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Abstract
In large mammal communities, little is known about modification of interspecific interactions through habitat structure 
changes. We assessed the effects of African elephants (Loxodonta africana) on features of woody habitat structure that can 
affect predator–prey interactions. We then explored how this can influence where African lions (Panthera leo) kill their prey. 
Indeed, lions are stalk-and-ambush predators and habitat structure and concealment opportunities are assumed to influence 
their hunting success. During 2 years, in Hwange National Park, Zimbabwe, kill sites (n = 167) of GPS-collared lions were 
characterized (visibility distance for large mammals, distance to a potential ambush site and presence of elephant impacts). 
We compared characteristics of lion kill sites with characteristics of random sites (1) at a large scale (i.e. in areas intensively 
used by lions, n = 418) and (2) at the microhabitat scale (i.e. in the direct surrounding available habitat, < 150 m, n = 167). 
Elephant-impacted sites had a slightly higher visibility and a longer distance to a potential ambush site than non-impacted 
sites, but these relationships were characterized by a high variability. At large scale, kill sites were characterized by higher 
levels of elephant impacts compared to random sites. At microhabitat scale, compared to the direct nearby available habitat, 
kill sites were characterized by a reduced distance to a potential ambush site. We suggest a conceptual framework whereby 
the relative importance of habitat features and prey abundance could change upon the scale considered.
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Introduction

Species within an ecosystem are linked by a network of 
interspecific interactions (e.g. predation, competition, facili-
tation), which ultimately drives ecosystem functioning (War-
dle et al. 2004). There is an increasing awareness that these 
interactions are dynamic and can be mediated by abiotic 
(e.g. climate change—Tylianakis et al. 2008; van der Putten 
et al. 2010) and biotic factors (e.g. parasitism—Hatcher et al. 
2006, non-lethal effects of predators that mediate interspe-
cific prey competition—Preisser and Bolnick 2008). In these 
cases, the interaction between two species can be modified 
by a third species (hereafter “interaction modification”, 
Wootton 1993). This process can arise from a change of a 
plastic trait of one of the two main species interacting (i.e. 
trait-mediated interaction modification) or through alteration 
of the environment in which the interaction takes place (i.e. 
environment-mediated interaction modification, Wootton 
1993, 2002; Dambacher and Ramos-Jiliberto 2007).
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Questions have arisen about how habitat changes (diver-
sity and/or physical structure) may affect interspecific inter-
actions (Petren and Case 1998). In the current context of 
biodiversity loss, many studies have focused on anthropo-
genic alterations of the habitat (e.g. Tylianakis et al. 2007), 
but other ecosystem engineer species (Jones et al. 1994) can 
affect habitats (Crooks 2002), and ultimately interspecific 
interactions (Marquis and Lill 2007). Arditi et al. (2005) 
even designated ecosystem engineer species as “interaction 
modifiers” due to their capacity to modulate their environ-
ment. Interaction modifications were shown to drive com-
munity dynamics in systems with few species (Werner and 
Peacor 2003; Preisser et al. 2007; Abrams 2010). There is 
now growing impetus from other recent works to address the 
challenges of detecting, measuring and testing the potential 
role of interaction modifications in complex systems such as 
natural communities (e.g. Wootton 1994; Peacor and Werner 
2001; Okuyama and Bolker 2007). Such an understanding is 
key to improve our ability to forecast how ecosystems will 
respond to global changes (Kéfi et al. 2012) as interaction 
modifications are often identified as the cause of unexpected 
responses to perturbation (Terry et al. 2017 and references 
therein).

The African elephant (Loxodonta africana) is an ecosys-
tem engineer (Bond 1994). While the effects of elephants on 
vegetation structure through their foraging activity start to be 
well understood (review in Guldemond and van Aarde 2008), 
the consequences of elephant-induced vegetation changes on 
the whole ecosystem remain unknown as a diversity of indi-
rect effects is documented (Pringle 2008; Valeix et al. 2011; 
Coverdale et al. 2016). In particular, little is known about 
the environment-mediated modifications of predator–prey 
relationships by elephants. Yet, elephants affect the vegeta-
tion structure, especially in the understory (Coverdale et al. 
2016; Ferry 2018). Further, predation is mediated by physi-
cal features of habitats (Bell 1991; Kauffman et al. 2007) and 
has cascading effects down the food chain (Estes et al. 2011). 
To our knowledge, two studies highlighted elephant-induced 
modification of predator–prey relationships. Tambling et al. 
(2013) showed that elephants, by fragmenting very dense veg-
etation, improve access for lions, which may ultimately lead 
to an increased predation by lions on the small prey hiding 
in this very dense vegetation. Fležar et al. (2019) simulated 
elephant-induced habitat change at two spatial scales: (1) at the 
“patch” scale, by comparing high-quality grassland sites with 
high visibility against ones with low visibility (due to dense 
woody vegetation) and (2) at the “within-patch” scale by add-
ing coarse woody debris, potential escape impediment for prey, 
in open areas. They then assessed the perceived predation risk 
by different herbivores. They revealed different responses of 
prey at the two scales and argue that depending on the scale, 
elephants’ impact on the risk landscape could be both to ham-
per kill success (by opening up vegetation, improving visibility 

