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Abstract
Canopy nitrogen (N) is a key factor regulating carbon cycling in forest ecosystems through linkages among foliar N and 
photosynthesis, decomposition, and N cycling. This analysis examined landscape variation in canopy nitrogen and carbon 
assimilation in a temperate mixed forest surrounding Harvard Forest in central Massachusetts, USA by integration of canopy 
nitrogen mapping with ecosystem modeling, and spatial data from soils, stand characteristics and disturbance history. Canopy 
%N was mapped using high spectral resolution remote sensing from NASA’s AVIRIS (Airborne Visible/Infrared Imaging 
Spectrometer) instrument and linked to an ecosystem model, PnET-II, to estimate gross primary productivity (GPP). Pre-
dicted GPP was validated with estimates derived from eddy covariance towers. Estimated canopy %N ranged from 0.5 to 
2.9% with a mean of 1.75% across the study region. Predicted GPP ranged from 797 to 1622 g C m−2 year−1 with a mean of 
1324 g C m−2 year−1. The prediction that spatial patterns in forest growth are associated with spatial patterns in estimated 
canopy %N was supported by a strong, positive relationship between field-measured canopy %N and aboveground net pri-
mary production. Estimated canopy %N and GPP were related to forest composition, land-use history, and soil drainage. At 
the landscape scale, PnET-II GPP was compared with predicted GPP from the BigFoot project and from NASA’s MODIS 
(Moderate Resolution Imaging Spectroradiometer) data products. Estimated canopy %N explained much of the difference 
between MODIS GPP and PnET-II GPP, suggesting that global MODIS GPP estimates may be improved if broad-scale 
estimates of foliar N were available.
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Introduction

The availability of nitrogen (N) represents a key constraint 
on carbon cycling in terrestrial ecosystems and serves as a 
useful indicator of ecosystem metabolism. The importance 
of N as a regulator of carbon (C) assimilation is well estab-
lished through the widely observed relationship between 
leaf-level photosynthetic capacity (Amax) and foliar N 

concentrations (Reich et al. 1999a; Wright et al. 2004). At 
the canopy and stand level, canopy N concentration (%N) 
has been related to canopy photosynthetic capacity (Ollinger 
et al. 2008), plant respiration (Reich et al. 2008), net primary 
production (NPP) (Smith et al. 2002; Ollinger and Smith 
2005; LeBauer and Treseder 2008; Reich 2012), and canopy 
light use efficiency (Green et al. 2003; Kergoat et al. 2008; 
Ollinger et al. 2008).

Canopy N status has also been linked to the availability of 
N in soils through mechanisms involving litter decay (Par-
ton et al. 2007), net mineralization (Ollinger et al. 2002b), 
plant N uptake, and N loss (McNeil et al. 2007; Merilä and 
Derome 2008). The relationship between canopy N and soil 
N availability is important because humans have greatly 
altered the N cycle globally (Galloway et al. 2004), and 
because natural disturbance can also leave long-term lega-
cies on vegetation (Foster 1988; Weishampel et al. 2007) and 
soils (McNulty 2002). Over the past several centuries, most 
northeastern US forests have experienced human-induced 
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disturbances such as forest harvests, fire, or agriculture (Fos-
ter 1992). These disturbances have had long-term impacts 
on forest carbon and nitrogen cycling (Aber and Driscoll 
1997) and have left imprints on present-day species com-
position, biomass, foliar N (%), soil C and N pools (Hooker 
and Compton 2003), net N mineralization and nitrification 
(Ollinger et al. 2002b), and nitrate leaching (Goodale and 
Aber 2001).

Despite its central role in C cycle processes, canopy %N 
has been involved in a limited number of broad-scale analy-
ses. This is partly because, until recently, methods for map-
ping canopy %N were largely limited to landscape scales 
(e.g., Ollinger and Smith 2005). However, generalizable 
methods for estimating canopy %N with imaging spectros-
copy (Martin et al. 2008), as well as methods that use NIR 
reflectance from broadband sensor data to derive canopy 
%N, have expanded the potential to map %N across broader 
ranges of ecosystems at regional scales (Ollinger et al. 2008; 
Ollinger 2011; Lepine et al. 2016). Nevertheless, remotely 
sensed canopy %N has rarely been used to evaluate broader 
scale C cycle analyses that lack explicit treatment of canopy 
%N.

In this study, we conducted an analysis to examine land-
scape variation of canopy nitrogen and carbon assimilation 
in a temperate mixed forest at the Harvard Forest (HF), in 
Massachusetts, USA. We integrated plot-level field obser-
vations, eddy covariance (EC) data, remote sensing, and 
ecosystem modeling. We aimed to examine whether spatial 
patterns of canopy %N at the landscape scale (1) reflect pat-
terns of local disturbance history and other available spatial 
data layers, and (2) are related to patterns observed in field-
measured forest productivity. We also compared results with 
C assimilation estimates from two models that lack explicit 
treatment of canopy %N to assess the degree to which N 
mapping capabilities might benefit C cycle models more 
broadly.

