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Abstract
During extreme climate events, behavioural thermoregulation may buffer ectotherms from thermal stress and overheating. 
However, heatwaves are also combined with dry spells and limited water availability, and how much individuals can behav-
iourally mitigate dehydration risks through microclimate selection remains largely unknown. Herein, we investigated the 
behavioural and physiological responses to changes in air and microhabitat humidity in a terrestrial ectotherm, the asp viper 
(Vipera aspis). We exposed individuals to a simulated heatwave together with water deprivation for 3 weeks, and manipulated 
air water vapour density (wet air vs. dry air) and microclimate (wet shelter vs. dry shelter) in a two-by-two factorial design. 
Dry air conditions led to substantial physiological dehydration and muscle wasting. Vipers exposed to dry air used more often 
a shelter that offered a moist microclimate, which reduced dehydration and muscle wasting at the individual level. These 
results provide the first experimental evidence that active behavioural hydroregulation can mitigate specific physiological 
stress responses caused by a dry spell in an ectotherm. Future studies investigating organismal responses to climate change 
should consider moisture gradient in the habitat and integrate both hydroregulation and thermoregulation behaviours.
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Introduction

Climate warming poses a major extinction threat to biodi-
versity, because rising local temperatures force many terres-
trial organisms to shift their range, alter their phenology, or 
expend more energy to maintain homeostasis (Riddell et al. 
2019a, b; Urban 2015). These physiological and ecological 

effects will largely depend on potential buffering by micro-
climatic conditions (Pincebourde et al. 2016; Potter et al. 
2013). Notably, for some terrestrial organisms, vulnerability 
to global warming depends less on global climate trends than 
on microclimate conditions at small spatial scales, such as 
those generated by heterogeneous vegetation and soil lay-
ers, and on behavioural strategies allowing exploitation of 
these microclimate conditions (Potter et al. 2013; Riddell 
et al. 2021). Thus, to predict ecological consequences of cli-
mate change, one should better characterise how organisms 
respond to microclimatic heterogeneity (Sears et al. 2019; 
Woods et al. 2021).

In the context of global warming, the risks of overheating 
are significantly reduced when an organism is capable of 
fast behavioural responses (Seebacher and Franklin 2005; 
Terrien et al. 2011). Behavioural thermoregulation allows 
organisms, especially ectotherms, to exploit spatial vari-
ability in thermal conditions to maintain an optimal body 
temperature despite temporal fluctuations in operative tem-
perature (Angilletta 2009; Fuller et al. 2021). For example, 
many terrestrial ectotherms typically live in a complex ther-
mal landscape where they can change their posture and col-
oration, seek shade, use burrows, or shift their daily activity 
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patterns to control heat gain, exploit cold and warm micro-
climates, and ultimately avoid overheating risks (Black et al. 
2019; Forget-Klein and Green 2021; Moore et al. 2018). 
Given this, the most efficient thermoregulators should be 
better capable of maintaining homeostasis in a warming 
world (Huey et al. 2012; Kearney et al. 2009). Yet, climate 
change does not only challenge body temperature regulation 
but also puts a strong pressure on osmoregulation (i.e., the 
homeostatic maintenance of salt and body fluids’ balance) in 
terrestrial organisms (Riddell et al. 2019a, b; Rozen‐Rechels 
et al. 2019). For example, avoidance of overheating in desert 
endotherms involves evaporative cooling, which implies 
that birds and mammals must actively seek or save water to 
maintain an optimal body temperature in a warmer climate 
(Mitchell et al. 2018; Riddell et al. 2019a, b).

In many terrestrial ectotherms, behavioural trade-offs 
between thermoregulation and osmoregulation exist, 
because evaporative water loss increases with body tem-
perature and in the microclimate conditions relevant for 
basking (e.g., Dupoué et al. 2015b; Riddell et al. 2018). 
In addition, climate warming often involves concurrent 
changes in temperature, rainfall, and moisture, especially 
during extreme climate events such as summer hot and dry 
spells that increase water loss risks (Trenberth et al. 2014; 
Ummenhofer and Meehl 2017). Organisms should partially 
buffer the water constraints of climate change by means of 
behavioural hydroregulation, defined as the range of behav-
iours that control water gains and water losses and help indi-
viduals maintain an optimal hydration state for their activity 
and functional capacities (Pirtle et al. 2019; Rozen‐Rechels 
et al. 2019). For example, reptiles living under water stress 
can maintain their water balance by reducing their activity 
(Davis and Denardo 2010; Kearney et al. 2018) or by select-
ing cool (Ladyman and Bradshaw 2003; Pintor et al. 2016) 
or wet microclimates (Dupoué et al. 2015b; Guillon et al. 
2014; Lourdais et al. 2017).

