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Abstract
Spatial heterogeneity of climatic and edaphic gradients can substantially affect the grassland productivity function. How-
ever, few studies have tested the importance of species richness and evenness on regulating grassland productivity across 
spatial-scale climatic and edaphic changes. This study examines the complex mechanisms by which species richness and 
evenness regulate productivity in alpine meadow and steppe. We used field survey data to explore above-ground productivity 
formation and sensitivity to spatial-scale climatic and edaphic response of alpine grassland based on species richness and 
evenness. Results showed that the growing season solar radiation was the main driving factor of above-ground biomass and 
was strongly negatively correlated with above-ground biomass. Furthermore, compared with alpine steppe, above-ground 
biomass in alpine meadow was more responsive to climatic variables, but less responsive to soil variables. Unexpectedly, we 
found that the regulation patterns of species richness and evenness on above-ground biomass were different in both habitats 
by a structural equation model analysis. Our study demonstrated that species evenness and richness were both important in 
co-regulating above-ground biomass in alpine meadow, whereas species richness mattered more than species evenness in 
regulating above-ground biomass in alpine steppe. Our results offer further support for species richness and evenness co-
regulating grassland productivity across spatial-scale climatic and edaphic gradients, which helps maintain the benefits of 
plant diversity and alpine grassland ecosystems.
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Introduction

Global climate is now rapidly changing toward warmer 
temperatures, which will have alarming consequences for 
biodiversity and terrestrial ecosystem functioning (Walther 
et al. 2002; Pugnaire et al. 2019). Above-ground biomass 
is an essential integrator of terrestrial ecosystem function-
ing, and affects terrestrial ecosystem carbon cycling feed-
back to climate change (Cao and Woodward 1998; Liu et al. 
2018). Climate can directly affect plant biomass by regulat-
ing physiological and environmental determinants of plant 
growth, e.g., climate-driven shifts in temperature and water 
availability affect plant production via the photosynthetic 
rates and respiratory rates of plants (Chu et al. 2016). Indi-
rect effects of climate on plant biomass can be mediated by 
altering community structure and composition (i.e., altering 
plant interspecific relationships) (Yang et al. 2011; Wang 
et al. 2012). Climate can also drive abiotic soil conditions 
such as soil temperature and moisture to alter soil processes, 
especially those related to soil fertility, further regulating 
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the effects of soil variables on vegetation growth and plant 
biomass (Liu et al. 2009; Kardol et al. 2010b). For example, 
warming reduces soil moisture and increases soil tempera-
ture by increasing evapotranspiration, which in turn affects 
soil nutrient utilization (Niu et al. 2008). Not only does cli-
mate influence soil, but also soil also can influence climate. 
Soils that are wetter or denser hold heat and stabilize the 
plant productivity from climate change more so than drier 
or looser soils (Alekseev et al. 2018). Although the feed-
back between climatic and edaphic is not fully understood, 
the integrated effects of climatic and edaphic variables may 
explain directional change of above-ground plant biomass 
in a future warmer world.

Terrestrial ecosystems may respond to climatic and 
edaphic variables in different magnitudes and directions. 
Warming can enhance the vegetation activity by extend-
ing the length of the growing season and intensifying the 
maximum rates of the productivity (Shen et al. 2015), or 
induce water stress and suppress plant growth by increasing 
evapotranspiration (Niu et al. 2008). Increased precipitation 
is typically positively correlated with terrestrial plant bio-
mass due to relief of water and nutrients stress, especially 
in arid ecosystems (Petrie et al. 2018). Edaphic characteris-
tics with spatiotemporal heterogeneity also are particularly 
important in influencing the formation and distribution of 
terrestrial plant community biomass, as soil factors deter-
mine nutrient availability and soil water availability (García-
Palacios et al. 2012; Ulrich et al. 2014). Nutrient-rich and 
water-use-efficient soils can promote faster plant develop-
ment and increase plant biomass, which also increases inter-
specific competition for available resources and further leads 
to vegetation death and biomass reduction (Palmquist et al. 
2021). While climatic and edaphic variables play different 
roles in terrestrial ecosystems, uncertainty remains about 
the sensitivity (mainly referring to strength and direction 
of responses) of ecosystem function (i.e., plant biomass) to 
climate and soil responses, then the main drivers of above-
ground biomass in terrestrial ecosystem still needs further 
investigation.