Materials and methods

Study site

The area studied was a 10 km × 16 km landscape surround-
ing the Harvard Forest (HF) in central Massachusetts, USA, 
centered near 42.54°N, 72.19°W (Supplementary Fig. S1). 
It covered eight of nine research tracts maintained by HF 
with elevations ranging from 158 to 421 m with a median 
of 317 m and the average slope of 4.4°. The climate is 
cool and moist with July mean temperature 20 °C, January 
mean temperature − 7 °C, and annual mean precipitation 
110 cm, distributed evenly throughout the year. The soils are 
mainly sandy loam glacial, with some alluvial and colluvial 

deposits, and moderately to well drained in most areas (Fos-
ter 1992; Urbanski et al. 2007).

The study area is predominantly covered by a temper-
ate mixed forest representing the transition hardwood—
white pine (Pinus strobus)—hemlock (Tsuga canadensis) 
vegetation zone of central New England. Deciduous spe-
cies are primarily Northern red oak (Quercus rubra), red 
maple (Acer rubrum), and black birch (Betula lenta). White 
spruce (Picea glauca), red pine (Pinus resinosa), and Nor-
way spruce (Picea abies) are also present (Foster 1992).

The study area has been subjected to a complex array of 
historic agricultural and logging treatments as well as natural 
disturbances (Foster 1992). It has undergone several trans-
formations in response to changes in land-use practices and 
population density since its initial settlement in the 1730s. 
Forest clearing to provide pasture for beef cattle and sheep 
resulted in an increase in open land from approximately 50% 
in 1800 to nearly 85% in 1850. Remaining forests occupying 
steep and rocky slopes, wetlands or narrow valleys were cut 
for timber, fuelwood, and tanbark and sometimes grazed. 
After the mid-1800s, farms were abandoned, followed by a 
period of reforestation, which continued through the early 
twentieth century. In addition to various land-use practices, 
the Harvard Forest tracts have been exposed to a wide range 
of natural disturbances, including wind, fire, ice, snow, and 
pathogen disturbances (Foster et al. 1997). The most devas-
tating in recent history was the 1938 New England hurricane 
which led to a reduction of approximately 70% of the stand-
ing timber volume (Foster 1988).

PnET‑II model description and data inputs

PnET-II (Aber et al. 1995; Ollinger and Smith 2005) is a 
daily-to-monthly time step forest ecosystem model, initially 
developed for the northeastern US, but later applied and vali-
dated in many temperate forest systems. The model predicts 
the photosynthetic capacity of forest canopies using the 
relationship between leaf photosynthetic capacity and leaf 
nitrogen (Reich et al. 1999a; Wright et al. 2004), combined 
with information about climate, site variables, and other 
plant traits. Transpiration linking soil water availability and 
canopy photosynthesis by water-use efficiency is regulated 
by atmospheric CO2 concentration and vapor pressure defi-
cit. Although PnET-II has a dynamic link between the fluxes 
of carbon and water, it lacks dynamic interactions between 
C and N cycles, which is incorporated into a later version, 
PnET-CN (Aber et al. 1997). Instead, PnET-II uses foliar 
%N as an input to integrate the combined effect of soil N 
status and species composition.

PnET-II requires a number of input parameters to describe 
vegetation and site characteristics, along with climate forc-
ing data. Vegetation parameters include foliar %N, leaf mass 
per unit area (LMA), leaf retention time and growing-degree 
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day variables describing the phenology of leaf production 
and senescence. Vegetation parameters (Supplementary 
Table S1) other than foliar %N for deciduous and evergreen 
stands in this study followed Ollinger and Smith (2005). 
Required climatic and environmental inputs include average 
maximum and minimum temperature, precipitation, photo-
synthetically active radiation (PAR), and atmospheric CO2 
concentrations. For the spatial application of PnET-II, we 
delineated our study area into 30 m × 30 m grid cells.

The mountain microclimate model MTCLIM (Thornton 
et al. 1997; Thornton and Running 1999) in conjunction with 
a 30-m resolution digital elevation model (DEM) was used 
to estimate maximum and minimum temperature, precipita-
tion, and solar radiation for each cell. Temperature estimates 
at the site were based on temperatures observed at weather 
stations (base) and a user-supplied temperature lapse rate 
for daily maximum and minimum temperatures. Precipita-
tion estimates at the site were based on the daily record of 
precipitation from the base, and a user-specified ratio of 
annual total precipitation between the site and the base. In 
conjunction with latitude, elevation, slope, and aspect of the 
site (derived from digital elevation model), total solar radia-
tion was computed by MTCLIM based on the fact that the 
diurnal temperature range was closely related to the daily 
average atmospheric transmittance (Thornton et al. 1997). 
In this study, the environmental measurement station (EMS) 
eddy flux tower at HF was used as the base station. Meas-
ured temperature and precipitation from 1964 to 2015 were 
used to generate PnET-II weather data, of which data from 
1992 to 2015 were from EMS tower, and the remaining from 
a nearby weather station (Shaler Station). Average annual 
precipitation and temperature lapse rates were derived using 
values from the Hubbard Brook Experimental Forest, New 
Hampshire, USA, 160 km north of HF (data not shown). 
Maximum temperature lapse rate was 7.1 °C per kilometer, 
and minimum temperature lapse was 3.7 °C per kilometer. 
PAR was derived from estimated total solar radiation by 
MTCLIM scaled by a conversion factor, which was derived 
in this study based on regression between EMS tower data 
and the predicted data (1.95). Atmospheric CO2 concentra-
tions were estimated as described by Ollinger et al. (2002a) 
for the period where measured data were not available.

