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are directly a product of the Big 4 typology and others 
which are simply the product of poor study design or sta-
tistical artefacts. However, variation partitioning is a poten-
tially powerful technique when used appropriately and we 
identify several strategies for successful utilization of vari-
ation partitioning.

Keywords Metacommunity · Species sorting · Mass 
effects · Neutral theory · Patch dynamics · Variation 
partitioning

Introduction

In 1999, John Lawton opined that the single largest barrier 
to the progress and success of community ecology was “…
its overwhelming emphasis on localness” (Lawton 1999). 
In the intervening 17 years, community ecologists have 
answered Lawton’s challenge, and the collective direction 
of community ecology has notably steered toward multi-
scale perspectives on the assembly and structure of com-
munities. This progress has occurred largely through the 
development of metacommunity theory (Holyoak et al. 
2005; Leibold et al. 2004). Metacommunity theory posits 
that it is not only the local processes of species interactions 
and interactions with local environmental conditions that 
dictate community composition, but that composition also 
depends on regional-scale processes such as the movement 
of organisms on a landscape (Leibold et al. 2004). Today, 
metacommunity ecology is no longer a fringe discipline 
within community ecology, but has rapidly become a domi-
nant framework through which ecologists understand the 
natural world.

Unfortunately, despite the widespread and growing 
focus on multi-scale ecology, persistent misunderstandings 
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regarding metacommunity theory and the methods for 
evaluating hypotheses based on the theory are common 
in the ecological literature. Based on our observations 
from published papers, meeting presentations, and manu-
script reviews, some of these misconceptions appear to be 
increasing in frequency, rather than decreasing as meta-
community ecology matures. Here, we discuss two major 
sources of misapprehension about metacommunities. The 
first is “the Big 4” metacommunity paradigms, i.e., spe-
cies sorting, neutral dynamics, patch dynamics, and mass 
effects. The second is variation partitioning as a method 
for evaluating metacommunity dynamics. We stress that 
neither the Big 4 paradigms nor variation partitioning are 
intrinsically unsound, but misunderstandings and disagree-
ments about how to properly test neutral and niche-based 
hypotheses have nevertheless persisted around both (Gil-
bert and Bennett 2010; Logue et al. 2011; Smith and Lun-
dholm 2010). While each of these topics present different 
sources of misunderstanding, they are also linked conceptu-
ally since variation partitioning is often used as an analysis 
of empirical evidence that attempts to distinguish between 
the Big 4 paradigms (Cottenie 2005). Below, we focus not 
only on some persistent misunderstandings, but also on 
how the Big 4 and variation partitioning can be powerful 
conceptual and statistical tools when used appropriately.

Problems with the Big 4 metacommunity paradigms

Four classic models of community dynamics and struc-
ture are strongly associated with metacommunity theory: 
species sorting, patch dynamics, mass effects, and neutral 
dynamics (Chase 2005; Leibold et al. 2004). These para-
digms are all representatives of metacommunity theory 
because all four paradigms combine the process occurring 
at local (i.e., patch-level) scales with processes occurring 
at regional scales, driven by the movement of organisms 
among patches. Each of the Big 4 is distinguished by the 
amount of emphasis they place on a combination of local 
processes, regional processes, disturbance, and the degree 
to which species are equivalent in their traits. Species sort-
ing is a classic niche-based paradigm emphasizing local 
processes in which species occupy locales that best suit 
them based on environmental tolerances and their inter-
actions with other species (Whittaker 1962). The patch 
dynamics paradigm largely ignores the specific properties 
of local patches, and local diversity is primarily dictated by 
differences in species’ dispersal while regional dynamics 
are a product of extinctions and colonization (Levin 1974; 
Levins and Culver 1971; Skellam 1951). Mass effects pre-
sent the perspective that source-sink dynamics at high rates 
of regional dispersal can swamp out local processes (Brown 
and Kodric-Brown 1977; Shmida and Wilson 1985) and 
neutral dynamics model community composition through 

species losses, gains, and probabilistic colonization, with-
out respect to differences in traits between species (Bell 
2001; Hubbell 2001).

