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Abstract The sea urchin, Lytechinus variegatus, has
been estimated to consume between 50 and 90% of an-
nual net aboveground production in selected turtlegrass
(Thalassia testudinum) meadows in the eastern Gulf of
Mexico. Nevertheless, turtlegrass persists where sea ur-
chin grazing is intense. We hypothesized that turtlegrass
productivity is stimulated by grazing, as has been re-
ported from terrestrial grassland systems, and that this
best explains the persistence of heavily grazed turtlegrass
in St. Joseph Bay, Fla. This hypothesis was tested by
manipulating sea urchin densities (0, 10, and 20 indi-
viduals/m2) in 1-m2 enclosures. These densities encom-
pass the range of average densities at the study site and
those reported in the literature. Changes in turtlegrass
abundance (e.g., short shoot density and biomass),
production by short shoots, and leaf width were moni-
tored in these enclosures during the summer. Repeated-
measures ANOVA showed that production by short
shoots, leaf density/shoot, and leaf width decreased over
time in all treatments. Leaf density/shoot and leaf width
were not signi®cantly impacted by grazing, nor did
grazing signi®cantly reduce seagrass biomass, but it did
lead to signi®cantly higher densities of short shoots than
found in control cages. Our results indicate that turtle-
grass compensates for the e�ects of sea urchin herbivory
by increasing the recruitment of short shoots during the
growing season. We estimate that this increased shoot
density led to a 40% increase in net aboveground pri-
mary production (g dry weight/m2) in grazing treat-
ments, which helps to explain the lack of signi®cant

reductions of sea grass biomass during the growing
season.
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Introduction

The importance of herbivory in controlling plant pro-
ductivity and abundance in terrestrial ecosystems is well
established (e.g., Dixon 1971; Harper 1977; Morrow and
LaMarche 1978; Rausher and Feeny 1980; Cumming
1982; Crawley 1985; Whitham and Mopper 1985). In
evaluating plant responses to herbivory, ecologists are
polarized, hypothesizing that plants either (1) bene®t
from increased nutrient recycling, light availability,
¯owering, and/or seed production brought on by graz-
ing (e.g., Owen and Wiegert 1976; McNaughton 1979a,
b, 1986; Floate 1981; Cargill and Je�ries 1984; Paige and
Whitham 1987), or (2) are damaged by herbivores and
any apparent bene®ts are limited to short periods of time
(Belsky 1986, 1987; Belsky et al. 1993). The controversy
centers on interpretations of the selective processes
underpinning plant responses to herbivore-induced
damage (Belsky et al. 1993).

In the sea, although there have been many examina-
tions of the e�ects of grazing on macroalgae (reviewed
by Lubchencho and Gaines 1981; Gaines and Lub-
chencho 1982), sea grass-herbivore interactions are
poorly understood. In general, herbivory on sea grasses
is believed to be relatively unimportant (cf. Thayer et al.
1984) due, in part, to the loss of important vertebrate
herbivores [e.g., green turtles, dugongs, manatees, ®shes,
and waterfowl (Randall 1965; Heinsohn and Birch 1972;
Lipkin 1975; Charman 1977, 1979; Bjorndal 1980;
Kiorboe 1980; Jacobs et al. 1981)]. In addition, sea
grasses are perceived to be a poor-quality food source
(Bjorndal 1980). Consequently, investigations of the
factors controlling seagrass productivity and abundance
emphasize the primacy of sediment porewater nutrient
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supply (e.g., Patriquin 1972; Short 1987; Powell et al.
1989; Fourqurean et al., 1992; Short et al. 1993),
light availability, and/or other physical factors (e.g.,
Patriquin 1975; Backman and Barilotti 1976; Dennison
and Alberte 1982; Thom and Albright 1990).

