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consumptive  effects of invasive silver carp on an important 
basal food web resource. Further, our results convey the util-
ity of long-term quantitative biological and physiochemi-
cal data in understanding ecosystem responses to elements 
of global change (i.e., species invasions). Importantly, the 
observed changes in the basal food web resource of Ken-
tucky Lake may apply to other ecosystems facing invasion 
by silver carp (e.g., Laurentian Great Lakes). Our study 
offers insight into the mechanisms by which silver carp may 
influence ecosystems and furthers our understanding of inva-
sive omnivores.

Keywords Phytoplankton · Trophic ecology · Invasive 
species · Asian carp · Omnivory

Introduction

Invasive species are considered a leading threat to ecosystem 
function and biodiversity on a global scale (Ehrenfeld 2010; 
Bellard et al. 2016). Consumptive effects of invasive spe-
cies are capable of altering ecosystem functions by changing 
recipient community energy flow (Ellis et al. 2011; Walsh 
et al. 2016). More specifically, invasive species can disrupt 
food webs through direct herbivory (Capps et al. 2014) and 
predation on native species (Vander Zanden et al. 1999). 
Consumptive effects of invasive species can also lead to 
competition with native assemblages for food resources 
(Strayer et al. 1999), while suppressing certain trophic link-
ages, subsequently transforming (Townsend 2003; Baxter 
et al. 2004) and/or simplifying ecosystem structure (Strayer 
et al. 1999; Sagouis et al. 2015). Ecosystems with more sim-
plified trophic structure may be less resilient to disturbances 
(Tilman et al. 2006; Cross et al. 2013) and more susceptible 
to trophic cascades (Strong 1992; Finke and Denno 2004).

Abstract Invasive species are capable of altering ecosys-
tems  through the consumption of basal resources. However, 
quantifying the effects of invasive species in large ecosys-
tems is challenging. Measuring changes in basal resources 
(i.e., phytoplankton) at an ecosystem scale is an important 
and potentially translatable response vital to the understand-
ing of how introduced species influence ecosystems. In this  
study, we analyzed patterns of early summer chlorophyll-a 
in a large-river reservoir in response to invasion of silver 
carp (Hypophthalmichthys molitrix). We used 25 years of 
ecological data from a 30-km reach of Kentucky Lake col-
lected before and after silver carp establishment. We found 
significant decreases in chlorophyll-a within certain reser-
voir habitats since establishment of silver carp. Additionally, 
environmental and biological drivers of phytoplankton pro-
duction showed no significant differences before and after 
invasion. These results suggest seasonal, and habitat-specific 
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Invasive omnivores are particularly threatening to eco-
system function because of their ability to directly and indi-
rectly influence multiple trophic levels through resource 
consumption (Lodge et al. 1994; Thompson et al. 2007). 
Many aquatic ecosystems are characterized by having strong 
trophic links (Carpenter et al. 1985; Strong 1992); thus, the 
effects of invasive omnivores can significantly alter food web 
dynamics of recipient aquatic communities (Gallardo et al. 
2016). The omnivorous rusty crayfish (Orconectes rusticus) 
is arguably one of the most prolific aquatic invaders of the 
US. Through the consumption and suppression of detritus, 
mollusks, insects and fish eggs, the rusty crayfish has been 
shown to have strong direct and indirect effects on numerous 
aquatic ecosystem functions (Strayer 2010 and references 
therein). Although invertebrates have served as a model 
system for studying the effects of omnivorous invaders on 
recipient aquatic food webs (Strayer 2010), far less is known 
about the effects of highly mobile omnivorous vertebrates 
such as fish.