The problem with the Big 4 is not an inherent issue with 
any of the four paradigms. Each of the Big 4 is a histori-
cally respected—though not always agreed upon—theory 
of community assembly. Each of the Big 4 is also clearly 
representative of metacommunity theory, since it involves 
phenomena occurring at both local and regional scales. 
Rather, the problem is that “the Big 4 have been widely 
misconstrued to represent the entire inference space of 
metacommunities and to describe all possible metacommu-
nity dynamics”. If this representation were accurate, then 
all metacommunities could be classified as either belonging 
to one of the Big 4 or as occupying some middle ground 
between extremes represented by the Big 4. However, 
this representation is incorrect for two reasons. First, the 
Big 4 paradigms are not mutually exclusive. They are not 
mutually exclusive regarding the mechanisms they invoke 
for structuring communities, nor are they exclusive in the 
predictions they make regarding measurable metacom-
munity variables (Chase et al. 2005; Leibold et al. 2004; 
Logue et al. 2011; Winegardner et al. 2012). Second, the 
Big 4 do not constitute the entire inference space of meta-
community theory (Brown et al. 2011; Logue et al. 2011; 
Winegardner et al. 2012). This issue is very effectively 
illustrated in Fig. 1 of Logue et al. 2011 which shows that 
the Big 4 occupy only a limited space within the total meta-
community inference space defined by three axes: species 
equivalence, influence of dispersal, and environmental 
heterogeneity (Logue et al. 2011). The most serious con-
sequence of these misunderstandings is that many stud-
ies expressly define their goal as identifying which of the 
Big 4 are responsible for structuring a system of interest. 
Unfortunately, these studies are in many ways nonsensical 
because they begin with the false premise that a community 
of interest can always, and exclusively, be classified as one 
of the Big 4. As a result, many studies ignore the swath of 
inference space that lies outside of the Big 4 paradigms and 
fail to recognize metacommunity inference space as con-
tinuous and multidimensional (Logue et al. 2011).

These issues arose from widespread misunderstanding of 
two key publications that catalyzed the emergence of meta-
community theory: Leibold et al. (2004) and Holyoak et al. 
(2005). Both works prominently featured the Big 4 para-
digms and used them extensively as points of discussion 
regarding metacommunity theory. Many readers incorrectly 
interpreted these uses of the Big 4 to mean that metacom-
munities were explicitly defined by these four categories of 
dynamics. However, a careful reading of either work clearly 
reveals that the Big 4 were never intended by the authors to 
typify all possible metacommunities or to represent mutu-
ally exclusive types of metacommunities. Rather, the four 
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paradigms were presented as historically prominent models 
of community assembly that fit within the broader frame-
work of metacommunity theory: “To date, theoretical and 
empirical work on metacommunities falls along four broad 
lines or approaches…” (Leibold et al. 2004), clearly indicat-
ing that the authors viewed the Big 4 as perspectives shared 
by researchers rather than types of metacommunities. Addi-
tionally, in Leibold et al. (2004), a five-paragraph section 
describing explicitly why the Big 4 do not constitute the 
proper inference space of metacommunity theory directly 
follows brief descriptions of the Big 4 paradigms (found in 
the section “The Role of Trade-Offs Among Species Traits 
in Metacommunities”). Unfortunately, early misunderstand-
ings were unintentionally perpetuated by prominent publi-
cations demonstrating how empirical patterns could distin-
guish among types of metacommunity dynamics using the 
Big 4 as examples (e.g., Chase et al. 2005; Cottenie 2005). 
Ultimately, conceptual misapprehensions combined with 
procedural knowledge to produce studies whose stated pur-
pose was to test which of the Big 4 paradigms described 
assembly of a particular system.

