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Abstract
The role of generalist predators in biological control remains controversial as they may not only reduce pest populations but 
also disrupt biocontrol exerted by other natural enemies. Here, we focus on spiders as a model group of generalist predators. 
They are among the most abundant and most diverse natural enemies in agroecosystems. We review their functional traits 
that influence food-web dynamics and pest suppression at organisational levels ranging from individuals to communities. At 
the individual and population levels, we focus on hunting strategy, body size, life stage, nutritional target, and personality 
(i.e., consistent inter-individual differences in behaviour). These functional traits determine the spider trophic niches. We 
also focus on the functional and numerical response to pest densities and on non-consumptive effects of spiders on pests. 
At the community level, we review multiple-predator effects and effect of alternative prey on pest suppression. Evidence 
for a key role of spiders in pest suppression is accumulating. Importantly, recent research has highlighted widespread non-
consumptive effects and complex intraguild interactions of spiders. A better understanding of these effects is needed to 
optimize biocontrol services by spiders in agroecosystems.
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Introduction

Pest regulation by naturally occurring predators is important 
for effective crop protection (Furlong et al. 2004; Bommarco 
et al. 2011). The role of generalist predators such as spiders 
in pest regulation is debated because they can either signifi-
cantly contribute to pest suppression (Lang 2003; Schmidt 
et al. 2004; Birkhofer et al. 2008a; Isaia et al. 2010; Lefeb-
vre et al. 2017) or disrupt it (Lang 2003; Schmidt-Entling 
and Siegenthaler 2009). Here we review the trophic ecology 

of spiders in agroecosystems. Spiders are among the most 
abundant predators in many agroecosystems and are most 
diverse generalist predators (Birkhofer et al. 2013). Spiders 
use a broader range of hunting strategies (Cardoso et al. 
2011), occupy wider variety of spatial niches from litter to 
tree canopies (Marc et al. 1999), and are distributed across 
more trophic levels (Mestre et al. 2013; Sanders et al. 2015) 
than other generalist predators, such as carabids and other 
beetles, earwigs, syrphid flies, and heteropterans. Hence, 
spiders are excellent model organisms to study the effect of 
generalist predators on pest suppression.

To improve the pest control potential of spiders, it is nec-
essary not only to investigate the factors that influence their 
abundance and diversity in agroecosystems (reviewed, e.g., 
in Birkhofer et al. 2013; Baba and Tanaka 2016; Benamú 
et al. 2017), but also to understand the trophic ecology of 
spiders, a subject which has been much less studied. The 
necessity to combine both approaches arises from the fact 
that higher abundances and greater diversity of spiders not 
necessarily translate into more efficient pest control (Hanna 
et al. 2003; Markó and Keresztes 2014; Tscharntke et al. 
2016). The mechanistic approach of trophic ecology can 
help to explain when this occurs. Ideally, it can identify the 
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composition of spider communities in agroecosystems that 
provide the desired pest control outcome (Jonsson et al. 
2017).

Our aim with this review was to provide an update of our 
knowledge on the role of spiders as generalist predators in 
conservation biological control. There are several excellent 
reviews on spiders as biocontrol agents each dealing with 
different aspects of trophic ecology (Riechert and Lockley 
1984; Nyffeler and Benz 1987; Hodge 1999; Marc et al. 
1999; Riechert 1999; Rypstra et al. 1999; Sunderland 1999; 
Symondson et al. 2002; Maloney et al. 2003; Wise 2006). 
However, this field of research has strongly progressed dur-
ing the past decade. Many perspectives were updated and 
several basic ecological hypotheses proposed that can be 
used to improve biocontrol potential of spiders. Examples 
include the determinants of spider trophic niches, how 
trophic interactions are influenced by inter- and intraspe-
cific variation in traits, and what role pest control by spiders 
plays in multi-predator settings. In our review, we focus on 
the trophic ecology of spiders at levels ranging from indi-
viduals to communities. At the individual and population 
level, we review the determinants and dynamics of spider 
trophic niches (i.e., intraspecific changes in niche position 
and/or width), such as hunting strategy, body size, life stage, 
nutritional target, and personality (i.e., consistent inter-indi-
vidual differences in behaviour; Bell et al. 2009). We further 
review the predatory response to pests (i.e., functional and 
numerical responses), the non-consumptive effects of spi-
ders on pests (i.e., the consequences of predation risk) and 
the factors that influence them. At the community level, we 
review multiple-predator effects (i.e., antagonistic, additive, 
and synergistic effects) on pest populations, the effects of 
the diversity and composition of spider communities on pest 
suppression, and the effects of the presence of alternative 
prey on pest suppression.

Individual and population effects: 
predator‑pest interaction

Bottom-up as well as top-down effects need to be consid-
ered to understand how predator–prey interactions affect the 
biocontrol potential of spiders (Schmitz 2010; Hanley and 
La Pierre 2015; Fig. 1). The investigation of spider trophic 
niches and their determinants are essential to elucidate, to 
the large extent, the bottom-up and top-down interactions. 
The top-down point of view can help to evaluate the poten-
tial of spiders to suppress certain pests or to disrupt the bio-
control by particular natural enemies (Denno et al. 2004; 
Liu et al. 2015), while the bottom-up point of view can help 
to identify prey that would sustain abundant spider popu-
lations and maintain their high capture rates (Bressendorff 
and Toft 2011; Tsutsui et al. 2016, 2018). However, it is 

also necessary to consider other effects than prey composi-
tion. For example, spider species with low preferences for 
a pest but a high capture rate can reduce the pest more than 
other spiders with high preferences for the pest but with a 
low capture rate (Michalko and Pekár 2017). Alternatively, 
other spider species can exert a strong non-consumptive 
effect causing lower fecundity, or a higher emigration rate 
in the pest, which together can outweigh prey mortality 
(Werner and Peacor 2003; Schmitz 2010). In this chapter, 
we review the key aspects that determine the predator pest 
interactions at the individual and population level, namely 
the determinants of spider trophic niches (“The determinants 
of spider trophic niches”), their predatory responses to pest 
(“Response of predators to pests”), and their non-consump-
tive effects on pests (“Non-consumptive effects”).

