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Abstract
Community assembly relies on deterministic niche-based processes (e.g., biotic interactions), and stochastic sources of 
unpredictable variation (e.g., colonization history), that combined will influence late-stage community structure. When 
community founders present distinct functional traits and a colonization–competition trade-off is not operating, initial colo-
nization can result in late-stage assemblages of variable diversity and composed by different species sets, depending if early 
colonizers facilitate or inhibit subsequent colonization and survival. By experimentally manipulating the functional identity 
of founders and predators access during the development of fouling communities, we tested how founder traits constrain 
colonization history, species interactions and thereby regulate community diversity. We used as founders functionally differ-
ent fouling organisms (colonial and solitary ascidians, and arborescent and flat-encrusting bryozoans) to build experimental 
communities that were exposed or protected against predation using a caging approach. Ascidians and bryozoans are pioneer 
colonizers in benthic communities and also good competitors, but the soft-body of ascidians makes them more susceptible 
to predators than mineralized bryozoans. When ascidians were founders, their dominance (but not richness) was reduced by 
predation, resulting in no effects of predators on overall diversity. Conversely, when bryozoans were founders, both space 
limitation and predator effects resulted in species-poor communities, with reduced number and cover of ascidian species and 
high overall dominance at the end of the experiment. We, thus, highlight that current species interactions and colonization 
contingencies related to founder identity should not be viewed as isolated drivers of community organization, but rather as 
strongly interacting processes underlying species distribution patterns and diversity.
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Introduction

The process of species assembly during early stages of com-
munity development may greatly alter late-stage species 
composition and their abundance, often underlying large 
differences among mature communities at equilibrium, 
sometimes within sites nearby (Sousa 1984; Berlow 1997; 
Fukami 2015; Chang and Marshall 2016; Vieira et al. 2017). 
However, the dynamics of developing communities may 
be more or less predictable depending on the mechanisms 
driving temporal change. Some communities follow roughly 
the same pathway of organization through time, resulting 
in a predictable order of species replacements. This con-
figurates a sequential succession, usually with species with 
traits that enhance colonization ability (e.g., dispersal) at 
early stage paving the way to species with traits that enhance 
competitive success (e.g., resource monopolization) at more 
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advanced stages (Connell and Slatyer 1977; Jackson 1977; 
Berlow 1997), revealing a dominance-controlled process 
(Yodzis 1986). However, other communities are greatly 
affected by stochastic processes. Their temporal dynamics 
are much less predictable and may follow many different 
possible pathways (Berlow 1997; Fukami 2015). It may 
relate to when disturbing events take place (Sutherland and 
Karlson 1977; Dean and Hurd 1980; Berlow 1997), or how 
the identity of first colonizers results in distinct functional 
roles (Dean and Hurd 1980; Sousa 1984; Vieira et al. 2018a), 
leading to a founder-controlled dynamics (Yodzis 1986). In 
this case, stochastic drivers often explain the exceptionally 
large variability of assemblage structure that is observed at 
different spatial scales, even within just a few meters (Sousa 
1984; Chang and Marshall 2016; Vieira et al. 2016). Cur-
rently, deterministic and stochastic forces are thought to 
exert joint effects on the process of community assembly 
(Adler et al. 2007; Chase 2007; Vellend 2010; Chase and 
Myers 2011) as observed for assemblages of several groups 
including microorganisms (Dini-Andreote et al. 2015; Hu 
et al. 2015), arthropods (Elwood et al. 2009), fouling spe-
cies (Chang and Marshall 2016; Vieira et al. 2017), plants 
(Maren et al. 2018; Romme et al. 2016), and vertebrates 
(Willig and Moulton 1989).

Niche-based processes are related to functional traits 
that determine which species colonize and persist through 
community development (McGill et al. 2006; Cadotte et al. 
2015).While environmental filtering operates at a broader 
scale by selecting species with traits that confer tolerance 
to regional conditions (Mittelbach and Schemske 2015), 
in a local scale, the way species interact with each other 
also becomes an important deterministic force guiding the 
development of communities (Berlow 1997; Mittelbach and 
Schemske 2015). Under a colonization/competition trade-off 
model (Connell and Slatyer 1977; Dean and Hurd 1980; Ber-
low 1997), facilitation provided by founder organisms would 
allow first colonization and early persistence of a given set 
of species [e.g., some species may modify microscale condi-
tions, promoting environmental amelioration (Perea and Gil 
2014; Vogt et al. 2014; Jurgens and Gaylord 2016) or even 
provide settlement surface and protection against predators 
with their tridimensional bodies (Russ 1980; Vieira et al. 
2018a, b)]. In the other hand, negative effects of interspe-
cific competition and predation pressure would determine 
the species remaining in later successional stages (Connell 
and Slatyer 1977; Sutherland 1978; Berlow 1997; Fukami 
2015; Vieira et al. 2018a).

