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Stable isotope analysis is used frequently to determine
the relative contributions of different food sources to an
animal’s diet (Hobson 1999). Isotopic ratios for the ani-
mal tissues and each of its potential food sources are de-
termined. The similarity of the ratios for the animal tis-
sues with those of individual food sources (after correct-
ing for fractionation during digestion and assimilation)
gives an idea of their relative importance in the diet; in
other words “you are what you eat” (DeNiro and Epstein
1978). Two food sources can be partitioned using the
isotopic ratio for a single element (e.g., δ13C), or three
food sources can be partitioned using isotopic ratios for
two elements (e.g., δ13C and δ15N) (Kwak and Zedler
1997). A number of recent papers have used geometric
procedures to quantify the contributions of three food
sources to the diet using δ13C and δ15N (Ben-David et al.
1997a, 1997b; Kline et al. 1993; Szepanski et al. 1999;
Whitledge and Rabeni 1997). However, these methods
do not provide correct solutions to this three-endmember
mixing problem. The purpose of this paper is to point out
the shortcomings of these methods and to propose an al-
ternative procedure which avoids them.

Figure 1 shows a graphical representation of the ana-
lytical situation. The dietary isotopic composition is rep-
resented by point D within the triangle bounded by the
points for the adjusted food source isotopic compositions
A′, B′, and C′. In the geometric procedures, Euclidean
distances are calculated for line segments DA′, DB′, and
DC′ and are used to compute the dietary contributions.
Several variations of this calculation have been utilized.

Kline et al. (1993) used the following equation:

(1)

which simplifies to:

(1a)

where X represents one of the food sources A, B, or C,
and DX rep resents the corresponding line distance DA′,
DB′, or DC′.

Whitledge and Rabeni (1997) used reciprocal distanc-
es in the formula:

(2)
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Fig. 1 Plot of dual isotopic compositions of food sources A, B,
and C, and predator D. A′, B′, and C′ represent the food source
isotopic composition after adjustment for trophic fractionation. As
in Table 1, numerical values for this example were taken from
mean isotopic ratios reported by Szepanski et al. (1999) for A
moose, B caribou, C salmon, and D interior Alaska wolf
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which simplifies to:

(2a)

Ben-David et al. (1997a, 1997b) and Szepanski et al.
(1999) similarly used reciprocal distances but in a slight-
ly different equation:

(3)

While the geometric representation in Fig. 1 is a nice
heuristic tool, and it intuitively makes sense that the die-
tary proportions are somehow related to the lengths of
the line segments between the animal tissue and its die-
tary components, none of the formulas that utilize these
Euclidean distances (Eqs. 1, 2, 3) correctly estimate the
dietary proportions. Ben-David et al. (1997a, 1997b) and
Szepanski et al. (1999) point out that their equation
(Eq. 3) assumes that all three types of food sources are
utilized, and that the equation underestimates the propor-
tions for commonly used food sources and overestimates
the proportions for rarely consumed food sources. For
the dual element, three source case, a simple linear mix-
ing model can be formulated from the following mass
balance equations (see e.g., Schwarcz 1991):

(4)

where δJ and δK represent isotopic ratios for two ele-
ments (e.g., δ13C and δ15N); A, B, C, and D subscripts re-
present three food sources and the consumer, respective-
ly; and f represents the fractional contribution of each
food source to the consumer’s diet (corresponding to the
%Xs in the notation of Eqs. 1, 2, 3). The isotopic ratios
for food sources A, B, and C may be adjusted (A′, B′, and
C′) to reflect trophic fractionation factors in the animal.
This linear mixing model is a system of three equations
in three unknowns (fA, fB, and fC) which can be solved
for the unique values of the unknowns. One expression
of the solution is:

(4a)

It should be noted that this model, as well as the Euclide-
an distance methods, makes the implicit assumption that
the partitioning of food sources is the same for both ele-
ments, e.g., C and N. If, however, the C/N ratios vary
considerably among the food sources, then the fraction
of the C intake from one source may not equal the frac-
tion of the N intake from that source. A more complex
mixing model which incorporates varying C and N con-
centrations among food sources is needed if this assump-
tion is to be avoided (D.L. Phillips and P.L. Koch, un-
published work). However, this assumption is less likely
to be a problem where the food sources are all animal
tissues, as in the examples discussed here, than where
they are a mix of animal and plant tissues which may
have significantly different C/N ratios.