and lowering ambush opportunity) as well as facilitate kill suc-
cess (by dropping woody debris that may lower visibility and 
create escape impediments). Elephants are thus able to modify 
predator–prey interactions by altering habitats and different 
manifestations of elephant-induced changes on the vegetation 
(e.g. visibility and coarse woody debris) could act at different 
spatial scales.

Here, we investigated whether elephants, through their 
impacts on vegetation structure (that lead to changes in 
visibility distance for large mammals and changes in the 
distance to a potential ambush site), can influence preda-
tor–prey interactions between African lions (Panthera leo) 
and their prey in a woody savanna ecosystem. Lions are 
stalk-and-ambush predators that rely on features of the habi-
tat providing concealment (typically dense vegetation) to 
approach and attack their prey (Hopcraft et al. 2005; Loarie 
et al. 2013; Davies et al. 2016). Therefore, habitat charac-
teristics are expected to play an important role in selecting 
areas that may increase hunting success (the ambush-habitat 
hypothesis—Hopcraft et al. 2005). This has been illustrated 
in Kruger National Park, South Africa, where lions kill their 
prey within nine metres of a potential ambush site (Loarie 
et al. 2013). Elephants are thus likely to affect where lions 
hunt and/or successfully hunt (i.e. kill) their prey.

The aim of this study is twofold: (1) to assess whether 
elephant impacts on woody vegetation are associated with an 
increased visibility and a change in the distance to a poten-
tial ambush site, and (2) to test the hypothesis that lions kill 
less in areas impacted by elephants (as we expect them to be 
more successful hunters in areas with denser vegetation thus 
greater opportunities for concealment). This second aim was 
investigated at two different scales: (1) we first compared 
lion kill sites with random sites in areas intensively used by 
lions to assess if among all habitats used by lions, kill sites 
were characterized by denser vegetation and less elephant 
impacts (the “large” scale hereafter), and (2) we then com-
pared the characteristics of lion kill sites with characteris-
tics of the direct surrounding available habitat (< 150 m) 
to assess if lions killed more in closed microhabitats that 
were less impacted by elephants (the “microhabitat” scale 
hereafter). Together, the results will allow an assessment 
of the extent to which elephants can induce environment-
mediated trophic interaction modification between lions and 
their prey in woodland savannas and if this modification is 
scale-dependent.

Materials and methods

Study site

Hwange National Park covers ~ 15,000 km2 of semi-arid dys-
trophic (low nutrient soil) savanna in western Zimbabwe 
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(19° 00′ S, 26° 30′ E). The vegetation is primarily wood-
land and bushland savanna. The east and southern parts of 
the park are dominated by open wooded savannas on Kala-
hari sands, primarily teak woodland (Baikiaea plurijuga) 
and Combretum/Terminalia woodlands. Batoka basalt and 
Karoo sediments in the north and north-west of the park are 
dominated by Colophospermum mopane woodlands inter-
spersed with grassland vleis. The long-term mean annual 
rainfall is ~ 600 mm, which falls primarily between Octo-
ber and April. The surface water available to animals is 
found in natural as well as artificial waterholes. The study 
area is located in the northern region of Hwange National 
Park (~ 7000 km2) where lion density is estimated around 
to be 4.3 individuals/100 km2 (Loveridge et al. 2016), and 
elephant density is estimated above two individuals/km2 
(Chamaillé-Jammes et al. 2008).