Altering the classic colonization/competition trade-off 
model, stochastic processes add uncertainty and broaden 
the range of alternative development pathways and assem-
blage structure at advanced stages (Berlow 1997; Fukami 
2015). Surplus nutrient inputs, for example, are well-known 
stochastic episodes which facilitate species with specific 

functional traits, and thereby regulate later community 
dynamics structure (Coles and Brown 2007; Chase 2010; 
Wernberg et al. 2012; Smith et al. 2020). Disrupting events 
such as those may greatly depart patterns of species assem-
bly from expectations (Berlow 1997). A specific case can be 
made when the regional species pool is large, and ‘realized’ 
diversity likely high, because the identity of first colonizers 
is both uncertain and paramount for later temporal dynam-
ics. Different from the more predictable order of species 
replacements in an ecological succession through dominance 
control (niche-based), habitat patches prone to be colonized 
by several species with equal chances of arrival, but that 
diverge in their functional roles, may develop in variable 
and unpredictable ways that can be modeled based on lottery 
effects (Greene and Shoener 1982; Berlow 1997).

More than just two complementary components of com-
munity assembly, deterministic and stochastic processes may 
interact with each other (Berlow 1997; Dini-Andreote et al. 
2015; Vieira et al. 2018a) because the variability imposed 
by different species colonizing an empty space will extend 
to niche-based regulation during community assembly, with 
limits set by the specific functional roles of different founder 
species (Dean and Hurd 1980; Cifuentes et al. 2010; Cleland 
et al. 2015; Sutherland 1978; Vieira et al. 2018a). Temporal 
dynamics would generally be ruled through dominance con-
trol when founder traits mostly facilitate the establishment of 
other species (Connell and Slatyer 1977; Jones et al. 1994; 
Fukami 2015; Vieira et al. 2018a, b). On the other hand, 
founder control is expected when founder traits actually tend 
to inhibit subsequent species arrivals (Connell and Slatyer 
1977; Sutherland 1978; Fukami 2015; Vieira et al. 2018a). 
Examples of the latter include space preemption (Sutherland 
1978; Fukami 2015; Vieira et al. 2018a), allelopathy (Jack-
son and Buss 1975; Sammarco et al. 1983), and interference 
competition (Buss and Jackson 1979; Bonnici et al. 2012).

Besides cascading founder effects through competition 
or facilitation, predation pressure on the founder species 
themselves may also modify patterns of species assembly. 
Higher-order predators may functionally shape community 
structure by controlling palatable founder species, or even 
pioneering fast-growing species trading energy from defen-
sive strategies to increased clonal or sexual reproduction 
(Díaz et al. 2007; López and Freestone 2021). However, 
how founders with distinct functional attributes, considering 
both competitive and predation resistance traits, may alter 
the relevance of trophic interactions in the determination 
of late-stage community structure is still poorly known. As 
founders are often resource monopolizers (Buss and Jack-
son 1979; Fukami 2015) and unequally vulnerable to preda-
tion (Sousa 1984; Berlow 1997; Vieira et al. 2018a), direct 
predation effects may greatly depend on whether pioneers 
themselves are prone to predation or not. Also, founder traits 
other than those related to resistance against predators may 
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underlie indirect predation effects on later stages of commu-
nity assembly by either facilitating or inhibiting predation-
vulnerable later-stage guilds.

