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Abstract
Animal seed dispersal processes are an important aspect of ecosystem services, as they shape the survival of seed dispersers 
and the balanced distribution of propagules for many plant communities. Several studies within tropical wild ecosystems 
have generally shown that seed dispersal processes are highly generalised and robust to extinction. Studies examining seed 
dispersal networks in highly built-up urban ecosystems and their robustness to species loss or extinction are rare. We exam-
ined avian seed dispersal networks across an urban ecosystem characterised by a high human settlement and infrastructure 
of the built environment in Zambia to determine their network specialisation, interaction evenness and interaction diversity, 
as these three parameters are critical in driving the resilience of these mutualisms’ interactions against extinction. A total 
of 405 individuals representing 11 species of birds were observed and recorded feeding on a total of 11 focal fleshy-fruiting 
plant species. Network specialisation was generally low and remained similar across study areas. Interaction evenness and 
interaction diversity were not only high but also remained similar across study areas. Low specialisation and high interac-
tion evenness and diversity show that mutualistic interactions in these networks are equally highly generalised, suggesting 
a stable and robust coexistence of species in plant–frugivore communities within urban ecosystems. Generally, our results 
seem to broadly suggest that opportunities for conservation still exist in these ecosystems provided urbanisation is accom-
panied by promoting either the management of remnant fruiting plants or the cultivation of new ones to support the avian 
communities existing in these areas.
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Introduction

Urbanisation is a pervasively growing global threat to bio-
diversity (Elmqvist et al. 2016; Kondratyeva et al. 2020). 
Research has shown that urbanisation is increasingly con-
tributing towards extensive modification of biological com-
munities at both local and landscape scales by reducing and 
fragmenting their natural habitats (Mckinney 2002; Emer 
et al. 2018). Recent forecasts suggest that the amount of 

natural habitats likely to be transformed by urbanisation is 
expected to increase, on average, by more than three times 
between 2000 and 2030 (from 450,000  km2 c. 2000) around 
the world (Elmqvist et al. 2016). And with 68% of the global 
human population predicted to live in urban areas by the year 
2050 (United Nations 2019), this will most likely result in 
land use and land cover modifications, and environmental 
disturbances. Consequently, this will increase the pressure 
on local diversity of remnant species (Gaston 2010) and will 
induce the assembly of novel ecological communities (Swan 
et al. 2011; Kondratyeva et al. 2020). Already, over 80% of 
most urban areas across the globe are covered by pavement 
and buildings, of which only less than 20% remain vegetated 
(Mckinney 2008).

Generally, urbanisation impacts biodiversity and eco-
system services (e.g. soil formation and nutrient cycling, 
food and fresh water provision, etc.) both directly and 
indirectly (Elmqvist et al. 2016). Direct impacts consist of 
degradation, habitat loss, modified soils and other physical 
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transformations caused by urban expansion (Escribano-
Avula et al. 2018), whereas indirect impacts include changes 
in nutrient and water availability as well as an increase in 
abiotic stressors, like air pollution and changes in herbivory 
(Pickett and Cadenasso 2009). Arguably, land cover change 
is the most direct impact of urbanisation on biodiversity 
globally due to the growth of urban areas and associated 
activities, such as favouring the growth of non-native and 
native species that are frequently ecological generalists 
(Strohbach et al. 2009; Muller et al. 2013). Ultimately, this 
has been shown to severely affect the structure of ecosys-
tems and can influence species diversity, ecological interac-
tions and key ecological functions, such as animal-driven 
seed dispersal processes (Cruz et al. 2013; Silva et al. 2015; 
Valiente-Banuet et al. 2015; Yuan and Lu 2016). In fact, eco-
logical interactions have been shown to be even more vul-
nerable to human propelled extinction than the species that 
drive these interactions (Valiente-Banuet et al. 2015). The 
ecological importance of interactions, such as the animal-
mediated mutualistic seed dispersal processes, especially 
in the context of maintaining biodiversity and ecosystem 
dynamics are well documented (Howe and Smallwood 1982; 
Bascompte and Jordano 2007; Shikang et al. 2015; Timo-
teo et al. 2016). Therefore, altering or causing changes in 
disperser movement patterns that can affect seed removal 
and plant recruitment rates across ecosystems could result in 
several unforeseen consequences on biodiversity as a whole 
(Ciuti et al. 2012).