The silver carp (Hypophthalmichthys molitrix) is an 
omnivorous fish that has invaded much of the central US and 
is a leading concern for many freshwater ecosystems (Chick 
and Pegg 2001). Within the US, silver carp populations 
have reached some of the highest reported global densities 
and are predicted to invade and disrupt food webs within 
the Laurentian Great Lakes (Sass et al. 2010; Zhang et al. 
2016). Silver carp are filter feeding fish that voraciously 
and indiscriminately consume planktonic algae (i.e., phy-
toplankton), zooplankton, and detritus in the water column 
(Wang et al. 1989; Williamson and Garvey 2005; Samp-
son et al. 2009). Several studies have documented the sup-
pression of basal resources by silver carp (Fukushima et al. 
1999; Xie and Yang 2000; Lu et al. 2002; Xiao et al. 2010; 
Sass et al. 2014), while others have shown strong linkages 
affecting native fish condition (Irons et al. 2007; Sampson 
et al. 2009) and community structure (Solomon et al. 2016). 
Previous studies provide important information on the con-
sequences of silver carp consumption for zooplankton and 
native fish: however, there remains uncertainty surrounding 
the combination of effects through the consumption of both 
phytoplankton and zooplankton. Examining long-term phy-
toplankton dynamics in ecosystems invaded by silver carp 
may further our understanding of the mechanisms underly-
ing complex effects and ultimately enhance our knowledge 
of invasive omnivores and the threats they pose.

Kentucky Lake, located in western Kentucky, US, is a 
large-river reservoir where populations of silver carp were 
recently established (Kentucky Department of Fish and 
Wildlife Resources, KDFWR unpublished data). Com-
mercial harvest data from KDFWR suggest that significant 
populations of silver carp had become established in Ken-
tucky Lake by 2005, and recent (July 2015) sampling efforts 
have shown all life stages were present in the system (N. 

Jackson, KDFWR personal communication). Based on com-
mercial harvest data, we have defined 2005 as the start of 
the post-establishment and 2005–2013 collectively as the 
post-establishment period.

A 30-km reach of Kentucky Lake has been part of the 
Kentucky Lake Long-Term Monitoring Program (KLMP) 
since July 1988. The KLMP has continuously sampled (i.e., 
every 16 days, 32 days in winter) information on physical, 
chemical, and biological parameters, including chlorophyll-a 
(chl-a). The KLMP dataset provides a unique opportunity to 
investigate the influence of silver carp invasion on a large-
river reservoir ecosystem that may improve our inference 
of potential effects in other invaded ecosystems (e.g., the 
Mississippi River Basin) and in predicting future effects in 
systems facing invasions (e.g., the Laurentian Great Lakes). 
Furthermore, the KLMP contains over 25 years of long-term 
quantitative physical and biological data and thus provides 
the opportunity to account for factors that influence chl-a at 
the ecosystem level (Carpenter et al. 1995; Schindler 1998; 
Dodds et al. 2012) that may prove useful in untangling the 
multiple trophic influences of invasive omnivores.

In this study, we tested the following two hypotheses (1) 
phytoplankton biomass has declined since the establishment 
of silver carp in Kentucky Lake, suggesting that this inva-
sive omnivore has ecosystem level consumptive effects. (2) 
Ecological variables important to phytoplankton production: 
zooplankton density (cladocera and copepods), water tem-
perature, and nutrients (soluble reactive phosphorous) have 
remained unchanged since the establishment of silver carp, 
suggesting that changes observed in phytoplankton biomass 
were not caused by unrelated ecosystem changes.

Methods

Study site

We used long-term ecological data collected by Hancock 
Biological Station (HBS) from a 30-km study reach of Ken-
tucky Lake (Fig. 1). Kentucky Lake is a large, shallow main-
stem reservoir approximately 296 km long with a surface 
area of 64,874 hectares and the last impoundment along the 
Tennessee River (Bukaveckas et al. 2002). Kentucky Lake 
is characterized as mesotrophic, seasonally nutrient limited, 
and is the largest reservoir of the eastern US (Bukaveckas 
et al. 2002; Yurista et al. 2004). Hydrologically, the Ken-
tucky Lake ecosystem has a lotic main channel (average 
retention time = 31 days, estimated by dam discharge and 
lake volume from 1988 to 2013 Hancock Biological Sta-
tion unpublished data), lentic side arm embayments (aver-
age retention time ≈100 days, estimated by  embayment 
volume, tributary and dam discharge from 1990 to 1991, 
Johnson 1992) with embayment mouths characterized as an 
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intermediate habitat (Bukaveckas et al. 2002; Yurista et al. 
2004).

