linear analyses, we used simultaneously the study grid, year,
month and presence/absence of a particular helminth species as
classifying variables (one of the seven grids was excluded because of
an incomplete data set). Since the prevalence of the two Longistriata
species was very high (97-100%), we classified hosts in two groups

iation between sets. The labels ““1-14"...°7-8" denote the numbers
of species in the two sets (see text for more details). The lower part
of the table gives the number of positive and negative pairwise
covariances in each artificial matrix [+ significant positive asso-
ciation (observed index higher than expected), — significant nega-
tive association (observed index smaller than expected), ns not
significant (P > 0.05)]

0-15 1-14 2-13 3-12 4-11 5-10 6-9 7-8
(1) Species density distribution <0.001 <0.001 <0.001 <0.001 <0.001 0.004 ns ns
(2) Log-linear method 0.020 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
(3) Checkerboard score 0.000* 0.000™" 0.000" ns 0.000™ 0.000™ 0.000™ 0.000™
(4) Summed covariance 0.010" 0.000™" 0.000™" 0.000™" 0.000™" 0.020™" ns 0.000~
(5) Positive covariances 0.000* 0.000* 0.000* 0.000™" 0.000™" ns ns ns
(6) Covariance distribution <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Positive pairwise covariances 105 91 79 69 61 55 51 49
Significant 91 80 71 63 55 48 44 44
Negative pairwise covariances 0 14 26 36 44 50 54 56
Significant 0 13 20 30 37 43 48 50




according to the median intensity of infection (number of parasites
in a host individual); the intensity classes were <23 and >23 for
Longistriata depressa, and <12 and > 12 for L. pseudodidas.

We applied the six alternative association methods with and
without the ‘“‘subsample constraint” on the empirical data. In
addition to the overall associations, we report the numbers of
pairwise covariances among helminth species in each data set. All
association analyses in the empirical assemblages are based on
presence/absence data (0s and 1s).

Results
Power analysis

The main pattern emerging from the power analysis is
that all methods are more likely to detect positive non-
randomness than negative non-randomness of corre-
sponding strength (Fig. 2). For example, the statistical
significance of the overall association based on covari-
ance distribution disappears when 40% of occurrences
are redistributed in the negatively structured matrix. In
the positively structured matrix, the significance of the
test does not disappear until 80% of occurrences are
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Fig. 2 Ability to detect non-randomness of known strength by
alternative association measures (power analysis). The analysis is
based on two artificial, non-random matrices, one with a maximum
positive structure (continuous line) and another with a maximum
negative structure (dashed line). The structure of these matrices was
broken down by redistributing an increasing proportion of species
occurrences. The labels on the x-axis denote how large a proportion of
occurrences was redistributed: 7 is for a completely randomized
matrix. The y-axis gives cither the y>value (the fit between the
observed and expected frequency distributions: methods 1, 2 and 6) or
the observed test statistic (methods 3-5). Values in the shaded region
are non-significant (P>0.05). In some cases, the part of the curve
showing highly significant differences has been omitted
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redistributed [Fig. 2.(6)]. This pattern suggests that
positive associations are more likely to be detected than
negative ones irrespective of the test statistic used.

The ability to detect positive and negative non-ran-
domness did not show clear differences between various
association measures. The significant patterns disap-
peared when 30-50% and 70-90% of occurrences in the
negative and positive matrices, respectively, were redis-
tributed. However, the three measures based on fre-
quency distributions (methods 1, 2 and 6) tended to have
less power (i.e. a higher probability of type Il error) than
the measures based on a single index (methods 3-5)
(Fig. 2). The log-linear method seemed to be particularly
insensitive to negative overall associations.

The completely randomised matrices were detected as
non-random by all methods (Fig. 2), indicating a gen-
erally low level of type I error.

Proportion of positive and negative pairwise interactions

The log-linear method and covariance distribution were
the only null models detecting as non-random all the
eight artificial, structured data sets with variable pro-
portions of strong positive and negative pairwise inter-
actions (Table 1, Fig. 1). The four remaining methods
detected non-randomness in assemblages dominated by
positive pairwise interactions, but not necessarily in other
kinds of data sets. Notice that the three methods based
on a single index (methods 3-5) gave different results for
assemblages with roughly similar numbers of positive
and negative pairwise interactions. For example, the
matrix “5-10, with 55 positive and 50 negative pairwise
covariances, appeared to be negatively structured by the
checkerboard score, positively structured by the summed
covariance, and unstructured (random) by the method
based on the proportion of positive covariances.

The apparent structure of the eighth matrices always
disappeared when the subsample constraint was applied

(Fig. 1).