In recent years, the study of seed dispersal processes has 
shifted from examining one-on-one interactions between 
plants and frugivorous animals (Herrera 2002; Cordeiro and 
Howe 2003; Farwig et al. 2006), to the use of a community-
wide approach involving the mechanistic understanding of 
seed dispersal network analysis (e.g. Carlo and Yang 2011; 
Chama et al. 2013; Dugger et al. 2018). This is because 
seed dispersal is mainly used as a mechanism to predict the 
consequences of species extinction and environmental per-
turbation to the entire community, especially in disturbed 
ecosystems (Guimarães Jr et al. 2006), such as urban envi-
ronments. In fact, several factors have been shown to affect 
avian seed dispersers at a community level in disturbed envi-
ronments, among which include predation pressure, habitat 
fragmentation size, edge heterogeneity, vegetation structure, 
human disturbances, food availability and landscape char-
acteristics (e.g. surrounding matrix and patch connectivity; 
Yuan and Lu 2016; Cote et al. 2017; Gaynor et al. 2018). 
Many of these ecosystem disturbances affect the biological 
composition of communities whereby they alter their capac-
ity to sustain key ecological functions, such as seed dispersal 
(Cruz et al. 2013). Further, most urban areas have also been 
shown to contain vegetation patches that are poorly con-
nected to a certain degree (Francis and Chadwick 2013), 
largely driven by an increase in impervious surfaces and 

promoting the management of landscapes that structurally 
simplifies vegetation within these areas (Baker and Harris 
2007; Mckinney 2008; Warren et al. 2015). Such attributes 
of habitat disturbance can undeniably impinge dispersal pro-
cesses. Surprisingly, however, recent research shows that 
many avian frugivores seem to have developed adaptations 
in these environments irrespective of the various ecological 
disturbances they are subjected to (Murgui and Hedblom 
2017). Whether these adaptations by avian frugivores trans-
late into stable and thus robust seed dispersal networks in 
these ecosystems remains unclear.

Fruit-eating birds in wild tropical ecosystems have been 
shown to have access to a variety of fruits, largely attributed 
to the presence of a variety of fleshy-fruiting plants, almost 
all year round, in those regions (Howe and Smallwood 1982; 
Chama et al. 2013). Several studies seem to generally sug-
gest that such plant–frugivore interactions are robust to 
extinction in tropical wild ecosystems (Gonzalez-Castro 
et al. 2012; Dugger et al. 2018). However, studies examin-
ing how the community interactions between frugivores and 
their plant mutualists respond to ecological disturbances, 
such as urbanisation, are still rare (but see Cruz et al. 2013). 
Yet, seed dispersal processes play an important role in shap-
ing plant recruitment and forest regeneration (D'Avila et al. 
2010), albeit the benefits generated from the seed dispersal 
relationship between frugivorous animals and fleshy-fruiting 
plants are reciprocal or mutual. Thus, any declines in plant 
population may affect the population of seed dispersers since 
fleshy fruits are important food resources for many frugivo-
rous animals (Carlo and Yang 2011). Similarly, if seed dis-
persers decrease in numbers, it will affect the regeneration 
and restoration process of plant communities (Guimarães 
Jr et al. 2006). Unless we increase our understanding of the 
response of these ecologically critical mutualistic interac-
tions to environmental disturbance, we are at risk of fac-
ing a total collapse in biological communities in the face 
of increased threats resulting from urbanisation. Although 
research has shown that dispersal networks in the tropical 
and subtropical ecosystems are generally resilient and thus 
robust to species extinction (e.g. Schleuning et al. 2011; 
Dugger et al. 2018), it remains unclear whether this also 
applies to those (seed dispersal networks) in highly built-up 
tropical urban areas, especially given the ecological distur-
bances that they are regularly subjected to.

Using community ecological parameters, such as network 
specialisation, interaction evenness and diversity, this study 
examined the effects of urbanisation on avian seed disper-
sal networks especially in the context of their robustness 
to species extinction. We predicted that avian seed disper-
sal networks in the urban ecosystem are highly specialised 
and therefore weakly structured. Effectively, this means that 
avian seed dispersal networks in urban ecosystems are not 
robust to species extinction as compared to those reported in 
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the wild tropical and subtropical ecosystems (Albrecht et al. 
2012; Dugger et al. 2018).