The determinants of spider trophic niches

Generalist spiders are euryphagous predators that prey 
mostly on arthropods, especially insects and other spiders 
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Fig. 1  Effects of alternative prey on pest suppression by a community 
of generalist predators. Top predators can either switch from the pest 
(a) or the mesopredator (c) to the non-pest prey. Alternatively, non-
pest prey can enhance the density and/or feeding rate of the top pred-
ator, thereby inducing apparent competition with the pest (b) or the 
mesopredator (d). Indirect effects (dashed arrows) of alternative prey 
on pests can thus be positive (a, d) or negative (b, c). Direct effects 
are displayed as solid arrows. Effects that are reduced in the presence 
of alternative prey are displayed in grey
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(Pekár et al. 2012). Their diets are dominated by Diptera, 
Hemiptera, Hymenoptera, and Coleoptera (Michalko and 
Pekár 2016). Generalist spiders have been previously consid-
ered as highly opportunistic utilizing their prey proportional 
to its availability (Riechert and Lockley 1984). However, 
recent research indicates that many spiders, if not most, 
show some degree of prey selectivity (e.g., Agustí et al. 
2003; Harwood et al. 2004; 2005; 2007; Kuusk and Ekbom 
2010, 2012; Kobayashi et al. 2011; Chapman et al. 2013; 
Schmidt et al. 2012a; Michalko and Pekár 2015; Perkins 
et al. 2018). The trophic niche of a spider depends on the 
interplay between traits of the spider (e.g., hunting strategy, 
body size), of its prey (e.g., body size, movement, defensive-
ness, nutritional content), and conditions of the environment 
(e.g., temperature, microhabitat structure, local selection 
pressures, prey community composition) (Riechert 1991; 
Kruse et al. 2008; Richardson and Hanks 2009; Schmidt 
et al. 2012b; Sanders et al. 2015; Michalko and Pekár 2015; 
Perkins et al. 2018). Given these multiple effects, the real-
ized niches of generalist spiders can exhibit high spatio-
temporal dynamics.

Hunting strategy

Spiders employ a wide variety of hunting strategies, which 
differ in their efficiency in capturing specific prey types 
(Michalko and Pekár 2016). For example, sit-and-wait spi-
ders are more effective in capturing highly mobile prey, 
while pursuing spiders are more effective in capturing sed-
entary prey (e.g., Kuusk and Ekbom 2012; Sweeney et al. 
2013). Consequently, spiders with different hunting strate-
gies utilize similar prey types but in different proportions 
(Birkhofer and Wolters 2012; Michalko and Pekár 2016). 
This can affect their efficiency in suppressing herbivores.

Relative prey size

Spiders prey on insects of certain body size ranges relative 
to their own body size (Nentwig and Wissel 1986; Yamanoi 
and Miyashita 2005; Okuyama 2007; Michalko and Pekár 
2014, 2015). Relatively small and large prey is often ignored 
by spiders because it is unprofitable (Nentwig and Wissel 
1986; Stephens et al. 2007). A spider species can be effec-
tive in suppressing several pests that fall within its preferred 
body size range. On the other hand, a spider species may be 
limited to certain body size cohorts of a pest with a wide 
range of body sizes, such as caterpillars.

Prey nutritional composition

Generalist spiders need to optimize their nutritional intake 
while minimizing the intake of toxins in order to maxi-
mize their fitness (Wilder 2011; Toft 2013). Different prey 

species are of different quality for spiders, which are able 
to select prey according to its nutritional and toxin content 
(Toft 1999; Mayntz et al. 2005; Schmidt et al. 2012b). The 
trophic niche of spiders can, therefore, be determined by 
the nutritional content of pests and other potential prey in 
the agroecosystem. Many pests (e.g., aphids) are of sub-
optimal quality for spiders (e.g., Toft 2005). Spiders can 
have an aversion to, and completely ignore low-quality prey 
(Toft and Wise 1999a). However, due to a generalized search 
image (e.g., Pekár et al. 2013), generalist spiders can con-
tinue to kill low-quality pests but exploit them only for a 
short time if high-quality prey is present, because spiders 
may not be able to distinguish between the two prey before 
attack initiation (Toft and Wise 1999a). In addition, some 
low-quality prey can be ingested as a nutritional supplement 
within a mixed diet (Toft 1995).

Trophic niche dynamics

The trophic niche of a spider species can be dynamic in 
space and time. Niche dynamic means a change in the niche 
position, width, and internal structure of population niche 
[i.e., intraspecific niche partitioning (Pearman et al. 2008; 
Araújo et  al. 2011)]. The trophic niche depends on the 
ontogenetic stage (Bartos 2011; Pekár et al. 2011); body 
size (Sanders et al. 2015); feeding history [hunger, nutri-
tional state (Riechert 1991; Schmidt et al. 2012a, 2012b)]; 
environmental factors, such as temperature (Kruse et al. 
2008); and on the presence of natural enemies and competi-
tors (Michalko and Pekár 2014). For example, some spiders 
preferred lipid-rich prey to improve their energy reserves 
prior to overwintering, but shifted to more protein-rich prey 
to enhance their growth and development after winter (Bres-
sendorff and Toft 2011).

Ambient temperature can affect the trophic niches of spi-
ders because it influences their ability to catch prey and the 
ability of the prey to escape (Kruse et al. 2008). Spiders can 
switch from sit-and-wait to a more active hunting mode with 
increasing temperature or because temperature affects silk 
properties (Yang et al. 2005; Kruse et al. 2008). Given the 
allometric responses of spiders and their prey to changing 
temperature, the trophic niches of spiders can differ between 
seasons, years, or regions (Dell et al. 2014).

Feeding preferences of generalist predator are also deter-
mined by the relative abundances of alternative prey. Thus, 
the suitability rank of a pest species changes with its rela-
tive availability (Ryabov et al. 2015). For example, the wolf 
spider Pardosa milvina (Hentz) utilizes dipterans more fre-
quently than expected when they are scarce, but less fre-
quently than expected when they are overabundant (Schmidt 
et al. 2012a).