Here, we explore how different colonization scenarios, 
imposed by founders with distinct functional identities, 
modulate predation effects on later stages of community 
organization through direct or indirect processes. To do so, 
we conducted an experiment simulating different coloniza-
tion scenarios, and controlling the access of predators, to 
test how consumptive effects are modulated by the identity 
of founders and their functional traits. Marine fouling spe-
cies were used as models, as they are functionally diverse, 
fast-growing, and easily manipulated (Dean and Hurd 1980; 
Osman and Whitlatch 2004; Freestone et al. 2011; Vieira 
et al. 2018a, b; Dias et al. 2020). Founder functional iden-
tity was determined by starting communities with species 
of four different groups, colonial and solitary ascidians, and 
arborescent and flat-encrusting bryozoans. Using these func-
tionally different founders we could test for (I) phylogeny 
and the importance of resistance to predation (ascidians vs. 
bryozoans); (II) the effect of the rate of space occupation 
(colonial vs. solitary ascidians, and arborescent vs. flat-
encrusting bryozoans); and (III) for the importance of poten-
tial facilitation (arborescent vs. flat-encrusting bryozoans). 
Trials for all founder identities were run with and without 
predation pressure (through caging manipulation) to evalu-
ate how colonization history conditioned to founder identity 
modulates consumptive effects. We expected that communi-
ties founded by fragile soft-bodied ascidians, especially soli-
tary species which occupy space at a lower rate and are more 
susceptible to predators, would be more affected by both 
direct and indirect effects of predation. Such effects would 
be smallest for communities founded by tougher mineralized 
bryozoans, such as flat-encrusting bryozoans, which cover 
available space fast and are more resistant to fish predators.

Methods

Study site and species

The experiment was conducted at the Yacht Club of Ilhabela 
(23º46′S, 45º21′W) during the austral summer of 2016 (Fig. 
S1a in Online Resource 1). The site is a recreational marina 
composed by floating platforms in which a diverse fouling 
community grows (Oricchio et al. 2016a, b; Vieira et al. 
2016). These communities are usually dominated by colo-
nial organisms that can monopolize space through asexual 
reproduction in a variable way, some of them being able 
to prevent the colonization of other species (Jackson 1977; 
Hiebert et al. 2019). Additionally, they are fast growing, easy 
to manipulate and provide clear results regarding the effect 
of interactions in a short time span (Osman and Whitlatch 

2004; Freestone et al. 2011; Vieira et al. 2018a, b; Dias 
et al. 2020), which make them ideal for experiments testing 
the effect of founder identity and predation on community 
structure and diversity. Predation is one of the strongest 
forces shaping such communities in the area, affecting both 
richness and structure throughout community development 
(Vieira et al. 2012, 2016; Oricchio et al. 2016a, b; Dias et al. 
2020). Fish are the main consumers (Oricchio et al. 2016b) 
in the studied system and region, while predation by other 
small organisms, such as gastropods, do not play a major 
role (Oricchio et al. 2016a).

As we wanted to test for the effect of colonization contin-
gencies related to founder identity in a functional context, 
we selected the dominant fouling taxonomic groups in the 
area to build the experimental communities, ascidians, and 
bryozoans (Oricchio et al. 2016a, b; Vieira et al. 2018a, b), 
which also show contrasting life-history traits. While ascid-
ians are best competitors (Kay and Keough 1981; Nandaku-
mar et al. 1993; Vieira et al. 2012, 2016; Oricchio and Dias 
2020), but as soft-bodied vulnerable to predation (Osman 
and Whitlatch 2004; Freestone et al. 2011; Vieira et al. 2012, 
2016; Oricchio et al. 2016a,b; Dias et al. 2020; Oricchio and 
Dias 2020), bryozoans are second in line in terms of com-
petition (Kay and Keough 1981; Nandakumar et al. 1993; 
Oricchio and Dias 2020), but very resistant to predation by 
having a tough mineralized body (Lidgard 2008; Oricchio 
and Dias 2020). Additionally, these groups are divided in 
different functional groups, which colonize and monopolize 
resources by quite different means. Colonial ascidians can 
monopolize space faster than solitary ones (Jackson 1977; 
Nandakumar et al. 1993; Vieira et al. 2012) and are sus-
ceptible to predation during their entire life (Hiebert et al. 
2019). Still, they may easily recover if only a small part of 
the colony is consumed (Hiebert et al. 2019), while solitary 
species are less resistant to predation (Jackson and Hughes 
1985), mostly when young (Osman and Whitlatch 2004). 
Arborescent bryozoans grow vertically, not monopolizing 
space (Nandakumar et al. 1993; Walters and Wethey 1996), 
and may be more susceptible to predation (Oricchio et al. 
2016b; Dias et al. 2020) when compared to flat-encrusting 
forms that quickly cover a great amount of space by grow-
ing in two dimensions (Jackson 1977; Sutherland 1978; 
Nandakumar et al. 1993; Oricchio et al. 2016b; Vieira et al. 
2018a, b). By building heavily calcified skeletons, this is 
the functional group most resistant to fish predators (Lid-
gard 2008; Oricchio and Dias 2020). In addition, solitary 
ascidians and arborescent bryozoans (but not colonial ascid-
ians and flat-encrusting bryozoans) may facilitate other 
species recruitment by altering nearby water circulation 
(Koehl 1982, 1984), and by increasing survival through 
shelter provisioning (Russ 1980; Breitburg 1985; Vieira 
et al. 2018a,b). Therefore, we used the colonial ascidians 
Botrylloides niger and Didemnum perlucidum; the solitary 
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ascidians Herdmania pallida and Phallusia nigra; the flat-
encrusting bryozoans Schizoporella errata and Watersipora 
subtorquata; and the arborescent bryozoans Bugula neritina 
and Crisia pseudosolena to understand how founder iden-
tity in terms of functional traits will determine the effects 
of predation on community diversity (Fig. S1b in Online 
Resource 1).