Materials and methods

Study area

This study was conducted in Kitwe district (− 12° 48′ 8.7
5″ S/28° 12′ 47.63″ E; elevation of 1213 m asl, Fig. 1), 

within the Copperbelt Province of Zambia, from 30th Oct. 
2018 to 31st Mar. 2019. Located in the central part of the 
province and covering approx. 777  km2, Kitwe is the second 
largest city in terms of population size (517,543) in Zambia 
(after the capital, Lusaka). The city was founded in 1936 and 
obtained its status as a city in 1966 (Mwitwa et al. 2016). 
The city whose mean annual rainfall and temperature are 
roughly 1288 mm and 20 °C, respectively, is one of the fairly 
developed commercial and industrial areas in the nation, 
hosting a complex of mining activities on its North-western 

Fig. 1   Kitwe District map, showing the study sites
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and Western edges (Mwakikagile 2010). Further, the city is 
composed of several townships and suburbs, some of which 
were selected in the context of undertaking this research 
(Fig. 1).

Research design

Within Kitwe’s urban environment, we selected four town-
ships, namely, Riverside, Nkana west, Chimwemwe and 
Chipata Compound, based on their socio-economic desig-
nations (henceforth referred to as high-cost, medium-cost, 
mixed-cost and low-cost residential areas, respectively; 
Fig. 1). Here, high cost represents areas of high-house-
hold income, medium cost represents areas of moderate or 
medium income; low cost represents areas of low income, 
while mixed cost denotes residential areas that have both 
medium- and low-cost attributes. We used these criteria 
because it has the potential to influence the richness of 
fleshy-fruiting plants found across designations. For exam-
ple, a pattern of higher biodiversity has been observed in 
affluent residential areas, than in low-income and predomi-
nantly minority populated neighbourhoods (Hope et al. 
2003; Leong et al. 2018). Therefore, our assumption was 
that the richness of fruiting plant species could increase with 
increasing socio-economic status of a residential area. This 
is because highly affluent communities are likely to have 
the capacity to not only plant but also pay for the costs (e.g. 
water bills, outsourcing labour, etc.) of managing fruiting 
plant species in their backyard gardens. Consequently, such 
areas are likely to attract more avian frugivores than those 
of lower socio-economic status.

In each of the study areas, we first conducted extensive 
random reconnaissance walks to identify the fruiting plants 
with a view to establishing sampling plots and observa-
tion points. Thus, three replicates of 50 m by 100 m plots 
were established in each study area. A distance of at least 
700 m apart from each plot was employed, in order to reduce 
the potential for counting the same birds more than once 
(Chama et al. 2013).

Assessment of plant–frugivore interactions

Field observations were undertaken to assess the interactions 
between frugivorous birds and all fleshy-fruiting plant spe-
cies in each study area. All fleshy-fruiting plants in each plot 
were identified to species level (Forest Dept. 1979; Palgrave 
2002) and observed for feeding activities by visiting avian 
frugivores. Where several individuals of a single plant spe-
cies occurred, only one individual was randomly selected 
as a focal plant for undertaking the observations. Observa-
tions were conducted during the main fruiting season from 
November, 2018 to March, 2019 when most plant species 
were at their peak of ripening (Forest Dept. 1979; Palgrave 

2002). We split the observation surveys in two sessions, 
i.e. early morning (07:30–10:30 a.m.) and late afternoon 
(3:00–5:00 p.m.), as these are times when most birds are 
active (Menke et al. 2012; Chama et al. 2013). On each focal 
plant in a study plot, observations were conducted on three 
different days per week with the aid of a pair of binoculars 
(Bushnell Legend E-Series—10 × 42), from a hidden posi-
tion and at a distance of 10–15 m.