Unlike the Euclidean distance methods, this linear
mixing model correctly estimates the proportions for
three food sources regardless of whether all sources are
utilized. In practice, random measurement errors, varia-
tion in isotopic composition among prey individuals, and
variation in assimilation, fractionation, and consequently
composition among predator individuals will lead to
some uncertainty around these proportion estimates
(Phillips and Gregg 2001). The proportions calculated
should always be treated as estimates of dietary contri-
butions within some confidence limits rather than exact
point values. However, among the methods presented
here, only the linear mixing model provides mathemati-
cally unbiased expected values of these proportion esti-
mates.

Table 1 shows an example of estimates of dietary pro-
portions for three food sources using each of the four
equations. Several features should be noted. First, Eq. 2
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Table 1 Example estimates of the dietary proportions of moose,
caribou, and salmon for interior Alaska wolves, using mean data
(first line) after trophic fractionation corrections (second line) from
Szepanski et al. (1999). The three Euclidean distance mixing mod-
els (Eqs. 1, 2, 3) and the linear mixing model (Eq. 4a) were used.

Equation 2 estimates resulted in proportions which summed to 2,
rather than 1, so an additional entry was made to rescale these esti-
mates down by a factor of 2. For each method, the predicted isoto-
pic ratios for the wolf tissue, back-calculated from the estimated di-
etary proportions, are also shown in the right-hand column.

Moose Caribou Salmon Wolf

δ13C, δ15N (‰) – original –22.7, 1.6 –20.8, 4.0 –19.9, 12.1 –19.6, 6.4
δ13C, δ15N (‰) – corrected –20.7, 4.6 –18.8, 7.0 –18.9, 14.1 –19.6, 6.4
Euclidean distance (‰) 2.1 1.0 7.7
Equation 1 19% 9% 71% –19.2, 11.6
Equation 2 70% 38% 92% –39.0, 18.8
Equation 2×0.5 35% 19% 46% –19.5, 9.4
Equation 3a 30% 62% 8% –19.4, 6.9
Equation 4a 42% 53% 6% –19.6, 6.4

a The proportions for Eq. 3 shown here differ slightly from those
in Szepanski et al. (1999) Table 1 because their figures are the
means of proportions calculated from isotopic ratios for individual

wolves. The proportions above were calculated from the mean iso-
topic ratios for wolves since the individual data were not available
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from Whitledge and Rabeni (1997) gives proportions
which sum to 2, rather than 1. An additional line in the
table has been added to scale these estimates down by a
factor of 2. Second, there is considerable variation in the
dietary proportion estimates among the four methods.
The moose proportion varies from 19% to 42%, caribou
varies from 9% to 62%, and salmon varies from 6% to
71% (ignoring Eq. 2 results before halving). Finally, I
back-calculated the expected isotopic ratio for the wolf
tissue from the isotopic ratios and the proportions esti-
mated for each food source. By mathematical necessity,
the linear mixing model of Eq. 4a correctly returns the
observed isotopic ratios because it is based on the princi-
ple of mass balance. However, none of the other models
return the observed isotopic ratios, showing they do not
conserve mass balance.

To test the accuracy of the four methods, I also simu-
lated a wide range of example diets (Table 2). For each
diet, the simulated proportion of each food source (after
correcting for trophic fractionation) was multiplied by
the corresponding isotopic ratios, which were then
summed to find the isotopic ratios for the wolf. All four
methods were used to estimate the dietary proportions,
which were then compared with the expected values. As
can be seen from Table 2, the linear mixing model
(Eq. 4a) correctly returned all the proportions (by mathe-
matical necessity), but none of the other methods were
consistent with the preservation of mass balance in this
way. In many cases as the dietary proportion of a food
source decreased, the estimated proportion went in the
other direction. Examination of Eqs. 1, 2 reveals that as
the proportion of A in the diet decreases, the length
DX′=DA′ increases, but this leads to increasing estimates
of %A in the diet. While Eq. 3 does not suffer from this
incorrect directionality in its formulation, neither Eq. 2
nor Eq. 3 can come up with estimates of proportions
when only one food source is utilized, as shown in the
first simulated diet in Table 2. For the other diet scenari-
os, Eqs. 1, 2 (corrected by halving), and Eq. 3 were as
much as 60% (15% calculated vs. 75% actual), 54%
(21% calculated vs. 75% actual), and 56% (56% calcu-
lated vs. 0% actual) off the correct dietary proportions
simulated, respectively.