Previous studies have suggested that plant community 
properties, especially species evenness (equitability of rela-
tive abundance among species) and species richness (num-
ber of species), also affect key ecosystem processes, such as 
biomass production (Kardol et al. 2010a; Dorji et al. 2014). 
Even though there is considerable debate about the shape of 
the relationships between species richness and plant biomass 
(e.g., Mittelbach et al. 2001; Sandau et al. 2019), the con-
sensus is that ecosystems with high species richness com-
monly have higher biomass and productivity (van Ruijven 
and Berendse 2005; Venail et al. 2015). Species richness 
has been widely used as the only measurement of species 
diversity in many studies (Maestre et al. 2012; Chen et al. 
2018), and few studies have investigated the effects on plant 

biomass of the second component of species diversity: spe-
cies evenness, which has been shown to be equally or more 
important than species richness (Stirling and Wilsey 2001; 
Mulder et al. 2004). Species evenness also can indirectly 
affect terrestrial ecosystem processes through shifting in 
species richness (Wilsey and Polley 2004). The small-scale 
and highly controlled diversity experiments are difficult to 
alter evenness and usually use mixed seeds to maximize spe-
cies evenness (Smith and Knapp 2003; Mulder et al. 2004), 
and such diversity-controlled experiments do not reflect the 
actual distribution patterns of species in natural assembled 
communities (Kardol et al. 2018). In natural systems, vari-
ation in diversity is non-randomly distributed across space 
and time and driven by various environmental factors (i.e., 
climate and soil factors), which in turn can affect ecosys-
tem functioning, such as productivity (van der Plas 2019). 
Regional or large-scale studies of species evenness and rich-
ness in natural communities are needed to further advance 
our understanding of the roles of species evenness and rich-
ness in maintaining above-ground plant biomass in terres-
trial ecosystems.

Alpine grassland ecosystems are among the most sensitive 
ecosystems to global climate change, because high-elevation 
alpine zones are seeing disproportionately rapid warming 
(Chen et al. 2013; Grimm et al. 2013). The Qinghai-Tibetan 
Plateau hosts the biggest alpine grassland ecosystem in the 
world, which has a warming rate of about twice (0.3–0.4℃ 
per decade) the global average and its temperature will con-
tinue to increase in this century (Hansen et al. 2010; Shen 
et al. 2015). Climate warming can promote earlier shifts 
in phenological events, enhance vegetation growth rate and 
shorten growth period in alpine grasslands (Wang et al. 
2020). Climate-change-induced shifts in alpine plant growth 
patterns will further alter alpine biome characteristics and 
biomass production (Grimm et al. 2013). Soil nutrients and 
water availability are also key factors regulating the response 
of alpine grassland productivity to climate change (Fay et al. 
2015; Winkler et al. 2016). In high-elevation alpine ecosys-
tems with water shortages, warming will limit soil moisture 
and release soil nutrients (i.e., C and N) into the atmosphere 
due to the removal of low-temperature restrictions, which 
negatively affects plant growth and further threatens alpine 
grassland productivity (Li et al. 2018; Gao et al. 2021). The 
unique climate and vegetation growth patterns make the 
Tibetan Plateau an ideal region for investigating climatic and 
soil factors influencing the spatial patterns of above-ground 
biomass in alpine grassland ecosystems.

Here, we report on a unique regional-scale observational 
data set of above-ground productivity and species diversity 
of alpine grassland (alpine meadow and alpine steppe) in 
climatic and soil variables (i.e., temperature, precipitation, 
soil water content, and soil nutrients) on the Qinghai-Tibetan 
Plateau. Specifically, this study aimed to: (1) explore the 
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main climatic and soil drivers of primary production of 
alpine meadow and steppe; and (2) further determine the 
contributions of species richness and evenness to regulation 
of grassland productivity across regional-scale climatic and 
edaphic gradients. Understanding the sensitivity of alpine 
grassland productivity to the climatic and edaphic gradi-
ents, as well as the role of species richness and evenness in 
alpine grassland ecosystems, is critical for developing adap-
tive strategies to protect vulnerable grassland ecosystems 
and for better predicting the responses of different alpine 
grasslands to on-going climate change.