All fruit-eating birds on each focal fruiting plant were 
observed for a period of 30 min, before moving to the next 
plant within the 5 h’ time per day (Albrecht et al. 2012). 
Thus, each plant was observed for a total of 1.5 h (i.e. 
30 min/day × 3 observation days). We identified (i.e. using 
Sinclair and Ryan 2010) and recorded all visiting birds that 
were seen consuming fruit on each focal fleshy-fruiting plant 
under observation. The number of visitations that the bird 
made within the time (30 min) of observation per day were 
also recorded. The number of individual birds and the time 
they spent feeding was equally recorded. In cases where a 
group of conspecific birds visited a plant and individual 
observations could not be done simultaneously, only one 
individual that was best visible was randomly chosen and 
observed with regard to its fruit consumption (Menke et al. 
2012). The total number of observation hours for all the 
focal plants was 67.5.

Statistical analysis

To test the effects of urbanisation on the robustness of seed 
dispersal networks, we analysed the response of key indices 
at network level, namely, specialisation (H2'), interaction 
evenness and interaction diversity. Network specialisation 
(H2') defines the link complementarity across all species 
in a community (Kaiser-Bunbury and Blüthgen 2015). It 
is quantified with the values ranging from 0 to 1, where 
0 denotes complete generalization and vice versa. Thus, a 
higher specialisation denotes a high dependency of each 
species on few limited partners. Effectively, this implies a 
narrow niche breadth and a highly specialised seed dispersal 
process (Blüthgen et al. 2006). On the other hand, low spe-
cialisation indicates a higher functional redundancy among 
partners (Blüthgen 2010), which implies that there is high 
niche breadth of both plants and frugivores, and reveals that 
plants benefit from seed dispersal of generalised frugivores. 
Unlike network specialisation, interaction evenness defines 
the uniformity in interaction frequencies across all links in 
the networks, with high values (closer to 1) reflecting more 
uniform spread of interaction among species (Blüthgen et al. 
2008; Kaiser-Bunbury and Blüthgen 2015), while interac-
tion diversity is the quantitative similarity to the total num-
ber of links across species in the network (Kaiser-Bunbury 
and Blüthgen 2015; Landi et al. 2018). Higher interaction 
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diversity (greater than 1) implies a higher community stabil-
ity and robustness.

Thus, at the onset of our analysis, we computed the 
plant–frugivore interaction data to plot seed dispersal net-
works by means of the bipartite package. The bipartite pack-
age uses the R environment to provide statistical functions 
for visualising food webs and calculating a series of indi-
ces commonly used to describe two-trophic-level ecologi-
cal webs, e.g. seed–disperser, plant–pollinator and preda-
tor–prey systems (Dormann et al. 2008). Thus, we compiled 
the interaction frequencies of each fleshy-fruiting plant spe-
cies (p) with each frugivore species (f) for each study site 
in the quantitative interaction matrix. Here, the interaction 
frequencies (between plants and frugivores) were calculated 
using the number of feeding visits that each identified bird 
made on each fruiting plant species (Vazquez et al. 2012). 
From these data, we calculated, analysed and compared 
the specialisation (H2'), interaction evenness and interac-
tion diversity across networks from each study area using 
mixed-effects models with maximum likelihood. Further, 
we undertook a post hoc test with Tukey Honest Signifi-
cant Difference (HSD) to compare the variance in the mean 
network specialisation, interaction evenness and interaction 
diversity across study areas. We then used the mean network 
indices in our seed dispersal networks to compare with what 
has already been documented in the wild ecosystems (e.g. 
Schleuning et al. 2011; Menke et al. 2012). Finally, we used 
repeated-measures analysis to test if the richness of both 
fleshy-fruiting plants and avian frugivores differed across 
study areas. We then performed linear regression models to 
test if our network parameters (specialisation (H2'), interac-
tion evenness and interaction diversity) correlated with the 
richness of both the fleshy-fruiting plants and avian frugi-
vores following Chama et al. (2013). All statistical analyses 

were performed in R statistical software version 4.1.3 (The 
R Development Core Team 2022).

Results

Plant species composition

We observed a total of 11 species of focal fleshy-fruiting 
plants (including both native and exotic plants, i.e. repre-
senting a total of 45 individuals across all four study areas; 
Table 1). Of these, nine were in the high-cost, seven in the 
mixed-cost and four each in both the medium- and low-cost 
residential areas. Plant species richness remained similar 
across study areas (F3:8 = 3.66; p > 0.05). Plant species 
that recorded the most interactions or fruit-eating visits by 
frugivores included the Pawpaw (Carica papaya; n = 108), 
followed by Woodland water berry (Syzygium guineense; 
n = 78), Guava (Psidium guajava; n = 74) and the Sycamore 
fig (Ficus sycomorus; n = 53). In contrast, the Avocado (Per-
sea americana) and Mango (Mangifera indica) had the least 
number of visitors with a total count of 1 and 2 birds, respec-
tively (Fig. 4; Table 2).