Data

We collected data between 2014 and 2015 from 12 female 
and 15 male lions from different coalitions and prides 
equipped with 2D size AWT GPS radio-collars. The lions’ 
locations were available hourly and for some lions every 2 
h, day and night. Potential lion kills were attained by iden-
tifying clusters of coordinates that had more than 4 h of 
sequential locations within a defined proximity (150 m, 
see also Tambling et al. 2010). In the field, these clusters 
were searched for a carcass or the remains of a carcass and 
classified as kill sites based on the evidence of a kill. We 
confirmed lion kills when the presence of a carcass was 
associated with indications of a hunt/struggle from animal 
tracks (observed by skilled field trackers) and/or broken and 
tramped vegetation and/or from the condition of any remain-
ing hide bearing claw and bite marks typical of lion preda-
tion. Carcasses found were classified to species based on 
the body size of the animal killed and the presence of iden-
tifiable material, such as horns, jaws, bones, and hair. We 
made the assumption that the kill site is a good proxy of the 
environment within which the lion decided to start the hunt, 
as lion is a stalk-and-ambush predator attacking and killing 
prey at short distances (van Orsdol 1984; Haas et al. 2005). 
This assumption has been made in several previous works 
(Davidson et al. 2012, 2013; Loarie et al. 2013; Davies et al. 
2016). In total, 705 clusters were monitored among which 
167 were identified as kill sites and 538 were not (called 
“non-kill sites” hereafter). For the 167 kill sites and for 251 
non-kill sites, we identified a paired random site (with a 
random direction, a random distance between 50 and 150 m 
from the kill for kill sites and from the GPS point identi-
fied as the start of the cluster for non-kill sites). In total, 
418 random sites were characterized and represented habi-
tats intensively used by lions. Among these random sites, 
167 were associated to a kill site and represented the direct 

surrounding available habitat. For each kill site, non-kill site 
and random site, we measured the distance to a potential 
ambush site (DPAS hereafter, a potential ambush site was 
any habitat feature able to conceal a lying lion, i.e. most 
of the time a dense bush in the study ecosystem) and the 
visibility. Visibility at each site was assessed by using two 
50 cm × 50 cm white boards. The two boards were set so that 
one board was at 10–60 cm (representative of the height of a 
crawling lion) and the other was at 100–150 cm (representa-
tive of a standing lion). One person stood at the location of 
the kill or at the centre of the random site, while another 
person held the boards, walked away from the centre in the 
four cardinal directions and recorded the distance at which 
the person at the centre of the site could not see each board 
anymore. The four distances obtained from the four cardi-
nal directions were then averaged (“visibility” hereafter). As 
lions are more successful at capturing prey when attacks are 
launched at short distance (< 7.6 m for Thomson’s gazelle, 
15 m for wildebeest and zebras, Haas et al. 2005), elephant 
impacts were assessed within a 25 m radius of the kill for 
the kill sites, of the random point for the random sites and of 
the GPS point identified as the start of the non-kill sites. The 
extent of elephant impact was determined by the definition 
of five classes of percentage of trees impacted by elephants 
(broken, coppiced and/or uprooted): class 0: no impact; class 
1: [1–25%]; class 2: [26–50%]; class 3: [51–75%]; and class 
4: [76–100%].

Analyses

Proximity to water is commonly thought to influence the 
level of herbivore impacts on the vegetation (i.e. the “pio-
sphere effect”, Lange 1969), but this has recently been 
debated in wild protected areas (Chamaillé-Jammes et al. 
2009). We therefore preliminarily checked the existence of 
a link between distance to water and the existence of ele-
phant impacts on the vegetation and found that sites (random 
sites and kill sites) impacted by elephants were not located 
closer to waterholes than sites not impacted by elephants 
(Kruskal–Wallis test, χ2 = 5.51, df = 3, p value = 0.14).

Effect of elephants on woody habitat structure

Visibility at 100–150 cm was highly correlated to visibility 
at 10–60 cm (r = 0.91, t = 75, df = 1121, p < 0.001), so only 
results on the visibility at 10–60 cm (visibility hereafter) 
were considered in the subsequent analyses. We assessed the 
effect of the level of elephant impacts on (1) the visibility 
with a simple linear model performed on log-transformed 
visibility data and on (2) the DPAS with a truncated linear 
regression as data distribution was left truncated at 0 m on 
log-transformed DPAS data (‘truncreg’ package from open 
source Software R 3.3.1 R Development Core Team 2013). 
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All kill sites, all non-kill sites and all random sites were 
included in this analysis to best describe the link between the 
level of elephant impact and the vegetation characteristics.