Spider populations may be exposed to different selec-
tion pressures, which can lead to different behavioural 
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phenotypes (i.e., personalities). Selection pressures that 
affect spider behaviour include prey availability, predation 
pressure on spiders, and pesticide application (Riechert and 
Hedrick 1993; Royauté et al. 2014). The functioning of spi-
ders in an agroecosystem can then largely depend on local 
selection pressures (Royauté and Pruitt 2015). For exam-
ple, aggressive individuals have higher capture rates than 
timid individuals (Pruitt and Riechert 2012). The behav-
ioural types can occupy distinct trophic niches (Riechert 
1991; Michalko and Pekár 2014, 2017). Aggressive indi-
viduals can then have a wider trophic niche than timid indi-
viduals, because they are less prey selective (Riechert 1991; 
Michalko and Pekár 2014; 2017). Individuals can also differ 
in their level of activity and, according to the locomotor 
cross-over hypothesis (Huey and Pianka 1981), more active 
individuals will more likely catch sedentary pests, while 
less active individuals will more likely catch mobile pests 
(Sweeney et al. 2013). The distribution (mean, variance) of 
behavioural types within a spider population can, therefore, 
have a profound effect on the abundances of other spiders, 
and on pest community composition (Bolnick et al. 2011; 
Royauté and Pruitt 2015; Michalko and Pekár 2017).

Response of predators to pests

The total response of a predator to prey is the product of 
functional and numerical responses (Solomon 1949). The 
functional response expresses a relationship between prey 
density and mean number of prey killed by a single predator 
(Holling 1965), while the numerical response describes the 
change in the numbers of predators through aggregation and 
reproduction (Solomon 1949).

Functional response

There are three basic types (I–III) plus a few rare types, 
such as the dome-shaped or roller-coaster type of functional 
response, which are all documented in generalist spiders 
(Holling 1965; Denno et al. 2003; Vucic-Pestic et al. 2010; 
Bressendorff and Toft 2011; Schmidt et al. 2012a; Michalko 
and Košulič 2016).

Type I is characterized by a linear increase in the number 
of prey killed with prey density to some threshold above 
which the number of killed prey remains constant (Jeschke 
et al. 2004; Fig. 2). This type was observed not only in web 
spiders (e.g., Mansour and Heimbach 1993) but also in 
actively hunting spiders affected by pesticides that kill but 
do not consume the prey (Michalko and Košulič 2016).

Spiders have been mainly found to display the type II 
functional response (e.g., Riechert and Lockley 1984; 
Fig. 2). The type II functional response implies that preda-
tion pressure on the pest is highest at low pest densities (Sin-
clair et al. 1998). An abundant population or community of 

spider predators can, therefore, exert very intense predation 
pressure on the pest at the beginning of the season when the 
pest begins to reproduce. This may lead to the local exclu-
sion of a pest and an overall reduction in pest population 
size, or significantly decelerate the pest’s initial population 
growth (Sinclair et al. 1998). On the other hand, a type II 
functional response means that once a pest population grows 
in spite of spider presence, the predatory impact of spiders 
will diminish.

The type III response (Fig. 2) is characterized by a sig-
moid shape with a shifted increase in capture rate from low 
to intermediate prey densities combined with an asymptotic 
increase from intermediate to high prey densities (Křivan 
2008). The type III response arises due to learning and/or 
prey switching (Sinclair et al. 1998). It is the only functional 
response which can by itself stabilize the predator–prey sys-
tem and by which the predator can keep the pest under con-
trol (Sinclair et al. 1998). However, this is only possible if 
the density of the pest falls within the area of densities in 
which the killing rate increases more than proportionally 
to the pest density and the pest does not exceed the release 
threshold (Křivan 2008). Although the type III response has 
been observed in spiders, it has previously been considered 
rare (Riechert and Lockley 1984; Wise 1993). However, 
the presence of the type III functional response in spiders 
may be underestimated due to the experimental settings 
frequently used. The functional responses of spiders have 
been investigated mostly with only single prey types or in 
homogenous environments which do not meet the conditions 
required for a type III to be observed (Křivan 2008). The 
disproportional predation on various prey types relative to 
their availability and high behavioural flexibility indicates a 
high potential for the presence of prey switching in spiders 
(e.g., Herberstein 2011; Schmidt et al. 2012a). Spiders are 
able to learn about, and avoid some prey (Toft 1999).
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Fig. 2  The four types of predator functional response to prey density
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The most common type of functional response among 
generalist spiders is likely transitional between type II and 
type III depending on the prey community composition. 
This arises from imperfect prey selectivity, which means 
that prey are delimited by their traits such as size, move-
ment, shape, etc. According to the degree of similarity in 
these traits, predators may or may not be able to distinguish 
between prey types (Morozov and Petrovskii 2013; Ryabov 
et al. 2015). Switching will likely be present only in cases 
where predators are able to distinguish between prey before 
they kill. Spiders are not able to distinguish between all prey 
species prior to attack. For example, cursorial Philodromus 
spiders distinguished between a psylla pest and Dictyna spi-
ders before they initiated an attack (Petráková et al. 2016). 
However, cursorial Pardosa spiders needed to taste aphids to 
distinguish between toxic and palatable aphid species (Toft 
and Wise 1999a).

The type IV functional response is dome-shaped (Fig. 2), 
which means that the capture rate increases with prey den-
sity but sinks above a certain threshold. In spiders, the 
dome-shaped capture rate can be caused, for example, by 
a nutritional imbalance induced by overconsumption of 
prey of low nutritional quality (Bressendorff and Toft 2011; 
Schmidt et al. 2012b). The absence of high-quality prey or 
prey with complementary nutritional content (alternative, 
pest) reduces the conditions of spiders and consequently 
can reduce their predation rate. Therefore, alternative prey 
can act as a nutritional balancer that would maintain a high 
killing rate with respect to the pest (Fig. 1; Mayntz and Toft 
2000; Oelbermann and Scheu 2009; von Berg et al. 2009).

Regardless of the type of functional response, spiders 
have a high asymptote of capture frequency compared to 
other predators, delaying the saturation of prey capture rates 
(Wise 1993; Nyffeler and Birkhofer 2017). This is due to 
partial feeding and overkilling (Riechert and Harp 1987; 
Samu 1993; Samu and Bíró 1993). The high killing rate pre-
destines spiders to impose high predation pressure on pests.