We do not suggest that the Big 4 metacommunity para-
digms have no utility. They serve as useful perspectives 
that emphasize different sets of metacommunity dynamics 
and provide a convenient shorthand for discussing meta-
community scenarios. However, as metacommunity theory 
continues to develop, we suggest that investigators embrace 
a metacommunity concept that is more flexible, inclusive, 
and continuously defined than a typological classification 
scheme based on the Big 4. Logue et al. (2011) provide one 
such example in their Fig. 1 by defining metacommunity 
inference space along 3 axes: species equivalence, disper-
sal, and environmental heterogeneity. While this definition 
is an example of a more inclusive approach, it is only one 
of many possibilities and other investigators may decide 
to include other important axes, for example disturbance 
(Brown et al. 2011), metacommunity openness, niche 
breadth, metacommunity size, and scale of environmen-
tal heterogeneity (Sokol et al. 2015). Some investigators 
may find these conceptions of metacommunities unsatis-
fying because they are less delineated and sharply defined 
than simply having four categories of metacommunity, and 
because there is no consensus on what the exact axes are 
that define metacommunity space. However, these flexible 
and continuous conceptions are both more accurate than the 
Big 4 with regard to making inferences about metacommu-
nity dynamics, and potentially more useful because they are 
more adaptable to particular scenarios or empirical prob-
lems. These conceptions are also more true to the original 
intent of metacommunity theory which was never intended 
to be defined by four simplistic categories of dynamics (Lei-
bold et al. 2004; Winegardner et al. 2012). Thus, the ideas 
presented here are more reminder than revolutionary.

Issues with variation partitioning

There is a long history in the ecology of investigators infer-
ring underlying processes from patterns documented in 
observational studies, for example, the concept of niche-
based species sorting stems, in large part, from Hutchin-
son (1959) inferring competitive exclusion dynamics as 
the underlying process that created the distribution and 
co-occurrence patterns he observed for corixid species in 
ponds. Similarly, species’ dispersal capabilities are often 
invoked to explain distance-decay patterns in commu-
nity similarity with stronger limitations on dispersal being 
inferred from steeper distance-decay patterns (Nekola 
and White 1999). With the ever-increasing availability of 
observational data, computing power, and analytical soft-
ware, many ecologists and environmental scientists are 
eager to embrace a framework by which they can use bio-
diversity patterns to infer underlying community assembly 
processes. Careful consideration of the observed patterns 
have contributed much to our understanding of the natu-
ral world; however, maybe the most important lesson from 
Hutchinson’s corixids was that there are limits on how 
much we can learn about ecological processes from obser-
vational studies alone, and mechanistic inferences based on 
observed patterns should be carefully scrutinized (Simber-
loff and Boecklen 1981).

A major appeal of the metacommunity concept is that 
it potentially offers a framework to disentangle the roles 
of niche-based and dispersal-based dynamics in different 
community assembly scenarios that are thought to produce 
different emergent biodiversity patterns (e.g., Chase and 
Myers 2011; Diniz-Filho et al. 2012; Gil-Tena et al. 2013; 
Meynard et al. 2013; Moritz et al. 2013). Shortly after the 
Big 4 were framed as alternative metacommunity scenarios 
that could emerge under different combinations of disper-
sal, habitat heterogeneity, and ecological neutrality (i.e., 
lack of functional diversity in the regional species pool), 
“variation partitioning” was co-opted as a quantitative tool 
to diagnose metacommunity type from observational data 
(Logue et al. 2011). Many empirical studies were modeled 
after a meta-analysis by Cottenie (2005), which suggested 
that variation partitioning outcomes could be used to infer 
underlying metacommunity dynamics when biodiversity 
data are accompanied by environmental and geospatial 
data.