Materials and methods

Study sites

The 116 study sites were located at eastern, southern, 
and central Qinghai-Tibetan Plateau (26°00′–39°47′N, 
73°19′–104°47′E) in Autonomous Region and Qinghai 

Province, China (Fig. 1a). The Qinghai-Tibetan Plateau has 
an alpine climate, which is characterized by a short sum-
mer and a long winter. The mean altitude is over 4000 m. 
The annual mean temperature and mean precipitation are 4 
℃ and 400 mm, respectively. The precipitation falls mainly 
in the rainy season from May to September, considered 
as the growing season. A significantly decreasing gradi-
ent of temperature and precipitation from the southeast to 
the northwest has been confirmed in the Qinghai-Tibetan 
Plateau (Tian et al. 2014; Cui et al. 2021). In addition, 
alpine meadow and alpine steppe are the two dominant 
grassland types across the Qinghai-Tibetan Plateau. The 
alpine meadow is characterized by cold and wet climatic 
conditions, composed by cold-tolerant perennial herbs with 
dense grass and low grass layers, while alpine steppe is char-
acterized by cold and arid climatic conditions, composed 
by cold and dry perennial grasses, with sparse vegetation 
(Zhang et al. 2017; Duan et al. 2021). The vegetation of 
alpine meadow mainly consists of Kobresia humilis, Carex 
scabrirostris, Poa pratensis, Potentilla nivea, and Lancea 

Fig. 1   a Map of the study region. Locations of sampling sites in 
alpine meadow (green dots, n = 55) and in alpine steppe (orange tri-
angles, n = 61) on the Qinghai-Tibetan Plateau. The image was gener-
ated by ArcGIS software (version 10.5). Data distribution plots of b 

species richness, c species evenness, and d above-ground biomass in 
alpine meadow (green) and alpine steppe (orange). Boxplots denote 
the median (black) and its 95% confidence intervals (whiskers), and 
the interquartile ranges (gray shadow)



494	 Oecologia (2022) 200:491–502

1 3

tibetica. The alpine steppe is dominated by Stipa purpurea, 
Festuca ovina, Leontopodium nanum, Koeleria argentea, 
and Oxytropis microphylla. The classification of grassland 
types was based on the Classification Standards of Grass-
land Types and Classification System of Grassland Types 
in China. Since the 1990s, China has carried out grazing 
forbidden and exclusion practices to ensure the sustainable 
development of grasslands. All sites were in natural grass-
lands, not grazed or mowed.

Field measurement

In this survey, we captured a substantial range of vegetation 
characteristics in 116 sites (55 in the alpine meadows and 61 
in the alpine steppes) across a 2131-km east–west and 920-
km south-north grassland transects during the peak growing 
season of 2014 (Fig. 1a). Latitude and longitude of each site 
were recorded. We determined representative sampling sites 
based on the basic data of grassland surveys in China and 
the distribution of typical local grassland communities. We 
selected a plot (size of 10 m × 10 m) at each sampling site 
with an interval of 50–100 km, and then randomly placed 
three quadrats (50 cm × 50 cm) along the diagonal of each 
plot. The data of each plot were calculated by the average 
of the three quadrats for subsequent calculations. Within 
each quadrat, we recorded the height, cover, and density of 
all the plant species, as well as harvesting the above-ground 
part, which was then weighed as the species above-ground 
biomass after being dried at 65 ℃ for 48 h. The number of 
plant species in each quadrat was recorded as species rich-
ness. Species evenness was calculated as:

where S is the total number of species in the community, Pi 
is the proportion of individuals of species i. We estimated 
this proportion as Pi = ni / N, where ni is the number of indi-
viduals of the ith species, N is the total number of individu-
als of all the species. ln is the natural logarithm.