A wide range of hydroregulation behaviours have been 
observed in the wild, from moisture harvest in desert beetles, 
free-standing water seeking in large mammals to soil moisture 
preferences in frogs (Rozen-Rechels et al. 2019; Wolcott and 
Wolcott 2001). Despite that, our knowledge of the buffering 
capacity of these behavioural mechanisms still remains limited 
(Pirtle et al. 2019; Rozen-Rechels et al. 2020). Behavioural 
hydroregulation is most obvious in wet-skinned amphibians 
(Greenberg and Palen 2021; Lertzman-Lepofsky et al. 2020). 
Some amphibians can reduce evaporative water loss by means 
of behavioural changes such as postural adjustments to reduce 
the cutaneous water-exchange surface, mucus production, or 
the selection of moist microhabitats (e.g., Lillywhite et al. 
1997; Wolcott and Wolcott 2001). There is good evidence 
that some amphibians perform active behavioural hydroregu-
lation to maintain an optimal hydration state independently 
from thermoregulation (Mitchell and Bergmann 2016), but 

whether this behavioural flexibility is efficient during extreme 
weather events remains unknown. Behavioural data are even 
more elusive for dry-skin ectotherms due to difficulties disen-
tangling hydroregulation and thermoregulation mechanisms 
in these organisms (Pintor et al. 2016; Rozen‐Rechels et al. 
2019). Dry-skin ectotherms often have a strong resistance 
to evaporative water loss, meaning that their hydration state 
changes more slowly than body temperature and that shifts 
caused by behavioural hydroregulation could take place over 
long time periods. Behavioural hydroregulation could be con-
trolled by the internal hydration status, leading individuals 
to choose less desiccating microclimates as a water-saving 
strategy only when chronically stressed (Ladyman and Brad-
shaw 2003; Rozen-Rechels et al. 2020). On the other hand, 
terrestrial organisms can perceive moisture gradients through 
hygrosensing (Chown et al. 2011) and further rely on odours 
or other cues to locate free-standing water (Serrano-Rojas 
and Pašukonis 2021; Wood et al. 2021), such that changes in 
air water vapour pressure conditions may also trigger rapid 
changes in their behaviours.

Herein, we experimentally studied hydroregulation behav-
iours independently from body temperature regulation in a 
temperate ectotherm, the asp viper (Vipera aspis). We used 
climatic chambers to simulate weather conditions akin to 
those of a summer dry spell. We removed access to water and 
manipulated air moisture (dry versus wet air conditions) for 3 
weeks. Water-deprived vipers were allowed to hydroregulate 
by providing them with a wet shelter (with a damp substrate) 
or not hydroregulate by providing them with a dry shelter. 
We examined the following hypotheses and predictions: first, 
water deprivation will most negatively impact hydration state 
in a dry air environment. We predict important mass loss and 
plasma osmolality increase in these conditions. Second, dehy-
dration should induce compensatory physiological responses 
to mitigate water constraints. We predict, in particular, pat-
terns of structural muscle catabolism to release bound water 
(Brusch et al. 2018) and a greater thirst reaction (Dezetter et al. 
2021; Dupoué et al. 2014). Third, behavioural selection of wet 
microclimates should mitigate these effects by reducing evapo-
rative water loss, especially when the simulated air is drier. We 
predict higher wet shelter use and lower physiological costs in 
this treatment group. The intensity of shelter use should also 
negatively correlate with physiological costs at the individual 
level.

Materials and methods

Study species

The asp viper is a typical sit-and-wait foraging and capital 
breeding snake distributed over southwestern Europe in 
sunny and warm microhabitats (Lourdais et al. 2002). This 
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diurnal species is an active thermoregulator that maintains 
a high body temperature (30–33 °C) during daily activity 
(Lorioux et al. 2013; Lourdais et al. 2017). A functional 
trade-off exists between thermoregulatory needs and water 
loss in asp vipers: behavioural thermoregulation implies 
the use of warm microclimates, which increase evaporative 
water loss rates (Dupoué et al. 2015b; Guillon et al. 2014; 
Lourdais et al. 2017). Behavioural selection of warm and 
moist basking locations helps gravid females to mitigate 
the conflict between thermal needs and water loss (Lour-
dais et al. 2017). Access to water can be limited in natural 
habitats, especially during summer dry spells, which are 
increasing in frequency and intensity over the range dis-
tribution of this species (Spinoni et al. 2018). This capital 
breeder and semi-arid adapted species can tolerate long 
periods of fast and water deprivation, but at the cost of 
lower body reserves, enhanced emaciation and physiologi-
cal stress, and therefore potential reduction in future fit-
ness (Dupoué et al. 2015a; Lorioux et al. 2016). Herein, 
we used 42 non-reproductive adults (27 females and 15 
males) from a captive colony originating from western 
France and maintained at the Centre d’Etudes Biologiques 
de Chizé, France.