Collection of organisms

The organisms were obtained from inventory panels covered 
with sanded acetate sheets and kept in the field for 1 month. 
We prevented the access of predators to the inventory panels 
with plastic screen cages (as the ones described below) to 
ensure that groups vulnerable to predation, such as ascidians, 
would be available to build the experimental communities. 
From those panels, we selected arborescent bryozoans with 
2–3 bifurcations, and encrusting bryozoans, colonial and 
solitary ascidians with a diameter around 1.5 cm (see Vieira 
et al. 2018a, b for details). Those are the sizes of approxi-
mately 15-days old individuals and sufficed to allow a size 
advantage to experimental founders (Urban and De Meester 
2009; Vieira et al. 2018a, b). As the solitary ascidian H. pal-
lida is commonly found protected from predators in crevices 
but was not common on inventory panels, individuals were 
produced in the laboratory using in vitro fertilization (fol-
lowing Crean and Marshall 2008). Competent larvae were 
collected and individually put to settle in water drops over 
PVC panels covered by sanded acetate sheets (as those used 
in inventory panels). Panels were left in the dark for 12 h to 
ensure settlement and initial post-larval development, and 
then deployed in the field for 15 days to obtain H. pallida 
individuals of the target size and age.

Experimental design

To test the effects of founder functional identity on com-
munity assembly, we built experimental communities with 
four small organisms of the same functional group (two of 
each species) attached to the central area (10  ×  10 cm) of 
sanded PVC settlement panels (15  ×  15  ×  0.5 cm; Fig. S2a 
in Online Resource 1). For each functional group (colonial 
or solitary forms for ascidians and flat-encrusting or arbores-
cent forms for bryozoans), we built 12 experimental panels.

As we also wanted to test how the functional identity 
of the founders could modulate predation effects on the 
community development, we also manipulated the access 
of predators to experimental panels (Fig. S2b in Online 
Resource 1). For that, half of the panels of a given functional 
group (n  =  6) were covered by a plastic screen cage (15  ×  
15  ×  8 cm, 1 cm mesh), excluding larger predators such as 
fish, crustaceans and mollusks, and the other half (n  =  6) 
were covered by partial cages of the same dimension but 

lacking the roof, allowing predator access while controlling 
for eventual cage effects (Osman and Whitlatch 2004; Free-
stone et al. 2011; Vieira et al. 2012, 2016; Dias et al. 2020). 
We are aware that exclusion experiments commonly have a 
third treatment with uncaged panels. However, as we had a 
limited number of founder organisms to build the experi-
mental communities, and since previous studies in the same 
area showed no differences between communities develop-
ing in uncaged and partially caged panels (Vieira et al. 2012; 
Dias et al. 2020), we decided to use only the partial cage 
treatment as it is open to predators while still imposing any 
eventual alterations caused by plastic screens.

Deployment and sampling procedures

Replicate inventory panels were haphazardly suspended 
along marina floating platforms to ensure proper spatial 
interspersion of treatments. Panels were deployed in a hori-
zontal position, with the experimental side facing the bot-
tom, at a depth of 1.5 m and at least 2 m apart from each 
other and to the sandy bottom below (Fig. S2c in Online 
Resource 1). On a monthly basis cages were cleaned and 
replaced when needed.