Acquisition of meteorological and soil data

For each site, the meteorological data were collected from 
the European Centre for Medium-Range Weather Forecasts 
(https://​www.​ecmwf.​int/) with the themes “ERA5 monthly 
averaged data on single levels from 1979 to present” (Hers-
bach et al. 2019) and “Essential climate variables for assess-
ment of climate variability from 1979 to present”. The grid-
ded climate data included precipitation, air temperature, 
solar radiation, soil temperature (0–28 cm depth), and soil 
water content (0-7 cm depth) during the growing seasons 
(May to September) from 2004 to 2013. Soil data were 

(1)Species evenness =
−
∑s

i=1
P
i
lnP

i

lnS
,

obtained from the China soil properties data set (Shang-
guan et al. 2013). The gridded soil data included soil pH, 
soil available nitrogen, total nitrogen, available phosphorus, 
total phosphorus, and soil organic matter at 0–30 cm depth 
during the growing seasons. All gridded data was extracted 
using ArcGIS 10.2 software (ESRI, Redlands, CA, USA).

Statistical analyses

We used data distribution plots and t test to compare spe-
cies richness, species evenness, and above-ground biomass 
differences between alpine meadow and alpine steppe. The 
relationships between climatic variables (growing season 
precipitation, temperature, and solar radiation), soil vari-
ables (soil temperature, water content, pH, available nitro-
gen, total nitrogen, available phosphorus, total phosphorus, 
and organic matter), with species richness, evenness, and 
above-ground biomass were evaluated using linear regres-
sions in both alpine meadow and steppe. The t-test analysis 
was performed using SPSS version 22.0 software (SPSS 
Inc., Chicago, IL, USA). The data distribution plots and the 
regression analyses were fitted using the ggplot2 package in 
R version 3.6.1 software (R Core Team 2019). We further 
used the variation partitioning analysis (VPA) to estimate 
the contribution of climate and soil variables to the variation 
in species richness, evenness, and above-ground biomass in 
alpine meadow and steppe. This procedure was performed 
using the “vegan” package in R software. We standardized 
all data before VPA analysis.

We used structural equation model (SEM) to explain the 
direct and indirect effects of climate variables, soil variables, 
species richness, and evenness on above-ground biomass in 
both alpine meadow and steppe. Prior to the construction of 
the final SEM, a priori model was built to explore the ration-
ale behind these potential effects (Figure S4). We conducted 
principal component analysis (PCA) to create a multivariate 
functional index before SEM construction, and then intro-
duced the first principal component (PC1) of climate and 
soil variables as new variables to represent the combined 
group properties into the subsequent SEM analysis (Fig S5 
and 4). Considering the sensitivity of the Qinghai-Tibetan 
Plateau to climate change, and climate variables mainly 
directly affect the grassland biomass by altering soil water 
and heat factors. Therefore, we developed new SEMs for the 
effects of individual climate variables on above-ground bio-
mass indirectly through soil water content and soil tempera-
ture (Fig. S6 and 7). The model adequacy was determined 
by using a Pearson's chi-Square test (χ2), comparative fit 
index (CFI), and root mean square error of approximation 
(RMSEA). For SEMs, we used the AMOS 22.0 statistical 
tool (Amos Development Corporation, Chicago, IL, USA). 
We also used linear regressions to test the relationships 
between species richness and evenness with above-ground 

https://www.ecmwf.int/
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biomass, and created three-dimensional surfaces using Sig-
maPlot software to visualize the effects of species richness 
and evenness on above-ground biomass.

Results

Above‑ground productivity and species diversity 
across climatic and edaphic gradients

Species richness and above-ground biomass were sig-
nificantly higher in alpine meadow than in alpine steppe 
(P < 0.001; Fig. 1b, d), but the distribution of species even-
ness in the two types of grasslands was similar (P = 0.053; 
Fig. 1c). Additionally, in alpine meadow, the relationships 
(positive or negative) between species richness and above-
ground biomass with climate and soil variables were con-
sistent with those in alpine steppe (Fig. S1, S2, and S3). But 
the relationships between species evenness and soil nutrient 
indicators in alpine meadow were different from those in 
alpine steppe (Fig. S2 and S3). Specifically, species richness 
and above-ground biomass were significantly negatively 
related to growing season solar radiation (P < 0.001; Fig. 
S1c and i) and positively related to growing season precipi-
tation and growing season temperature (Fig. S1a, b, g, and 
h) in both alpine meadow and alpine steppe. Species even-
ness in alpine meadow and steppe decreased with increas-
ing growing season precipitation (Fig. S1d), but increased 
slightly with increasing growing season temperature and 
solar radiation (Fig. S1e and f).