Manipulation of hydric conditions and air 
temperature

Our experimental design consisted of a strictly defined 
manipulation of hydric conditions independently from air 
temperature. We used four controlled environment cham-
bers (Vötsch VP 600, Balingen, Germany) allowing realis-
tic simulations of daily fluctuations in air temperature and 
humidity. Asp vipers were deprived of water for 3 weeks, 
which corresponds to a moderate duration for a dry spell in 
natural conditions (Perkins et al. 2012). The daily tempera-
ture cycle mimicked body temperature recorded during a 
typical heatwave with daytime temperature of 32 °C for 
14 h and nighttime temperature of 26 °C for 5 h, with tem-
perature either gradually increasing or decreasing for the 
remaining 5 h (Lourdais et al. 2013). We next manipulated 
air humidity (dry air vs. wet air) and microclimate (dry 
shelter vs. wet shelter) using a two-by-two factorial design. 
First, we compared two contrasted ambient water vapour 
pressure deficit (VPD) to expose individuals to either des-
iccant (VPD = − 3.10 ± 0.08 kPa in dry air; Dupoué et al. 
2015b) or humid conditions (VPD = − 1.43 ± 0.08 kPa in 
wet air). Second, we manipulated microclimate conditions 
by providing either a dry or a wet shelter. Shelters con-
sisted of small, custom-made plastic containers (15 cm 
diameter, 11 cm height; one entrance of 3 cm diameter 
on the side) filled with an artificial sponge and microfiber 
cloths. Once accustomed, vipers will readily use shelters 

in the laboratory. The sponge and microfiber cloths were 
changed every 3 days and maintained dry in the dry shel-
ters but damp in the wet shelters to enhance air humid-
ity. In dry shelters, VPD were similar to the ambient 
conditions and therefore offered no humidity gradient. 
In turn, wet shelters provided high and constant humid-
ity (VPD = − 0.61 ± 0.09 kPa), which simulates natural 
underground microhabitats that are typically moist with 
a stable and high humidity throughout the day. The dif-
ferential between wet shelter and ambient air VPD was, 
respectively, of 2.49 kPa and 0.82 kPa for dry and wet air. 
Temperatures inside the shelters were similar to ambient 
temperatures. Note that we observed no water conden-
sation inside the plastic shelters so drinking water was 
deemed extremely unlikely.

Experimental design

Prior to the experiment, for the purpose of acclimation to 
general maintenance conditions, we housed all individu-
als for 1 week in climatic chambers using individual plas-
tic boxes (35 × 20 × 17 cm) with one dry shelter, a sheet of 
newspaper as a substrate and a natural day light cycle (circa 
12:12). During this period, vipers had ad-libitum access to 
drinking water and were exposed to a standard daily temper-
ature cycle (6 h daytime at 30 °C, 13 h nighttime at 22 °C, 
and mean VPD of − 1.20 ± 0.10 kPa). Then, we randomly 
allocated individuals to each treatment group while ensuring 
a balanced sex ratio. Each individual was placed in a climatic 
chamber with the corresponding air humidity treatment (dry 
air or wet air) and we applied the following protocol over 
24 days: from Day 0 to Day 2 (3 days), we provided all indi-
viduals with a dry shelter to quantify baseline shelter use; 
from Day 3 to Day 20 (18 days), we exposed each individual 
to its microclimate treatment (dry shelter or wet shelter) to 
quantify the combined effects of air humidity and micro-
climate; from Day 21 to Day 23 (3 days), we provided all 
individuals with a wet shelter to test for change in shelter use 
in individuals previously exposed to dry shelters; and finally, 
on Day 24, we provided all individuals with water ad-libitum 
to assess post-treatment water intake from drinking. We then 
transferred them to standard housing conditions. We did not 
feed the snakes to avoid confounding effects of digestion 
and energy intake on body mass (Stahlschmidt et al. 2015).

Variables collected and parameters measured

Shelter use over time

Every day from Day 0 to Day 23, we recorded the posi-
tion of each individual three times per day during daytime 
(9:00, 13:00, and 17:00). Individual position in the box was 
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categorised as either using the shelter or being outside. First, 
we considered the cumulative shelter use from Day 0 to Day 
2 (proportion of shelter use out of 9 observations) to record 
the baseline shelter use. To investigate responses to com-
bined air humidity and microclimate treatments (Day 3 to 
Day 20), we first examined the cumulative shelter use during 
that period (proportion of shelter use out of 54 observa-
tions). Second, we considered more specifically changes in 
daily shelter use (proportion of shelter use out of the three 
daily observations) over time (Day 0 to Day 20). We also 
calculated an individual shelter use score over a 3-day period 
between Day 3 and Day 20 (total number of times inside 
the shelter per 9 observations, 6 repetitions) to investigate 
the relation between shelter use behaviour and body mass 
changes (recorded every 3 days, see below). Finally, we also 
calculated cumulative shelter use from Day 21 to Day 23 
(proportion of shelter use out of nine observations) to inves-
tigate wet shelter use at the end of the treatment.