Long‑term data, experimental framework

On a sampling event, the KLMP collects data on a suite 
of ecological variables (Table S1) at 16 sites from a range 
of habitats (Fig. 1); for a more detailed description of the 
KLMP, see White et al. (2007). To test our predictions, we 
analyzed chl-a concentrations along with physical and chem-
ical covariates during early summer (April–June) from 1989 
to 2013. Our analysis focused on data collected from early 
summer sampling events (n = 6) from each site (n = 14) for 
each year (n = 25). We focused on early summer to reduce 
the influence of seasonal variability from natural processes 
and water-level management. April sampling events were 
chosen as the starting point of our analysis as this month 
consistently reached water temperatures of 15 °C. Addi-
tionally, in Kentucky Lake, early summer is the principal 
time of year for phytoplankton production (particularly 
diatoms and green algae) relevant for higher trophic lev-
els (i.e., nutritionally, Demott and Müller-Navarra 1997) 
as water temperatures rise and nutrient availability remains 
high prior to seasonal limitations of July and August when 

unpalatable cyanobacteria dominate (Figure S1; Bukaveckas 
et al. 2002; Yurista et al. 2004). Additionally, the tempo-
ral analysis focused on the proposed establishment timing 
and population increase of silver carp in Kentucky Lake; 
pre- (1989–2004) and post (2005–2013)-establishment time 
periods. Despite not having population estimates for silver 
carp in Kentucky Lake, commercial harvest of this fish has 
increased by over 450X from 127 kg in 2006 to 57,290 kg 
in 2014 (KDFWR unpublished data), consistent with expo-
nential population growth quantified in neighboring water-
sheds (Sass et al. 2010). As part of the temporal analysis, we 
accounted for potential habitat differences by categorizing 
the fourteen study sites (Fig. 1) into three major reservoir 
habitats: embayments, embayment mouths, and sites within 
the main channel, hereafter referred to as site type. Our 
analysis included 2 embayment sites (2 and 4 L), located 
within a larger embayment with an average depth of 2.64 m 
and an average retention time of 100 days (Fig. 1). Addition-
ally, a total of 9 embayment mouth sites were included with 
sites on the eastern shore: EG, ET and EV, and the western 
shore: WA, WB, WJ, WL, WP, and WS with an average 
depth of 6.87 m and characterized as intermediate between 
embayments and the main channel (Fig. 1). Finally, a total 
of three main channel sites were included CB, CH, CW, and 

Fig. 1  The location of Kentucky Lake showing Hancock Biologi-
cal Station’s (HBS) Kentucky Lake Long-Term Monitoring Program 
(KLMP) sampling sites used in this study. Embayment sites included 

2 and 4L. Mouth sites included EG, ET, EV, WA, WB, WJ, WL, WP, 
WS. Channel sites included CB, CH and CW. This section of the Ten-
nessee River flows in a northern direction depicted by the arrow 
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were distributed longitudinally along the main stem of the 
study reach with an average depth of 16.89 m and an average 
retention time of 32 days (Fig. 1).

Biological variables

The KLMP measures chl-a at each site by collecting a 1L 
water sample from a depth of 1 m. Chl-a water samples were 
placed in a dark iced cooler, transported to the laboratory 
and processed using a standard pigment extraction proce-
dure (Clesceri et al. 1989) yielding μg chl-a  L−1 that was 
used in this study as a surrogate of phytoplankton biomass. 
Zooplankton were sampled at each site in triplicate with a 
15 L Schindler trap (243 µm mesh sieve) at a depth of 5 m, 
or half the water column depth at shallower sites (Levine 
et al. 2014). Zooplankton samples were placed on ice and 
transferred to the laboratory, preserved with buffered 4% for-
malin and Copepoda and Cladocera were identified to lowest 
practical taxon with a stereo dissecting microscope (Levine 
et al. 2014). All zooplankton taxa counts were converted to 
individuals  L−1. For our analysis, we included densities of 
copepod and cladoceran (including invasive D. lumholzi and 
excluding predatory Leptodora kindtii) as indices for herbiv-
orous and omnivorous zooplankton densities, respectively.