Soil temperature, soil water content, and soil nutrient 
indicators were generally positively, while soil pH was neg-
atively, correlated with species richness and above-ground 
biomass in both alpine meadow and alpine steppe (Fig. S2a-
e, k–o and Fig. S3a-c, g-i). Furthermore, species evenness 
in alpine meadow and steppe increased with increasing soil 
temperature, but decreased with increasing soil water con-
tent (Fig. S2f and g). Additionally, soil available nitrogen, 
available phosphorus, organic matter, total nitrogen, and 

total phosphorus were significantly negatively correlated 
with species evenness of alpine meadow, but did not show 
any relationship with evenness of alpine steppe (Fig. S2h-j 
and Fig. S1e-f).

Overall, climatic variables, especially growing sea-
son solar radiation and growing season temperature, had 
stronger effects on species richness and above-ground bio-
mass in alpine meadow (explained 18% and 26% of vari-
ation, respectively) than alpine steppe (explained 9% and 
21% of variation, respectively; Fig. 2a). But climatic variable 
had weaker effects on species evenness in alpine meadow 
(explained 6% of variation) than alpine steppe (explained 
9% of variation; Figs. 2a and 3). The effect patterns of soil 
variables on species richness, above-ground biomass, and 
species evenness were opposite to the effect patterns of cli-
matic variables (Figs. 2b and 3).

Direct and indirect effects of climatic and edaphic 
variables regulate grassland productivity in alpine 
meadow and alpine steppe

Our structural equation models (SEM) explained 59% of 
the variation in above-ground biomass of alpine meadow, 
and 70% of the variation in above-ground biomass of alpine 
steppe (Fig. 4a, b). In alpine meadow, climate variables posi-
tively affect above-ground biomass indirectly through spe-
cies richness and soil variables (Fig. 4a, c). But in the alpine 
steppe, climate variables positively affect above-ground bio-
mass only directly and indirectly through species richness 
(Fig. 4b, d). Most strikingly, soil variables (i.e., soil water 
content, temperature, and nutrient indicators) indirectly 
decreased above-ground biomass in alpine meadow via 
shifts in species evenness, and had no significant indirect 
effects on above-ground biomass via shifts in species even-
ness in alpine steppe (Fig. 4a and b). Furthermore, in alpine 
meadow, species evenness had a significant negative direct 
effect on above-ground biomass, while there was no relation-
ship between species evenness and above-ground biomass in 
alpine steppe (Fig. 4a, b).

Fig. 2   Comparing the explana-
tory power of a climate and b 
soil variables for changes in 
above-ground biomass, species 
richness, and species evenness 
in alpine meadow (green) and 
alpine steppe (orange). Numbers 
along the dots indicate the per-
centage change in explanatory, 
calculated by multiplying the 
numbers of the bars in Fig. 3 by 
the R2 of each model
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The SEM of individual climate variables showed that 
growing season solar radiation was a key driver of above-
ground biomass in both alpine meadow and alpine steppe, 
with direct effects as well as indirect effects via shifts in 
species richness (Fig. S7). The SEM further demonstrated 
that growing season solar radiation and species evenness had 
overall negative effects (i.e., the sum of direct and indirect 
effects) on above-ground biomass in both alpine meadow 
and steppe, while growing season temperature, soil water 
content, soil properties (i.e., soil pH and nutrient indicators), 
and species richness had overall positive effects (Fig. S7b 
and d). Moreover, in alpine meadow, species evenness could 
indirectly affect above-ground biomass through shifts in spe-
cies richness, while the indirect effects of species evenness 

through species richness on above-ground biomass in alpine 
steppe were not significant (Fig. S7a and c).

Effects of species richness and evenness 
on grassland productivity formation

To further explore the importance of plant species evenness 
and richness to above-ground biomass, we analyzed the rela-
tionships between species evenness, species richness, and 
above-ground biomass in both alpine meadow and steppe. 
Results showed that species richness was positively, while 
species evenness was negatively, correlated with above-
ground biomass in both alpine meadow and alpine steppe 
(Fig. S8a and b). Additionally, for alpine meadow, species 

Fig. 3   Effects of soil (pink) and climate (purple) variables on (a), (d) 
species richness, (b), (e) species evenness, and (c), (f) above-ground 
biomass in both alpine meadow and alpine steppe. For each variable 
in the model, dots represent the standardized effect size and lines rep-

resent standard deviation. R.2 represents the proportion of variance 
explained by model. The arrows in the bars from strong explanatory 
factors to weak explanatory factors (see Fig. 2). *P < 0.05; **P < 0.01
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evenness and richness co-maintained above-ground bio-
mass, and lower species evenness and richness had nega-
tive effects on above-ground biomass (Fig. S8c). For alpine 
steppe, the link between species evenness and above-ground 
biomass shifted from negative to positive as species richness 
increased, and species richness was related to higher above-
ground biomass at low species evenness sites (Fig. S8d).