In previous papers, we demonstrated that sea urchins
[Lytechinus variegatus (Lamarck)] can reduce sea grass
biomass in the eastern Gulf of Mexico (Valentine and
Heck 1991; Heck and Valentine 1995). Furthermore,
using reported L. variegatus densities, their ingestion
rates and estimates of net sea grass aboveground pro-
duction, we determined that this sea urchin alone can
consume between 50 and 90% of the annual above-
ground turtlegrass production in some regions of the
Gulf of Mexico and Caribbean Sea (cf. Moore et al.
1963; Greenway 1976, 1995; Heck and Valentine 1995).
Observations elsewhere show that other sea urchins can
also control local sea grass abundance (Ogden et al.
1973; Bach 1979; Bak and Nojima 1980; Kirkman and
Young 1981; Hulings and Kirkman 1982; Vicente and
Rivera 1982; Verlaque and Nedelec 1983; Jafari and
Mahasneh 1984; Larkum and West 1990; Klumpp et al
1993; F. Short, personal communication). In addition,
waterfowl, green turtles [Chelonia mydas (Linnaeus)] and
sirenians [i.e., manatees and dugongs], which can still be
locally abundant, are intense sea grass grazers (Lipkin
1975; Charman 1977; Anderson and Birtles 1978;
Bjorndal 1980; Jacobs et al. 1981; Nietschmann and
Nietschmann 1981; Ogden et al. 1983; Williams 1988;
Nietschmann 1990; Provancha and Hall 1991; Baldwin
and Lovvorn 1994), and can have even greater impacts
on sea grass biomass and productivity than sea urchins
(Zieman et al. 1984). Together these data suggest that
herbivory on sea grasses, although reduced in a histor-
ical context, may still be important in determining sea
grass productivity and abundance in many areas.

Despite grazing impacts, sea grasses can persist in
areas where herbivory is intense (e.g., Bach 1979; Hul-
ings and Kirkman 1982; Vicente and Rivera 1982; Jafari
and Mahasneh 1984) and can, depending on the season,
recover to rapidly exceed aboveground standing crops in
ungrazed areas (Valentine and Heck 1991). This suggests
that grazing may stimulate net aboveground sea grass
production (NAPP), as has been suggested for both ter-
restrial grasses and marine algal turfs (e.g., McNaughton
1979a, b; Carpenter 1986; Williams and Carpenter 1988).
To address this possibility, we experimentally examined
the impact of chronic sea urchin grazing on turtlegrass
productivity in the eastern Gulf of Mexico. Speci®cally,
we asked whether herbivory could lead to increases in
turtlegrass productivity and abundance.

Materials and methods

Study site

The study site, St. Joseph Bay, Fla, is located in the northeastern
Gulf of Mexico. St. Joseph Bay is a protected, shallow coastal

embayment with little freshwater input: salinities usually range
from 30 0/00 to 36 0/00 (Stewart and Gorsline 1962; Folger 1972;
personal observation). Temperatures vary seasonally from 8° to
30°C (personal observation) and the mean tidal range is 0.5 m
(Rudloe 1985).

Enclosed within the bay is an extensive sea grass habitat esti-
mated to occupy some 26 km2 (McNulty et al. 1972). This sea grass
habitat is dominated by large monospeci®c stands of Thalassia
testudinum (Banks ex KoÈ nig) interspersed with smaller patches of
Halodule wrightii Aschers, unvegetated sand ¯ats, and small
amounts of Syringodium ®liforme Kutzing (Iverson and Bittaker
1986). Sea grass production is highly seasonal with leaf biomass
and density peaking near 150 g ash free dry mass (AFDM)/m2

and approximately 3,000 leaves/m2 during the summer months
(Iverson and Bittaker 1986). Only the shallowest portions of the sea
grass habitat are exposed during low tides, and wave energy is
minimal.

Turtlegrass (T. testudinum) is the dominant sea grass species in
the tropical and subtropical western Atlantic Ocean. It is a clonal
sea grass with horizontal rhizomes growing beneath the sediment
surface. Regularly spaced, erect, vertical branches (called short
shoots) arise from the horizontal rhizome and extend into the water
column. New leaves grow from a centrally located basal meristem
and are held together by old leaf sheaths. Short shoots can have as
many as ®ve leaves present during the growing season (Tomlinson
and Vargo 1966; Zieman and Zieman 1989).

St. Joseph Bay occurs near the northernmost extent of an
o�shore, high-salinity, sea grass habitat that covers more than
3,000 km2 of substratum on the broad continental shelf of the
eastern Gulf of Mexico (Iverson and Bittaker 1986). Turtlegrass
forms a physically complex habitat on otherwise featureless
substrate. Annual epibenthic macroinvertebrate production in this
habitat can exceed 400 g AFDM/m2 per year, some eight times
higher than observed on nearby unvegetated substrates (Valentine
and Heck 1993).