Remote sensing of canopy %N

Mapped estimates of mass-based canopy N concentration 
(g N 100 g−1 dry matter, %Ne) for the study area were devel-
oped by relating field measurements of foliar %N (%Nf) to 
airborne imaging spectrometer data collected by the NASA’s 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). 
The AVIRIS instrument measured reflected solar radiance 
in 224 contiguous optical bands from 0.4 to 2.4 μm with a 
spectral resolution of 0.01 μm. AVIRIS was flown on August 

24, 2003 over the Harvard Forest and surrounding area on 
an ER-2 aircraft at an altitude of 20 km, producing a spatial 
resolution of 18 m.

Field %Nf data collection took place within 2–3 weeks of 
the image acquisition. Upper canopy leaf samples were col-
lected for the dominant and codominant species on 39 plots 
using shotguns. This included approximately five species 
per plot and from three to five trees per species. Species-
level foliar N concentrations (% by mass) were weighted by 
the proportional abundance of each species in the canopy 
foliar biomass to generate plot-level canopy %Nf estimates 
for each plot. The plots sampled were a subset of plots estab-
lished by the Bigfoot project (Turner et al. 2006b) and were 
selected to capture the range of forest types at HF and to 
facilitate comparison with field-measured productivity data 
collected for the Bigfoot project (Sects. “Model application”, 
“Validation data”). Additional details on foliar sampling are 
described in Ollinger et al. (2008).

Relationships between plot-level spectra and field %Nf 
were established using partial least squares (PLS) regres-
sion. The accuracy of the resulting regression models was 
evaluated using an iterative cross-validation procedure in 
which each plot was sequentially excluded from the anal-
ysis and a canopy %N prediction was generated from the 
remaining samples. The best-fit model (r2 = 0.74; p < 0.001; 
Supplementary Fig. S2) was applied to derive canopy %Ne 
across the study area. Detailed descriptions of methods for 
deriving canopy %Ne from AVIRIS are given elsewhere 
(Smith and Martin 2001; Smith et al. 2003).

Model application

PnET-II treats deciduous and evergreen stands differently in 
terms of parameters regulating photosynthesis, phenology, 
and several other ecophysiological mechanisms. Because 
remotely sensed data provided only a single canopy %Ne 
estimate for each grid cell, we needed to estimate the relative 
proportions of deciduous and evergreen forests as well as 
the foliar %N of each component for each cell. An empiri-
cal unmixing approach was used to derive these parameters 
from remotely sensed %Ne estimates, following methods 
used by Ollinger and Smith (2005). Including HF plots, 
we used an extended data set of 96 plots measured across 
New England (Martin et al. 2008) to build linear relation-
ships between AVIRIS-predicted %Ne and the proportion 
of field-measured %Nf in deciduous and evergreen stands 
(Supplementary Fig. S3) and determined the relative pro-
portions of deciduous and evergreen in each grid cell. If 
the predicted %Ne was less than 0.94, the cells were defined 
as 100% evergreen. Cells with predicted %Ne above 2.30 
were classified as 100% deciduous. Cells with predicted %Ne 
between the above two values were classified as mixed with 
the relative proportions of deciduous and evergreen derived 
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by the relationships shown in Supplementary Fig. S3. Within 
mixed stands, measured foliar %Nf values for each forest 
type were also significantly and positively correlated with 
AVIRIS-predicted %Ne for the entire pixel (Supplementary 
Fig. S4). This is important for two reasons. First, it dem-
onstrates that predicted %Ne values are driven by variation 
in %N within forest types and not simply by differences in 
forest composition. Second, it provided a means of estimat-
ing foliar %N for each forest type within pixels classified as 
mixed (i.e., using relationships shown in Supplementary Fig. 
S4). These patterns likely reflect the influence N availability 
in soils can have on forest composition (with deciduous spe-
cies becoming increasingly dominant on rich sites) as well 
as the foliar N concentrations within individual species (e.g., 
Ollinger et al. 2002b).

PnET-II was run for each vegetation type in mixed cells, 
and the final output results were calculated as a weighted 
average of the two model runs, based on the estimated pro-
portion of deciduous or evergreen composition (Fig. S3). 
The model was spun up for ten cycles using weather data 
from 1964 to 2015. All predicted PnET-II results from 1993 
to 2015 were averaged for spatial analyses, except for vali-
dation and comparison with other products as described in 
Sect. "Geospatial data".