Lion kill site characteristics

For the subsequent analyses, non-kill sites were excluded 
as they could have represented any lion’s activity (e.g. rest-
ing site). These sites could have been under selection by 
lions (e.g. habitat with higher woody cover for shadow 
preferred) and thus led to a bias in our results/interpreta-
tion. At the large scale, we compared the characteristics 
of lion kill sites with characteristics of the habitats of all 
the random sites (associated to kill sites and to non-kill 
sites), representing areas intensively used by lions. We used 
logistic regressions to develop resource selection func-
tions (RSF), with the dependent variable being 1 for kill 
sites and 0 for random sites. We performed a first logistic 
regression to assess if lions kill more in low-visibility envi-
ronments where prey can be closely approached thanks to 
low DPAS. For this first logistic regression, the explana-
tory variables are visibility and DPAS. No strong correla-
tion was observed between these two variables, which were 
therefore kept for the analyses (Pearson’s correlation coef-
ficient visibility–DPAS = 0.38). We performed a second 
logistic regression to assess if the level of elephant impacts 
on vegetation structure influences lion kill site location. In 
this second logistic regression, the explanatory variable 
was the level of elephant impacts. A model selection was 
performed using the function “dredge” (‘MuMin’ package) 
using the Bayesian information criterion (BIC) for a com-
promise between the explanatory power and the parsimony 
of the models and model averaging was performed on all 
the models (Burnham and Anderson 2004). Variables con-
sidered as important were those for which β ± 1.96 × SE did 
not include zero. At the microhabitat scale, we compared the 
characteristics of lion kill sites with the characteristics of 
the direct surrounding available habitat (represented by the 
random site associated to each kill site). A paired general-
ized estimating equation (GEE) model was performed using 
the package “gee” to remove all the variability between the 
different pairs and focus only on the variability within each 
pair (Liang and Zeger 1986). We conducted the same two 
regression analyses as above. For this analysis, the quasi-
likelihood criterion (QIC) was used (Liang and Zeger 1986) 
and a model averaging was performed on all the models. 
As no difference between lion sexes was observed (Online 
Resource 1), all kill sites identified were used and pooled 
together independently of whether the kill site was found 
using GPS collar data from a female or a male lion. Further, 
our data did not allow assessing if the collared individual 
was the one that made the kill, and male and female lions 

were regularly observed together (70.1% of all lions’ obser-
vations) in Hwange National Park at the time of the study.

Results

Kills were not evenly distributed over the different classes of 
shrub layer cover and over the different prey species (Online 
Resource 2). The main prey of lions were greater kudu 
Tragelaphus strepsiceros (27%), followed by African buf-
falo Syncerus caffer (20%) and plains zebra Equus quagga 
(12%, Online Resource 2). DPAS and visibility at kills for 
each prey species are presented in Online Resource 3.

Effect of elephants on woody vegetation structure

For each class of level of elephant impacts (0: no impact; 
1: [1–25%]; 2: [26–50%]; 3: [51–75%]; and 4: [76–100%]), 
the number of study sites (including all kill sites, non-kill 
sites and random sites) was, respectively, 453, 275, 205, 132, 
and 55. The log visibility increased as the level of elephant 
impacts increased (estimate ± SE = 0.14 ± 0.015, t = 9.04, 
p < 0.001, Table 1a, Fig. 1a), and the log-transformed DPAS 
also increased as the level of elephant impacts increased 
(estimate ± SE = 0.17 ± 0.02, t = 7.5, p < 0.001), Table 1b, 
Fig. 1b). On average, there was a difference of 14 m for 
the visibility (meanLevel 0 = 16.7 m, meanLevel 4 = 30.7 m) 
and 3 m for the DPAS (meanLevel 0 = 2.4, meanLevel 4 = 5.4 m) 
between habitats not impacted by elephants and those with 
the highest level of elephant impacts. It is noteworthy that 
there exists a high variability in the visibilities and the DPAS 
(Fig. 1).