Changes in body mass and muscle condition

In the absence of food intake, body mass (BM) change pro-
vides a non-invasive proxy of the whole-body hydration 
state in snakes (Dupoué et al. 2014). We therefore weighed 
(± 0.1 g) all individuals every 3 days to assess BM changes 
during the treatment period, and then weighed them again 
at the end of Day 24 to assess mass uptake and rehydration 
after the manipulation. From this, we calculated total ΔBM 
as the difference between BM at Day 20 and at Day 0. We 
also analysed mass changes over each 3 day period during 
the combined manipulation of air humidity and microclimate 
(Day 3 to Day 20, six repetitions per individual) to inves-
tigate the relation between individual shelter use and body 
mass changes during that period. Finally, post-treatment 
water intake was inferred from the mass difference between 
Day 24 and Day 23.

Bound water is a significant component of all body tis-
sues that can be mobilised to support water demands during 
periods of water deprivation, especially from wet protein 
of muscles in reptiles (Brusch et al. 2018). In snakes, skel-
etal muscles can be mobilised to support water require-
ments (Brusch et al. 2018). To quantify skeletal muscles 
loss during the treatment period, we measured tail width 
(TW ± 0.01 mm, average from triplicates) on Day 0 and on 
Day 20 using an electronic pressure-sensitive specimeter 
(Absolute Digimatic, Mitutoyo, Japan) at the position of the 
sixth subcaudal scale (Lorioux et al. 2016). We calculated 
ΔTW as the difference between mean TW at Day 20 and 
Day 0.

Changes in plasma osmolality

We collected blood samples on Day 0 and Day 20 to assay 
plasma osmolality, which measures the whole-body electro-
lyte and water balance (Peterson 2002). We sampled indi-
viduals in a random order by sex and treatments and col-
lected 150 µL of blood through cardiocentesis, using a 1 mL 
syringe and a heparinized 29-gauge needle. We immediately 
centrifuged the blood at 2000g, separated plasma from the 
red blood cells and stored the samples at − 28 °C. Plasma 
osmolality (± 1 mOsm kg−1) was measured from 10 µL 
duplicates (intraindividual CV: 0.36%) using a vapour pres-
sure osmometer (model 5500, Wescor, Logan, UT, USA). 
We calculated ΔOsmolality as the difference between mean 
plasma osmolality before and after manipulation.

Statistical analyses

We conducted all analyses using the R software version 3.6.3 
(R Core Team 2020). To investigate the effects of treatments 
on behavioural hydroregulation, we first built a general-
ized linear model with a binomial error distribution and a 
logit link function to examine cumulative shelter use (suc-
cess = total number of observation when shelter was used; 
failure = total number of observation when shelter was not 
used) between Day 3 to Day 20., We used sex, air humid-
ity, microclimate treatment, and the interaction between 
both treatments as explanatory factors in the full model. 
This full model was built with glm function of the stats 
package (R Core Team 2020) and fitted well with the data 
(overdispersion test: X2 = 43.9, dispersion coefficient = 1.1, 
df = 39, P = 0.27). We used two similar models to analyse 
the baseline shelter use before the start of the microclimate 
manipulation (between Day 0 and Day 2) and the wet shelter 
use at the end of the treatment (between Day 21 and Day 
23). Because of significant overdispersion of the binomial 
distribution in these two data sets, we compared treatment 
group using a betabinomial approach (Harrison 2015). The 
betabinomial model for proportions was fitted with betabin 
function of the aod package (Lesnoff and Lancelot 2012). 
We further investigated repeated measures through time of 
daily shelter use according to treatments between Day 0 and 
Day 20 using a generalized linear mixed-effects model with 
a binomial error distribution (success = number of obser-
vations per day when shelter was used; failure = number 
of observation per day when shelter was not used) and a 
logit link function. We included sex as a fixed factor, and 
air humidity, microclimate treatment, time (number of 
days) and their three-way interaction as explanatory vari-
ables. Individual identity was included as a random term 
to control for repeated measures on the same individuals. 
Because data were skewed toward zero at Day 0 and shelter 
use was identical between treatment groups at the beginning 
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of the manipulation, we forced a similar intercept for the 
four treatments in our full model. This model was built with 
glmer function of the lme4 package (Bates et al. 2015) and 
fitted well with the data (overdispersion test: X2 = 816.4, 
dispersion coefficient = 0.9, df = 896, P = 0.92). In all cases, 
we performed backward elimination model selection start-
ing from the full models to remove non-significant effects 
using likelihood ratio tests. We report here P values from 
Wald tests based on z-score of the parameter estimates of 
the models.