Physical and chemical variables

Water temperature was measured with a Yellow Springs 
 Instruments® 6600 multi-meter probe at the surface and 1 m 
intervals to the bottom; however, because we focused on 
near surface algae, our analysis considered only measure-
ments from surface to the 2 m depth (i.e., approximately the 
depth of the photic zone) and it should be noted that Ken-
tucky Lake is polymictic and remains well mixed all year. 
Soluble Reactive Phosphorous (SRP) was measured from 
water samples collected at 1 m and analyzed in the labo-
ratory (Clesceri et al. 1989) yielding mg P  L−1. For more 
detailed descriptions of sample collections and process-
ing, see: White et al. (2007), or protocols can be accessed 
through an online data request.

Analysis

Chlorophyll-a, zooplankton density (cladoceran and cope-
pod), SRP and temperature were analyzed using separate 
linear mixed effects models. Chl-a, zooplankton density, 
SRP and temperature were a function of the fixed effects of 
establishment period and site type and the random effects of 
sampling month, year, and sampling date nested within year 
and site nested within year. Nested random effects account 
for the non-independence of samples taken at the same site 
in the same year. Further, to control for the non-independ-
ence of samples taken across all sites within the same year 

we included cruise number nested within year as a random 
effect through explicit nesting.

Chlorophyll-a, cladoceran density, and copepod den-
sity were natural log-transformed to meet assumptions of 
normality. Statistical analyses were conducted using R ver-
sion 3.3.1 (R Development Core Team 2014). All mixed 
effects models were fit with the lme4 package (Bates et al. 
2014) and significance was tested using a Kenward–Roger 
denominator degrees of freedom approximation (Kenward 
and Roger 1997; Bolker et al. 2009). Post hoc comparisons 
of least squares means and confidence intervals for response 
variables within site type, before and after establishment, 
were calculated using lsmeans function (Lenth and Hervé 
2014).

Results

We analyzed data from 25 years of the KLMP across 14 
sites sampled 6 times each year (2 in each of April, May and 
June) totaling approximately 2100 samples. We had missing 
data, yet each variable was represented across all years and 
missing data represented less than 15% of the data over the 
study period and less than 0.6% on average within a given 
year with the exception of SRP. Over the entire study period, 
chl-a was missing 10%, temperature was missing 12%, clad-
oceran and copepod density were missing 14%, and SRP was 
missing 29% or an average of 1.2% on a given year.

Long-term patterns of chl-a and ecological factors 
showed considerably high inter- and-intra-site variability 
across Kentucky Lake before and after silver carp estab-
lishment. Firstly, long-term patterns of chl-a were variable 
across all site types; however, chl-a showed a significant 
interaction effect between site type and silver carp establish-
ment period (P = 0.002, Table 1) with  a 22% decrease of 
chl-a in embayment and embayment mouth sites (Tables 2, 
3) while no differences were detected in channel sites 
(Tables 2, 3) before and after establishment (Fig. 2). Patterns 
in chl-a suggest habitat-specific reductions in chl-a coincid-
ing with silver carp establishment that are not apparent in 
a time series plot across all site types (Fig. 3), highlighting 
the importance and interpretation of habitat-specific effects. 
There was a significant interaction effect of cladoceran den-
sity between site type and silver carp establishment period 
(P = 0.003, Table 1), but there were no significant differ-
ences in cladoceran density among site types before and 
after establishment (P > 0.3, Tables 2, 3), suggesting her-
bivorous zooplankton density remained unchanged across 
Kentucky Lake before and after silver carp establishment 
(Fig. 3). There were no differences detected in copepod den-
sity before and after establishment of silver carp (P = 0.983, 
Table 1); furthermore, we found no interactions in cope-
pod density between site types and establishment period: 
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(P = 0.296, Tables 2, 3), suggesting that omnivorous cope-
pod density remained unchanged across Kentucky Lake 
since silver carp establishment (Fig. 3). Physiochemical 
parameters, temperature and SRP showed high variability 
and no significant differences after the establishment of sil-
ver carp (P > 0.3, Table 1). Further, both temperature and 
SRP showed no significant interaction effects between site 
type and period (P > 0.1, Tables 2, 3) indicating that these 
physiochemical parameters were consistent before and after 
establishment (Fig. 3).