Several other problems in the application of the 
Euclidean distance methods should be noted. Ben-David
et al. (1997b) and Szepanski et al. (1999) used Eq. 3 to
calculate dietary fractions for individual predators whose
isotopic ratios fell outside the area bounded by the tro-
phic corrected ratios for their food sources (interior of
triangle in Fig. 1). In some cases even the means of the
predator populations had δ13C and/or δ15N ratios which
did not overlap those of the food sources at all after tro-
phic correction (e.g., spring riverine mink in Ben-David
et al. 1997b). Exceeding these limits is an indication ei-
ther that there may be other food sources not included, or
that the trophic correction factors are not appropriately
estimated. In such cases, there does not exist any posi-
tive linear combination of food sources which can ac-
count for the observed isotopic ratios in the predator.
Use of any of the Euclidean distance formulas (Eq. 1, 2,
or 3) will always assign a positive fraction for each food
source regardless of whether the predator’s isotopic ra-
tios overlap those of the food sources. The meaningful-
ness of such numbers is questionable. The linear mixing
model (Eq. 4a) will estimate fractional contributions in
such cases, but one or more of them will be negative, in-
dicating that the mixture falls out of bounds. Very small
negative proportions might possibly be ignored as due to
measurement and sampling error, but large ones indicate
potential problems as mentioned above.

The second problem comes from trying to determine
the dietary proportions for more than three food sources
with dual isotopes (Ben-David et al. 1997b). The Euclid-
ean distance equations (Eqs. 1, 2, 3) will calculate
unique values for any number of food sources. However,
food sources which do not have significantly different
isotopic ratios are often combined and their combined
isotopic ratios are used (Ben-David et al. 1997b). The
problem is that there is not a unique solution when the
number of food sources exceeds the number of elemental
isotopic ratios by more than 1. The linear mixing model
(Eq. 4a) can be extended to include more than three food
sources, but it would result in a system of three equa-
tions in more than three unknowns. Solutions may exist
and be found, but they are not unique. For example, Ben-
David et al. (1997b) presented dietary proportions for

Table 2 Estimates of wolf dietary proportions (%) from the four
methods for a simulated range of diets, using the mean prey isoto-
pic ratio data from Szepanski et al. (1999). As in Table 1, a row

has been added which rescales Eq. 2 estimates by a factor of 2 (M
moose, C caribou, S salmon)

Method Simulated diet Moose Moose/salmon Mixed 1 Mixed 2 Caribou/salmon

Component M C S M C S M C S M C S M C S
Simulated % 100 0 0 75 0 25 50 25 25 25 50 25 0 75 25

Eq. 1 0 24 76 22 13 65 29 10 61 35 11 54 39 15 46
Eq. 2 – – – 67 44 89 76 35 89 79 35 86 77 42 81
Eq. 2×0.5 – – – 33 22 44 38 17 44 39 18 43 39 21 40
Eq. 3 – – – 33 56 11 24 65 11 21 65 14 23 58 19
Eq. 4a 100 0 0 75 0 25 50 25 25 25 50 25 0 75 25

Simulated wolf (–20.7, 4.6) (–20.3, 7.0) (–19.8, 7.6) (–19.3, 8.2) (–18.8, 8.8)
isotopic ratios 
(δ13C, δ15N)
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seven food sources for spring coastal mink populations
using Eq. 3 extended to seven variables, and this equa-
tion resulted in a single solution (Table 3). However,
when all possible dietary proportions were calculated in
increments of 2%, this resulted in over a thousand com-
binations which were consistent with the observed mink
isotopic ratios within 0.1‰ using the mass balance equa-
tions from Eq. 4. The proportions for these combinations
covered a range as wide as 30% for a single food source
(Table 3). Multiplying the proportions of Ben-David et
al. (1997b) by the isotopic ratios for each food source re-
sulted in predicted mink δ13C and δ15N ratios of –16.8‰
and 12.6‰, respectively, compared to the observed
–15.1‰ and 13.2‰. If deviations this wide (1.7‰ and
0.6‰) are allowed, there are over 1 million possible
combinations of the seven food sources, which vary as
much as 76% for a single food source (Table 3). Thus,
the Euclidean distance method gives the false impression
of a unique solution for partitioning more than three food
sources using two isotopes, and this solution results in
predicted predator isotopic ratios which may be consid-
erably different from those observed.