The general concept of variation partitioning (reviewed 
in detail in Dray et al. 2012; Peres-Neto and Legendre 
2010) was first introduced in community ecology by 
Borcard et al. (1992) as a method to quantify how much 
among-site variation in community composition was cor-
related with environmental and spatial variables. There are 
two general methodological approaches to variation parti-
tioning. The first is the raw data method (Legendre et al. 
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2005, 2008; Legendre and Fortin 2010) in which con-
strained ordinations (e.g., CCA, RDA, dbRDA) are used to 
quantify the proportion of variation in community compo-
sition in a site by species matrix (Y) that can be explained 
by variables represented in a site by environmental data 
matrix (E) and a matrix of spatial variables (S) used to 
model different scales of spatial heterogeneity. Spatial var-
iables that make up S (i.e., spatial predictors) are derived 
from geographic coordinates (e.g., latitude and longitude) 
and are used to detect spatial patterns in community com-
position, such as the scale of autocorrelation. Non-linear 
spatial relationships have been modeled with quadratic 
functions (Borcard et al. 1992), but more flexible meth-
ods based on Moran eigenvector maps (MEM) have been 
developed and are now widely used to model spatial struc-
ture in variation partitioning studies (described by Peres-
Neto et al. 2006; Peres-Neto and Legendre 2010; Legendre 
et al. 2012; see Sokol et al. 2013, 2014 for examples). In 
a typical raw data variation partitioning analysis, coef-
ficients of determination [R2 or adjusted R2 values (Blan-
chet et al. 2008)] estimated from multivariate models are 
used to split variation in Y into four components, where 
[a] is the pure environmental component (R2 E|S), [b] rep-
resents variation in Y that corresponds to both E and S (R2 
E intersect S), [c] is pure spatial variation (R2 S|E), and [d] 
is unexplained variation (1—[a + b + c]) (see Fig. 1 in 
Peres-Neto et al. 2006).

The second approach is the distance-based method, 
which is used to assess correlations between triangular 
site-by-site distance matrices, DY, DE, and DS. These dis-
tance matrices are calculated from raw data matrices Y, 
E, and S (where S is a matrix of site coordinates, such 
as latitude and longitude), respectively. Linear multiple 
regression on distance matrices (Smouse et al. 1986; 
Legendre and  Legendre 1998) is used to calculate how 
much variation in the distances represented in DY can be 
explained by among-site environmental differences (DE) 
and geographic distance (DS) (Duivenvoorden et al. 2002; 
Tuomisto et al. 2003). It is important to note that the raw 
data approach explains variation in community composi-
tion, whereas the distance approach explains variation in 
community dissimilarity (but does not predict composi-
tion). While these two analyses are related, their appli-
cation to testing metacommunity hypotheses, such as 
predictions of neutral theory, is controversial (Legendre 
et al. 2005, 2008, 2009; Tuomisto and Ruokolainen 
2006; Laliberté 2008; Tuomisto and Ruokolainen 2008; 
Tuomisto et al. 2012).

Cottenie (2005) outlined three postulates to describe 
how the presence or absence of different, statistically sig-
nificant variation partitioning components in a metacom-
munity could provide insight into the underlying commu-
nity assembly dynamics:

1. An [a] that is very high relative to [c] indicates a meta-
community was organized purely by species sorting 
because community composition must be empirically 
linked to environmental variation if “everything is eve-
rywhere, but, the environment selects” (Becking 1934). 
Further, such a metacommunity is assumed to be pan-
mictic and any spatial variation in community compo-
sition must result from species sorting along a spatially 
structured environmental gradient and thus fall in the 
[b] component.

2. The presence of significant [a] and [c] indicates a sce-
nario in which species sorting and mass effects organ-
ized metacommunity biodiversity. Under such source 
sink dynamics, species are expected to be most abun-
dant in patches that most closely match their funda-
mental niche, thereby creating an expectation for a 
significant [a] component. However, individuals are 
also expected to disperse to and maintain nearby sink 
populations where the local habitat does not represent 
their fundamental niche, thus, creating spatial patterns 
in species turnover that are not explained by environ-
mental variables, resulting in a significant [c] compo-
nent.

3. The absence of [a] and presence of [c] indicates a lack 
of species sorting and a metacommunity in which spe-
cies turnover patterns were organized by stochastic 
dispersal dynamics that occurred independent of envi-
ronmental gradients. However, spatial patterns in com-
munity composition (e.g., autocorrelation) that occur 
independent of environmental variation can be pre-
dicted by both neutral models and patch dynamics.