Validation data

Estimates of GPP were available from two eddy covariance 
towers at HF, both of which were used to validate model 
predictions. The environmental measurement station (EMS) 
eddy flux tower, located on the Prospect Hill tract of Har-
vard Forest (42.538o N, 72.171o  W, elevation 340 m, see 
Supplementary Fig. S1), has a record of eddy flux measure-
ments that began in 1991 (Munger and Wofsy 1999). The 
area surrounding the tower is dominated by red oak and 
red maple, with scattered eastern hemlock, white pine, and 
red pine. The stand is approximately 85–120 years old on 
abandoned farmland. A second flux tower, Hemlock Flux 
Tower (HEM), is also located on the Prospect Hill tract 
(42.539o N, 72.180o W, elevation 355 m, see Supplemen-
tary Fig. S1) in a mesic hemlock-dominated forest with 
most trees 100–200 years old on undisturbed soils. Other 
tree species present include red maple, black birch, red oak, 
and white pine. Measurements at the HEM tower started 
in the summer of 2004 (Munger and Hadley 2003). Eddy 
covariance GPP estimates were computed by the difference 
between net ecosystem exchange (NEE) of CO2 and respi-
ration (R). R was derived from nighttime NEE and scaled 
to full day by temperature responses determined over mov-
ing windows (Urbanski et al. 2007). Although there can be 
substantial uncertainties in the eddy covariance data and the 
flux-partitioning algorithm (Reichstein et al. 2005), these 
estimates still represent the best source of model validation. 

For additional validation and assessment of predicted spa-
tial patterns, we used plot-level aboveground net primary 
production (ANPP) and LAI data collected at 20 locations 
within HF as part of the BigFoot project (Turner et  al. 
2006b; see next section) in 2002 and 2003.

Geospatial data

Maps of environmental factors (e.g., topography and soils), 
forest stands, and historical land-use are available on the 
Harvard Forest website (Hall 2005), and were used to facili-
tate analysis of spatial variability in canopy %Ne and simu-
lated GPP.

A 30-m digital elevation model (DEM) was used to 
derive elevation, aspect, and slope for each 30-m cell in 
the study area, which were combined with canopy %Ne and 
climate data to drive PnET-II to estimate GPP across the 
study domain. A forest stand map (Supplementary Fig. S5a) 
developed from the vegetation inventory of Harvard Forest 
in 1986–1993 was used to examine the relationships between 
forest composition and other variables. Forests were clas-
sified as hardwood (H) if 75% basal area was hardwood, 
softwood (S) if 75% basal area was softwood, otherwise 
mixed (M). We used a map of soil drainage classes for the 
HF research tracts (Supplementary Fig. S5b) to explore the 
effects of soil moisture. Soils were grouped into six classes 
based on drainage and moisture: excessively drained (D1), 
somewhat well drained (D2), well drained (D3), moderately 
well drained (D4), very poorly drained (D5), and peat (D6). 
For the Prospect Hill Tract, historical land use was derived 
from soil plow-horizon presence and depth, field observa-
tions, and archived land-use records. Land-use categories 
prior to 1850s included cultivated lands (CT), improved (IP) 
and unimproved pastures (UP), and primary woodlots (WL). 
The land-use map (Supplementary Fig. S5c) was used to 
examine the impact of land-use legacies on canopy %Ne and 
estimated GPP.

The land use data layer of Massachusetts from MassGIS 
(http://www.mass.gov/anf/resea​rch-and-tech/it-serv-and-
suppo​rt/appli​catio​n-serv/offic​e-of-geogr​aphic​-infor​matio​
n-massg​is/datal​ayers​/lus20​05.html) was obtained to mask 
nonforest portions of the study area. It was created using 
semi-automated methods, and based on 0.5-m resolution 
digital ortho imagery captured in April 2005. Land-use 
classes of forest and forested wetlands were extracted to 
mask the forested area (Supplementary Fig. S1).

Spatially distributed GPP predictions from the BigFoot 
Project (BigFoot 2005) and predictions from the MODIS 
GPP product MOD17 (Running et al. 2004; Zhao et al. 
2005) at HF (Supplementary Fig. S1) were compared to 
predictions from this study to examine seasonal and spa-
tial patterns. In addition, spatial patterns of GPP derived 
from MODIS and PnET-II were examined relative to 

http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/lus2005.html
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/lus2005.html
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/lus2005.html
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patterns of canopy %Ne as MODIS GPP estimates lack 
detailed N treatment.

The BigFoot Project was designed to provide vali-
dation of MODIS science products, including GPP and 
net primary production (NPP). BigFoot sites spanned a 
7 × 7 km area around flux towers with a resolution of 
25 m. The project used ground measurements, remote 
sensing data, and ecosystem process models (e.g., Biome-
BGC) at sites representing different biomes (Reich et al. 
1999b). Biome-BGC was driven by remotely sensed LAI, 
whereas PnET-II was driven in this study by remotely 
sensed canopy %Ne, although Biome-BGC and PnET-II 
were similar in a number of other respects. MOD17 was 
part of the NASA Earth Observation System program and 
was the first satellite-driven dataset to monitor continu-
ous vegetation productivity on a global scale (Zhao et al. 
2005). GPP estimates from both BigFoot and MODIS 
together provided a means of landscape comparison 
with our PnET-II GPP estimates. To match our canopy 
%Ne remote-sensing acquisition, we only used 2003 GPP 
results from BigFoot (Turner et al. 2006b) and MOD17 
(version 5.1).