Table 1   Estimated mean and confidence interval at 95% for each 
level of elephant impacts of (a) the visibility (m) and (b) the distance 
to a potential ambush site (DPAS) (m)

% of impacted trees 2.5% Mean 97.5%

a
 0 0 15.7 16.7 17.8
 1 [1, 25] 17.5 20.5 24
 2 [26, 50] 20 23.7 28
 3 [51, 75] 20.6 24.8 29.9
 4 [76, 100] 24 30.7 39.1

b
 0 0 2.1 2.4 2.7
 1 [1, 25] 2.5 3.5 4.7
 2 [26, 50] 3.5 4.8 6.5
 3 [51, 75] 3.2 4.5 6.3
 4 [76, 100] 3.5 5.4 8.1
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Lion kill site characteristics

In the first analyses at large scale, comparing kill sites to all the 
random sites, representing available habitat in areas intensively 
used by lions, we revealed that the level of elephant impacts 
was the only variable to explain lion kill site characteristics 
(Table 2a). Lion kills were located in habitats with higher lev-
els of elephant impacts (estimate ± SE = 0.27 ± 0.09, Fig. 2a, 
see Online Resource 4 for raw data). At the microhabitat scale, 
when we compared the characteristics of lion kill sites to the 
characteristics of the direct surrounding habitat (within-pair 
comparison approach), we revealed that the DPAS was the 
only variable to explain lion kill site characteristics (Table 2b). 

Lion kill sites w7ere preferentially located in habitats char-
acterized by a reduced DPAS compared to the direct nearby 
available habitat (estimate ± SE = − 0.44 ± 0.19, Fig. 2b). In the 
kill sites, the mean DPAS value was 5.86 m, whereas it was 
7.56 m in the random sites representing a decrease of 1.7 m 
(22% of the mean DPAS value of random sites).

Discussion

In this study, we first assessed the effects of elephants on 
features of woody habitat structure that can be key for the 
ecology of predator–prey interactions, i.e. visibility and 

Fig. 1   Boxplot distribution 
of a the visibility and b the 
distance to a potential ambush 
site (DPAS) according to the 
five classes of level of elephant 
impacts, i.e. of percentage of 
trees impacted by elephants 
(broken, coppiced and/or 
uprooted): class 0: no impact; 
class 1: [1–25%]; class 2: [26–
50%]; class 3: [51–75%]; and 
class 4 [76–100%]. The notch 
represents the 95% confidence 
interval of the median. Points 
represent raw data using geom_
jitter function from ggplot2 
package (Wickham 2016)
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distance to a potential ambush site. Elephant-induced veg-
etation changes tended to be associated with an increase 
in visibility (as observed by Valeix et al. 2011). Regarding 
distance to a potential ambush site, elephants could either 
increase it (e.g. by removing large bushes or by reducing the 
crown diameter of bushes—see Ferry 2018) or reduce it (e.g. 

by uprooting or breaking trees, which can create ambush 
sites behind the trunk, branches and foliage on the ground). 
Overall, in Hwange National Park, elephant-induced veg-
etation changes tended to be associated with an increase 
in distance to a potential ambush site. Even though these 
average differences were not very large, they can make a 

Table 2   Logistic models examining (1) the effect of visibility (Vis) and distance to a potential ambush site (DPAS) on lion kill site location and 
(2) the effect of the level of elephant impacts (Ele) on lion kill site location

(a) Approach at the large scale, comparing the characteristics of kill sites to characteristics of all random sites in areas intensively used by lions. 
(b) Approach at the microhabitat scale, comparing the characteristics of kill sites to characteristics of paired random site representing the direct 
surrounding available habitat (< 150 m). Models are ranked according to their BIC or QIC. Model-averaged estimates for the variables ± stand-
ard error are shown at the bottom of each table. Variables considered as important were those for which β ± 1.96 × SE did not include zero

(a) Large scale—kill sites vs all random sites

(1) Kill sites/random sites ~ DPAS + Vis

Candidate models df BIC ∆i wi bcc wi

1 Null 1 702.2 0.00 0.453 0.453
2 DPAS 2 702.7 0.45 0.361 0.814
3 Vis + DPAS 3 704.3 2.06 0.162 0.976
4 Vis 2 708.1 5.89 0.024 1