These postulates represent an important contribution to 
the discipline of community ecology, because they pro-
vide a heuristic framework to link empirical data to meta-
community theory. Like Leibold et al. (2004), Cottenie 
emphasized that the Big 4 and their empirical evaluation 
using variation partitioning are particular manifestations 
of metacommunities in a larger continuum spanning from 
scenarios influenced by environmental drivers to scenarios 
organized by spatial processes, but his organization of these 
concepts is often misinterpreted as producing mutually 
exclusive predictions about community assembly. These 
publications have had a profound influence over how ecolo-
gists use metacommunity theory to interpret biodiversity 
patterns, as there have been over 150 metacommunity pub-
lications indexed in the Web of Science during each of the 
past 4 years (2011–2014) and over 80% of those published 
in 2014 still cited both Leibold et al. (2004) and Cottenie 
(2005). However, a decade of research has demonstrated 
that ecologists should be cautious when drawing links 
between variation partitioning outcomes and the underlying 
metacommunity dynamics.
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Weak inference

While Leibold et al. (2004) and Cottenie (2005) used the 
Big 4 as reference points in metacommunity parameter 
space which are recognizable because they are rooted 
in classical ecological theory, many subsequent studies 
misinterpreted the above postulates as alternative, mutu-
ally exclusive hypotheses and attempted to use them in a 
strong inference approach (sensu Platt 1964) to identify the 
community assembly processes underlying observed bio-
diversity patterns (reviewed in Logue et al. 2011). Major 
criticisms of the strong inference approach include ques-
tions about whether it is possible to know if alternative 
hypotheses accurately characterize all alternative scenarios 
and whether alternative hypotheses will actually produce 
mutually exclusive outcomes (problems with equifinality) 
(O’Donohue and Buchanan 2001; Tuomisto et al. 2012), 
and these caveats do indeed apply to the Big 4. For exam-
ple, a significant [c] component is used to infer a spatial 
pattern in community turnover is influenced by limits on 
dispersal (sensu Nekola and White 1999). However, the 
alternative hypothesis to such a conclusion is that there 
could be a spatially autocorrelated environmental gradient 
that was not measured that is driving species sorting in the 
metacommunity. This alternative hypothesis is not falsifi-
able and therefore poses a significant problem to the appli-
cation of strong inference to infer metacommunity charac-
teristics from variation partitioning outcomes.

Do variation partitioning outcomes mean what we 
think they mean?

Generally, ecology is a complex science and it is neces-
sary for investigators to use creative and innovative meth-
ods to infer process from pattern and to distinguish causa-
tion from correlation (Shipley 2002). The three postulates 
described above, which provide the foundation for link-
ing variation partitioning to underlying metacommunity 
dynamics, assume that R2 values for each of the variation 
components respond monotonically to shifts in the balance 
of environmental and spatial influences over community 
composition. However, simulation studies have shown that 
variation partitioning outcomes may be more sensitive to 
choices an investigator makes regarding statistical meth-
ods and sampling design rather than underlying community 
assembly dynamics (Gilbert and Bennett 2010; Steinbauer 
et al. 2012; Tuomisto 2012).

Tuomisto et al. (2012) demonstrated how a scaling mis-
match between community turnover and environmental gra-
dients can result in a disconnect between the statistical and 
ecological assumptions that are used to link variation parti-
tioning to metacommunity theory. For example, if species 
sorting is driving community turnover among sites arranged 

along an environmental gradient, then community dissimi-
larity is assumed to increase monotonically along the tran-
sect as sites represent increasingly dissimilar habitats from 
the original sampling location. At some distance along the 
transect, community composition will have turned over com-
pletely (no species in common with the original reference 
point), at which point most dissimilarity metrics reach their 
maximum value. As the study transect is extended along the 
environmental gradient, measures of environmental dissimi-
larity from the original sampling location will continue to 
increase, yet most community dissimilarity metrics will have 
plateaued at their maximum possible value, a phenomenon 
termed dissimilarity saturation. Using simulations, Tuomisto 
et al. demonstrated how increasing the extent of an observa-
tional study to include multiple community turnovers, which 
increases dissimilarity saturation (i.e., the number of pair-
wise comparisons a study with the maximum dissimilarity 
value), can lead to non-intuitive variation partitioning out-
comes that do not match the framework described above.