Helminth assemblages

The helminth material consists of 21 species representing
trematodes (3 species), cestodes (13 species) and nema-
todes (5 species) (Table 2). All these species, with the
exception of Dilepis undula (a cestode parasite of pas-
serine birds) and larval spirurids (nematode parasites of
larger mammals), are specialists in shrews. Despite the
equal number of helminth species, there were pro-
nounced differences in species composition and infection
levels of helminths between the three localities, e.g. three
cestodes that were common in Kainuu and Heinévesi-
Enonkoski were totally missing at Pallasjarvi. Further-
more, the average number of species per host was
markedly higher in Kainuu (x=6.5, SD=1.9) and He-
indvesi-Enonkoski (x =5.6, SD =2.1) than at Pallasjirvi
(x=3.7, SD=1.3).
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Table 2 Prevalence (% in-

fected) and microhabitats of Helminth species Pallasjarvi Pallasjarvi Kainuu Heinéivesi-.
helminths in the common shrew 1992 1994 n=>1 Enonkoski
Sorex araneus (s stomach, n=143 n=135 n=136
i intestine, b bladder, n number
of hosts) Trematoda )
Brachylaemidae
Brachylaemus fulvus (s) 1 1 18 18
Pseudoleucochloridium soricis (i) 1 0 0
Omphalometridae
Neoglyphe locellus (1) 4 3 0 0
Cestoda
Dilepididae
Molluscotaenia crassiscolex (i) 32 30 28 46
Dilepis undula (1) 7 10 6 6
Hymenolepididae
Neoskrjabinolepis schaldybini (i) 33 15 29 30
N. singularis (1) 4 4 12 1
Lineolepis scutigera (i) 34 30 16 19
Pseudobotrialepis globosoides (i) 6 6 0 0
Staphylocystis furcata (1) 1 2 41 10
Vigisolepis spinulosa (i) 0 0 45 28
Soricinia infirma (1) 0 0 18 5
Ditestolepis diaphana (1) 0 0 92 80
D. tripartita (i) 0 0 45 22
Ditestolepis sp. A (i) 28 37 0 0
Ditestolepis sp. B (i) 0 0 18 0
Nematoda
Heligmosomidae
Longistriata depressa (1) 99 100 100 97
L. pseudodidas (1) 97 99 89 91
Capillariidae
Capillaria kutori (s) 18 18 20 27
Liniscus incrassatus (b) 15 21 - 18
#Bladder not examined s dids
®Larvae probably belongin Strongyloididac ; ; e
p y ging Parastrongyloides winchesi (1) 1 0 71 46
to the genera Ascarops and Spiruridae spp. (i) 1 0 0 13

Physocephalus

Spatial and temporal patterns of helminth parasitism
(Pallasjarvi)

In the Pallasjirvi material, the most commonly observed
interaction was that between month and helminth oc-
currence (MH) (Table 3), i.e., the prevalence of most
helminth species differed significantly between the 3
months. The effect of year (YH) was included for three
species, and the effect of study grid (GH) for one species
(Ditestolepis sp. A) only. The selected models thus in-
dicate that temporal variability, and especially the
month of collection, affect the occurrence of helminths
more than spatial variability.

Overall associations among shrew helminths

The association analyses included 14 species in the
Pallasjirvi data sets (to make these data sets compara-
ble, one rare species that was absent in 1994 was
excluded), and 16 species in the Kainuu and Heinévesi-
Enonkoski data sets. In the Pallasjarvi data sets, we
analysed the possible effects of temporal heterogeneity
(three monthly samples) on interspecific associations. In

Table 3 The best log-linear models and their fit to the observed
data for interactions between the year (Y), month (M), study grid
(G) and occurrence of helminth species (H) in the common shrew
S. araneus (Pallasjirvi data). A high P-value indicates a good fit
between the model and observed data

Species Model P df P

M. crassiscolex YMH 67.8 60 0.23
N. schaldybini YH 51.5 68 0.93
L. scutigera MH 62.7 66 0.59

Ditestolepis sp. A YH, MH, GH 47.1 54 0.74
L. depressa MH 717.5 66 0.16
L. pseudodidas YH, MH 71.0 64 0.25
C. kutori MH 59.3 66 0.71
L. incrassatus MH 52.5 66 0.89

Kainuu and Heindvesi-Enonkoski, where the shrews
were collected during a short period, sampling hetero-
geneity is due to the variation of infection levels among
the four study sites

Overall, the results suggest that the three helminth
assemblages differed markedly with respect to the nature
of overall interspecific associations. The two Pallasjirvi
data sets showed a neutral (random) structure and the
data set of Heindvesi-Enonkoski showed a consistent



Table 4 Significance (P-values) of overall associations in empirical
helminth assemblages of the common shrew S. araneus by six al-
ternative methods. The column labels 4 and P indicate whether the
null model controlled for sample heterogeneity by means of a
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“subsample constraint” (A, absent, P, present). The lower part
of the table gives the numbers of species pairs and pairwise
covariances in each data set, applying the subsample constraint
[+ significant positive association, ns not significant (P <0.05)]