Discussion

Our results showed that above-ground biomass had posi-
tive associations with growing season precipitation, growing 
season temperature, soil water content, and soil nutrient indi-
cators (i.e., available nitrogen, total nitrogen, available phos-
phorus, and soil organic matter), but negative associations 

with growing season solar radiation and soil pH in both 
alpine meadow and alpine steppe. The growing season 
solar radiation was a strong driver of above-ground biomass 
decline in alpine meadow and steppe. Moreover, above-
ground biomass in alpine meadow was more responsive to 
climatic variables than alpine steppe, but less responsive to 
soil variables. The inconsistent responses of the two grass-
lands to climatic and edaphic variables may be due to the dif-
ferences in species composition and species diversity distri-
butions caused by growth environments, i.e., alpine meadow 
is wetter and warmer than alpine steppe, and meadow can 
hold more species (Perring 1960; Grime et al. 2008). Fur-
thermore, soil variables indirectly decreased above-ground 
biomass via shifts in species evenness in alpine meadow, 
and had no significant indirect effects on above-ground bio-
mass via shifts in species evenness in alpine steppe (Fig. 4). 

Fig. 4   Structural equation models developed to relate spatial-scale 
climate variables, soil variables, and species richness, species even-
ness, and above-ground biomass in a alpine meadow and b alpine 
steppe. Black and red arrows indicate positive and negative effects, 
respectively. Dashed arrows indicate non-significant effects. The 
thickness of the solid arrows indicates the magnitude of the standard-
ized path coefficients, which are listed beside each arrow. R.2 repre-
sents the proportion of variance explained for each dependent varia-

ble. The black and red arrows following the climate and soil variables 
indicate a positive or negative relationship between the variables and 
the first component from the principal components analysis (PCA), 
respectively (see Fig. S5). *P < 0.05; **P < 0.01; ***P < 0.001. c, d 
Standardized total effects (direct plus indirect effects) derived from 
the structural equation models depicted. Numbers along the bars are 
standardized total effect values. The acronyms for climate and soil 
variables are defined in Table S1
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Species evenness also could indirectly affect above-ground 
biomass in alpine meadow through shifts in species rich-
ness, while the indirect effects of species evenness through 
species richness in alpine steppe were not significant. This 
implies that the ability of species evenness and richness to 
regulate above-ground biomass may differ between alpine 
meadow and steppe. These differences were expressed as 
species richness and evenness co-determined above-ground 
biomass in alpine meadow, but species richness rather than 
evenness primarily determined above-ground biomass in 
alpine steppe. Elucidating the patterns of species evenness 
and richness indirectly regulating grassland biomass in dif-
ferent grassland ecosystems under climate and soil changes 
holds the key to better managing changes in alpine grassland 
ecosystem functioning under future climate scenarios.

The unique environmental conditions of alpine grassland 
ecosystems, such as high elevation, low temperatures, and 
poor soil nutrient availability, strongly affected alpine plant 
developmental process and productivity in response to cli-
mate warming (Shen et al. 2015). Recent research on the 
effects of climate warming on plant growth in alpine grass-
land ecosystems has shown inconsistent results. For exam-
ple, experimental studies on the central Qinghai-Tibetan 
Plateau indicated that warming stimulated plant growth in 
alpine meadows, but reduced growth in alpine steppes (Gan-
jurjav et al. 2016). However, a 9-year ground survey revealed 
that increasing temperature had a negative effect on plant 
growth in both alpine meadow and steppe on the Qinghai-
Tibetan Plateau (Ganjurjav et al. 2018). In our current study, 
we found a consistent positive relationship between grow-
ing season temperature and soil temperature with species 
richness and above-ground biomass in both alpine meadow 
and steppe. Considering that rising temperatures was proved 
to promote earlier vegetation phenology (such as green-up 
dates) and faster growth (Wang et al. 2020), and warming is 
generally expected to alleviate low-temperature constraints 
on plant growth in alpine regions (Park et al. 2019), our 
results suggest that increasing temperature might be condu-
cive to plant growth of alpine meadow and steppe. Precipita-
tion is also a critical climatic determinant of plant growth 
and community biomass over much of the globe (O'Connor 
et al. 2001; Knapp et al. 2017). Our results were consistent 
with previous studies (Yang et al. 2009; Sun et al. 2013) 
showing that growing season precipitation and soil water 
content were positively related to plant species richness and 
above-ground biomass in both alpine meadow and steppe. 
This finding further supported that water availability is an 
important control of alpine plant production.