While the relationships between variation partition-
ing outcomes and metacommunity dynamics described 
by Cottenie (2005) cannot be assumed to be ubiquitously 
applicable, the framework can still prove useful in the right 
context. For example, Tuomisto et al. (2012) developed a 
dissimilarity metric that can capture multiple species turno-
vers and performs well when dissimilarity saturation is 
<60%. Other alternatives of community turnover, such as 
dissimilarity metrics based on phylodiversity (Webb et al. 
2002) or functional traits (e.g., Ricotta and Moretti 2010; 
Sokol et al. 2011), offer alternative measures of commu-
nity turnover that do not have the same sensitivity to the 
dissimilarity saturation as traditional taxonomy-based 
measures of community composition. Lastly, simulation-
based approaches can be used to identify the contexts 
under which it is appropriate to assume variation partition-
ing components respond predictably (i.e., monotonically) 
to changes in metacommunity dynamics. Tuomisto et al. 
(2012) demonstrated that variation partitioning outcomes 
reflected metacommunity dynamics, as expected, when dis-
similarity saturation was low (<20%) and sampling effort 
was sufficiently high to reduce noise from sampling error 
in the data set. Additionally, simulation studies may poten-
tially be used to identify when it is appropriate to make 
assumptions about how diversity metrics will respond 
to environmental and spatial predictors (Sokol et al. In 
Review; Stegen and Hurlbert 2011).

A confusion of continuums

Leibold et al. (2004) emphasized that the metacommu-
nity concept outlines a continuum of community assembly 
dynamics. Indeed, many studies have used variation parti-
tioning outcomes to characterize where a metacommunity 
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falls along a continuum of influential factors; however, 
community ecologists do not appear to agree on what 
exactly the continuum is. For example, Cottenie’s (2005) 
meta-analysis ranked metacommunities along a continuum 
of environmental to spatial influence. Other studies have 
described metacommunity continuums bookended with 
the deterministic vs. stochastic, niche vs. neutral, niche vs. 
dispersal, and local vs. regional dichotomies (e.g., Cottenie 
2005; De Bie et al. 2012; Thompson and Townsend 2006). 
While there are common themes among each of these con-
tinuums, they are not interchangeable.

Generally, niche-based species sorting is equated with 
“local” and “deterministic” community assembly process 
that results in a strong link between environmental varia-
bles and community composition, assumed to be driven by 
environmental filtering. However, the perception of species 
sorting is scale dependent (Steinbauer et al. 2012; Tuomisto 
et al. 2012). To detect species sorting, an observational 
study must have a resolution such that species and environ-
mental factors vary across the landscape at a similar scale 
and the extent of the study must encompass sufficient envi-
ronmental heterogeneity for community composition to 
vary along an environmental gradient, but the study extent 
must not be so large as to encompass multiple community 
turnovers (described above). Given these constraints, vari-
ation partitioning outcomes indicative of species sorting 
are more likely to be detected for species that are the least 
“local”, such as small-bodied widely dispersed organisms 
(De Bie et al. 2012; Soininen 2012). Conversely, specialist 
species that are similarly adapted to local habitat conditions 
often do not coexist locally, and niche-based competitive 
exclusion may weaken the perceived link between a habitat 
and species composition (Grime 2006). Thus, niche-based 
processes that structure metacommunities may not neces-
sarily be “local” or “deterministic”.

On the other hand, spatial patterns such as distance decay 
patterns in community similarity are often equated with dis-
persal-based community assembly processes, neutral meta-
community dynamics, stochasticity (e.g., priority effects and 
ecological drift), and regional scale influences over commu-
nity assembly. Dispersal-based dynamics do not necessar-
ily need to be neutral. “Neutrality” refers to the assumption 
that all species in the metacommunity are assumed to be 
ecologically equivalent (Bell 2001; Hubbell 2001), and thus 
have similar dispersal capabilities. Community turnover can 
arise in neutral metacommunities from stochastic demo-
graphic processes, but dispersal, colonization, and specia-
tion dynamics can vary widely in a neutral metacommunity, 
producing a wide range of diversity outcomes. Alternatively, 
species dispersal abilities may vary, violating the assump-
tion of ecological equivalence, which can affect variation 
partitioning outcomes (De Bie et al. 2012).