Bird species composition

A total of 11 avian frugivore species, representing a total of 
405 individuals, were recorded feeding on focal fleshy-fruit-
ing plant species (Table 3). Of these, 11 were in the high-
cost, 8 in the medium-cost and 6 each in the mixed-and low-
cost residential areas. Frugivores species richness remained 
similar across study areas (F3:8 = 3.68; p > 0.05). Avian 
frugivores species with the most fruit-eating interactions 
across study areas were the Common Bulbul (Pycnonotus 

Table 1  List of fleshy-fruiting plant species, their origin, area where they were present and corresponding total number of individuals observed 
across an urban ecosystem in Zambia (Forest Dept. 1979; Palgrave 2002)

Plant spp. code Common name Scientific name Origin Area where present Total no. of 
individuals

High Medium Mixed Low

T1 Sycamore fig Ficus sycomorus Native √ 2
T2 Common wild fig Ficus burkei Native √ 1
T3 Shepherds tree Boscia angustifolia Native √ 1
T4 Guava Psidium guajava Exotic √ √ √ √ 12
T5 Nill Phyllanthus muellerianus Native √ 2
T6 Woodland water berry Syzygium guineense Native √ √ √ √ 5
T7 Alexandra palm Archontophoenix alexandrae Exotic √ √ √ 4
T8 Pawpaw Carica papaya Exotic √ √ √ √ 11
T9 Mango Mangifera indica Exotic √ √ 2
T10 Manna Alhagi maurorum Exotic √ √ 4
T11 Avocado Persea americana Exotic √ 1
Total 45
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barbatus; n = 106), followed by the Speckled Mousebird 
(Colius striatus; n = 92), African Yellow White-eye (Zos-
terops senegalensis; n = 88), and the Red-faced Mousebird 
(Urocolius indicus; n = 59; Table 3; Fig. 4).

Network specialisation across study sites

The mean network specialisation (H2') ranged from 
0.177 ± 0.039 (SD, if not otherwise stated; high cost) to 
0.179 ± 0.075 (mixed cost), 0.421 ± 0.164 (medium cost) and 
0.257 ± 0.214 (low cost). Network specialisation remained 
similarly low across study areas (F3:8 = 0.258; p = 0.854; 
Fig. 2a). Moreover, it was unaffected by the increase in the 
richness of both fleshy-fruiting plants (F1:10 = 1.65; p > 0.05) 
and avian frugivores (F1:10 = 1.44; p > 0.05).

Network interaction evenness across study sites

The mean network interaction evenness ranged from 
0.817 ± 0.07 (low cost) to 0.822 ± 0.035 (medium cost), 
0.822 ± 0.029 (mixed cost) and 0.823 ± 0.027 (high cost). 
It remained similarly high across study areas (F3:8 = 0.01; 
p > 0.05; Figs. 2b and 4). Like network specialisation, inter-
action evenness was unaffected by the richness of both the 
fleshy-fruiting plants (F1:10 = 1.65; p > 0.05) and avian frugi-
vores (F1:10 = 0.329; p > 0.05).

Interaction diversity across study sites

The mean interaction diversity across networks ranged 
from 2.186 ± 0.498 (medium cost) to 2.220 ± 0.258 (low 

Table 2  List of fruiting plant species and their total number of feeding interactions with avian frugivores (see Fig. 4 for details about the species 
of avian frugivores that interacted with each fruiting plant species)

Plant spp. code Common name Scientific name Origin No. of frugivores-feeding interactions Total 
interac-
tionsHigh Medium Mixed Low