Numerical response

Aggregation of spiders in prey-rich areas is determined by 
their movement behaviour. Spiders are able to move through 
the air by ballooning (Decae 1987; Bell et al. 2001). How-
ever, ballooning is passive with little control over the landing 
location, which limits the ability of spiders to direct them-
selves to prey-rich locations. Spiders can direct themselves 
to areas of high prey density by walking, or by a series of 
ballooning events in which low prey densities enhance their 
propensity to initiate another flight until an area of high 
prey density is reached (Mestre and Bonte 2012). Balloon-
ing is thus less suitable for aggregating in areas of high pest 
infestation compared, for example, to the utilization of prey 
kairomones by active dispersers such as parasitic wasps 

(Schellhorn et al. 2014). In addition, the ballooning ability of 
spiders is limited to a relatively short period (Decae 1987). 
The aggregative response of spiders among crop fields is, 
therefore, ineffective in comparison to that of insect natural 
enemies with active flight, inasmuch as random dispersal 
imposes very long lags in the aggregative response (Riechert 
and Lockley 1984). In contrast to such a slow long-distance 
aggregative response, the within-field aggregative response 
in cursorial species can be rapid, as some spiders can be 
relatively mobile within a crop field and its adjacent habitats 
(Samu et al. 1999; Birkhofer et al. 2018). Indeed, aggrega-
tion in patches with high abundances of their preferred prey 
has been observed in cursorial spiders as well as in spiders 
with strong ballooning propensity (Harwood et al. 2003; 
Schmidt and Rypstra 2010).

Given that most spiders reproduce only once per year 
while many pest species have several generations, the 
tracking of pest density through reproduction is impossi-
ble for spiders (Riechert and Lockley 1984). The reproduc-
tive response of generalist spiders is connected to several 
rather than to single prey species (Murdoch et al. 2002). In 
addition, spiders are well adapted to periods of starvation 
(Riechert and Harp 1987). All this enables spiders to main-
tain relatively high population densities in agroecosystems 
throughout the season even when pests are absent. Addi-
tional limitations to spiders in biocontrol are their territori-
ality and their cannibalistic tendencies, which further limit 
their numerical response to prey availability (Schmidt and 
Rypstra 2010; Gan et al. 2015; Lesne et al. 2016).

Non‑consumptive effects

Spiders, similarly to other predators, exert non-consumptive 
effects on the prey phenotype (Schmitz 2005; Bucher et al. 
2014a). In the short term, pest suppression can be greater 
due to the non-consumptive than due to the consumptive 
effect (Cronin et al. 2004; Beleznai et al. 2017). Spiders can 
dislodge pests (caterpillars, aphids), which leads to increased 
mortality as the pests are exposed to other predators and to 
stressful environmental conditions, or are unable to relocate 
their host plant and starve (Sunderland 1999). Other non-
consumptive effects include behavioural or physiological 
changes in pests as a response to predation risk (Werner 
and Peacor 2003). A pest can reduce its movement and for-
aging activity to lower its detectability by spiders (Rypstra 
and Buddle 2013; Bucher et al. 2014a; Beleznai et al. 2015) 
or can increase its mobility to actively avoid areas of high 
predation risk (Schmitz et al. 1997; Binz et al. 2014; Bucher 
et al. 2015a). However, pests can also increase their forag-
ing in the presence of predators to satisfy their increased 
metabolism due to chronic stress and vigilance, which can 
lead to increased herbivory and crop damage (Hawlena and 
Schmitz 2010a, 2010b; Bucher et al. 2014b; Rendon et al. 
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2016). Behavioural and physiological changes are associated 
with fitness costs—slower development, lower fecundity, 
and shorter longevity, which retards pest population growth 
(Preisser and Bolnick 2008; Hawlena and Schmitz 2010b).

The type and intensity of a pest’s behavioural response to 
predation risk depends on the interplay between the traits of 
the pest and predator (foraging modes, habitat domains) and 
can change over the lifetime of the pest (Binz et al. 2014; 
Miller et al. 2014). A framework for adaptive anti-predator 
response based on the combination of habitat domains and 
foraging modes suggests that when the pest has a broad habi-
tat domain relative to the predator, the adaptive anti-pred-
ator response is a habitat shift (Schmitz 2005). In contrast, 
if the pest has a narrow habitat domain, the anti-predator 
response should always be activity reduction. If both, pest 
and predator have a broad domain and the predator employs 
a sit-and-move foraging mode, then the response should be 
either habitat shift or activity reduction. If the predator hunts 
actively then the response should be movement out of the 
zone of immediate danger. The pest can also respond selec-
tively to predators that represent high risk. For example, 
crickets responded only to the chemo-tactile cues produced 
by large and common spiders (Binz et al. 2014).

As pests’ responses to predation risk are context-depend-
ent, the manner and strength in which non-consumptive 
effects of spiders cascade down on crops is also context-
dependent. Consumptive and non-consumptive effects inter-
act and can act complementarily or antagonistically (Schmitz 
2005). In the former case, reduced feeding by a pest and its 
mortality reduce crop damage or pathogen transmission. 

In contrast, increased pest foraging may (over)compensate 
pest mortality, at least in the short term. The net effect of a 
spider predator on a crop would then depend on the relative 
strength of the consumptive and non-consumptive effects 
and the fitness costs resulting from the non-consumptive 
effect (Werner and Peacor 2003; Hawlena and Schmitz 
2010a). If enhanced per capita feeding by pests exceeds 
the consumptive effect, then predation pressure could even 
enhance crop damage. For example, spiders can reduce the 
numbers of pest caterpillars on cotton by direct consumption 
but, at the same time, increase their herbivory by increas-
ing feeding activity, which, overall, reduces the cotton yield 
(Rendon et al. 2016). On the other hand, the stress elicited 
by predation risk may impose high pest mortality or reduce 
fecundity (Hawlena and Schmitz 2010b). Especially in the 
long term, the effects of high mortality and low fecundity 
among pests likely outweigh the enhanced per capita feeding 
rate of the pest. As the few investigations on non-consump-
tive effects of spiders on pests have mostly been short-term 
and conducted at the individual level, this question about the 
relative contribution of consumptive and non-consumptive 
effects on pest suppression remains to be explored.