Variable Average β SE

Vis 0.22 0.25
DPAS − 0.06 0.13

(2) Kill sites/random sites ~ Ele

Candidate models df BIC ∆i wi bcc wi

1 Ele 2 696.6 0 0.943 0.943
2 Null 1 702.2 5.62 0.057 1

Variable Average β SE

Ele 0.25 0.09

(b) Microhabitat scale—kill site vs paired random site

(1) Kill site/paired random site ~ DPAS + Vis

Candidate models QIC ∆i wi bcc wi

1 Vis + DPAS 310.5 0.00 0.436 0.436
2 DPAS 310.6 0.13 0.408 0.844
3 Vis 312.7 2.22 0.144 0.988
4 Null 317.6 7.1 0.013 1

Variable Average β SE

Vis − 0.33 0.27
DPAS − 0.44 0.19

(2) Kill site/paired random site ~ Ele

Candidate models QIC ∆i wi bcc wi

1 Null 317.6 0 0.596 0.596
2 Ele 318.4 0.78 0.404 1

Variable Average β SE

Ele 0.004 0.07
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difference in dense habitats considering the hunting behav-
iour of lions, which kill their prey close to dense vegetation 
(e.g. within 9 metres of a potential ambush site—Loarie 
et al. 2013). Hence, elephants, by altering visibility and dis-
tance to potential ambush site, are likely to affect where 
lions choose to hunt and/or where they hunt successfully in 
woodland. Following the ambush-habitat hypothesis (Hop-
craft et al. 2005), we initially expected lions to kill more in 
habitats with lower level of elephant impacts and character-
ized by lower visibility and a shorter distance to potential 
ambush site, thus more favourable to lion hunting success 
(Fig. 3a—expected pattern). This assumption can appear to 
be in opposition with the results from Tambling et al. (2013) 

and Davies et al. (2016). This can be explained by the fact 
that, in these studies, habitats not impacted by elephants 
were actually so dense (average distance to cover < 1 m) that 
lions were not able to move and hunt inside this dense veg-
etation, which could be therefore used as a refuge by small 
prey species (e.g. the duiker Sylvicapra grimmia).

In this study, we were limited on the inferences we could 
make because of two main limitations in our data. The first 
one is that we were not able to identify hunts in which lions 
failed, which prevented us from assessing whether there 
were more kills in a habitat because lions hunted more in 
this habitat or had a higher hunting success there. The sec-
ond limitation is the lack of information about the contextual 
abundance and distribution of herbivores during the hunt, 
which could influence the kill site location as expected under 
the prey-abundance hypothesis. To partly fill these gaps, we 
suggest a conceptual framework with different scenarios that 
could explain the patterns observed based on three different 
parameters: the probability of prey presence, the probability 
to hunt (depending either on prey presence or on habitat 
openness), and the probability to kill a prey (i.e. to hunt 
successfully) (Fig. 3b). Patterns 3,9 and 11 represent our ini-
tial hypothesis, without assumption on prey distribution and 
with the probability to hunt and/or kill being linked to habi-
tat features only (following the ambush-habitat hypothesis, 
with more hunt/kills in habitats less impacted by elephants, 
less open).

Contrary to our expectations, at the large scale, when we 
compared the characteristics of lion kill sites to the charac-
teristics of random sites in areas intensively used by lions, 
kills were more located in woody habitats characterized by 
higher levels of elephant impacts, but we did not detect a 
selection for a lower visibility and a shorter distance to a 
potential ambush site. This result suggests that other factors 
than habitat structural features drive lion hunting behaviour 
at this scale, such as the presence and abundance of prey 
(i.e. the prey-abundance hypothesis, Hopcraft et al. 2005). 
If this is the case, it assumes that herbivores select habitats 
impacted by elephants (representing all the even numbered 
patterns in Fig. 3). This selection pattern may arise from 
(1) a coincidence with elephants and other herbivores using 
the same habitats, (2) a reduced perceived risk of preda-
tion in elephant-impacted habitats due to the higher visibil-
ity caused by elephants in these habitats for all herbivore 
species (Underwood 1982; Valeix et al. 2011), and/or (3) 
a facilitative effect of elephants that may increase browse 
availability at lower heights within reach of smaller brows-
ers by stimulating tree coppicing, a mechanisms known as 
“browsing lawns” (Rutina et al. 2005; Fornara and du Toit 
2007). Hence, the fact that lion kills were preferentially 
found in elephant-impacted habitats at the large scale could 
be explained by a selection for areas where prey are abun-
dant (patterns 6, 8, 14 and 16, Fig. 3) and elephants could 
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Fig. 2   a Relationship between the level of elephant impacts and the 
strength of this factor on lions’ kill site location at the large scale. 
b Relationship between the log-transformed DPAS (for DPAS 
ranging from 0 to 50  m) and the strength of this factor on lions’ 
kill site location at the microhabitat scale. The selection strength 
is exp (β0 + β1 × level of elephant impacts) at the large scale and 
exp  (β0 + β1 × log(DPAS + 1)) at the microhabitat scale, where β0 is 
the intercept estimate and β1 is the estimated coefficient for the level 
of elephant impacts at the large scale and for log(DPAS + 1) at the 
microhabitat scale. Dotted lines represent the standard errors
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be considered as interaction modifiers if they influence prey 
habitat selection. Evidences about the role of elephants in 
other herbivore woody habitat selection at this scale still 
need to accumulate (e.g. herbivore distribution data thanks 
to camera traps placed on contrasted elephant-impacted 
habitats).