Current and best‑practice use of variation partitioning

In 2014, 20 of the 153 peer-reviewed metacommunity 
studies indexed in the Web of Science were research arti-
cles that employed variation partitioning techniques that 
cited methods described in Borcard and Legendre (2002) 
and/or Peres-Neto et al. (2006). The majority of these 
papers (>80%) referenced the Cottenie and Leibold et al. 
papers that have served as a foundation for linking varia-
tion partitioning outcomes to metacommunity theory, but 
also demonstrate how the application of variation parti-
tioning has evolved beyond a simple characterization of 
the relative influence of spatial and environmental fac-
tors. Given the previously expressed cautions, how is the 
technique of variation partitioning best used? Below, we 
outline several prudent and informative ways to apply vari-
ation partitioning to observational data sets to answer bio-
logically meaningful questions, though it is certainly not 
an exhaustive list.

1. Use a sensitivity analysis to understand how deci-
sions about study design can create bias in analytical 
outcomes (Sokol et al. 2016). A single variation par-
titioning on a single system will inevitably produce 
results, but there are limits to the inferences that can 
be drawn from those results. The technique is sensi-
tive to a variety of study-specific issues including 
analytical choices like distance metrics and trans-
formations, as well as the variables selected for the 
analysis, both measured and unmeasured. Repeated 
analyses using multiple sets of analytical choices may 
reveal how robust the observed results are to variation 
of such choices. For example, Legendre et al. (2009) 
showed that variation partitioning outcomes are sen-
sitive to patch grain size. A survey conducted using 
small patches will be biased toward lower patch-level 
richness (alpha diversity) and variation in community 
composition will tend to be attributed more heavily to 
pure spatial components [c] in the variation partition 
analysis. Alternatively, aggregating observations into 
larger patches will show stronger links between envi-
ronment and community composition.

2. Strategically subset data, and compare variation par-
titioning outcomes among groups to answer specific 
questions. It is important to be aware that simula-
tion studies have shown many factors (e.g., dispersal 
dynamics, patch topology, different levels of func-
tional diversity) can elicit similar changes in varia-
tion partitioning outcomes (Stegen and Hurlbert 2011; 
Gilbert and Bennett 2010; Smith and Lundholm 2010, 
Sokol et al. accepted). One approach is to divide the 
species matrix (Y) based on traits and compare vari-
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ation partitioning outcomes among groups. This pro-
vides a method to control for the influence of land-
scape structure and patch topology over variation 
partitioning outcomes. For example, Szekely and Lan-
genheder (2014) showed that generalists, relative to 
specialists, responded more strongly to environmental 
gradients at the landscape scale. Other studies (De Bie 
et al. 2012; Rádková et al. 2014) reported evidence 
that passive dispersers, relative to active dispersers, 
exhibited more spatial structure in their biodiversity 
patterns.

3. A number of studies have had success testing com-
munity assembly hypotheses by comparing outcomes 
from alternative analytical approaches. One approach 
is to reanalyze data sets using different methods for 
quantifying spatial relationships. For example, stream 
ecologists have embraced study designs that compare 
variation partitioning outcomes based on overland and 
watercourse distances to address hypotheses about 
the implications of aerial and aquatic dispersal in 
dendritic networks (Meier and Soininen 2014; Padial 
et al. 2014; Zhang et al. 2014; Canedo-Arguelles et al. 
2015). A second approach is to supply different meas-
ures of community composition to variation partition-
ing analyses and compare the outcomes. Mismatches 
between the scale of turnover in functional, phyloge-
netic, and/or taxonomic diversity that are detected in 
variation partitioning analyses can provide insight into 
controls of biodiversity at the local and regional scales 
(Sokol et al. 2011; Biswas et al. 2016). Importantly, 
analyses based on functional trait data can identify the 
influence of regional environmental filters that would 
otherwise be missed in an analysis of taxonomic turn-
over (Sokol et al. 2011).