It should be noted that growing season solar radiation had 
a negative effect (standardized total effects < 0) on species 
richness and above-ground biomass in alpine meadow and 
steppe in this study, which predicted that the growing season 
solar radiation was the main driver of above-ground biomass 

declines. This was probably because that light, as a direct 
source of photosynthesis, was an essential prerequisite for 
plant growth and development (Sun et al. 2019). Appropri-
ate illumination intensity promotes photosynthesis rate and 
improves the yield and quality of vegetation (Chang et al. 
2008). However, the high radiation intensity in the study 
area on the Qinghai-Tibetan Plateau makes it easy for plant 
to reach the light saturation point (Liu et al. 2012), thus 
reduces the activity of photosynthesis enzymes, damages 
plant growth hormones, leads to photoinhibition of pho-
tosynthesis, and ultimately reduce above-ground biomass. 
Another possible reason for the decline in above-ground 
biomass is that increased solar radiation will accelerate the 
rise of soil temperature and evapotranspiration, reduce soil 
moisture, and inhibit plant growth (Liu et al. 2020).

Importantly, we found that compared with above-ground 
biomass in alpine steppe, above-ground biomass in alpine 
meadow showed stronger correlations with spatial-scale cli-
matic variables, soil temperature, soil water content, and soil 
pH, while weaker correlations with soil nutrient indicators. 
This might be due to meteorological, topographic, and soil 
factors leading to differences in the spatial patterns of plant 
composition and productivity in alpine meadow and steppe 
(Sun et al. 2013). In detail, the habitat for alpine meadow 
was wetter and warmer than the alpine steppe, and the spe-
cies richness and above-ground biomass of alpine meadow 
were also higher (Sun et al. 2020). Diversity has been shown 
to be the basis of productivity, resistance to invasion, sta-
bility, and other desirable community properties (Harrison 
et al. 2015). Substantial evidences also suggests that high 
plant richness could stabilize grassland ecosystem function-
ing (e.g., productivity) in a fluctuating environment (Yachi 
and Loreau 1999; Wang et al. 2019). It might be assumed 
that alpine meadow with high diversity responds to chang-
ing climatic variables faster than the low-diversity alpine 
steppe. Due to the long-term dry and cold environment of 
alpine steppe (Peng et al. 2020), this type of alpine grass-
land might have developed adaptability and resistance to 
low soil moisture and temperature (Thompson and Fronhofer 
2019). Thus, alpine steppe was less sensitive to changes in 
soil water content, soil temperature, and soil pH than alpine 
meadow in the current survey. Additionally, the reason that 
alpine steppe was more sensitive to changes in soil nutrients, 
while this was not the case for alpine meadow, was prob-
ably the unique alpine sod layer containing high content of 
soil material and sufficient nutrients of the latter one (Su 
et al. 2018). Collectively, our study highlights the different 
impacts of spatial-scale climatic and edaphic variables on 
different grassland types, and suggests that future research 
should adopt appropriate conservation measures for different 
grassland types.