At the microhabitat scale (the within-pair compari-
son between a kill site and its paired random site), results 
revealed that lion kills were not preferentially located in 
habitats impacted by elephants anymore. At this scale, lion 
kill sites were preferentially located in habitats characterized 
by a shorter distance to a potential ambush site (patterns 3, 
4, 7–16, Fig. 3), supporting here our hypothesis of the role 
of prey catchability (ambush-habitat hypothesis). Interest-
ingly, the visibility did not seem to be a factor as important 
as the distance to a potential ambush site. An explanation 
could be that, whatever the visibility, the presence of a few 
large bushes/broken trees as potential ambush sites is suf-
ficient to lead to a higher probability of kill even in woody 
habitats with a high visibility. Finally, when combining the 
two different scales, the only patterns to explain the observed 
pattern (Fig. 3a—observed pattern) with both more kills in 
impacted habitat at the large scale and more kills in closed 
habitat at the microhabitat scale are patterns 8, 14 and 16. 
These patterns share the same processes: prey select ele-
phant-impacted habitats and a higher probability to hunt in 
habitat with more prey (prey-abundance hypothesis). How-
ever, they differ in terms of probability to hunt or to kill in 
closed habitats. Pattern 8 needs a higher probability to kill in 
closed habitats, pattern 14 needs a higher probability to hunt 
in closed habitats and pattern 16 needs both of them, sug-
gesting therefore that lions are influenced by habitat struc-
ture during the hunting process at the microhabitat scale 
(ambush-habitat hypothesis).

Therefore, our results suggest that the main driver of kill 
site location for lions is likely to be prey abundance at a first 

scale of selection, and prey catchability at the scale of the 
direct nearby available habitat (< 150 m). As suggested in 
previous studies, the prey-abundance and the ambush-habitat 
hypotheses are not exclusive and could interact with one 
another to explain lion hunting behaviour (Davidson et al. 
2012). Therefore, by affecting the woody vegetation struc-
ture, elephants could play an important role in the intensity 
of predator–prey relationships although in complex ways, 
as they could act on both predators and prey’s behaviour, 
with different mechanisms involved depending on the scale 
considered (as suggested by Fležar et al. 2019). We encour-
age future research to confirm that herbivores select woody 
habitats impacted by elephants because of the elephant’s 
engineering process and not because of simple coincidence 
or shared resources. Further, a focus on identifying unsuc-
cessful hunts will be needed to disentangle the roles of the 
probability to hunt and the probability to kill in closed habi-
tats. This would ultimately help to know which process is 
influenced by the vegetation structure during the lion hunt-
ing behaviour in woodland areas. This task is both conceptu-
ally and practically a challenging one, although perhaps it 
can be accomplished through the deployment of GPS collars 
with integrated tri-axial accelerometer–magnetometer (see 
for example Fröhlich et al. 2012; Wilmers et al. 2017).

Despite remaining questions regarding the underlying 
mechanisms, our study suggests that elephants have the 
potential to influence predator–prey interactions in their 
ecosystem. In a context of rapidly changing elephant popu-
lations worldwide (Chase et al. 2016), it is of importance to 
understand their indirect role on interspecific interactions. 
Our results reinforce the idea that elephants, through eco-
system engineering, could act on a multitude of broad-scale 
ecological processes in wooded savannas (Kerley and Land-
man 2006). Further, whereas previous studies of ecosystem 
engineers have highlighted their effects on other species 
abundance and richness (Jones et al. 1997), our findings 
demonstrate the importance of their indirect effect on inter-
specific interactions (see also Arditi et al. 2005; Marquis and 
Lill 2007 and references therein). Finally, we highlighted 
the importance of multi-scale consideration in interspecific 
interactions and their modification (see also Fležar et al. 
2019). We therefore hope these findings will promote studies 
on interaction modification, with a multi-scale component 
(Tylianakis and Morris 2017) in large mammal communities.
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