To analyse physiological and morphological responses, 
we used linear models fitted with the lm function (stats pack-
age) and univariate linear mixed-effects models fitted with 
the lme function of the nlme package (Pinheiro et al. 2020). 
We performed backward elimination model selection start-
ing from the full models after checking that the residuals 
of our models fulfilled a Gaussian distribution using Sha-
piro–Wilk tests and had homogeneous variances across 
treatment groups. We further explored statistical differences 
between treatment groups using pairwise post hoc Tukey 
tests (emmeans, package emmeans; Lenth 2018). Regarding 
morphological and osmolality data, we first built independ-
ent linear models to confirm that there were no treatment 
differences in BM, TW or plasma osmolality at the begin-
ning of the experiment. Models included the initial value 
as the dependent variable and air humidity, microclimate 
treatment, and their interaction as fixed effects. There was 
no difference in BM, TW, and plasma osmolality among 
treatments before the manipulation (all P ˃ 0.05, Table S1 
and S2). To investigate the effects of the treatments on body 
mass loss over time, we used a mixed-effects model for 
repeated measures with BM as the dependent variable, sex 
as a fixed factor, air humidity treatment, microclimate treat-
ment, time (i.e., days on which individuals were weighed) 
and their three-way interaction as explanatory variables. 
Individual identity was included as a random, intercept term.

We next built three independent linear models to inves-
tigate the effects of the treatments on total ΔBM, ΔTW, 
and ΔOsmolality and post-treatment ΔBM. We included air 
humidity, microclimate treatment, and their interaction as 
explanatory variables, sex as a categorical factor, and the ini-
tial value as a linear covariate. We further examined whether 
ΔBM, ΔTW, and post-treatment ΔBM were correlated with 
ΔOsmolality or final osmolality using linear regressions. To 
determine whether ΔOsmolality or final osmolality better 
explained physiological changes, we used the Akaike Infor-
mation Criterion to compare models (AIC, package stats). 
We also investigated whether post-treatment ΔBM was cor-
related with total ΔBM using a similar model construction 
and comparison.

We also wanted to investigate the relationship between 
wet shelter use and mass change of snakes. To achieve this, 
we considered mass changes across individuals in the dry air 

treatment with access to wet shelter and applied the statisti-
cal methods from van de Pol and Wright (2009).We calcu-
lated an individual-centred shelter use score at each 3-day 
period for each individual. We built a linear mixed-effects 
model with the change in body mass per 3-day period as 
the dependent variable and shelter use score together with 
individual-centred shelter use score as explanatory variables. 
Individual identity was set as a random factor.

Results

Quantification of hydroregulation behaviour

At the onset of the study (from Day 0 to Day 2), there was 
no difference in shelter use among treatment groups (air 
humidity: z = − 0.55, P = 0.58; Microclimate treatment: 
z = 0.55, P = 0.58). During the cumulated manipulation 
period (from Day 3 to Day 20), the total proportion of shelter 
use was influenced by the interaction between air humid-
ity and microclimate treatment (z = −2.1,P = 0.03) . Sup-
porting our prediction, shelter use was mainly observed in 
vipers maintained in dry air with a wet shelter, while other 
individuals almost never selected the shelter (Table 1). The 
daily shelter use gradually increased over time in the dry air 
and wet microclimate treatment group, while it remained 
stable and low in other groups (air humidity × microclimate 
treatment × time: z = −2.1,P = 0.03 ; Fig. 1a). When all 
individuals were provided with a wet shelter at the end of 
the experiment (from Day 21 to Day 23), the proportion of 
shelter use was then additively influenced by air humidity 
( z = −3.5,P < 0.001 ) and former microclimate treatments 
( z = −2.4,P = 0.02 ). This was due to a behavioural shift 
where vipers maintained in the dry microclimate treatment 
rapidly increased their use of the shelter when it became 
wet (Fig. 1a).

Physiological and morphological changes 
across treatments

Vipers significantly lost body mass over time during the 
experiment ( F1,290 = 1674.8,P < 0.001 , Fig.  1b), and 
air humidity and microclimate treatments interactively 
influenced BM loss (air humidity × microclimate treat-
ment × time: F1,290 = 26.2,P < 0.001 ). Vipers from the dry 
air and dry shelter lost BM at a much higher rate than those 
maintained in other conditions (Fig. 1b). In the dry air treat-
ments, vipers with access to a wet shelter lost BM at a slower 
rate than those with a dry shelter. The total ΔBM over the 
experimental period was also influenced by the interac-
tion between both treatment types ( F1,37 = 4.5,P = 0.04 ; 
Table 1, mean ΔBM = − 13.2 ± 5.5% of initial BM).
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Plasma osmolality increased in all groups indicating 
physiological dehydration, and the increase in osmolality 
was influenced by sex ( F1,37 = 23.7,P < 0.001 ), air humidity 
treatment ( F1,37 = 15.5,P < 0.001 ) but only marginally by 
microclimate treatment ( F1,37 = 2.9,P = 0.09 ). Individuals 
had a higher increase in osmolality in dry conditions, and 
tended to have a lower increase in osmolality when a wet 
shelter was available (Table 1). However, one male from the 
dry air and wet microclimate treatment almost never used 
the wet shelter (shelter use score of 10%). Excluding this 
individual, we found that ΔOsmolality was significantly 
influenced by the interaction between air humidity and 
microclimate treatments ( F1,35 = 6.6,P = 0.01 ) and by sex 
( F1,35 = 23.5,P < 0.001 ). Increase in plasma osmolality was 
highest in vipers maintained in dry air with a dry shelter and 
lowest and similar in the other three groups (Table 1). Over-
all, males had a higher increase in plasma osmolality than 
females. Tail width change ΔTW was additively influenced 
by air humidity ( F1,38 = 5.7,P = 0.02 , Fig. 2a) and microcli-
mate treatments ( F1,38 = 5.6,P = 0.02 , Fig. 2b). Vipers had 
increased TW loss in dry air conditions and when they only 
had access to a dry shelter (Table 1; Fig. 2a).