Results

Model prediction and validation

PnET-II-predicted GPP was extracted for a 250-m footprint 
around the two flux towers, EMS and HEM, and compared 
to tower-derived GPP. In general, model predictions cor-
responded reasonably well with measured monthly values 
(Fig. 1). The r2 of predicted versus observed values during 
the growing season at EMS and HEM were 0.82 (p < 0.001) 
and 0.79 (p < 0.001), respectively (Supplementary Fig. S6). 
The overall data pooled for the two sites had an r2 of 0.80 
(p < 0.001). Although predicted monthly GPP accounted for 
similar amount of variance of observations at both EMS and 
HEM, GPP at EMS was overestimated in the early growing 
season when observed GPP was ranged from 100 to 200 g C 
m−2 month−1 (May), and underestimated in the late growing 
season when observed GPP was greater than 300 g C m−2 
month−1 (July and August). Predicted annual GPPs at EMS 
and HEM were 1440.0 ± 100.2 and 1268.8 ± 58.2 g C m−2 
year−1, compared with 1525.7 ± 228.9 and 1330.9 ± 169.2 g 
C m−2 year−1 from the flux towers, respectively.

We assessed the relationship between ANPP and 
canopy %Nf, both collected over a series of plots in the 
BigFoot study area, to examine the spatial correlation of 

Fig. 1   Predicted versus observed monthly GPPs at towers a EMS and 
b HEM. The open circles denote tower monthly GPP, and solid line 
for predicted GPP. The r2 of predicted versus observed values during 

the growing season (April–November) at EMS and HEM were 0.82 
(p < 0.001) and 0.79 (p < 0.001) with RMSE of 47.3 and 36.0 g C m−2 
month−1, respectively
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canopy %N with carbon assimilation. Observed canopy 
%Nf was significantly positively correlated to observed 
ANPP (r2 = 0.48; p < 0.001; Fig. 2a). Larger residuals of 
predicted values occurred at the higher end of canopy %Nf. 
Although LAI can be an important productivity indicator 
across biomes (Reich 2012), the measured ANPP did not 
show a significant correlation with measured LAI at HF 
(r2 = 0.11; p < 0.16; Fig. 2b).

Spatial patterns of canopy %N and GPP

Remotely sensed canopy %Ne ranged from 0.5 to 2.9 with 
a mean of 1.75 across the study region. The coefficient of 
variation was 14.3% (Figs. 3, 4a). While patterns of GPP 
predicted by PnET-II were similar to those for canopy %Ne, 
GPP was less variable over the study area than canopy %Ne, 
with values ranging from 797 to 1622 g C m−2 year−1, a 
mean of 1324 g C m−2 year−1, and a coefficient of varia-
tion of 6% (Figs. 3, 4c). No significant relationships were 
observed between canopy %Ne or GPP and slope, aspect, 
and climate variables including temperature, precipitation, 
and PAR. This is not surprising given the small size and lack 
of topographic complexity of HF. After we had detrended 
annual GPP with canopy %Ne, the residual of GPP was sig-
nificantly positively correlated to average PAR during the 
whole growing season (r2 = 0.69; p < 0.001; data not shown).

At the landscape scale, predicted GPP was positively 
and linearly correlated to canopy %Ne (r2 = 0.97; p < 0.001; 
Fig. 4b). Deciduous species with higher canopy %Ne (Wright 
et al. 2004) and higher light use efficiency (Ollinger et al. 
2008) occur at the higher end of GPP while evergreens occur 
at the lower end. It is noted that within the range of canopy 
%Ne (i.e., 0.94–2.3, where both deciduous and evergreen 
species exist) predicted GPP of deciduous and evergreen 
stands can be similar (Fig. 4d) because the longer growing 

Fig. 2   Observed aboveground net primary production (ANPP) versus 
observed a canopy %N and b leaf area index (LAI) at HF. Canopy 
%N explained 48% of the variance in ANPP (r2 = 0.48; p < 0.001), 
and LAI only explained 11% (r2 = 0.11; p < 0.16)

Fig. 3   Spatial patterns in a AVIRIS remotely sensed canopy %N and b PnET-II modeled GPP. This figure appears in color in the online version 
of the journal
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season of evergreen stands can at least partially compensate 
for their lower midsummer photosynthetic capacity.

Relationships with forest composition, land‑use 
history, and soil drainage

Spatial patterns of canopy %Ne and predicted GPP broadly 
reflected the distribution of functional types (Fig. 5a, b, 
p < 0.01). It should be noted, however, that variation in 
canopy %Ne was driven by both the deciduous/evergreen 
ratio as well as the variation in %N within each forest type 
(Supplementary Fig. S4). The highest canopy %Ne and GPP 
occurred in hardwood (deciduous) stands (mean values were 
1.91 and 1373.9 g C m−2 year−1, respectively), and the low-
est canopy %Ne and GPP occurred in needle-leaved ever-
greens (mean values were 1.46 and 1247.9 g C m−2 year−1, 
respectively), with mean canopy %Ne and GPP for mixed 
forests falling between those for deciduous and evergreen 
stands (mean %N 1.73, mean GPP 1321.4 g C m−2 year−1; 
Fig. 5a, b).