We ended the experiment after 3 months. By then, most 
space was already covered and eventual effects of experi-
mental manipulations on community structure were readily 
noticeable (as in Freestone et al. 2011; Vieira et al. 2016; 
Dias et al. 2020). Panels were retrieved and all organisms 
were identified to the lowest possible taxonomic level. Pho-
tographs were taken for later quantification of the area cov-
ered by each taxon, using a 100 points grid on the Coral 
Point Count with Excel extensions (CPCE) software (Kohler 
and Gill 2006). Grid points were restricted to the central 
13  ×  13 cm area of panels to avoid border effects of manipu-
lative procedures.

Data analyses

The number of all species, as well as the number of ascid-
ian, bryozoan and other species, Shannon diversity and 
Simpson dominance indices per community were obtained 
and separately analyzed with two-way orthogonal type 
III sum-of-square ANOVAs, considering the effects of 
‘founder identity’ (fixed, four levels: colonial ascidians, 
solitary ascidians, flat-encrusting bryozoans, or arbores-
cent bryozoans), ‘predation’ (fixed, two levels: predators 
allowed or excluded), and their interactions. Consider-
ing our hypotheses, we established the following planned 
contrasts for the founder identity factor: (I) ascidians vs. 
bryozoans—testing for the importance of phylogeny and 
resistance to predation; (II) colonial vs. solitary ascid-
ians—testing for the effects of rate of space occupation; 
and III) flat-encrusting vs. arborescent bryozoans—testing 
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for the combined effect of space occupation and potential 
facilitation. When the main model showed an effect for 
founder identity or for its interaction with predation, we 
then estimated the effects of each contrast and, if it was 
the case, the interaction of each contrast with predation. 
In the case of a significant effect of the interaction of any 
contrasts with predation, we explored it with Tukey tests. 
Overall, raw data followed normality and homoscedastic-
ity assumptions, except for ascidian richness that needed 
to be log transformed. These analyses were run in R soft-
ware (R Core Team 2019) with the package ‘car’ (Fox and 
Weisberg 2019).

For community structure, we followed a multivariate 
approach using square-root transformed cover data, a 
proxy for relative abundance (Vieira et al. 2012), to build 
a resemblance matrix based on Bray–Curtis distances. The 
relationships among samples were visually represented 
by a Non-metric Multidimensional Scaling (nMDS) plot 
(Clarke 1993), and compared considering the effects of 
‘founder identity’ and ‘predation’ using PERMANOVA 
(Anderson 2001), following the same model above for 
univariate analyses. Pairwise tests for multiple compari-
sons were undertaken for significant sources of variation, 
and the SIMPER procedure was used to identify the taxa 
that contributed the most to differences (Clarke 1993). All 
multivariate procedures were performed in the PRIMER 
6 software (Clarke and Warwick 2001). Replication at the 
beginning was equal among all treatment combinations 
(n  =  6), but a few panels were lost and sometimes sample 
size dropped to 4 or 5, as indicated in figures.

Results

Founder identity was overall important for most of the com-
munity metrics investigated, including the modulation of 
predation effects on some of them (Table 1). Total richness 
was affected only by predation, with less species in the pres-
ence of predators regardless founder identity (Fig. 1a). Shan-
non diversity and dominance, in the other hand, differed 
between predation treatments only when bryozoans were 
founders (Table S1 in Online Resource 2), with a higher 
diversity and lower dominance when predators were absent 
(Fig. 1b, c). Regarding the richness of specific groups, only 
the number of bryozoan species was not affected by founder 
identity, with a higher number of bryozoan species in com-
munities exposed to predators regardless of the founder 
identity (Fig. 2a; Table 1). However, founder identity was 
important for modulating the effect of predators on ascid-
ian richness, with more ascidian species on communities 
protected from predators only when founded by bryozoans 
(Fig. 2b; Table S1 in Online Resource 2). For the number of 
other species, we observed isolated effects of the main fac-
tors (Table S1). Founder identity effect led to more species 
on communities founded by ascidians when compared to the 
ones founded by bryozoans (Fig. 4c). Additionally, predation 
also played a role, with communities protected from preda-
tors showing a lower number of other species, regardless 
founder identity (Fig. 4c).