Results of the structural equation models analysis 
revealed that climate variable, especially growing season 
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solar radiation, played a vital role in alpine grasslands 
biomass. Climate variables exhibited a positive effect on 
above-ground biomass through its direct effects and the 
indirect effects mediated by soil variables (i.e., soil water 
content, temperature, and nutrient indicators) and species 
diversity in both alpine meadow and steppe. For example, 
high precipitation and temperature levels may alleviate low 
temperature limitations of alpine grasslands on the Qing-
hai-Tibetan Plateau and increase soil moisture (Chen et al. 
2018), and therefore, promote species diversity and plant 
biomass. Remarkably, the indirect effects of soil variables 
(i.e., soil water content, temperature, and soil nutrients) on 
above-ground biomass were significantly negative in alpine 
meadow while no significant in alpine steppe, mediated by 
shifts in species evenness (Fig. 4). This result suggests that 
species evenness is more important in alpine meadow than 
in alpine steppe for indirectly regulating the effects of cli-
mate and soil variables on above-ground biomass. Accord-
ing to previous research, variation in community evenness 
was largely driven by spatial changes in dominant species 
(Cerabolini et al. 2010). Increasing soil water and nutrient 
resources (i.e., N, P, and organic matter) probably promoted 
vegetation growth and increased species evenness in alpine 
meadow (Orwin et al. 2014). Subsequently, the competition 
of species for resources gradually became stronger, and the 
slow-growing species became the dominant species, leading 
to a decrease in plant biomass (Loreau et al. 2003; Mulder 
et al. 2004).

Additionally, we found a significant negative relation-
ship between species evenness and above-ground biomass 
in alpine meadow, but did not detect any significant relation-
ships between species evenness and above-ground biomass 
in alpine steppe by the SEMs (Fig. 4 and S7). This further 
supports the above results that species evenness is more cru-
cial in regulating above-ground biomass in alpine meadow 
than in alpine steppe. Our analysis also showed that species 
richness and evenness co-regulated above-ground biomass in 
alpine meadow, but species richness played a dominant role 
rather than species evenness in alpine steppe (Fig. 4, S7, and 
S8). At the regional scale, the role of species diversity might 
be influenced by plant community attributes. For example, 
as a measure of species distribution and species abundance 
in plant communities, species evenness was been shown to 
be equal or more important than species richness (Maestre 
et al. 2012). Moreover, we found that species evenness could 
affect above-ground biomass indirectly via affecting species 
richness in alpine meadow, but not in alpine steppe (Fig. 
S7a and c). As a result, species evenness could directly and 
indirectly affect biomass via shifts in species richness, thus 
realizing the co-effect patterns of species evenness and rich-
ness on plant biomass found in the current alpine meadow 
study. In alpine steppe, as species richness increased, the 
relationships between species evenness and above-ground 

biomass shifted from negative to positive. Since above-
ground biomass was positively correlated with species 
richness and negatively correlated with species evenness, 
these two effects might offset with each other, resulting in 
the ultimate species richness-determined above-ground bio-
mass of alpine steppe. However, the potential mechanism for 
the influence of species evenness and richness on different 
grassland ecosystems was poorly understood. Future stud-
ies are necessary to consider the combined effects of spe-
cies richness and evenness and which index can driver plant 
biomass more effectively for different grassland ecosystems.

Conclusion

Our results showed that growing season solar radiation was 
the primary predictor of above-ground biomass decline in 
both alpine meadow and steppe under spatial-scale climatic 
heterogeneity, and the negative effects of solar radiation on 
above-ground biomass were weaker than the total positive 
effects of growing season precipitation and temperature. 
Furthermore, the response of alpine meadow productivity 
to spatial-scale climatic gradient was stronger than that of 
alpine steppe, while the response of alpine meadow produc-
tivity to spatial-scale edaphic variables was weaker than that 
of alpine steppe. We, therefore, suggest that the negative 
effect of spatial-scale climatic gradient, especially of solar 
radiation should be particularly considered when conserv-
ing alpine meadow productivity functioning. Results of the 
structural equation models further showed that species even-
ness and richness co-regulated alpine meadow productiv-
ity at the regional scale, with a direct negative effect of the 
former and a direct positive effect of the latter. However, 
species richness was the main driver rather than specie even-
ness in alpine steppe productivity formation and sensitivity. 
Remarkably, species evenness also participates to contrib-
ute to buffer the effects of spatial-scale climatic gradient on 
alpine grassland productivity as species richness do and, 
therefore, warrant further study. Collectively, our study 
highlights the importance of conserving species diversity 
and evenness to maintain the balance and stability of alpine 
grassland productivity under future climate change.
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