The dominant turtlegrass grazer along the west coast of Florida
is the sea urchin L. variegatus (Lamarck). L. variegatus is a gen-
eralist herbivore that ingests whatever plant material it encounters
(Lawrence 1975; Ogden 1976). This sea urchin is commonly found
in subtropical and tropical sea grass beds in the western Atlantic
Ocean, with average densities of up to 20 individuals/m2 reported
from several locations in the tropical and subtropical western
Atlantic Ocean (see Table 1 in Valentine and Heck 1991).

Grazing experiment

During May to August 1992, 21 1-m2 circular cages, constructed
with 30-mm mesh plastic aquaculture netting and iron rebar, were
placed along a turtlegrass habitat edge, approximately 1 m from a
sand/sea grass boundary. This location was selected to standardize
the location of experimental treatments within a sea grass habitat.
Grazing intensity was manipulated in three treatments consisting of
0, 10, and 20 sea urchins/m2. These densities encompassed com-
monly reported average sea urchin densities in the Gulf of Mexico
and Caribbean Sea (e.g., Moore et al. 1963; Greenway 1976, 1995;
Keller 1983; Valentine and Heck 1991). Each treatment was
randomly assigned to 7 of 21 cages. Based on earlier experiments
(Valentine and Heck 1991), we estimated that seven replicates
would provide us with a 90% chance of detecting a 0.5 g dry mass
(DM)/m2 di�erence in aboveground biomass between treatments at
the 5% level of signi®cance. A 0.5-g DM di�erence was selected
based on the range of observed e�ects of the manipulated sea
urchin densities on aboveground seagrass biomass (Valentine and
Heck 1991).

Sea urchins were enclosed in cages for 3 weeks/month and re-
moved from cages for 1 week/month. During the week-long period
without urchins, we made several estimates of turtlegrass produc-
tion and abundance using established techniques. Grazing impacts
on production by turtlegrass short shoots (hereafter called pro-
duction) were measured monthly. This was done using a syringe to
puncture all the leaves in a shoot at the base of the leaf sheath
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(Dennison and Alberte 1982). Five haphazardly selected turtlegrass
short shoots were so marked within each cage. After 6 days, all
leaves of the marked shoots were clipped at the sediment-water
interface, frozen, and returned to the laboratory for the analyses
described below. Because turtlegrass leaves grow from a basal
meristem, the production by marked shoots can be determined by
measuring the amount of new growth distal to the hole in punc-
tured leaves, plus any new, unpunctured leaves that appear within a
marked bundle.

The removal of sea urchins from the cages ensured that their
grazing activities would not lead to loss of marked leaves during the
week when production estimates were being made. After produc-
tion samples had been harvested, sea urchins were restocked in
grazing treatments. This procedure was repeated each month.

Changes in turtlegrass abundance were also monitored monthly
by counting the short shoots present in ®ve haphazardly located
0.01-m2 quadrats in each cage. To minimize potential destruction
of sea grass associated with aboveground biomass sampling (see
below), sampling within the cages was limited to the beginning and
end of the experiment. Aboveground biomass was determined from
three 0.01-m2 clippings of sea grass leaves taken from each cage in
May and August.

In the laboratory, mean leaf density, leaf width (mm), and
aboveground production (g DM/shoot per day), and epibiont
biomass on sea grass leaves were determined for each cage from the
harvested shoots. The production by marked short shoots was
de®ned as the mass of all leaf tissue, dried to a constant mass at
90°C, between the location of the initial marking scar and base of
the leaf sheath, plus the mass of any new unmarked leaves formed
during the 6-day period. Unmarked leaves were seldom encoun-
tered. Mean leaf density/marked shoot was determined by counting
leaves on the ®ve marked shoots. Leaf width (�1 mm) on the
leaves of each marked shoot was measured at the widest point on
the leaf. For comparisons with other studies, all data have been
standardized to 1 m2.

Epibiont fouling of sea grass leaves can limit sea grass growth
by inhibiting leaf from collection of light for photosynthesis
(Neckles et al. 1993; Williams and Ruckleshaus 1993). The extent
of leaf fouling was characterized by epibiont biomass. Epibiont
biomass was determined by scraping fouling organisms and algae
from each leaf with a razor blade, then drying and weighing epi-
bionts as described above for seagrass biomass. The term epibiont
is used instead of epiphyte since many plants and animals, in-
cluding barnacles, bryozoans, hydroids, polychaetes, and ascidians,
along with coralline and ®lamentous algae and diatoms, typically
colonize turtlegrass leaves along the northern coast of Florida
(Cherno� 1985; personal observation). For comparisons with
other studies, all data have been standardized to 1 m2.