T1 Sycamore fig Ficus sycomorus Native 53 0 0 0 53
T2 Common wild fig Ficus burkei Native 18 0 0 0 18
T3 Shepherds tree Boscia angustifolia Native 12 0 0 0 12
T4 Guava Psidium guajava Exotic 17 24 15 18 74
T5 Nill Phyllanthus muellerianus Native 11 0 0 0 11
T6 Woodland water berry Syzygium guineense Native 39 15 13 11 78
T7 Alexandra palm Archontophoenix alexandrae Native 07 08 07 0 22
T8 Pawpaw Carica papaya Exotic 21 37 30 20 108
T9 Mango Mangifera indica Exotic 07 0 03 0 10
T10 Manna Alhagi maurorum Exotic 0 0 10 08 18
T11 Avocado Persea americana Exotic 0 0 01 0 01
Total 405

Table 3  List of bird species and their total number of individuals observed feeding on fleshy-fruiting plant species across an urban ecosystem in 
Zambia (Sinclair and Ryan 2010)

Bird species 
code

Common name Scientific name Feeding individuals per study area Total no. of 
individuals

High Medium Mixed Low

B1 Yellow-Fronted Canary Crithagra mozambica 4 0 0 0 04
B2 Black-Faced Canary Crithagra capistrata 4 0 0 0 04
B3 African Yellow White-Eye Zosterops senegalensis 39 20 15 14 88
B4 Common Bulbul Pycnonotus barbatus 47 21 22 16 106
B5 Black-collared Barbet Lybius torquatus 11 2 1 1 15
B6 Spectacled Weaver Ploceus ocularis 5 0 0 0 05
B7 Red-Faced Mousebird Urocolius indicus 24 11 14 10 59
B8 Golden Weaver Ploceus ocularis 9 2 0 2 13
B9 Speckled Mousebird Colius striatus 28 26 21 17 92
B10 Tropical Boubou Laniarius major 6 1 3 0 10
B11 Black-backed Barbet Lybius minor 8 1 0 0 09
Total 405
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cost), 2.366 ± 0.339 (mixed cost) and 3.068 ± 0.424 (high 
cost). Species interaction diversity remained similar 
across study areas (F3:8 = 3.361; p = 0.076; Fig. 2c and 
Figs. 4). However, it increased significantly with increas-
ing richness in both the fruiting plants (F1:10 = 38.34; 
p < 0.001; Fig. 3a) and avian frugivores (F1:10 = 86.04; 
p < 0.001; Fig. 3b).

Discussion

Our aim was to test the fitness of avian seed dispersal net-
works in the urban ecosystems and establish if they are as 
robust as those reported in tropical wild ecosystems. Overall, 
our results indicated a similarly low specialisation across 
all seed dispersal networks, whereas interaction evenness 
remained similarly high. In contrast, species interaction 
diversity varied marginally across networks. It was slightly 

Fig. 2  The mean network spe-
cialisation (H2’) (a), interaction 
evenness (b) and interaction 
diversity (c) of seed dispersal 
mutualistic networks across an 
urban ecosystem in Zambia
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higher in the high-cost than in the rest of the residential areas 
studied, all of which remained similar. Generally, the results 
suggest that the avian seed dispersal networks in the studied 
urban ecosystems are stable and well organised. This is con-
trary to our earlier prediction that avian seed dispersal net-
works in highly built-up tropical urban ecosystems are not 
robust in the context of facing extinction. Although species 
interaction diversity differed slightly across networks, the 
difference was marginal, suggesting that these seed dispersal 
networks have either adapted or are broadly highly resilient 
to disturbance, and they also do not seem to be affected by 
the socio-economic status of human communities in which 
they exist.

Network specialisation across study areas

The mean network specialisation remained similarly low 
across study areas, suggesting a high redundancy threshold 
in the associations between plants and frugivores. A high 
redundancy in associations depicts a stable synchronicity of 
species in these plant–frugivore communities. Effectively, 
this could mean that these networks are highly generalised, 
which potentially increases their robustness to extinction. 
High functional redundancy has been shown to contrib-
ute to the persistence of networks such that even if some 

interactions disappear, the plant–frugivore community will 
still remain robust towards land use and land cover changes 
(Bascompte and Jordano 2007).