4. Use simulations to expand sensitivity analyses beyond 
what is possible with empirically collected data and 
explore if variation partitioning metrics respond as 
expected to changes in metacommunity dynamics. 
Mouquet and Loreau (2003) used simulations to show 
how increased dispersal in a metacommunity can 
cause a decrease in beta-diversity. Similarly, inves-
tigators have used simulated data sets to assess how 
variation partitions respond to shifts in metacommu-
nity dynamics, and outcomes from such studies dem-
onstrate that extreme caution is warranted when mak-
ing inferences from variation partitioning outcomes 
(e.g., Gilbert and Bennett 2010; Smith and Lundholm 
2010). Alternatively, simulations can provide robust 
tools to understand the contingencies under which one 
can infer underlying community assembly processes 
from observed patterns (e.g., Stegen and Hurlbert 
2011; Münkemüller et al. 2012) or as a null model for 
hypothesis testing (e.g., Sokol et al. 2015). For exam-

ple, we have used simulations to identify a range of 
niche-breadth values and metacommunity configura-
tions for which we can expect Cottenie (2005) postu-
lates to hold true for specific raw data variation parti-
tioning methods (Sokol et al. 2016).

5. Despite the criticisms of variation partitioning based 
on simulation studies (Gilbert and Bennett 2010; 
Smith and Lundholm 2010) and ambiguous results in 
experimental studies (Logue et al. 2011), meta-anal-
yses have shown that there are clear empirical trends 
in variation partitioning outcomes across ecosystem 
and organism types (Cottenie 2005; Soininen 2016). 
It is important to document such empirical trends and 
identify when they are pervasive in ecology. While 
metacommunity theory and simulation models suggest 
variation partition response curves may not be mono-
tonic or easy to interpret across the entirety of mathe-
matically possible community assembly scenarios, the 
range of ecologically plausible community assembly 
scenarios may be more restricted. Simulation-based 
approaches can be used in combination with in situ 
observations to identify the ecologically plausible 
subset of the mathematically possible metacommu-
nity parameter space (e.g., Sokol et al. 2015). Further, 
strong empirical, monotonic relationships between 
variation partitioning outcomes and metacommunity 
characteristics observed in a meta-analysis might sug-
gest simulation models are more complicated than that 
needed to answer practical questions. Overall, a bal-
ance between modeling and empirical study is crucial 
for understanding complex systems such as metacom-
munities. Models allow us to understand how response 
variables should be expected to behave, but empirical 
studies and meta-analyses are necessary to identify 
ecologically relevant ranges of values for variables of 
interest.

6. Assessing temporal variability is crucial for under-
standing metacommunity dynamics. Variation in 
metacommunity structure through time can be tied 
to underlying metacommunity community assembly 
mechanisms (Seymour et al. 2015; Hubert et al. 2015, 
Jabot and Lohier 2016). Studies covering a broad spa-
tial scope will likely need to account for evolutionary 
controls over community assembly in addition to the 
contemporary dynamics (Hubert et al. 2015). Fur-
thermore, conclusions in many variation partitioning 
studies rely on the assumption that metacommunities 
are in equilibrium; however, controls over commu-
nity assembly likely shift seasonally or in the wake of 
disturbance (e.g., Fernandes et al. 2014; Datry et al. 
2016). Thus, investigators should be weary when 
inferring community assembly processes based on a 
snapshot in time. When temporal resolution is avail-
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able, temporal heterogeneity can be modeled similarly 
to spatial heterogeneity and incorporated into variation 
partitioning analyses (Legendre and Gauthier 2014).

Summary

Despite misunderstandings and misapplications, we reiter-
ate that both the Big 4 metacommunity paradigms and the 
technique of variation partitioning are potentially useful 
tools in the investigation of metacommunity patterns. The 
Big 4 paradigms are all historical approaches to commu-
nity assembly that clearly fall under the purview of meta-
community ecology, and each is foundational theory in its 
own right. However, recognizing that the mechanistic space 
represented by metacommunity theory both exceeds the 
Big 4 paradigms and is continuous in nature is necessary to 
truly realize the potential of the metacommunity concept. 
Likewise, variation partitioning may be a valuable tool for 
investigation of metacommunity patterns, particularly from 
observational data. However, recent studies suggest caution 
with regard to interpreting the results of variation partition-
ing and insist that the technique not be approached blithely. 
Careful consideration of the data used in variation partition-
ing studies, of the specific choices made by investigators, 
and of the inferences to be drawn from variation partitioning 
are necessary for robust outcomes based on the method.
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