Statistical analyses

We used analysis of variance (ANOVA) to ensure that the study
site was homogeneous with respect to the selected parameters at the
beginning of the experiment. Treatment e�ects on all of the sea
grass parameters, measured monthly, were compared using a
repeated measures ANOVA (Winer 1971). Prior to the analysis,
several transformations were performed to either normalize the
data or ensure that count variances were independent of their
means. The e�ects of these transformations were veri®ed using
Mauchly's criteria for repeated-measures ANOVA (cf. von Ende
1993). Probability plots for normality and Bartlett's test for ho-
mogeneity of variance were used to determine the e�ects of these
transformations on ANOVAs conducted for single dates. Leaf
growth, leaf width, and aboveground biomass were each normal-
ized using a natural log transformation. Shoot densities were
transformed using a square root transformation. If signi®cant dif-
ferences were detected, a posteriori comparisons were conducted
using the She�eÂ multiple-comparison test. All other measured
parameters satis®ed the assumptions of these ANOVAs and were
not transformed. All di�erences were considered signi®cant at
P < 0.05.

Results

Initially, ANOVA showed that none of the measured
parameters, except epibiont biomass, di�ered signi®-
cantly among treatments, indicating that the study site
was relatively homogeneous at the beginning of our
experiment (Table 1). Over time, all of the measured
plant parameters changed signi®cantly (Tables 2, 3).
Production by individual short shoots decreased in all
treatments during the course of the experiment but was
not a�ected by the presence of sea urchins (Table 3;
Fig. 1a). Leaf width and density also decreased signi®-
cantly with time. Leaf density per shoot decreased by
approximately one leaf in all treatments (Table 2).
Neither of these parameters was a�ected by sea urchin
grazing, as signi®cant interactions between grazing and
time were not noted. While aboveground biomass more
than doubled in all treatments (Table 2), there were no
signi®cant di�erences among treatments at the end of
this experiment (Table 3).

Sea urchin grazing signi®cantly interacted with time
to control the rate at which short shoot density increased
(Table 3). Short shoot density in the control treatment
changed little from May through July, after which there
was an approximately 16% increase in August (Fig. 1b).
She�eÂ comparisons of shoot densities among treatments
at the end of the experiment found signi®cant di�erences
between the control and grazing treatments (both 10 and
20 individuals/m2), but not between grazing treatments,
suggesting that grazing by as few as 10 urchins/m2 could
trigger the increased production of new short shoots by
turtlegrass enclosed within these cages. On average, the
two grazing treatments contained 40% more short
shoots than the control treatment at the end of the
experiment (Fig. 1b, Table 2).

Initially, signi®cant di�erences in epibiont biomass
(g DM/shoot) were noted among treatments (Table 1).
She�eÂ comparisons of the treatments found signi®cantly
more epibiont biomass on leaves in cages that were se-
lected to exclude sea urchins than on leaves within the

Table 1 Summary of ANOVAs describing the initial conditions in
May within our cages prior to the enclosure of sea urchins. Degrees
of freedom for all tests are 2 and 18. Di�erences were considered to
be signi®cant when P < 0.05

Plant characteristic Source SS F P

Aboveground biomass Model 0.348 2.02 0.16
Error 1.549

Production Model 0.00026 0.54 0.59
Error 0.04340

Epibiont biomass Model 0.016 9.79 0.0001
Error 0.014

Leaf density/shoot Model 0.1067 0.95 0.40
Error 1.0057

Leaf width Model 3.349 2.16 0.14
Error 13.9331

Short shoot density Model 0.203 2.38 0.12
Error 0.767
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cages selected for the two grazing treatments. There were
no signi®cant di�erences between the two grazing
treatments. While epibiont biomass increased signi®-
cantly over time, sea urchin grazing was not found to
signi®cantly a�ect how it did so (Table 3).