Founder identity was also important for modulating how 
predation affected community structure (Table 1; Fig. 3). 
While pairwise comparisons between predated and pro-
tected communities were significant for all founder identity 

Table 1   ANOVA tests for richness (total, ascidian, bryozoan, and 
other species), Shannon diversity and dominance, and PERMANOVA 
test for community structure, investigating the effects of founder 
identity (FI—colonial ascidians, solitary ascidians, arborescent 

bryozoans, and flat-encrusting bryozoans) under different predation 
treatments (PT—present and absent) on community assembly after 
3 months of development

Bold p values indicate significant effects

Sources of variation Total richness Shannon diversity Dominance Community structure

DF MS F p MS F p MS F P MS Pseudo-F p

Founder identity 3 5.05 0.35 0.788 0.09 0.41 0.746 0.01 0.18 0.907 5228 3.99 0.001
Predation 1 67.28 4.68 0.037 3.20 14.54 < 0.001 0.42 14.10 < 0.001 39,227 29.93 0.001
FI vs. p 3 20.22 1.41 0.257 0.76 3.47 0.026 0.15 5.03 0.005 3392 2.59 0.001
Error 36 14.37 0.22 0.03 1311

Sources of variation Ascidian richness Bryozoan richness Other species richness

DF MS F p MS F p MS F P

Founder identity 3 3.90 0.71 0.554 2.04 0.97 0.419 11.47 3.34 0.030
Predation 1 123.65 22.47 < 0.001 9.85 4.67 0.038 36.67 10.68 0.002
FI vs. p 3 21.56 3.92 0.016 1.07 0.51 0.679 4.79 1.40 0.260
Error 36 5.50 3.43
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treatments, the dispersion was different when colonial ascid-
ians (PERMDISP: p  =  0.039) and flat-encrusting bryozo-
ans (PERMDISP: p  =  0.008) were founders, and the groups 
important for differences between predation treatments var-
ied (Table 2). For all founder identity treatments, the colo-
nial ascidian D. perlucidum dominated when predators were 
absent, while the flat-encrusting bryozoan S. errata monopo-
lized space in the presence of predators. However, founder 
identity determined how predation affected the abundance 
of non-dominant species. When colonial ascidians founded 
the community, predation reduced the abundance of arbo-
rescent bryozoans, but increased it when the founders were 

solitary ascidians, and this outcome was mainly related to 
effects on Amathia brasiliensis (Fig. 3b; Table 2). When 
flat-encrusting bryozoans were the community founders, 
predation promoted a drastic reduction in the abundance 
of arborescent bryozoans, mainly guided by effects on A. 
brasiliensis. However, when arborescent bryozoans were 
founders, predation also resulted in a decrease of arbores-
cent bryozoans themselves, mainly A. brasiliensis, but not 
as drastic as when flat-encrusting bryozoans were founders, 
with Bugula neritina accounting for some remaining arbo-
rescent bryozoan cover on communities where predators had 
access. (Fig. 3b; Table 2).

Fig. 1   Average total richness (±  SE) of total (a), Shannon diversity 
(b), and dominance (c) on communities founded by colonial (COL, 
blue) and solitary (SOL, green) ascidians, and flat-encrusting (FLAT, 
orange) and arborescent (ARB, red) bryozoans, under the presence 
(+  P, dark shades) or absence (−  P, light shades) of predators after 

3 months of community development. The lines over the bars repre-
sent the significance of main effect of predation (continuous line in 
panel a) or the post hoc analyses for the interaction between founder 
identity and predation (separated lines in panels b and c)

Fig. 2   Average richness (±  SE) of bryozoans (a), ascidians (b), and 
other species (c) on communities founded by colonial (COL, blue) 
and solitary (SOL, green) ascidians, and flat-encrusting (FLAT, 
orange) and arborescent (ARB, red) bryozoans, under the presence 
(+  P, dark shades) or absence (−  P, light shades) of predators after 

3 months of community development. The lines over the bars repre-
sent the significance of the main effect of predation and/or founder 
identity (continuous line in panels a and c) or the post hoc analyses 
for the interaction between founder identity and predation (separated 
lines in panel b)
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Discussion

We report in this study that the functional identity of 
early colonizers can affect how a niche process, preda-
tion, affects community assembly, structure and diver-
sity at subsequent development stages. Our simulation 
putting ascidians as founders allowed them to achieve a 
size-refuge from predation even being less resistant (Russ 
1980; Osman and Whitlatch 2004; Hiebert et al. 2019), 

reducing or dampening the importance of predators for 
community structuring and diversity. However, contrary 
to expectations, predation affected community diversity 
when bryozoans were founders, especially in the case of 
flat-encrusting forms. Those founders persisted by their 
higher resistance against predation and rapidly monopo-
lized space and reduced the chances of colonization of 
ascidian species in the presence of predators. Addition-
ally, the exposure to predators further reduced the cover, 