Benefits of hydroregulation and post‑treatment 
water intake

Focusing on the dry air and wet shelter treatment, we found 
that body mass loss was negatively correlated with the indi-
vidual-centred shelter use score ( F1,65 = 26.1,P < 0.001 ). 
Higher behavioural selection of the wet shelter led 
to reduced body mass loss (Fig.  3). Post-treatment 
water intake was additively influenced by air humidity 
( F1,37 = 32.5,P < 0.001 , Fig. 2c) and microclimate treat-
ments ( F1,37 = 8.7,P = 0.005 , Fig. 2d). Vipers exposed to 
dry air conditions and vipers with access to a dry shelter 
drank more on Day 24 (Table 1; Fig. 2c).

Correlations between physiological responses

Overall, BM loss was positively correlated with both 
ΔOsmolality ( F1,39 = 55.9,P < 0.001 , Fig. S1a) and final 
osmolality ( F1,39 = 4.99,P < 0.001 ), but most influenced 
by ΔOsmolality (Table S8). TW loss was also positively 
correlated with both ΔOsmolality ( F1,39 = 17.9,P < 0.001 , 
Fig. S1b) and final osmolality ( F1,39 = 19.2,P < 0.001 ; 
Fig. S6) with similar strength of correlation (Table S8). 
Post-treatment water intake was positively correlated 
with ΔOsmolality ( F1,39 = 66.0,P < 0.001, Fig.S1c ), 
final osmolality ( F1,39 = 80.0,P < 0.001 ), and ΔBM 
( F1,39 = 34.3,P < 0.001 ), but most influenced by final osmo-
lality (Table S8).

Discussion

We provide the first experimental evidence that behavioural 
hydroregulation can mitigate physiological consequences of 
a simulated dry spell in a terrestrial ectotherm. Wet shelters 
were used more frequently when individuals were exposed 
to dry air conditions. This pattern was gradual, reaching 75% 
of the time by the end of the manipulation, compared to 
less than 10% in other treatment groups. This demonstrates 
microclimate selection based on water vapour gradient 
independently from temperature, thus providing unambigu-
ous evidence of behavioural hygroregulation sensu stricto 
(Mitchell and Bergmann 2016; Wolcott and Wolcott 2001). 
This behaviour allowed individuals to attenuate mass loss 
and dehydration risks in more desiccating conditions.

Concurrent changes in morphology, plasma osmolality, 
and post-treatment drinking behaviour all indicated that 
more desiccating air led to more severe physiological dehy-
dration. Body mass loss throughout the treatment period 
was higher in individuals exposed to dry air and these indi-
viduals also had the greatest increase in plasma osmolality. 

Table 1   Summary statistics of the traits measured on asp vipers from each treatment group

Values written in italic are from the Dry air and Wet shelter group when excluding the individual that almost never selected the shelter (see 
details in main text). Different superscript letters are used to show significant differences between treatment groups for each variable

Variables Experimental treatments

Wet air Dry air

Wet shelter (n = 10) Dry shelter (n = 11) Wet shelter (n = 11) Dry shelter (n = 10)

Mean (± SE) Mean (± SE) Mean (± SE) Mean (± SE)

Cumulative shelter use (%) 7.96 (4.64) A 4.71 (3.48) A 58.58 (6.90) B 63.33 (5.53) B 10.92 (3.57) A

Δ Body mass—Day20 (g) − 15.31 (1.23) A − 14.37 (0.93) A − 18.73 (1.05) AB − 18.26 (1.04) A − 22.77 (1.49) B

Δ Plasma osmolality (mOsm.kg−1) 30.15 (4.17) A 31.45 (5.12) A 45.50 (8.96) AB 38.55 (6.26) A 68.60 (11.87) B

Δ Tail width (mm) − 0.21 (0.09) A − 0.48 (0.13) AB − 0.46 (0.11) AB − 0.43 (0.12) AB − 0.81 (0.15) B