Discussion

Turtlegrass responses to sea urchin grazing in the
northeastern Gulf of Mexico are complex, and depend
on seasonal patterns of primary productivity and
grazing intensity (Valentine and Heck 1991; Heck and
Valentine 1995). We previously demonstrated that sea
urchins at the manipulated densities (i.e., 10 and 20
urchins/m2) could reduce turtlegrass habitats to barren,
unvegetated substrates from fall through early spring

Table 2 Measured plant characteristics in the three sea urchin grazing treatments in May and August 1992 (mean � 1 SE) n = 7 (DM
dry mass)

Characteristic Urchin density/m2

0 10 20

May August May August May August

Aboveground biomass 92 189 69 145 64 154
(g DM/m2) (�32) (�42) (�29) (�39) (�29) (�31)
Production 0.008 0.004 0.007 0.004 0.009 0.005
(g DM/shoot per day) (�0.001) (�0.001) (�0.001) (�0.001) (�0.003) (�0.001)
Epibiont biomass 0.09 0.293 0.04 0.217 0.03 0.10
(g DM/shoot) (�0.03) (�0.33) (�0.03) (�0.22) (�0.02) (�0.11)
Leaf density/shoot 3.63 2.76 3.77 2.69 3.63 2.89

(�0.37) (�0.14) (�0.29) (�0.43) (�0.27) (�0.40)
Leaf width (mm) 7.90 6.84 7.13 7.99 7.77 7.32

(�0.73) (�0.78) (�0.99) (�0.78) (�1.40) (�0.98)
Short shoot density (mean/m2) 637 836 670 1171 714 1170

(�86) (�202) (�104) (�174) (�166) (�108)

Table 3 Repeated-measures analysis of monthly turtlegrass
growth parameters. Degrees of freedom = 3,2,6. Di�erences were
considered to be signi®cant when P < 0.05 (TM = time, UD =
urchin density)

Parameter Factor MS F P

Aboveground TM 51.9 1.83 0.15
biomass UD 4.07 0.14 0.87

TM*UD 47.9 1.69 0.14
Production TM 1.65 5.14 0.003

UD 0.409 1.27 0.29
TM*UD 0.190 0.59 0.74

Epibiont biomass TM 34.7 5824.67 0.0001
UD 0.012 2.0 0.14
TM*UD 0.0004 0.67 0.68

Leaf density TM 0.162 14.39 0.0001
UD 0.036 3.2 0.047
TM*UD 0.008 0.7 0.65

Leaf width TM 0.068 5.12 0.003
UD 0.077 5.78 0.005
TM*UD 0.0006 0.05 1.00

Short shoot density TM 1.78 7.92 0.0001
UD 0.376 0.17 0.52
TM*UD 0.671 2.99 0.006

Fig. 1 Net aboveground turtlegrass short shoot production (a) and
short shoot density (b) in our experiment in St. Joseph Bay, Fla.,
during summer 1992 (mean �1 SE, n = 7) (DM dry mass)
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(Valentine and Heck 1991; Heck and Valentine 1995). In
this study we showed that sea urchin grazing can also
lead to increased short shoot densities during the sum-
mer, which helps to explain the persistence of turtlegrass
habitats in the northeastern Gulf of Mexico despite in-
tense grazing.

Earlier studies have shown that the repeated removal
of turtlegrass leaves by sea urchins can lead to decreased
aboveground production, leaf width, and leaf density/
shoot (e.g., Greenway 1976; Zieman et al. 1984). In our
study we also observed temporal decreases in each of
these parameters. While ANOVA failed to relate these
changes directly to the presence of sea urchins (interac-
tion between time and treatment was not signi®cant), we
suggest that the decreases in leaf characteristics may be
due to the presence of more younger shoots in the grazed
plots at the end of the experiment. Contradicting the
suggestion that these di�erences were due to greater
numbers of young shoots in the grazing treatments is the
fact that epibiont biomass increased signi®cantly in all
treatments (i.e., 0, 10, and 20 individuals/m2) during this
experiment.

L. variegatus readily consumes turtlegrass (Valentine
and Heck 1991; Heck and Valentine 1995), yet above-
ground biomass, while reduced, did not di�er signi®-
cantly from the control treatment at the conclusion of
the experiment. One reason for the failure to detect a
signi®cant di�erence was the low statistical power of the
comparison. We estimate, for example, that the power of
our test to detect a 50% di�erence in the aboveground
biomass mean for all untransformed data collected in
August was 0.201 (at a = 0.05). Power diminished to
0.05 for the natural-log-transformed data (at a = 0.05).
To have an 80% chance of detecting a 50% di�erence in
untransformed means, the minimum replicate number
needed would have been 32 while for transformed means
we would have needed n = 581 (at a = 0.05). There-
fore, the probability of making a type II error (failing to
reject a false null hypothesis of no signi®cant treatments
e�ects) is very high.