Theoretically, if the pest response to predation risk is 
emigration to spider-free patches, the result will be scale-
dependent because the pest will cause less damage in the 
risky patches but more damage in the safe patches where 
it may aggregate (Schmitz et al. 1997; Bucher et al. 2015b; 
Fig. 3). The overall damage would then depend on the ratio, 
juxtaposition, and configuration of risky (high density of 
predator) and safe (low density of predator) patches, and 

Risky Safe

H
er

bi
vo

ry

Percentage of risky patches

To
ta

lc
ro

p
da

m
ag

e

a b High quality patches
Low quality patches

High quality patch

Low quality patch

Patch type

Fig. 3  Theoretical perspective on the long-term non-consumptive 
effect of spiders on herbivores at various spatial scales. An agro-
ecosystem comprises risky and safe patches for a pest. The pest 
emigrates from the risky patches to the safe patches as a response 
to predation. Consequently, there are fewer herbivores in the risky 
patches but more in the safe patches (a). The number of herbivores 
in an agroecosystem with low-quality safe patches is lower than in 
an agroecosystem with high-quality safe patches. On the scale of a 

whole agroecosystem (b), there may be no net-effect on herbivores 
because the high density of herbivores in the safe patches might com-
pensate for the low density in the risky patches. Once the safe patches 
are unable to compensate for the risky patches, the density of herbi-
vores will start to decline on the scale of the whole agroecosystem. 
The herbivore density will start to sink sooner and more rapidly in 
agroecosystems with low-quality safe patches than in agroecosystems 
with high-quality safe patches
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also on the quality of the safe patches (Laundré et al. 2014). 
For example, in an agroecosystem with a high percentage 
of risky patches, the relocation of herbivores to safe patches 
would reduce overall crop damage. The lower the quality of 
the safe patches for the pest, the faster would overall crop 
damage decline with increasing percentage of risky patches, 
because of the increased pest mortality and reduced fecun-
dity (Fig. 3).

The mosaic of risky and safe patches may arise, for exam-
ple, in the multi-crop agroecosystems with a generalist her-
bivore where some crops would be unsuitable for spiders. 
Alternatively, safe patches may be produced by application 
of pesticides because many pests are more resistant to pesti-
cides than spiders (Pekár 2012). The effect can be long-term 
if the efficacy of pesticides’ residues is long-term or if the 
pesticides are applied during a period when spiders do not 
perform long-distance movement (Pekár 2012).

The community effect of multiple predators 
and alternative prey on pest suppression

In agroecosystems, spiders interact in communities with 
other natural enemies, pests, and alternative prey. The top-
down control exerted by spiders on pest depends on their 
direct and indirect interactions with other natural enemies 
and alternative prey. The combined effect of multiple preda-
tors on pest suppression can be additive [i.e., the sum of 
the per capita effects of each predator species in a single 
population (A) equals the total effect of the diverse predator 
community (B)], synergistic (i.e., A < B), and antagonistic 
[A > B (Sih et al. 1998; Schmitz 2007)]. Additive and syn-
ergistic predation enhances pest mortality while antagonis-
tic predation reduces pest mortality (Sih et al. 1998). The 
intensity of the top-down control by the predator commu-
nity is then influenced by the interactions among predators’ 
densities and their traits (Schneider et al. 2012; Klečka and 
Boukal 2013; Jonsson et al. 2018). Similarly, the effect of 
alternative prey can affect the pest suppression positively or 
negatively through various positive or negative and direct 
and indirect prey–prey, predator–prey, and predator–predator 
interactions determined by their densities and traits (Klečka 
and Boukal 2013; Abrams and Cortez 2015; Holt and Bon-
sall 2017). The mechanisms that enhance and disrupt pest 
control occur simultaneously, and it depends on community 
composition, whether the overall effect of diverse commu-
nity on pest suppression will be positive, negative, or neutral 
(Letourneau et al. 2009; Griffin et al. 2013).

In this section, we will review the causes of the antagonis-
tic interactions and their impacts on pest suppression (“The 
causes of antagonistic interactions and their impacts on pest 
suppression”). We also review the mechanisms that enable 
the additive and synergistic effects of multiple predators 

(“Niche complementarity enables additive and synergistic 
effects of multiple predators”), and the effect of alternative 
prey (“Alternative prey and pest suppression”) that can affect 
the pest suppression directly or through alteration of interac-
tions among predators. We will focus on interactions among 
spiders and their prey for simplicity and for the sake of space 
limitation, although spiders interact with many other natural 
enemies (Traugott et al. 2012; Sitvarin and Rypstra 2014).

The causes of antagonistic interactions and their 
impacts on pest suppression

Intraguild predation

IGP, i.e., predation among potential competitors, is inevi-
table among generalist predators (Polis et al. 1989). Spi-
ders prey on diverse spectrum of natural enemies, such as 
parasitoids, predaceous heteropterans (Whitehouse et al. 
2011; Traugott et al. 2012), and other spiders (Wise 1993). 
Meanwhile, they are themselves exposed to predation from 
predatory beetles, ants, and birds, etc., (Wise 1993). Spiders 
represent a substantial proportion of the diet in cursorial 
spiders (Michalko and Pekár 2016).

IGP among spiders is often body size-dependent (Okuy-
ama 2007; Korenko and Pekár 2010). The probability of a 
mesopredator (i.e., a predator at lower trophic level) being 
killed decreases more rapidly with decreasing top predator-
to-mesopredator body size ratio in comparison with a top 
predator-to-herbivore body size ratio (Rypstra and Samu 
2005; Michalko and Pekár 2015). This is because spiders 
are dangerous prey and a mesopredator can seriously harm 
or even kill a top predator (Foelix 2011; Michalko and Pekár 
2017). Furthermore, generalist spider species lack special-
ized adaptations to overcome IG prey (Pekár and Toft 2015). 
Other spiders, therefore, represent a low-rank diet item for 
generalist spiders and the intensity of IGP decreases with 
the availability of alternative innocuous and palatable prey 
(Rickers et al. 2006; Oelbermann et al. 2008; Michalko 
and Pekár 2015; Petráková et al. 2016). However, if the top 
predator-to-mesopredator body size ratio is sufficiently large, 
then IGP increases rapidly and small spiders can become 
more preferable prey for large spiders than pests (Petcharad 
et al. 2018).