Method Pallasjdrvi 1992 Pallasjdrvi 1994 Kainuu Heinédvesi-Enonkoski
A P A P A P A P
(1) Species density distribution ns ns 0.002 0.008 ns ns 0.005 0.041
(2) Log-linear method ns ns ns ns ns ns <0.001 0.003
(3) Checkerboard score ns ns 0.024% ns 0.0447 0.0247 0.000"  0.000
(4) Summed covariance ns ns ns ns 0.007* 0.0247 0.000"  0.000"
(5) Positive covariances ns ns ns ns ns ns 0.000"  0.000"
(6) Covariance distribution ns ns ns ns 0.022 ns <0.001 0.001
Number of species pairs 9 91 120 120
Positive pairwise covariances 40 40 53 84
Significant 1 0 3 10
Negative pairwise covariances 5 38 52 36
Significant 0 0 0 1
I Observed [] Expected The simulation constraint used did not usually affect
Pallasjarvi 1992 Heinavesi-Enonkoski the outcome of association analyses. However, in a few
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Fig. 3 Overall interspecific associations for two helminth assemblages
of the common shrew Sorex araneus: the unstructured (random)
assemblage of Pallasjirvi 1992, and the positively structured
assemblage of Heindvesi-Enonkoski. The frequency distributions are
based on three association methods: species density distribution (a, b),
log-linear method (¢, d), and covariance distribution (e, f). The
expected distributions were simulated using the subsample constraint
(see text). An asterisk above the columns indicates frequency classes in
which the observed frequency differs significantly (P <0.05) from the
mean expected frequency. See Table 4 for overall differences between
the observed and expected distributions

positive structure (Table 4, Fig. 3). The Kainuu assem-
blage was intermediate between these two assemblages:
two of the six methods indicated a significant (positive)
structure and four methods indicated no structure.

cases, the level of significance decreased when the as-
semblage was analysed with the subsample constraint
(Table 4).

Discussion
Applicability of association methods

The testing of null models on artificial data sets showed
that rejecting a true null hypothesis of no overall
structure (type I statistical error) is not a problem with
the methods applied here. This seems to suggest that, as
long as the expected distribution is created by random-
isation, the method used is not likely to affect the out-
come of association analysis. However, this clearly was
not the case, because the results for the structured data
sets depended on the method used.

When applied to artificial data sets, the methods
based on a single index (methods 3-5) had slightly more
power, i.e. a smaller risk of accepting a null hypothesis
of no overall structure when one exists (type Il error),
than the methods utilizing frequency distributions
(methods 1, 2 and 6). The observed difference in power
may be simply due to the different way of determining
statistical significance by these two types of methods.
For single-index methods, the significance is determined
directly from the expected distribution, whereas the fit
between observed and expected frequency distributions
is used to determine significance for the other three
methods. When testing the fit between two frequency
distributions, it is usually necessary to combine fre-
quency classes with small expected frequencies, espe-
cially in species-poor assemblages. This inevitably leads
to a loss of information and decreased statistical
power.

Other drawbacks of methods utilising frequency dis-
tributions are the independence of various frequency
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classes (Gotelli and Graves 1996) and possible difficul-
ties interpreting the observed patterns. With these pit-
falls in mind, the methods based on a single index
appear to be better suited for overall association anal-
ysis, as suggested by Gotelli and Graves (1996). How-
ever, the single-index methods (and species density
distribution) could not detect strong non-randomness in
some of the artificial data sets, obviously due to the
presence of roughly equal numbers of positive and
negative pairwise interactions which cancel each other
out (Table 1). Because natural assemblages always in-
clude variable proportions of positive and negative
pairwise interactions, this drawback seems to restrict the
applicability of these methods for empirical studies.
Moreover, the three tested single-index methods gave
contrasting results for some of the artificial data sets
(e.g. the data set ““5-10” in Table 1), reflecting the fact
that different methods measure different things. Direct
comparison of studies based on different methods is thus
not meaningful.

We conclude that none of the tested methods appears
to be ideal for empirical studies. The most reliable way
to analyse overall associations in natural assemblages is
the simultaneous use of both types of method. However,
the method most commonly used for parasites, the
species density distribution (method 1), appears to be
least suitable for empirical studies, because it combines
all the drawbacks mentioned above. In species-poor
assemblages (less than ten species), the single-index
methods seem to be the obvious choice.

Predominance of positive overall associations

Analyses on community structure of parasites (Lotz and
Font 1991) and free-living animals (Schluter 1984) have
revealed predominantly neutral and positive overall as-
sociations (but see Lafferty et al. 1994), a pattern that is
supported by the present empirical data. Given the op-
portunities for interspecific competition in the patchy,
spatially restricted environments of parasites (e.g. host
intestine), the lack of observed negative overall associ-
ations is remarkable. In the following, we propose sev-
eral factors that might contribute to the predominance
of positive overall associations in empirical (parasite)
assemblages.