Discussion

Consumptive effects of invasive species can have funda-
mental consequences for ecosystem functions (Strayer et al. 
1999). However, few experiments or data are designed to 
capture the broad temporal and spatial scales over which 
invaded ecosystems are affected (Carpenter et al. 1995; 
Schindler 1998; Dodds et al. 2012). Our analyses show that 
within certain reservoir habitats chl-a concentrations have 
declined considerably since establishment of invasive sil-
ver carp (Fig. 2). Phytoplankton is the dominant primary 

producer within main-stem reservoirs (Kimmel et al. 1990). 
Additionally, phytoplankton has been shown to be an impor-
tant trophic base within riverine food webs (Thorp and 
Delong 2002) and can contribute a significant carbon source 
to surrounding terrestrial ecosystems through food web link-
ages (Kautza and Sullivan 2016). The reductions in chl-a 
since the establishment of silver carp were greatest within 
embayment and embayment mouth habitats compared to the 
main channel, suggesting context dependency of invasive 
species effects (Fig. 2). Our analyses also tested competing 
hypotheses as potential drivers of trends in chl-a, including 
herbivorous cladoceran, omnivorous copepods, SRP and 
temperature. These ecological variables showed no differ-
ences since the establishment of silver carp; thus, our find-
ings remain strongly consistent with our original hypothesis. 
If chl-a is a reasonable predictor of phytoplankton biomass 
within Kentucky Lake, then our analysis presents evidence 
of top-down effects of invasive silver carp within the Ken-
tucky Lake ecosystem.

Alternative hypotheses

Ecosystem level changes in basal resources can be caused 
by any number of exogenous and internal forces, making it 
challenging to disentangle the effects of a specific pertur-
bation or process (Dodds et al. 2012). For example, large-
scale regime shifts brought about by ecosystem succession, 
especially in the case of reservoir aging, can lead to changes 
in water clarity and subsequent phytoplankton dynamics 
(Holz et al. 1997). Similarly, changes in land use leading 
to increased or decreased nutrient loading have been shown 
to have interactive effects on long-term water quality and 
ecosystem function in the Laurentian Great Lakes (Scavia 
et al. 2014). Additionally, changes in consumer community 
structure and abundance can have strong top-down or bot-
tom-up forces on phytoplankton (Schaus and Vanni 2000). 
Furthermore, reservoir ecosystems are unique in that water 
levels are managed for human needs (Lehner et al. 2011), 
and hydrology can vary widely in concert with any combi-
nation of internal and external drivers of ecosystem change. 
Indeed, it is important to carefully consider the intricacy of 
multiple ecological factors and how these components may 
interact with perturbations when drawing conclusions from 
large-scale ecological data.

We present data suggesting that changes in a basal 
resource coinciding with silver carp establishment are not 
explained by patterns of ecological covariates. Patterns 
in higher trophic levels (i.e., zooplankton), nutrients (i.e., 
soluble reactive phosphorous) and temperature remained 
unchanged since the establishment of silver carp, suggest-
ing that our inference is not confounded with aspects of 
primary consumer density, pollution, or climate change. 
Additionally, supplementary analyses show that reservoir 

Table 1  Kenward-Roger analysis of variance table with Kenward-
Roger approximations for degrees of freedom testing for differences 
in natural log-transformed Chlorophyll-a (µg Chl-a  L−1), Clad-
oceran Density (Individuals  L−1), Copepod Density (Individuals 
 L−1) Soluble Reactive Phosphorous (mg P  L−1) and un-transformed 
Temperature (°C) among site types in pre- (1989–2004) and post 
(2005–2013)-establishment periods in Kentucky Lake

Source of variation Num. df Den. df F P

Chlorophyll-a
 Establishment period 1 24.87 6.07 0.021
 Site type 2 11.18 14.34 0.001
 Establishment period × site type 2 307.46 6.56 0.002