The low specialisation depicted in these networks from a 
highly built-up human-dominated urban ecosystem is simi-
lar to those found in the wild or areas with less ecosystem 
disturbance (e.g. Schleuning et al. 2011; Chama et al. 2013). 
Generally, seed dispersal networks in the wild ecosystems 
of the tropics have been shown to be highly robust, as they 
exhibit very low mean community specialisation (H2' < 0.5; 
Dugger et al. 2018). Thus, the fact that the specialisation 
in the studied networks was comparably very low suggests 
that seed dispersal networks in the tropics will remain robust 
even in highly built-up environment, provided the oppor-
tunities that drives these interactions, such as the presence 
of fleshy-fruiting plant species and avian frugivores, con-
tinue to exist. In this case, the preservation or growth of 
fleshy-fruiting plant species should especially be strongly 
promoted, as this is crucial towards making urban ecosys-
tems attractive for avian frugivores to thrive.

Network interaction evenness across study areas

Overall, the results from this study shows that the mean net-
work interaction evenness remained similarly high across 

Fig. 4  Seed dispersal networks for high-, medium-, mixed- and low-
cost residential study areas. In each of the networks, the grey bars 
(on the left) represent a node of different fleshy-fruiting plant species 
(letter codes T1 to T11), while the black bars (on the right) repre-
sent a node of different bird species (B1 to B11). The light-grey lines 
between the two nodes highlights the partners that each species (of 

plants and birds) interacts with in the network. The size of the line 
indicates the strength of the interaction, i.e. the thicker the line, the 
stronger the mutualistic interaction and vice versa. Full names of 
plants and birds represented by each letter code in the networks are 
shown in Tables 1 and 3, respectively



645Oecologia (2022) 199:637–648 

1 3

study areas. Effectively, this suggests that the frequency of 
the interaction assembly among species of both plants and 
their avian frugivore mutualists was uniformly spread in the 
community, albeit in a highly heterogeneous pattern. The 
assemblages of mutualistic communities have been shown to 
be centred on highly asymmetric and coevolutionary inter-
actions that have shaped their persistence to environmen-
tal change over time (Jordano et al. 2003). This means that 
while a bulk of species may have a few interactions, a few 
other species have many more interactions than expected by 
chance (e.g. if a plant species depends strongly on an animal 
species, the animal depends weakly on the plant) and this 
pattern is uniformly spread across the network (Bascompte 
et al. 2006; Fig. 4). Thus, even if some species may only 
depend on a few partners, the higher and uniform interaction 
evenness suggests that higher functional robustness occurs 
within these networks, as the risks of losing a link or entire 
species or even fluctuations of frequencies are spread evenly 
(Kaiser-Bunbury and Blüthgen 2015).

Asymmetric coevolutionary interactions have been shown 
to be often stable and less sensitive to habitat disturbance, 
and their capabilities to remain resilient are strengthened at 
community rather than one-on-one interaction basis (Pauw 
et al. 2009; Fontúrbel and Murúa 2014). This is because 
interacting parties in these relationships are more likely to 
persist in spite of changes in environmental conditions and 
the demographic changes of their interacting parties (Fontúr-
bel and Murúa 2014). Our results highlight the importance 
of asymmetrically even interactions in mutualistic networks, 
as this is critical in driving both the diversity and coexist-
ence of species in these communities (Paine 1980; Schoe-
ner 1983; Bascompte et al. 2006), especially in the face of 
threats, such as those coming from urbanisation. Even in an 
extreme scenario, plant–animal interactions assembled on 
a higher interaction evenness (albeit asymmetrically) could 
coevolve to develop strategies that are suitable for them to 
survive in such conditions (Fontúrbel and Murúa 2014). In 
this case, it seems highly unlikely that the networks in our 
study area could easily collapse even if one or two individu-
als are eliminated from the community due to extinction 
(Yachi and Loreau 1999; Wang and Loreau 2014).

Network interaction diversity across study areas

As observed from our results, the mean interaction diver-
sity was significantly high and broadly similar across 
seed dispersal networks. Ecologically, a higher interac-
tion diversity signals a higher heterogeneity in the mag-
nitude of interacting partners and their complementary 
response to environmental disturbance (Almqvist et al. 
2003; Hooper et al. 2005). Generally, however, interac-
tion diversity can sometimes suffer from interference 
between consumer species, which could impact negatively 

on potential complementarity effects, and thus reduce eco-
system function even in the face of increasing consumer 
diversity (Montoya et al. 2003; Finke and Denno 2004; 
Tylianakis et al. 2010). Nonetheless, a higher interaction 
diversity has also been shown to not only increase network 
stability but also the functional performance in the context 
of enhancing the fitness of the community (Hector et al. 
1999) to environmental threats.