The geometric interpretation of distance from the ver-
tices of the triangle (Fig. 1) as a measure of dietary pro-
portions is visually appealing and makes intuitive sense.
However, the equations that have been used to quantify
this relationship in a number of papers do not appropri-
ately scale these proportions. The simple algebraic
system of three equations in three unknowns (Eq. 4)
forms a linear mixing model which correctly estimates
the proportions of diet due to the three sources, even
when all three sources are not utilized. Similar proce-
dures have been used for some time in archaeological
studies of human diet (Schwarcz 1991). Ostrom et al.
(1997) provide a recent example of the use of this mix-
ing model in animal ecology. If a geometric Euclidean
distance interpretation is desired for heuristic purposes,
the linear mixing model can be cast in that light as well.
First, the line segments from the vertices through the
point D are extended to the opposite sides of the triangle

at points E, F, and G as shown in Fig. 1. It can be shown
that the estimates for dietary proportions calculated as:

(4b)

are mathematically equivalent to the estimates from
Eq. 4a. This makes intuitive sense as can be seen by ex-
amining the lengths of GD and GC′ in Fig. 1. If point D
(the mixture) lay along the side A′B′, the mixture would
be entirely composed of A and B, with no contribution
from C. In Eq. 4b, GD would be 0 and so would fC. As
the contribution of C increased, GD would represent a
larger proportion of the length of GC′. If D were coinci-
dent with the vertex C′, GD/GC′ would be 1, indicating
fC=1, where the diet consisted only of C. In practice, use
of the algebraic solution of Eq. 4a is simpler, but the
clarity of a visual geometric model need not be aban-
doned in order to use the linear mixing model. However,
the Euclidean distance formulas in Eqs. 1, 2, and 3 are
flawed and should not continue to be used.

The situation can be generalized for uniquely parti-
tioning p sources using q isotopic ratios, where p≤q+1
(Schwarcz 1991). The solution should be obtained by al-
gebraic solution of a system of p equations in p un-
knowns (such as that given in Eq. 4 for p=3), rather than
by use of Euclidean distances of the mixture from the in-
dividual sources in p-space, which do not correctly scale
the linear mixing of sources. If less than p–1 isotopic ra-
tios are available, the linear mixing model may still be
used to find a range of possible solutions, while mathe-
matically the Euclidean distance methods give the false
impression of a unique solution.
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Table 3 Estimates of spring coastal mink dietary proportions us-
ing the mean prey (after trophic fractionation correction) and pred-
ator isotopic ratios from Ben-David et al. (1997b, their Fig. 2, Ta-
bles 2, 3). Estimates from Ben-David et al. (1997b) were calculat-
ed using Eq. 3 for 7 variables; linear mixing model estimates were
calculated using Eq. 4 for 7 variables. Since there is no unique so-

lution using Eq. 4, all possible combinations of dietary proportions
in increments of 2% were evaluated for consistency with the ob-
served mink isotopic ratios, with tolerances of (±0.1, 0.1‰) for
(δ13C, δ15N) (1,069 solutions), and (±1.7, 0.6‰) (1,295,499 solu-
tions). The latter tolerance represents the observed-predicted dif-
ference using the method of Ben-David et al. (1997b)

Food source δ13C, δ15N (‰) Ben-David et al. Linear mixing model Linear mixing model 
observed (corrected) (1997b) estimates estimates (±0.1, 0.1‰) estimates (±1.7, 0.6‰)

Intertidal fish –14.23, 14.68 30% 48–66% 6–82%
Blue mussels –18.51, 9.74 12% 0–18% 0–42%
Crabs –15.28, 11.2 21% 14–44% 0–60%
Shrimp –16.9, 11.96 17% 0–28% 0–76%
Rodents –24.61, 10.07 5% 0–6% 0–24%
Amphipods –18.69, 14 9% 0–12% 0–52%
Ducks –21.28, 14.92 6% 0–6% 0–32%
Mink –15.1, 13.2‰ observed –16.8, 12.6‰ predicted
Mink (observed 1.7, –0.6‰

– predicted)
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