The classical perspective is that IGP reduces pest suppres-
sion due to the consumptive and non-consumptive effects of 
a top predator on a mesopredator (Rosenheim et al. 1995; 
Müller and Brodeur 2002; Schmidt-Entling and Siegenthaler 
2009). The non-consumptive effects are similar as in her-
bivores described above (“Non-consumptive effects”). The 
mesopredator can reduce its foraging (Walker and Rypstra 
2003), emigrate (Schmidt-Entling and Siegenthaler 2009; 
Mestre et al. 2014), or change microhabitat (Folz et al. 
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2006). IGP also reduces the capture rate of the pest by the 
top predator (Pekár et al. 2015; Michalko and Pekár 2017).

Typically, the consumptive as well as non-consumptive 
effects of IGP lead to the ecological release of a pest (e.g., 
Finke and Denno 2006; Schmidt-Entling and Siegenthaler 
2009). Several factors determine the extent to which IGP 
affects pest suppression, such as the relative pest suppression 
efficiency of the predators, the top predator’s prey prefer-
ences, and the mesopredator’s mobility. If the top predator 
is more efficient in pest suppression than the mesopredator, 
then IGP will not have severe consequences for biocontrol. 
However, if the mesopredator is highly effective against the 
pest, then IGP can cause the ecological release of the pest 
(Rosenheim and Harmon 2006; Michalko and Pekár 2017). 
However, regardless of the differences in suppression effi-
ciency between predators, if the mesopredator’s mortality is 
buffered by immigration, the effect of IGP on pest suppres-
sion would probably be minimal.

Most experiments on IGP were conducted at short time-
scale whereas at long time-scale the diverse predator com-
munity can enhance pest suppression despite strong IGP 
(Snyder and Ives 2003). If nutritional value of IGP is con-
sidered, IGP might, theoretically, have a synergistic effect in 
the long-term. The general nutritional value of a mesopreda-
tor for a top predator is not well known as observations are 
ambiguous (Toft and Wise 1999b; Oelbermann and Scheu 
2002). Mayntz and Toft (2006) concluded that IGP is highly 
profitable for spiders and that the negative effects found in 
other studies (Toft and Wise 1999b; Oelbermann and Scheu 
2002) were caused by a reluctance to prey on other spiders. 
In addition, various trophic levels differ systematically in 
their macronutrient composition (Fagan and Denno 2004; 
Lease and Wolf 2011). Preying on multiple trophic levels 
can help spiders to optimize their nutritional demands and 
IGP can improve their nutritional balance (Matsumura et al. 
2004; Mayntz and Toft 2006; Wilder et al. 2013). In addi-
tion, IGP can help to overcome periods of alternative prey 
shortage, prevent starvation, and maintain high abundances 
of spider top predators in the agroecosystem (Toft and Wise 
1999b; Mayntz and Toft 2006).

The high consumption of a pest can cause a nutritional 
imbalance in a top predator, which would reduce its per 
capita capture rate and fecundity (Toft 2005; Bressendorff 
and Toft 2011). As the mesopredator can act as a nutritional 
balancer, IGP may maintain a high capture rate and high 
fecundity in the top predator (Mayntz and Toft 2000, 2006; 
Bressendorff and Toft 2011). The system with a nutrition-
ally balanced top predator might be more efficient than the 
joint predation of a nutritionally imbalanced top predator 
and mesopredators. This hypothesis needs to be tested.

Interference competition

Non-consumptive interference among spiders can also 
reduce their per capita capture rate due to lost time in direct 
interactions, reduced prey acceptance, and/or reduced search 
efficiency due to reduced activity (Schmidt et al. 2014; 
Michalko et al. 2017). The per capita capture rate decreases 
with increasing spider density. Interference can be so strong 
that the enhanced densities of the predators may not be able 
to compensate for the lower capture rate, which can conse-
quently reduce the overall predation pressure on the pest. For 
example, overall predation pressure of Philodromus spiders 
on a psyllid pest increased only asymptotically with spi-
der densities (Michalko et al. 2017). This clearly indicates 
that simply increasing the abundances of spiders does not 
necessarily lead to increased predation pressure on pests. 
Non-consumptive interference can also lead to emigration 
due to reduced consumption, which can further reduce the 
predation pressure on a pest (Schmidt and Rypstra 2010; 
Schmidt et al. 2014).

Niche complementarity enables additive 
and synergistic effects of multiple predators

In synergistic predation, the pest changes its behaviour to 
avoid one predator but, at the same time, makes itself more 
vulnerable to other predators. In additive predation, the vul-
nerability of the pest does not depend on the presence of 
another predator (Losey and Denno 1999). In both cases, 
additional predators increase pest mortality. Empirical evi-
dence shows that synergistic effects arise with some type 
of niche complementarity among natural enemies, which 
reduces enemy-free space for the pest, and minimizes IGP 
and interference among spiders (Schmitz 2007). In addition, 
the utilization of alternative resources reduces exploitative 
competition and enables larger populations of natural ene-
mies to build up, thus enhancing predation pressure on the 
pest through numerical responses. The predation pressure is 
enhanced when niche complementarity occurs within spe-
cies [due to personality differences and/or individual special-
ization (Bolnick et al. 2011; Royauté and Pruitt 2015; Pruitt 
et al. 2016)] as well as between species (Losey and Denno 
1999; Finke and Snyder 2008; Knop et al. 2014; Pruitt et al. 
2016). Spider niches can be complementary with regards to 
prey, space, time, and behaviour.