Canopy %Ne and predicted GPP differed significantly 
across the land-use history categories included in the Pros-
pect Hill Tract land-use coverage (p < 0.05; Fig. 5c, d). 
Stands that had been used as woodlots had the lowest canopy 
%Ne and GPP (1.60 and 1272.8 g C m−2 year−1, respec-
tively). Stands with a history of unimproved pasture had 
the highest canopy %Ne and GPP (1.84 and 1349.2 g C m−2 
year−1, respectively). Relatively fertile soils with a history of 
cultivated agriculture and improved pasture had intermediate 
canopy %Ne and GPP, with higher values in cultivated lands 
than in improved pasture.

From examining relationships between soil drainage 
classes and canopy %Ne and GPP, we found that both 
canopy %Ne and GPP were lowest in stands with the driest 
soils (e.g., drainage class D1, with 1.6 mean canopy %Ne 
and 1330 g C m−2 year−1 GPP) and the wettest soils (e.g., 
drainage class D6, with canopy %Ne and GPP of 1.46 and 
1241.5 g C m−2 year−1; Fig. 5e, f). This pattern was related 
to forest composition. Lower values of canopy %Ne and GPP 
were associated with the higher fraction of evergreen stands 
(Fig. 5f); e.g., peat soils were dominated by hemlock and 
spruce in the southwest of HEM tower, and white pine, red 
oak, and hemlock were dominant species on the driest soils 
(Fig. 5f).

Comparisons of predicted GPP with BigFoot 
and MODIS estimates

Mapped GPP estimates from BigFoot and MODIS were 
compared to estimates generated with PnET-II to illustrate 
their similarities. When compared with seasonal patterns 
of GPP, PnET-II GPP was more in line with MODIS than 
with BigFoot (Fig. 6a). However, the spatial distribution of 
annual GPP from this study and BigFoot were more similar 
than MODIS (Supplementary Fig. S7) as they had similar 
spatial resolutions. PnET-II annual GPP in the BigFoot area 
(1248.0 ± 91.0 g C m−2 year−1) was closer to that from Big-
Foot (1250.1 ± 361.4 g C m−2 year−1) than from MODIS 
(1401.0 ± 79.0 g C m−2 year−1).

Because BigFoot’s Biome-BGC productivity estimates 
were driven by spatial patterns in remotely sensed LAI 
(Turner et al. 2004), which was not well correlated with 

Fig. 4   Relationships between remotely sensed canopy %N and PnET-
II modeled GPP, a distribution of canopy %N (n = 16,5301), b rela-
tionship between canopy %N and GPP for all grids weighted by the 
fraction of deciduous and evergreen stands (GPP = 309.6 × Canopy 

%N + 783.6; r2 = 0.97; p < 0.001), c distribution of GPP (n = 165,301), 
and d GPP components for pure deciduous and evergreen in pixels 
associated with the lumped canopy %N. Black dots in figure d repre-
sent deciduous stands and gray triangles the evergreen stands
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ANPP at HF (Fig. 2b), we viewed spatial patterns in produc-
tivity predicted by PnET-II and canopy %Ne as being more 
reliable. Compared with PnET-II annual estimates degraded 
to 1 km MODIS resolution, MODIS annual GPP was greater 
by 12.3% in this study area. The ratio of MODIS annual GPP 
to PnET-II annual GPP on each MODIS pixel, reflecting 
the difference between MODIS and PnET-II estimates, was 
negatively correlated to canopy %Ne (Fig. 6b).

Discussion

Uncertainties in predicted GPP

For the time period of our model validation, EMS tower 
data showed a trend of increasing GPP over time (r2 = 0.74; 
p < 0.01), especially after the year 2000. While PnET-II 
mostly underestimated values of summer GPP during this 
period (Fig. 1a), variation in GPP on a monthly timescale 

nevertheless reflected responses to the environment. The 
PnET-II model underestimated the average annual values 
of GPP (1440.0 versus 1525.7 g C m−2 year−1) by 5.6%. The 
underestimation was about 9.8% after the year 2000. The 
increase in annual GPP at the EMS site has been, in part, 
attributed to parallel increases in midsummer photosynthetic 
capacity at the high light level, peak leaf area index (Urban-
ski et al. 2007), water-use efficiency (Keenan et al. 2013; 
Belmecheri et al. 2014), and CO2 fertilization (Urbanski 
et al. 2007). However, factors mentioned above have not yet 
fully explained the observed trend. The underlying reason 
is still elusive. Meanwhile, the increase in the past few years 
seems to have gone away, also for reasons that are not clear. 
PnET-II predicted GPP showed a slightly increasing trend 
(r2 = 0.57; p < 0.01) due to an increased ambient atmospheric 
CO2 concentration which led to enhanced photosynthesis 
and water-use efficiency (Ollinger et al. 2002a). Because 
additional mechanisms explaining the trend of increas-
ing tower GPP have not yet been identified and thus not 