First, and probably most important, the results of
the power analysis suggest that detecting positive non-
randomness is “‘inherently” much more probable than
detecting negative non-randomness irrespective of the
method used. A similar, but less clear-cut result was
obtained by Gotelli et al. (1997). For example, in the
log-linear method, the negative ‘“‘signal” disappeared
when only 30% of species occurrences were randomly
redistributed (Fig. 2), making it very unlikely that a
negative non-randomness will be detected in natural
populations. Similarly, Hastings” (1987) numerical
analysis showed that even strong competitive interac-
tions among three species may remain undetected by the

Schluter (1984) index, supporting the idea of generally
low probability of negative non-randomness.

It could also be argued that the lack of column sum
constraints in most of the null models used for parasite
assemblages, including the one used by us, biases the
analyses towards positive overall association (Gotelli
and Graves 1996, p.168). However, there is no obvious
reason why the absence of column sum constraint would
increase the probability of type I error more for positive
assemblages than it might do for negative assemblages.
Also, the very low probability of type I error for our null
model seems to refute this argument. However, it is clear
that the constraints included in a null model do affect the
observed patterns, and therefore the results should be
evaluated and compared relative to the constraints used.

Ignorance of various sampling heterogeneities could
partly explain the commonness of positive overall as-
sociations in parasites (Lotz and Font 1991). For ex-
ample, ignoring the age of the host will bias the result
towards positive association, because most helminths
are more prevalent in adult hosts than in juveniles
(Haukisalmi et al. 1994).

Finally, indirect, or apparent, interactions among
species may bias the observed patterns towards positive
non-randomness. In any truly non-random assemblage,
there is likely to be one or more “key” species (e.g.
dominant competitors) which will show negative (or
positive) interactions with several other species. For
example, the negative pairwise interactions among larval
trematodes are asymmetric and hierarchic, i.e. the top
competitors are dominant over most of the other species
(Lafferty et al. 1994). If n species show independently a
negative association with a dominant competitor, these
pairwise interactions will produce n(n—1)/2 apparent
positive associations among the n subordinate species.
Thus, a predominantly negative assemblage may actu-
ally be classified as random or positively structured be-
cause of the presence of a number of indirect positive
interactions. It should be noticed, however, that in shrew
helminth communities, negative pairwise interactions
were practically absent (Table 4), suggesting that some
of these assemblages are truly structured by positive
interactions.

Positive overall associations in shrew helminths

The positive overall associations observed in shrew
helminths are probably not due to uncontrolled sam-
pling heterogeneity. The shrews represented the same
cohort and were collected during a short time span.
Previously, we have shown that the sex of immature
shrews does not affect the helminth infection level
(Haukisalmi et al. 1994). Furthermore, the Pallasjirvi
data showed that there are rarely significant spatial
differences in helminth prevalence within a homoge-
neous forest habitat. The fact that pooling of various
temporal or spatial subsamples did not cause clear bias
to the overall associations (Table 4) suggests that the



covariation of infection levels of helminth species among
subsamples was relatively weak.

If the association analysis has been properly con-
trolled for the effects of sampling heterogeneity, positive
associations among parasites may arise because of
similar transmission pathways, because of direct (mu-
tualistic) interactions, or because of indirect (host-me-
diated) interactions. Similarity of transmission may be
responsible for positive associations among congeneric
helminth species which usually have similar life cycles,
but not for positive associations in general. The inter-
mediate hosts for shrew cestodes include copro- and
necrophagous beetles (Ditestolepis diaphana, Staphy-
locystis furcata, Neoskrjabinolepis schaldybini), collem-
bolans (Vigisolepis spinulosa), fleas (Lineolepis scutigera)
and snails (Molluscotaenia crassiscolex) (Kisielewska
1961; Prokopic 1968, 1969). Moreover, the life cycles
of nematodes are usually direct (no intermediate hosts),
making it more unlikely that similar transmission
pathways would be responsible for the observed positive
associations.

We regard host-mediated interactions as the most
probable explanation for the positive overall associa-
tions in shrew helminths. Experimental work has shown
that positive (synergistic) associations among mamma-
lian helminths often arise because of immunosuppressive
effects of certain species (see Christensen et al. 1987
for a review). The immunosuppressive effect induced by
a helminth species may be non-specific, i.e. it impairs the
host’s ability to resist both homologous (species re-
sponsible for the effect) and heterologous (other species)
infections, including totally unrelated helminths (Alghali
et al. 1985). Thus, even a single key species might be able
to create an overall positive structure, if several other
species are affected by its immunosuppressive capacity.
Such pairwise associations would also create a number
of indirect positive interactions which would reinforce
the overall positive association.
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