Post-treatment water intake (g) 10.19 (1.01) A 12.94 (1.19) AB 17.63 (1.62) BC 16.63 (1.40) BC 21.84 (1.66) C
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Muscle loss and post-treatment water intake were greater in 
individuals exposed to dry air, and both traits were corre-
lated with physiological dehydration, here assessed by final 
osmolality values. Therefore, dry air conditions increased 
muscle catabolism, probably to release the bound water that 
makes up a significant portion of skeletal muscles (Brusch 
et al. 2018) and resulted in increased thirst levels (Edwards 
et al. 2021; Lillywhite et al. 2019). Dehydration-induced 
muscle catabolism can be beneficial to support water needs 
and reduce the immediate survival risks associated with 
hyperosmolality in vertebrates (Brusch et al. 2018; Gerson 

and Guglielmo 2011; McCue et al. 2017). However, such 
compensatory mechanisms directly alter structural muscles 
and associated locomotor capacities (Lorioux et al. 2016; 
Lourdais et al. 2004). It is well known that dehydration can 
impair locomotor performance as demonstrated in amphib-
ians and some lizards (Greenberg and Palen 2021; Anderson 
and Andrade 2017; Wilson et al. 1989). Although we did not 
measure behavioural capacities or functional properties such 
as locomotion or foraging, the high levels of dehydration 
and muscle mobilization observed in some of our snakes 
are most likely associated with impaired locomotor abilities. 

Fig. 1   Effects of experimen-
tal treatments on behavioural 
hydroregulation and body mass 
loss. a Changes in daily shelter 
use (proportion of shelter use 
out of the three daily observa-
tions) over time in each treat-
ment group. Points are mean 
values with error bars repre-
senting ± 1 SE. The predictions 
of the best logistic regression 
model (curves) were fitted with 
the data from Day 0 to Day 
20, together with their 95% 
confidence intervals (shaded 
background). Vipers had access 
to either a dry or a wet shelter 
and were maintained in dry or 
wet air from Day3 to Day20. All 
individuals had access to a dry 
shelter from Day0 to Day2, and 
to a wet shelter from Day21 to 
Day23. b Average body mass 
loss (g) loss through time (every 
3 days) in each treatment group. 
All individuals were deprived 
of drinking water from Day0 to 
Day 23. On Day24, all individu-
als were provided with drinking 
water ad-libitum. Error bars 
represent ± 1 SE
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Altogether, these results indicate that a more desiccating air 
in the absence of free-standing water caused greater dehy-
dration, likely through increased evaporative water loss 
(Dupoué et al. 2015b). Such hygrometric constraints are 
likely even more prominent at high ambient temperatures, 
because desiccation risks rise exponentially with tempera-
ture (increased magnitude of VPD, see Riddell et al. 2019a, 

b) and may be even stronger during key life-history events 
when thermal requirements are elevated such as gestation in 
female vipers (see Dupoué et al. 2015b; Stahlschmidt et al. 
2011).

Supporting our initial predictions, wet shelter use buff-
ered the effects of dry air conditions on physiological dehy-
dration. When a wet shelter was available, individuals had 

Fig. 2   Additive effects of air humidity and microclimate treatment on changes in tail width (mm) throughout the experiment (a; b) and on post-
treatment water intake (g) following access to drinking water on Day24 (c; d). Error bars represent ± 1 SE
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on average a lower body mass loss especially in dry air, 
tended to have a lower increase in plasma osmolality, and 
had a lower post-treatment water intake. Interestingly, when 
we excluded one viper whose behaviour was not responsive 
to wet shelter availability, the influence of a wet microcli-
mate on osmolality and body mass changes was only signifi-
cant under the dry air condition. Individuals with access to 
a wet shelter also had lower muscle loss rates compared to 
those with a dry shelter, which suggests that they had less of 
a need to catabolize muscle protein. In addition, within the 
dry air and wet shelter treatment, the more a viper used the 
shelter, the less body mass it lost. Behavioural selection of a 
moist microclimate thus allowed vipers to attenuate dehydra-
tion risks and specific associated morphological responses. 
Altogether, snakes that had access to a wet shelter could 
thus mitigate the direct performance costs possibly induced 
by hyperosmolality (Greenberg and Palen 2021; Anderson 
and Andrade 2017), and also minimised the indirect per-
formance costs of muscle catabolism (Brusch et al. 2018; 
Lorioux et al. 2016).

We also found significant differences among individu-
als in their wet shelter use irrespective of treatment con-
ditions and sex suggesting wide variation in hydroregula-
tion behaviours likely exist. Within natural populations, 
such variation might translate in individual differences in 
physiological sensitivity to extreme climate events. Since 
flexible hydroregulation behaviours buffer physiological 
consequences of desiccating air, they should be beneficial 
for populations facing more frequent and intense dry spells, 
such as those located at the warm edge of the distribution. At 
the end of the experiment, most vipers that had been housed 
with a dry shelter immediately selected the wet shelter at a 

frequency similar to that of vipers that were maintained with 
a wet shelter and dry air for several days. This sudden shift 
suggests that these snakes had reached a significant dehy-
dration threshold, which induced an immediate behavioural 
response once a wet microclimate was available.