Fig. 5   Relationships between annual GPP, canopy %N and (a, b) 
forest type, (c, d) land-use history in Prospect Hill Tract, and (e, f) 
soil drainage. H, S, and M stand for hardwood (n = 4213), softwood 
(n = 1651), and mixed stands (n = 3045) in figures a, b. CT represents 
historically cultivated land use (n = 232), IP mowed or improved pas-
ture (n = 580), UP unimproved pasture (n = 2247), and WL woodlot 
(n = 505). Drainage classes increase in moisture with increasing class 
number, where D1 is excessively drained (n = 405 with H 26, S 223, 
and M 156), D2 is somewhat excessively drained (n = 1525 with H 

402, S 352, and M 771), D3 is well drained (n = 3562 with H 1989, 
S 648, and M 925), D4 is moderately well drained (n = 1025 with H 
575, S 150, and M 300), D5 is very poorly drained (n = 1153 with H 
538, S 90, and M 525), and D6 is peat (n = 202 with H 37, S 104, and 
M 61). The bars in figure f indicate forest composition (H, S, and M) 
in soil drainage classes. Different lower case letters on each box in 
each panel represent statistically significant differences in the mean 
among groups in the same panel (p < 0.05)



603Oecologia (2018) 188:595–606	

1 3

represented in PnET-II modeling, the uncertainty of their 
impacts to the PnET-II-predicted spatial patterns is hard to 
assess.

Tower GPP at HEM site showed a decline after the year 
2011 due to the invasive hemlock woolly adelgid (Adelges 
tsugae) that caused foliar damage, crown loss, and mortal-
ity of host trees (Orwig et al. 2012). The absence of woolly 
adelgid infestation in the model likely contributed to the 
underestimation (by 8.9%) of predicted GPP.

Relationships with forest composition, land‑use 
history, and soil drainage

Landscape scale remotely sensed canopy %Ne was spatially 
related to a combination of forest composition and variation 
in foliar %N within individual forest types, both of which 
were influenced by soil drainage and land-use history at 
HF. As deciduous and evergreen forests have contrasting 
foliar %N (Wright et al. 2004), canopy %Ne can broadly 
reflect information about forest composition in mixed forest 
(Martin et al. 1998). The ability to capture this component 
of variation in stand-level canopy %N is not trivial given 
the challenge of estimating sub-pixel variation in forest 
composition.

At HF, forest composition was influenced by histori-
cal factors (primary versus secondary woodlands, forest 
age, cutting history and timing of site abandonment) and 
site factors (slope position and soil drainage; Foster 1992). 

The relationship between canopy %Ne and soil drainage 
(Fig. 5f), as well as land-use history (Fig. 5d), reflected 
the relationship between canopy %Ne and forest composi-
tion. The land-use pattern of HF in the mid-1800s, includ-
ing woodlot (13%), tilled fields (16%), pasture (70%) and 
marsh (1%), correlated with soil drainage and proximity to 
farmhouses and town roads (Foster 1992). Field abandon-
ment and reforestation after the 1850s proceeded outward 
from poorly drained pasture adjacent to woodlots and finally 
included productive tilled land. Woodlots often occupied 
steep and rocky slopes, wetlands or narrow valleys in infer-
tile soils, which may explain why those areas are lower in 
present-day mean canopy %Ne. A lower hardwood frac-
tion (17.6%) occurred in woodlots than that in cultivated 
(43.3%), improved (43.8%), and unimproved soils (63.8%). 
Higher canopy %Ne in soils with a history of unimproved 
pasture (Fig. 5d) might be attributed to the earlier abandon-
ment dates and thus longer recovery periods (Hooker and 
Compton 2003). The fact that gray birch (Betula populifo-
lia), poplar (Populus spp.), and red maple were most abun-
dant in old-cultivated fields could also lead to higher canopy 
%Ne than that in old-improved pasture lands, which white 
pine and American chestnut (Castanea dentata) were largely 
confined to (Fig. 5d). The combined influence of agricultural 
use, soil fertility, and recovery period likely led to the com-
plicated canopy %Ne patterns.

Relationships between canopy %N and GPP

In this study, remotely sensed canopy %Ne was strongly 
related to GPP predicted by PnET-II (Fig. 4b). This result 
emerges in the context that the landscape at HF consists 
closed canopy forest with relatively high LAI (4.9 m2 m−2) 
and near-complete interception of available light. The rela-
tionship reflects the well-established relationship between 
leaf-level photosynthetic capacity and foliar N concentra-
tions (Evans 1989; Reich et al. 1999a; Wright et al. 2004) 
and provides further support that leaf level trends scale 
over whole-plant canopies in high LAI systems (Ollinger 
et al. 2008). Although predicted GPP was only validated at 
two sites (EMS and HEM), the relationship between field-
measured ANPP and canopy %Nf and the fact that ANPP 
and GPP are strongly related in forests, more generally (Lit-
ton et al. 2007), support the prediction that landscape-scale 
spatial patterns of C assimilation follow patterns of canopy 
%Ne. This result is also in line with the NPP–canopy %Nf 
relationships across a wide range of plant species and func-
tional groups, reported by Smith et al. (2002) and Reich 
(2012).