Cladoceran density
 Establishment period 1 24.14 0.02 0.905
 Site type 2 11.53 8.85 0.005
 Establishment period × site type 2 324.64 5.76 0.003

Copepod density
 Establishment period 1 25.47 0.00 0.983
 Site type 2 11.74 15.0 0.001
 Establishment period × site type 2 323.81 1.22 0.296

Soluble reactive phosphorous
 Establishment period 1 28.67 0.00 0.958
 Site type 2 11.67 12.5 0.001
 Establishment period × site type 2 343.03 0.53 0.587

Temperature
 Establishment period 1 23.41 0.92 0.346
 Site type 2 11.36 0.21 0.815
 Establishment period × site type 2 302.48 2.26 0.107
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Table 2  Estimates of Least Squares means contrasts of natural log-
transformed Chlorophyll-a (µg Chl-a  L−1), Cladoceran Density (Indi-
viduals  L−1), Copepod Density (Individuals  L−1), Soluble Reactive 

Phosphorous (SRP, mg P  L−1) and Temperature (°C) comparing pre- 
(1989–2004) and post (2005–2013)-establishment periods in Ken-
tucky Lake

Chlorophyll-a Cladoceran density

Contrast df t ratio P Contrast df t ratio P

Site type
 Channel −0.08 205.8 −0.93 0.352 −0.13 27.49 −0.46 0.650
 Embayment −0.24 260.3 −2.72 0.007 +0.13 31.65 0.65 0.653
 Mouth −0.25 145.8 −3.22 0.002 −0.02 22.64 0.94 0.941

Copepod density SRP

Contrast df t ratio P Contrast df t ratio P

Site type
 Channel −0.07 23.78 −0.20 0.847 −0.001 34.76 −0.35 0.731
 Embayment 0.37 26.06 0.94 0.354 −0.001 42.54 0.37 0.716
 Mouth −0.16 21.04 −0.43 0.670 +0.000 24.99 0.12 0.907

Temperature

Contrast df t ratio P

Site type
 Channel 0.87 137.15 1.040 0.300
 Embayment 0.85 138.60 1.009 0.315
 Mouth 0.69 135.31 0.827 0.410

Table 3  Means  ±  SE of Chlorophyll-a (µg Chl-a  L−1), cladoceran 
density (Individuals  L−1), copepod density (Individuals  L−1) Soluble 
Reactive Phosphorous (mg P  L−1) and temperature (°C) comparing 

pre- (1989–2004) and post (2005–2013)-establishment periods across 
site types (Channel, Embayment, Mouth) in Kentucky Lake

Chlorophyll-a Cladoceran density

Pre ±SE Post ±SE Pre ±SE Post ±SE

Site type
 Channel 11.95 1.12 11.05 1.13 1.35 1.94 1.18 1.51
 Embayment 23.62 1.13 18.50 1.14 0.46 1.95 0.52 1.99
 Mouth 18.39 1.10 14.34 1.11 0.89 1.93 0.87 1.96

Copepod density SRP

Pre ±SE Post ±SE Pre ±SE Post ±SE

Site type
 Channel 2.26 1.42 2.10 1.51 0.007 0.002 0.008 0.002
 Embayment 0.71 1.45 1.02 1.53 0.012 0.001 0.012 0.002
 Mouth 1.53 1.40 1.31 1.48 0.018 0.002 0.017 0.002