We can crudely estimate turtlegrass aboveground
production in our treatments by multiplying short shoot
density by our estimates of shoot-speci®c production.
Since the production of individual short shoots was not
signi®cantly di�erent among treatments, the approxi-
mately 40% greater shoot density in the 10 and 20
individuals/m2 treatments means that net aboveground
primary production is some 40% higher in grazing
treatments than in the control cages (average of ca.
4.68 g DM/m2 per day vs. ca. 3.34 g DM/m2 per day,
respectively, during this experiment). Additionally,
because the production of new shoots is closely linked to
the rate of rhizome growth (Gallegos et al. 1993) and
occurs only at rhizome apices (Tomlinson and Vargo
1966), sea urchin grazing at the manipulated densities
must have also led to increased rhizome growth rates
and belowground production.

Herbivores have been shown to stimulate increased
production of grasses in terrestrial systems (McNaugh-

ton 1979a, b, 1985; Cargill and Je�ries 1984; Frank and
McNaughton 1993), phytoplankton in freshwater lakes
(Martin 1967; Porter 1976; Lehman and Scavia 1982;
Scavia et al. 1984; but see Bartell 1981; Taylor 1984),
marine algal turfs (Carpenter 1986), coralline algae
(Littler et al. 1995) and marine benthic diatoms (Bianchi
1988). To date, however, this possibility has not been
investigated in sea grass systems. Thayer et al. (1982)
hypothesized that grazing green turtles ``short-circuit''
detrital cycling by making nitrogen-rich fecal material
available to detritivores. This same nitrogen-rich fecal
material could also stimulate turtlegrass growth in
tropical sea grass systems. This hypothesis has not been
supported by ®eld observations, which have associated
grazing on turtlegrass, either by sea urchins or green
turtles, with reduced leaf growth and sediment nutrient
depletion (Zieman et al. 1984; Williams 1988).

The increased production in our treatments is similar
to that reported from terrestrial grasslands (e.g.,
McNaughton 1985, 1986). Based on descriptions of
herbivore impacts on terrestrial perennial grasses and on
examples from the sea grass literature, we suggest that
sea grasses have as-yet-unrecognized physiologically
based mechanisms for compensating for herbivory.
Belsky et al. (1993) suggested that plants can tolerate
herbivory and regrow if they possess (1) storage organs
that contain carbohydrate, amino acid and protein re-
serves, (2) dormant meristems or buds that can replace
destroyed organs, (3) the ability to reallocate energy and
reserves from undamaged to damaged tissues, (4) the
ability to increase photosynthetic rates in residual tis-
sues, and (5) the ability to use photosynthate from newly
growing tissue. Of these ®ve traits required for regrowth
and potentially increased growth following grazing, sea
grasses possess at least three. During peak production,
sea grass rhizomes serve as storage sites for carbohy-
drates and proteins that are used for leaf regeneration
(e.g., Dawes and Lawrence 1979; Iizumi and Hattori
1982; Short and McRoy 1984; Tomasko and Dawes
1989a). In addition, there is evidence that stored car-
bohydrates are translocated along rhizomes to areas of
increased metabolic activity such as new leaf growth
(Libes and Bourdouresque 1987; Tomasko and Dawes
1989a). Tomasko and Dawes (1989b) further showed
that the loss of the outside leaves on a sea grass shoot
will lead to increased rates of primary production in the
remaining undamaged leaves.

Our results, plus lessons learned from the terrestrial
literature, suggest that interactions between sea urchins
and turtlegrass in the eastern Gulf of Mexico are more
complicated than previously suggested. To date, our
studies show that the same sea urchin densities (i.e., 10,
and 20 urchins/m2) that stimulate increased production
of short shoots during the summer may lead to de-
structive overgrazing of the habitats during fall and
winter (Valentine and Heck 1991). If grazing is persistent
during the spring, when new leaf growth is initiated,
urchins can create unvegetated patches in what was
previously continuously vegetated habitat, presumably
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because stored plant reserves are insu�cient to support
regrowth (Heck and Valentine 1995). Because of this, we
hypothesize that these apparent contradictions in sea
grass responses to grazers will be better understood only
when the role of stored materials in rhizomes, nutrient
recycling, along with shifts in growth rate following
grazing, are considered. Perhaps most importantly, be-
cause turtlegrass can respond to herbivory by increasing
the density of new shoots, we suggest that simply mea-
suring sea grass biomass as a response variable may have
led to a large underestimate by earlier investigators of
the e�ects of herbivory on sea grass (cf. Sand-Jensen
et al. 1994).
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