Fig. 3   nMDS plot comparing community structure 3  months after 
foundation by colonial (blue circles) and solitary (green squares) 
ascidians, and by flat-encrusting (orange diamonds) and arborescent 
(red triangles) bryozoans, both under the absence (−  P, dark shades) 

or presence (+  P, light shades) of predators (a). Average cover of 
major taxonomic groups and bare space for all the above treatment 
combinations (b). The lines over the bars represent the post hoc anal-
yses for the interaction between founder identity and predation

Table 2   Percentage contribution of the most important species to the 
differences between predation treatments (−   P—absence,  +  P—
presence) for each founder identity treatment (colonial ascidians, soli-

tary ascidians, arborescent bryozoans, and flat-encrusting bryozoans) 
after 3 months of deployment

The code between parentheses in front of each species indicates the predation treatment in which the given species was more abundant
COL colonial ascidian; ARB arborescent bryozoan; FLAT flat-encrusting bryozoan

Ascidian founders

Colonial Solitarie

Group Species % Group Species %

FLAT Schizoporella errata (+  P) 36.98 FLAT Schizoporella errata (+  P) 23.93
COL Didemnum perlucidum (−  P) 12.23 ARB Amathia brasiliensis (+  P) 14.87
ARB Amathia brasiliensis (−  P) 10.06 COL Didemnum perlucidum (−  P) 14.66

Bryozoan founders

Flat-encrustings Arborescent

Group Species % Group Species %

FLAT Schizoporella errata (+  P) 49.47 FLAT Schizoporela errata (+  P) 36.17
COL Didemnum perlucidum (−  P) 17.41 COL Didemnum perlucidum (−  P) 17.70
ARB Amathia brasiliensis (−  P) 5.01 ARB Bugula neritina (+  P) 8.88
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survival and consequently diversity of any new ascidian 
recruit, directly impacting overall community diversity.

Ascidians are known to be good competitors and efficient 
space monopolizers (Kay and Keough 1981; Nandakumar 
et al. 1993; Oricchio and Dias 2020), but their soft-body 
constitution make them preferential targets to consumers 
(Dias et al. 2020). Any chemical defenses against predators 
(Stoecker 1980a, b; Pisut and Pawlik 2002) are apparently 
insufficient to nullify predator effects (Osman and Whit-
latch 2004; Freestone et al. 2011), including at this study 
site (Vieira et al. 2012; Oricchio et al. 2016a, b; Dias et al. 
2020). We thus expected strong predation effects on ascid-
ian-founded communities since ascidian competitive ability 
would not compensate for their low resistance against preda-
tors. However, we observed no effects of predation on nei-
ther community diversity and dominance, nor the number of 
ascidian species, in ascidian-founded communities. The size 
advantage imposed by our simulated foundation decreased 
the risk of a given ascidian species to be completely removed 
by predators, therefore, maintaining high diversity and low 
dominance even in predated communities. This is valid for 
both solitary species, that may attain a size-refuge from pre-
dation (Osman and Whitlatch 2004; Hiebert et al. 2019), and 
for colonial species that cannot be totally removed and are 
capable to regenerate from remaining colony tissue (Hie-
bert et al. 2019). Still, the effects of predation on overall 
ascidian dominance are evident, with virtual full removal in 
bryozoan-founded treatments (Fig. 4b). Therefore, any size 
advantage for ascidians in nature will rise only for those 
organisms that either find protection by settling away from 
the reach of a predator, as in crevices or as understory of 
sheltering species (Buss 1979; Marfenin 1997), or those that 

find an opportunity window for settlement when predation 
pressure is very low or absent (Sebens and Lewis 1985; Ber-
low 1997).