Although deciduous species generally have greater 
photosynthetic potential per unit of leaf mass than ever-
green, they often have less leaf mass per leaf area, shorter 
leaf lifespan (Wright et al. 2004), and therefore less total 

Fig. 6   Comparisons of estimated GPP in 2003 among PnET-II, Big-
Foot, and MODIS, a seasonal patterns of estimated monthly GPP, b 
ratios of annual MODIS GPP to PnET-II GPP in MODIS pixels in 
relation to remotely sensed canopy %N (GPPMODIS/GPPPnET = − 
0.32 × Canopy %N + 1.70; r2 = 0.52; p < 0.001). The vertical bars in 
figure a represent a standard deviation within a 7 × 7-km region
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displayed foliage biomass. The combined effect of foliar 
%N and foliage biomass could make GPP for each spe-
cies comparable in the mixed stands (Fig. 4d). When N 
availability limits growth in mixed forests, deciduous and 
evergreen species show a trend of coordination in term 
of abundance and canopy nitrogen concentration (Dybz-
inski et al. 2013). Greater deciduous %Nf is associated 
with greater evergreen %Nf, but less fraction of evergreen 
(see Supplementary Figs. S3, S4). This co-varying fea-
tures may reflect the site quality and soil N availability 
(Ollinger et al. 2002b), and their effects on carbon assimi-
lation is worth more study. Using lumped canopy %N 
(e.g., AVIRIS %Ne) may provide a generalized approach 
to estimating carbon assimilation over time and space.

The result that MODIS GPP was greater than GPP 
estimates from PnET-II is consistent with results from 
Turner et al. (2006a), who reported that MODIS tended 
to overestimate GPP at HF. In a landscape where climate 
variation is small, errors in MODIS GPP stems from 
either the fraction of photosynthetically active radiation 
absorbed by the canopy (FPAR) or the vegetation light 
use efficiency (LUEmax) in MODIS GPP algorithm. For 
our study area, a closed canopy forest with relatively 
high LAI and near-complete interception of available 
light, LUEmax, therefore, could be a significant source 
of error. The MODIS GPP algorithm determines LUEmax 
based on land cover classes; e.g., in our study, MODIS 
categorized land covers as mixed forests and deciduous 
forests only, each of which had a fixed LUEmax. Previous 
studies demonstrated that light-use efficiency was posi-
tively related to foliar %Nf (Green et al. 2003; Kergoat 
et al. 2008; Ollinger et al. 2008). Given the wide range of 
canopy %Ne in our study area (Figs. 3, 4c), the errors of 
LUEmax associated with canopy %N in this study could 
be a major factor contributing to the difference between 
MODIS GPP and PnET-II GPP (Fig. 6b). With the dis-
tinct foliar %N and light-use efficiency for evergreen and 
deciduous stands, mix forests could lead to a factor of 2 of 
variation in canopy %N, and consequently, light-use effi-
ciency. A fixed LUEmax for all mixed forests globally, as 
employed by the MODIS GPP algorithm (1.051 g C m−2 
day−1 MJ−1), could introduce considerable uncertainties 
in GPP estimates in mixed forests with a range of fraction 
of evergreen and deciduous species, which may be con-
siderably reduced by canopy %N-dependent LUEmax. In 
that perspective, the link between canopy %N and canopy 
reflectance in the near infrared (800–850 nm) in temper-
ate and boreal forests (Ollinger et al. 2008; Lepine et al. 
2016), i.e., canopy %Ne remote sensing, may provide the 
means for a straightforward and efficient approach to 
scaling canopy nitrogen via broadband satellite data to 
broad-scale productivity estimates, such as MODIS GPP 
and NPP products.

Conclusions

At Harvard Forest and its surrounding area, landscape-scale 
canopy %N, spatially mapped using high spectral resolution 
remote sensing, was demonstrated to relate to forest compo-
sition, soil drainage, and land-use history. Mapped canopy 
%Ne was positively correlated with the relative fraction of 
deciduous and evergreen species in the stands as well as to 
variation in foliar %Nf within each type. Land-use legacies 
were evident in the present-day canopy %Ne although some 
of this likely reflect pre-existing conditions that led to some 
areas being used for specific purposes. Woodlots had the 
lowest canopy %Ne and stands in old unimproved pasture 
had the highest values, followed by stands historically cul-
tivated and improved for pasture. Integration of remotely 
sensed canopy %Ne to the ecosystem process model, PnET-
II, demonstrated that canopy %Ne regulated the forest can-
opy GPP, with both GPP and canopy %Ne showing similar 
relationships with forest composition, soil drainage, and 
land-use history. The comparison of PnET-II GPP with Big-
Foot and MODIS GPP indicated that canopy %Ne explained 
much of the difference between MODIS GPP and PnET-II 
GPP, suggesting that global MODIS GPP estimates may be 
improved if broad-scale estimates of canopy %Ne become 
available.
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