Trophic niche complementarity arises when spiders 
utilize different prey types and/or body sizes. Apart from 
reducing exploitation, the utilization of different prey type 
can also ensure that spiders aggregate in different patches 
(e.g., Harwood et al. 2003), which may, theoretically, reduce 
the number of safe patches for the pest (Laundré et al. 2014). 
With respect to prey body size, spiders can prey on differ-
ent size cohorts of pests (Nentwig and Wissel 1986), which 
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reduces the body size-mediated enemy free space for the 
pest.

Spatial complementarity arises with horizontal and verti-
cal stratification on various scales from habitats to micro-
habitats. For example, tetragnathid and wolf spiders, these 
occupying distinct habitat domains, exert synergistic pre-
dation on a mirid pest in paddy fields. To avoid predation, 
mirids shifted from the rice canopy, where they were pre-
dated by tetragnathids, to lower plant parts, where they fell 
prey to wolf spiders (Takada et al. 2013).

Temporal complementarity includes distinct diurnal 
activity and distinct phenology on the part of predators. For 
example, the abundance of a dipteran pest in olive orchards 
was negatively correlated with philodromid spiders at the 
beginning of season, and negatively correlated with linyphi-
ids later in the season (Picchi et al. 2016).

Spatio-temporal complementarity among spiders may 
also include condition-dependent efficiency in pest sup-
pression. For example, various spider species are adapted 
to catch pests at different temperatures. Two syntopic cur-
sorial spider species, Anyphaena accentuata (Walckenaer) 
(Anyphaenidae) and Philodromus cespitum (Walckenaer), 
which occupy a similar trophic niche, differ in their prey 
capture efficiency at various temperatures (Korenko et al. 
2010; Petráková et al. 2016). Anyphaena is more efficient 
in capturing fruit flies at 15 °C while Philodromus is more 
efficient at temperatures above 20 °C (Korenko et al. 2010).

Spiders can be complementary also by means of hunting 
mode (Schmitz 2005). The adaptive response of a pest to a 
sit-and-wait spider is reduced activity, but this makes the 
pest more vulnerable to actively hunting spiders that search 
for inactive prey. Similarly, the adaptive response of pests to 
active spiders is enhanced activity as they try to avoid imme-
diate danger and/or emigrate, but this makes the pest more 
vulnerable to sit-and-wait predators (Schmitz 2005; Sweeney 
et al. 2013; Miller et al. 2014). Another form of behavioural 
complementarity may, theoretically, arise if highly body 
size-structured pests, like caterpillars, reduce their feeding 
activity due to an anti-predatory response (Schmitz 2005): 
the slowed growth of the pest may prevent it from reaching 
a body size-mediated refuge from small predators.

Whether the functional traits of spiders will be comple-
mentary or not can be again context-dependent. For niche 
complementarity to improve the biocontrol efficiency of 
natural enemies, an environment needs to allow for niche dif-
ferentiation by means of its spatial, temporal and/or prey het-
erogeneity (Tylianakis and Romo 2010). For example, body 
size differences among natural enemies can enable micro-
habitat niche partitioning in a spatially structured environ-
ment, like tree bark, as the small crevices provide enemy free 
space for the mesopredator by excluding the large top preda-
tor (Korenko and Pekár 2010). Increased habitat complexity, 
which reduces negative predator–predator interactions but 

improves niche complementarity, then increases predation 
pressure on the pest (Riechert and Bishop 1990; Finke and 
Denno 2006; Michalko et al. 2017). In contrast, in relatively 
simple environments that do not provide spatial segregations 
among differently sized generalist predators, body size dif-
ferences among spiders may enhance IGP and consequently 
reduce pest suppression efficiency (Finke and Denno 2006; 
Rusch et al. 2015).

Alternative prey and pest suppression

Spiders also capture alternative prey to pests, which can 
either reduce, increase, or have no effect on pest suppres-
sion by spiders (Madsen et al. 2004; Birkhofer et al. 2008b; 
Gavish-Regev et al. 2009; Oelbermann and Scheu 2009; 
Kuusk and Ekbom 2010, 2012; Kobayashi et al. 2011; Samu 
et al. 2013; Knop et al. 2014; Welch et al. 2016; Roubinet 
et al. 2017; Fig. 1). Alternative prey can affect pest suppres-
sion through a variety of mechanisms and conditions, such 
as predator switching, apparent competition, prey and pest 
identity, alternative prey density, and the spatio-temporal 
overlap between spider, pest and alternative prey.

Predator switching and apparent competition

Through predator switching and apparent competition, 
alternative prey can affect pest suppression in contrasting 
ways (Fig. 1). Alternative prey can reduce biocontrol if spi-
ders switch from pest to non-pest prey (Fig. 1a) (Toft 1999; 
Gavish-Regev et al. 2009; Birkhofer et al. 2008b). Reduced 
biocontrol can also occur through apparent competition 
between alternative prey and a mesopredator. If alternative 
prey increase abundances of a top predator that consequently 
reduces a mesopredator through IGP, this could benefit the 
pest (Fig. 1d) (Halaj and Wise 2002; Oelbermann et al. 
2008).

On the other hand, alternative prey can enhance biocon-
trol by spider communities if the top predator switches from 
the mesopredator to the alternative prey, thus enhancing 
pest suppression by the mesopredator (Fig. 1c). However, 
the most commonly observed effect of alternative prey is 
enhanced biocontrol through apparent competition with the 
pest (Fig. 1b). Alternative prey can supplement energy and 
nutrients to spiders and improve their tolerance to toxic prey 
(Mayntz and Toft 2000; Bressendorff and Toft 2011). Con-
sequently, the subsidy of alternative prey can increase abun-
dances and killing rate of spiders in agroecosystems (Settle 
et al. 1996; Chen and Wise 1999; Tsutsui et al. 2016, 2018). 
Alternative prey can further enable niche complementarity 
between predators (Knop et al. 2014) and reduce IGP (Rick-
ers et al. 2006). Interference among herbivores can increase 
their vulnerability to spiders (Knop et al. 2014).
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Alternative prey and pest identities

The prey selection of spiders can depend on prey commu-
nity composition (Heong et al. 1991; Schmidt et al. 2012a). 
The subsidies of different alternative prey types can sup-
port or detract from the suppression of certain pest species. 
For example, the subsidy of prey from an aquatic ecosystem 
enhanced the suppression of weevils but reduced the sup-
pression of leafhoppers by spiders in a riparian ecosystem 
(Graf et al. 2017).