Flat-encrusting bryozoan species are not only good com-
petitors (Kay and Keough 1981; Nandakumar et al. 1993) 
but also greatly resistant against fish predators owing to their 
mineralized skeletons (Lidgard 2008; Oricchio and Dias 
2020). Predator effects on bryozoan-founded treatments are 
largely due to removals of more palatable recently-colonized 
ascidians and arborescent bryozoan species (Fig. 3b). Preda-
tory impacts on bryozoans are restricted to arborescent and 
less mineralized species, namely Bugula neritina and Crisia 
pseudosolena, or species lacking any calcification, such as 
Amathia brasiliensis, as observed in other studies (e.g., Dias 
et al. 2020). The heavily armored flat-encrusting bryozoan 
Schizoporella errata was actually favored by the exposure 
to predators. Any species removals by predation makes the 
spread of growing S. errata colonies easier, opening little 
room for other species to colonize and persist (Vieira et al. 
2018a). If predators are excluded, S. errata cannot out-
compete ascidians, as already shown by Oricchio and Dias 
(2020). The natural spatial variation of predation pressure 
and colonization history by functionally different founders 
may thus lead to variable community structure, with high 
species turnover, even over small spatial scales.

The hierarchy of competition abilities among the groups 
manipulated in this study is fully understood when consider-
ing resistance against predators. Colonial ascidians are better 
competitors than encrusting bryozoans, but differences in 
their resistance against predators impose some transience 
to this hierarchy (Buss and Jackson 1979), with bryozoans 
dominating communities when consumptive interactions 

Fig. 4   The competitive hierarchy between two or more dominant 
functional groups (a) may be altered to a transient state if they dif-
fer in terms of resistance against predators, or any other environmen-
tal condition (b). Therefore, taking together the colonization history 
(variable founder identity) and its consequences (e.g., positive or neg-

ative effects), and considering the competitive hierarchy and differen-
tial resistance that generates transience, several community structure/
dominance scenarios are possible along the assembly process (c). In 
this study group A represents ascidians and group B bryozoans
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reduce the capacity of ascidians to monopolize space (Oric-
chio and Dias 2020). Predation-driven transient competi-
tion, combined to variable colonization history related to 
founder identity, increase the potential outcomes of spe-
cies interactions and make possible additional community 
states and larger fluctuations of overall diversity (Fig. 4). 
Careful trait-based inference on group-specific competition 
ability and resistance to predators, and a more probabilis-
tic approach when accounting for the effects of historical 
contingencies (i.e., the timing of competitive hierarchy and 
escape windows from predation pressure), will ultimately 
allow better predictions of community shifts over space 
and time under given environmental conditions. The vari-
able community assembly scenarios we report here are a 
result of the pathways produced by different colonization 
histories imposed by variable founder functional identities 
(Fukami 2015), which changed species abilities to compete 
and escape predation through the different stages of develop-
ing assemblages.

We also show that colonization contingencies related 
to founder identity delivers direct effects of inhibition and 
facilitation of subsequent species, and also indirect effects 
by modulating later effects of predation on fouling organ-
isms settling at advanced stages of community assembly. We 
highlight that colonization history and species interactions 
must be equally considered for a better understanding of the 
mechanisms underlying the patterns of community assembly, 
not only in an additive way, but rather as interactive drivers. 
Although our study was conducted with marine organisms 
growing over artificial habitats, we believe that our results 
may also apply to natural systems where potential founders 
are functionally variable (Airoldi 2000; Antoniadou et al. 
2011) and predation is an equally or even more important 
driver shaping communities (Rodemann and Brandl 2017; 
Freestone et al. 2020; Janiak et al. 2020; Janiak and Branson 
2021). For instance, algae and sponges are the most likely 
founding species in other marine hard-bottom habitats, while 
markedly varying on their capacity to monopolize space 
(Aued et al. 2018) and to produce defenses against predation 
(Hay 1996; Rohde et al. 2015). Seemingly, founder terres-
trial plants may either facilitate or inhibit the establishment 
of other species (Callaway and Walker 1997), and their abil-
ity to deter herbivores may also vary (Cárdenas et al. 2014; 
Hanley et al. 2007).

We conclude by suggesting critical questions to be 
considered in any attempt to understand the mechanisms 
underlying community dynamics: (I) can colonization 
contingencies related to functional variability in founder 
identity take place? (II) Is there any competitive hierarchy 
among the dominant species? (III) Do dominant species 
show any differential resistance against predators or other 
environmental conditions that may impose transience to the 
system? (IV) How may founder identity affect later-stage 

species interactions (e.g., competition and predation) over 
community assembly? A detailed and combined appraisal 
of these issues may greatly contribute to a more integrated 
understanding of community dynamics over space and time.
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