Our findings agree with Cruz et al. (2013) suggesting that 
seed dispersal networks can be complex and variable even 
in a highly managed urban area and that a network approach 
remains an important monitoring tool to detect the status of 
crucial ecosystem functions in such rapidly changing and 
human-dominated environments. Therefore, any potential 
effects of interaction interference are likely to be temporal 
rather than long-term where interaction diversity is high, like 
in the case of the studied seed dispersal networks. Besides, 
a higher interaction diversity generally also suggests higher 
richness and evenness of species as well as generalization 
of interactions. This is further supported by the fact that 
interaction diversity in the studied networks was positively 
correlated with the richness of both fleshy-fruiting plants 
(Fig. 3a) and avian frugivores (Fig. 3b). In fact, several 
species of fleshy-fruiting plants (namely, Carica papaya, 
Syzygium guineense, Psidium guajava and Ficus sycomorus) 
and avian frugivores (namely, Pycnonotus barbatus, Colius 
striatus, Zosterops senegalensis and Urocolius indicus) had 
more interactions than others in our study area. Such spe-
cies have a disproportionately greater contribution to the 
overall organization and cohesion of networks (Mello et al. 
2011, 2015; Sebastián-González 2017; Bomfim et al. 2018). 
Obviously, by occupying central network positions, these 
plants benefit from the dispersal services provided by many 
species of frugivores, while the birds are able to consume 
fruits on multiple plant species (Jordano 2000; Chama et al. 
2013). Nonetheless, the removal of such highly connected 
species could diminish crucial ecological interactions and 
consequently compromise the stability or integrity of these 
networks (Kaiser-Bunbury et al. 2010; Galetti et al. 2013; 
Correa et al. 2016). Therefore, such species of both plants 
and birds should especially be at the centre of conservation 
efforts if these interactions and their ecosystem functions 
are to be preserved.

Our findings are similar to those found in the study of 
pollination networks where species interaction diversity was 
shown to increase with increased abundance of beneficial 
resources, such as plant species diversity and pollinators that 
provide pollination services to crop plants (Albrecht et al. 
2007). Although Albrecht et al. (2007) further showed that 
interaction diversity tends to somewhat decline more rap-
idly in disturbed environments, our results show that human-
settled urban ecosystems have the potential to support sta-
ble and robust ecological processes if they can promote the 
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hosting of a diversity of plant and animal species that are 
especially critical in driving these ecological systems.

Conclusion

Our findings broadly suggest that avian seed dispersal net-
works in urban ecosystems are highly generalised. This 
means that there is a high redundancy in plant—frugivore 
associations (links), signifying stability of coexistence 
among species in these communities. Thus, even if some 
species may only have one species that they interact with, the 
chances that such species would go extinct are rare because 
the few partners that they interact with are potentially linked 
to several others, as highlighted by the high interaction even-
ness across networks. And collectively, such a combination 
of interactions shapes the fitness of both fleshy-fruiting plant 
species and avian frugivores against the threats of extinc-
tion. For plants, this provides an assurance that their seeds 
or propagules will be dispersed, while for frugivores this 
ensures that there is adequate availability of fruits for them 
to feed on, and this is critical for their fitness. Our findings 
bring out some lessons of conservation importance about 
urban ecosystems, i.e. they have the potential to support key 
ecological processes, such as seed dispersal networks even 
in the face of heightened human disturbance. Therefore, 
there is a need for the creation of awareness about the con-
servation opportunities that exist in these areas. Activities, 
such as the planting of a diversity of fleshy-fruiting plants 
and educating the human communities living in these areas 
about the ecological importance of birds, should especially 
be promoted. The planting of native rather than exotic fruit-
ing plant species should especially be encouraged. For key 
conservation agencies, these results should propel them to 
widen their conservation efforts beyond the boundaries of 
protected areas, which are often wild and remote, by also 
considering resource preservation opportunities in urban 
ecosystems. Species of both plants and avian frugivores 
with higher interactions are especially critical not only in the 
maintenance of network stability but also ecosystem func-
tion and should be the focus of conservation efforts (Correa 
et al. 2016).
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