Alternative prey density

Alternative prey density can affect the biocontrol efficiency 
by altering IGP. Theory predicts that a top predator that is 
superior in interference, and a mesopredator that is superior 
in exploitation, can coexist only at intermediate abundances 
of prey unless there is some additional niche partitioning 
(Janssen et al. 2007; Amarasekare 2008; Fig. 4). At low 
prey densities, the top predator is excluded by exploitation, 
while at high prey densities the mesopredator is excluded by 
interference and exploitation (Holt and Polis 1997; Fig. 4). 
Therefore, both predators can respond positively to prey 
density at first, but as the interference intensifies, the top 

predator will start to exclude the mesopredator. For exam-
ple, Pardosa milvina prefers prey-rich patches at first, but it 
reduces its foraging as other spiders aggregate and conse-
quently emigrates (Schmidt and Rypstra 2010; Schmidt et al. 
2014). Therefore, alternative prey might, theoretically, sup-
port pest suppression at low to medium densities but reduce 
it at high densities (Fig. 4).

A change in the density of alternative prey can change the 
ratio of high-quality prey to low-quality prey. For example, 
an alternative prey (flies) improved the suppression of the 
aphid by the wolf spider only at low densities of spiders 
and flies. At high densities of flies and spiders, the flies dis-
rupted aphid suppression. At low densities, the flies prob-
ably improved the condition of spiders and tolerance to the 
toxicity of aphids, which increased the spiders’ capture rate 
on aphids. At high densities, the flies probably could not 
improve the condition of spiders anymore and spiders also 
reached satiation. The higher encounter rate of spiders with 
flies then buffered the effect of improved condition and 
reduced the spiders’ capture rate on aphids (Oelbermann 
and Scheu 2009).

Spatio‑temporal overlap

The spatio-temporal overlap between spider, pest and alter-
native prey likely affects pest suppression (Snyder et al. 
2005). However, this topic has been little studied. Snyder 
et al. (2005) hypothesized that alternative prey might support 
the biocontrol function of spiders especially if the alternative 
prey and pest are separated spatially or temporally, meaning 
that the generalist predators are not distracted from predation 
on the pest. Indeed, alternative prey that supported an abun-
dant community of generalist predators including spiders 
in rice during the absence of pests and that declined when 
the pests started to infest rice highly improved biocontrol 
and prevented the outbreak of the pest (Settle et al. 1996). 
Spatial segregation between an alternative prey and a pest is, 
however, not so straightforward. In contrast to the hypothesis 
provided by Snyder et al. (2005), spatial separation might 
also decouple the spider–pest association, because spiders 
might aggregate in the patches of alternative prey without 
the pest (Harwood et al. 2003). If the alternative prey and 
pest overlap spatially, spiders might attack the pest (Toft 
and Wise 1999a, 1999b), and/or supress the pest by means 
of non-consumptive effects (Cronin et al. 2004).

Conclusions

Here we reviewed spiders’ trophic ecology covering levels 
from individuals to communities that affect the potential of 
spiders for pest suppression. At individual and population 
levels we reviewed how hunting strategy, body size, life 
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Fig. 4  The hypothetical density-dependent effect of an alternative 
prey on pest suppression by a community of generalist predators with 
intraguild predation. Without an alternative prey, the predators are 
unable to sustain viable populations and the pest that is toxic and/or 
of poor nutritional quality for the predators thrives. With the increas-
ing density of alternative prey, the abundances of predators also 
increase, which enhances predation pressure on the pest. However, 
with the increasing abundances of predators, interference between the 
predators also intensifies and, at some point, the top predator starts to 
dominate the mesopredator, which is more efficient in pest exploita-
tion than the top predator. At this point, the predation pressure on the 
pest starts to sink and pest abundance increases. The area delimited 
by the white rectangle shows the parameter space in which an alterna-
tive prey has a positive effect on pest suppression. The grey rectangle 
delimits the parameter space in which the alternative prey has a nega-
tive effect on pest suppression
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stage, nutritional target, and personality affect the dynam-
ics of spider trophic niche. We further reviewed the func-
tional and numerical responses and the non-consumptive 
effects of spiders on pests. At the community level, we 
reviewed multiple-predator effects and the effects of the 
presence of alternative prey on pest suppression. Gen-
eralist spiders are not truly opportunists as they choose 
their prey. Spiders can reduce pests not only through high 
consumption but also through non-consumptive effects. 
Antagonistic intraguild interactions that dampen the pest 
suppression are ubiquitous in spiders. However, the syn-
ergistic and additive effects that enhance pest suppression 
are evidently present among spiders too and they might 
be ubiquitous as well given the high diversity in which 
spiders are present in most agroecosystems. However, 
intraguild interactions are still understudied. Alternative 
prey can either reduce predation pressure (switching) or 
enhance predation pressure (apparent competition) by spi-
ders on the pest or on mesopredators. Thus, alternative 
prey can not only disrupt pest suppression by spiders, as 
previously thought, but can also enhance it.

Throughout the review we showed that the effect of 
spiders on pest is contingent on the phenotype of spiders 
(e.g., hunting strategy, behavioural type), of pest and 
alternative prey (e.g., mobility, nutritional content), and 
environmental conditions (e.g., structurally simple vs. 
complex). Given the high potential of spiders as pest con-
trol agents, future research should identify the conditions 
under which the generalist predators are most effective, 
such as suitable composition of hunting strategies and 
alternative prey. Furthermore, investigations of manage-
ment options to enhance spiders in agroecosystem (such as 
pesticide reductions, mulches or wildflower strips) should 
describe the specific effects on spider communities and 
their trait composition, because general measures such as 
species richness or abundance may be poor indicators of 
pest control potential. As many ecological hypotheses that 
we outlined are new and some even untested, the investiga-
tion of the biocontrol effect of generalist predators remains 
an exciting research area not only in applied but also in 
basic ecology. The possible scenarios should be, neverthe-
less, investigated with the species that naturally occur in 
agroecosystems rather than with laboratory-reared model 
species or species living outside the agroecosystems.
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