Hygrosensing and behavioural hydroregulation have 
been previously observed in dry-skinned ectotherms both 
in the field (Guillon et al. 2014; Lourdais et al. 2017) and in 
laboratory conditions (Dupoué et al. 2015b; Stahlschmidt 
and Denardo 2010; Stahlschmidt et al. 2011). Our findings 
extend these earlier observations and highlight that micro-
climate selection within a “hygrometric landscape” caused 
by spatial heterogeneity in humidity promotes water balance 
regulation and minimises the costs of dehydration. We posit 
that such behavioural adjustments are frequent in terrestrial 
ectotherms and call for a better characterisation of micro-
climate moisture gradients in the context of climate change 
(Pincebourde et al. 2016; Woods et al. 2021). Our results 
indicate that the use of moist microhabitats may allow ecto-
therms to avoid desiccation during extreme climate events, 
similar to the key role of behavioural thermoregulation in 
limiting exposure to acute thermal extremes and overheat-
ing (Huey and Tewksbury 2009; Kearney et al. 2009). For 
example, following the classic terminology for thermoregu-
lation, some species may actively “hygroregulate”, while 
others may behave as “hygroconformer”. The former may 
efficiently seek microclimates minimising the deviance to 
optimal moisture (Moore et al. 2018; Székely et al. 2018; 
Lourdais et al. 2017), which would allow individuals to 
maintain their hydration state, performance, and activity 
(Greenberg and Palen 2021; Anderson and Andrade 2017). 
However, their behavioural capacity to do so ultimately 

Fig. 3   Correlation between 
body mass change (g) and 
individual-centred shelter use 
score per 3-day period within 
the dry air and wet shelter 
treatment group (six repeti-
tions per viper from Day 3 to 
Day 20 of the manipulation). 
The individual-centred score 
quantifies intraindividual 
variation in shelter use (positive 
values indicate stronger shelter 
use than the mean score of the 
individual). Drawing credits: 
Sydney Hope
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depends on habitat “hygrometric quality”. This emphasizes 
the critical importance of the availability of moist microhab-
itats for dry-skinned ectotherms, which can decrease with 
anthropogenic disturbances (Gorissen et al. 2017) or climate 
change (Dundas et al. 2021). In addition, we posit that a 
behavioural capacity to maintain optimal hygrometric condi-
tions may dampen long-term exposure to dehydration risks 
along gradients of climate or habitat aridity. This may reduce 
selection on physiological tolerance to dehydration, similar 
to the concept of the “Bogert effect” for thermoregulatory 
behaviour (Muñoz 2021). More generally, the occurrence 
of behavioural hygroregulation may have implications for 
our understanding of the evolution of ecological niches of 
organisms (Encarnación-Luévano et al. 2021; Farallo et al. 
2020; Woods et al. 2021).

Understanding and predicting organismal responses to 
climate change are currently a major challenge in ecol-
ogy and conservation (Kearney et al. 2018a; Riddell et al. 
2019a, b). Our experimental study demonstrates that 
hygrometric constraints and behavioural hydroregulation 
capacity must be considered in this context. Recent indi-
vidual-based models have used energy and heat budgets 
to predict fine-scale movements within microhabitats in 
response to thermal microclimate conditions (Malishev 
et al. 2018; Sears et al. 2016), but those approaches often 
overlooked water constraints. Future mechanistic models 
should include the effects of air moisture and behavioural 
hydroregulation on the water budget of organisms (see 
Huang et al. 2020; Peterman and Semlitsch 2014). One 
challenge to this approach is that, in contrast to behav-
ioural thermoregulation where individuals generally 
immediately adjust their behavioural activity in response 
to well-known temperature thresholds or thermal perfor-
mance curves (Angilletta 2009), behavioural hygroregula-
tion likely changes more gradually in response to a shift 
in individual hydration state. The physiological costs 
of desiccant conditions should also vary among species 
depending on their resistance to water loss, thus influenc-
ing the timing of behavioural changes. For example, some 
dry-skinned ectotherms may adjust their hydroregulation 
behaviour over days or weeks, as shown here, while most 
wet-skinned ectotherms may adjust over minutes or hours 
(Peterman and Semlitsch 2014; Székely et al. 2018). In 
addition, empirical data suggest that the performance costs 
of dehydration increase abruptly only after a significant 
dehydration threshold is reached in amphibians (Cheu-
vront and Kenefick 2014; Greenberg and Palen 2021). 
Such nonlinear, threshold effects should trigger more or 
less rapid behavioural adjustment depending on the shape 
of hydric performance response curve (Edwards et  al. 
2021; Lillywhite et al. 2019). Future studies should there-
fore examine the strength and shape of the relationships 

between dehydration and performance capacities for which 
we currently lack data (Rozen‐Rechels et al. 2019).

In conclusion, our study emphasizes the importance of 
air humidity, as well as behavioural hydroregulation, when 
investigating the effects of climate change on ectotherms. 
Microhabitat quality and heterogeneity appear to be essen-
tial to support behavioural responses and mitigate deleteri-
ous effects of extreme weather events. However, current 
habitat simplifications associated with human activities 
are likely to compromise these important components of 
microhabitat (Guiller et al. 2022).
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