Temperature

Pre ±SE Post ±SE

Site type
 Channel 20.88 0.51 21.75 0.67
 Embayment 20.91 0.52 21.75 0.68
 Mouth 21.04 0.51 21.73 0.67
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discharge measured at Kentucky Dam did not differ sig-
nificantly since establishment of silver carp (P = 0.716, 
Figure S2; Tables S2, S3, S4). Moreover, long-term pat-
terns in Secchi depth, a measure of water column clarity, 
significantly increased post-invasion (P = 0.001, Figure 
S3; Tables S2, S3, S4) consistent with our findings of 
decreasing chlorophyll-a and inconsistent with patterns of 
reservoir aging (Tilzer 1988; Holz et al. 1997). Likewise, 
patterns in invasive herbivorous (Daphnia lumholtzi) do 
not explain observed patterns in chl-a as no differences 
in overall cladoceran zooplankton density were detected 
(P = 0.905, Fig. 3). Unfortunately, information on fish 
community structure or abundance for Kentucky Lake 
is unavailable and we were unable to explore how this 
factor may have interacted with system dynamics before 
and after invasion. Above all, our use of these data was 
not experimental, and we are unable to describe causal 
mechanisms of ecosystem change. However, 25 years of 
data and the patterns and trends within this dataset offer a 
robust foundation from which we can unravel components 
of ecological stochasticity and ultimately provide infer-
ence to large-scale patterns of basal resources coinciding 
with invasion.

Potential effects of silver carp

The ability of silver carp to suppress phytoplankton is dis-
puted in the literature. Several studies suggest a negative 
relationship between silver carp density and phytoplankton 
biomass, through the consumption and pelletization of phy-
toplankton cells (Starling 1993; Xie 1999; Fukushima et al. 
1999; Lu et al. 2002; Xiao et al. 2010). However, others (Lin 
et al. 2014 and citations therein) have concluded that silver 
carp are inefficient at ingesting/digesting smaller sized algae 
(<10 µm) causing shifts in phytoplankton assemblages to 
those dominated by nanoplankton which are then fertilized 
by silver carp excretion. Our results contrasted with previ-
ous work showing no effects because those studies primar-
ily occurred in eutrophic, tropical-subtropical experimental 
enclosures of smaller sized ecosystems with phytoplankton 
assemblages dominated by cyanobacteria (exceptions see, 
Radke and Kahl 2002; Lin et al. 2014). In contrast, the phy-
toplankton community of Kentucky Lake during the early 
summer (April–June) is typically dominated by diatoms and 
green algae (Bukaveckas et al. 2002, Figure S1); paralleling 
communities of many temperate mesotrophic systems and 
those of higher latitudes (Wetzel 2001).

Fig. 2  Yearly mean values with line of best fit with gray shad-
ing of 95% confidence interval of chlorophyll-a (µg chl-a  L−1) from 
the early summer (April–June) comparing between pre- (white cir-
cles, 1989–2004, n  =  1223) vs. post (black circles, 2005–2013, 
n  =  674)-silver carp (Hypophthalmichthys molitrix) establish-
ment periods, while accounting for habitat differences (site type). 
There was a significant interaction effect of chlorohpyll-a between 

site type and silver carp establishment period (F2,307.5  =  6.56, 
P = 0.002) showing a decrease in chlorohpyll-a in embayment sites 
(pre n = 165, post n = 97) of 22% (23.62 ± 1.13 vs. 18.50 ± 1.14 µg 
chl-a  L−1) (t260.3 = −2.72, P = 0.007) and mouth sites (pre n = 794, 
post n = 432) of 22% (18.39 ± 1.10 vs. 14.34 ± 1.11 µg chl-a  L−1), 
(t148.8 = −3.22, P = 0.002), and no differences in channel sites before 
and after establishment in Kentucky Lake (pre n = 264, post n = 145)
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To better understand how varying phytoplankton com-
munities  may respond differentially to silver carp inva-
sion we provide supplementary analysis of Kentucky Lake 
chl-a in late summer (July–August) when cyanobacteria 
dominate (Bukaveckas et al. 2002, Figure S1). Late sum-
mer concentrations of chl-a show no silver carp effect on 
phytoplankton biomass (Tables S2, S3, S4; Figure S5) 
suggesting that cyanobacteria are less susceptible to sup-
pression by silver carp than green and diatom algal com-
munities. Collectively, our analyses suggest that the sea-
sonality of phytoplankton communities may be important 
in  explaining invader effects and help to further explain 
discrepancies between our results and other studies. 
Within mesotrophic systems, late spring-early summer is 
the principal time of year for zooplankton to acquire high 
quality resources such as diatoms and green algae (Brett 
and Muller-Navarra 1997; Demott and Müller-Navarra 
1997). Therefore, we argue that the reductions of early 
summer phytoplankton biomass would be more limiting 
and have higher cascading potential compared to changes 
in late summer. Perhaps silver carp effects are exceptional 
in temperate systems with substantial diatom production, 

such as Kentucky Lake and the greater Mississippi River 
Basin, which may explain changes noticed in this and other 
studies in similar systems (Irons et al. 2007; Sass et al. 
2014; Solomon et al. 2016).

Habitat-specific patterns showing reductions in chl-a 
indicate that silver carp had greater consumptive effects in 
slower flow habitats compared to a faster flow main channel 
habitat. Previous studies have shown that silver carp pre-
fer slower flow habitats (Calkins et al. 2012) and perhaps 
silver carp within Kentucky Lake concentrate and feed in 
these more favorable off channel embayments and transi-
tional embayment mouths. Within Kentucky Lake, retention 
time is at least ≈65% longer within the Ledbetter embay-
ment than in the main channel; subsequently, lower levels 
of autochthonous (e.g., phytoplankton) resources may be 
cycling through and replenishing food webs of these rela-
tively enclosed habitats (Bukaveckas et al. 2002) increasing 
embayment susceptibility to top-down pressures. If silver 
carp have greater top-down effects in lentic vs. lotic habitats 
it may be a generalizable pattern helpful in predicting silver 
carp effects throughout the Mississippi Basin and Laurentian 
Great Lakes.

Fig. 3  Time series plots with line of best fit of early summer (April–
June) a chlorophyll-a (µg chl-a  L−1), (n = 1897), b copepod density 
(Ind  L−1) (n  =  1801), c cladoceran density, including invasive D. 
lumholzi (Ind  L−1) (n = 1802), d water temperature (°C) (n = 1839) 

e soluble reactive phosphorous (mg p  L−1)(n = 1491) from 1989 to 
2013 comparing between pre- (gray circles, 1989–2004) vs. post 
(black circles, 2005–2013)-silver carp (Hypophthalmichthys molitrix) 
establishment periods, across all sites in Kentucky Lake
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Though speculative, it may be instructive to consider the 
habitat context of invader effects. Kreps et al. (2012) found 
that native snails experience higher predation from invasive 
rusty crayfish on hard compared to soft substrates suggest-
ing that the habitat preference of the invader is important 
in explaining consumptive effects. Furthermore, Vander 
Zanden et al. (1999) found that habitat-specific effects of an 
invasive predator led to a decoupling of pelagic and littoral 
lake food webs once mediated by a native predator, indi-
cating that invader habitat specificity can restructure entire 
food webs. Understanding where and why invasive species 
effects are most significant within an invaded system can 
provide insight into the complex relationships occurring 
between invaders and recipient food webs (Vander Zanden 
et al. 1999; Kreps et al. 2012).

Conclusion

Our analysis suggests ecosystem changes, namely reduc-
tions in phytoplankton biomass within lentic habitats since 
the establishment of silver carp. If silver carp are capable 
of reducing phytoplankton biomass within lentic-like sec-
tions of large reservoirs and rivers, then mechanisms by 
which this invasive omnivore affects recipient communities 
can be further explained. Reduction of phytoplankton may 
cause declines in herbivorous zooplankton, possibly cascad-
ing upwards to native planktivores such as the threatened 
paddlefish (Polyodon spathula) and forage fish (Dorosoma 
spp.), which are important for top predators (e.g., birds and 
fish). Empirical work has shown that invasive omnivores 
have direct and indirect negative effects on multiple trophic 
levels (Lodge et al. 1994; Gallardo et al. 2016). The results 
of our study suggest that an invasive omnivore has directly 
affected a dominant basal resource; however, the direct and 
indirect effects on higher trophic levels and neighboring ter-
restrial ecosystems remain unknown. Species introductions 
are occurring at unprecedented rates, and understanding 
their influences on ecosystem functions remains a chal-
lenge for ecologists (Vander Zanden et al. 1999; Ricciardi 
et al. 2013). Our analyses suggest an important ecosystem 
level change resulting from species invasion and highlight 
the value of long-term data in exploring ecosystem and inva-
sion ecology.
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